Package: BayesPostEst 0.3.2

Shana Scogin

BayesPostEst: Generate Postestimation Quantities for Bayesian MCMC Estimation

An implementation of functions to generate and plot postestimation quantities after estimating Bayesian regression models using Markov chain Monte Carlo (MCMC). Functionality includes the estimation of the Precision-Recall curves (see Beger, 2016 <doi:10.2139/ssrn.2765419>), the implementation of the observed values method of calculating predicted probabilities by Hanmer and Kalkan (2013) <doi:10.1111/j.1540-5907.2012.00602.x>, the implementation of the average value method of calculating predicted probabilities (see King, Tomz, and Wittenberg, 2000 <doi:10.2307/2669316>), and the generation and plotting of first differences to summarize typical effects across covariates (see Long 1997, ISBN:9780803973749; King, Tomz, and Wittenberg, 2000 <doi:10.2307/2669316>). This package can be used with MCMC output generated by any Bayesian estimation tool including 'JAGS', 'BUGS', 'MCMCpack', and 'Stan'.

Authors:Johannes Karreth [aut], Shana Scogin [aut, cre], Rob Williams [aut], Andreas Beger [aut], Myunghee Lee [ctb], Neil Williams [ctb]

BayesPostEst_0.3.2.tar.gz
BayesPostEst_0.3.2.tar.gz(r-4.5-noble)BayesPostEst_0.3.2.tar.gz(r-4.4-noble)
BayesPostEst_0.3.2.tgz(r-4.4-emscripten)BayesPostEst_0.3.2.tgz(r-4.3-emscripten)
BayesPostEst.pdf |BayesPostEst.html
BayesPostEst/json (API)
NEWS

# Install 'BayesPostEst' in R:
install.packages('BayesPostEst', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/shanascogin/bayespostest/issues

Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3
Datasets:

jagscpp

2.93 score 17 scripts 275 downloads 1 mentions 10 exports 149 dependencies

Last updated 3 years agofrom:8efc5a7c29. Checks:OK: 1 NOTE: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 18 2024
R-4.5-linuxNOTEDec 18 2024

Exports:mcmcAveProbmcmcCoefPlotmcmcFDmcmcFDplotmcmcMargEffmcmcObsProbmcmcRegmcmcRocPrcmcmcRocPrcGenmcmcTab

Dependencies:abindaskpassbackportsbase64encbayesplotBHbitopsbootbridgesamplingbrmsBrobdingnagbslibcachemcallrcarDatacaToolscheckmateclicodacodetoolscolorspacecolourpickercommonmarkcpp11crayoncrosstalkcurldescdigestdistributionaldplyrDTdygraphsevaluatefansifarverfastmapfontawesomefsfuturefuture.applygenericsggplot2ggridgesglobalsgluegplotsgridExtragtablegtoolsHDIntervalhighrhtmltoolshtmlwidgetshttpuvhttrigraphinlineisobandjquerylibjsonliteKernSmoothknitrlabelinglaterlatticelazyevallifecyclelistenvlme4loomagrittrmarkdownMASSMatrixMatrixModelsmatrixStatsmcmcMCMCpackmemoisemgcvmimeminiUIminqamunsellmvtnormnleqslvnlmenloptrnumDerivopensslparallellypillarpkgbuildpkgconfigplyrposteriorprocessxpromisespspurrrquantregQuickJSRR2jagsR2WinBUGSR6rappdirsRColorBrewerRcppRcppEigenRcppParallelreshape2rjagsrlangrmarkdownROCRrstanrstanarmrstantoolsrunjagssassscalesshinyshinyjsshinystanshinythemessourcetoolsSparseMStanHeadersstringistringrsurvivalsystensorAtexregthreejstibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunxtablextsyamlzoo

Using the BayesPostEst package

Rendered fromgetting_started.Rmdusingknitr::rmarkdownon Dec 18 2024.

Last update: 2021-11-11
Started: 2019-08-05