Package: BayesCACE 1.2.3
BayesCACE: Bayesian Model for CACE Analysis
Performs CACE (Complier Average Causal Effect analysis) on either a single study or meta-analysis of datasets with binary outcomes, using either complete or incomplete noncompliance information. Our package implements the Bayesian methods proposed in Zhou et al. (2019) <doi:10.1111/biom.13028>, which introduces a Bayesian hierarchical model for estimating CACE in meta-analysis of clinical trials with noncompliance, and Zhou et al. (2021) <doi:10.1080/01621459.2021.1900859>, with an application example on Epidural Analgesia.
Authors:
BayesCACE_1.2.3.tar.gz
BayesCACE_1.2.3.tar.gz(r-4.5-noble)BayesCACE_1.2.3.tar.gz(r-4.4-noble)
BayesCACE_1.2.3.tgz(r-4.4-emscripten)BayesCACE_1.2.3.tgz(r-4.3-emscripten)
BayesCACE.pdf |BayesCACE.html✨
BayesCACE/json (API)
# Install 'BayesCACE' in R: |
install.packages('BayesCACE', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- epidural_c - Meta-analysis data with full compliance information
- epidural_ic - Meta-analysis data without full compliance information
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:4a9cf5282f. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 08 2024 |
R-4.5-linux | OK | Nov 08 2024 |
Exports:cace.meta.ccace.meta.iccace.studycoda.namescoda.samples.dicmodel.meta.cmodel.meta.icmodel.studyparse.varnameplt.acfplt.densityplt.forestplt.noncompplt.traceprior.metaprior.study
Dependencies:abindbackportsbootcheckmatecodaforestplotlatticelme4MASSmathjaxrMatrixmetadatmetaforminqanlmenloptrnumDerivpbapplyrbibutilsRcppRcppEigenRdpackrjags