Package: BSPBSS 1.0.5

Ben Wu

BSPBSS: Bayesian Spatial Blind Source Separation

Gibbs sampling for Bayesian spatial blind source separation (BSP-BSS). BSP-BSS is designed for spatially dependent signals in high dimensional and large-scale data, such as neuroimaging. The method assumes the expectation of the observed images as a linear mixture of multiple sparse and piece-wise smooth latent source signals, and constructs a Bayesian nonparametric prior by thresholding Gaussian processes. Details can be found in our paper: Wu et al. (2022+) "Bayesian Spatial Blind Source Separation via the Thresholded Gaussian Process" <doi:10.1080/01621459.2022.2123336>.

Authors:Ben Wu [aut, cre], Ying Guo [aut], Jian Kang [aut]

BSPBSS_1.0.5.tar.gz
BSPBSS_1.0.5.tar.gz(r-4.5-noble)BSPBSS_1.0.5.tar.gz(r-4.4-noble)
BSPBSS_1.0.5.tgz(r-4.4-emscripten)BSPBSS_1.0.5.tgz(r-4.3-emscripten)
BSPBSS.pdf |BSPBSS.html
BSPBSS/json (API)

# Install 'BSPBSS' in R:
install.packages('BSPBSS', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

2.70 score 5 scripts 223 downloads 7 exports 60 dependencies

Last updated 2 years agofrom:fe54c82aea. Checks:OK: 1 NOTE: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 30 2024
R-4.5-linux-x86_64NOTEDec 30 2024

Exports:init_bspbsslevelplot2Dmcmc_bspbssoutput_niipre_niisim_2Dimagesum_mcmc_bspbss

Dependencies:abindBayesGPfitbitopscaToolscliclueclustercodetoolscolorspacefansifarverforeachggplot2glmnetgluegplotsgridExtragtablegtoolsicaisobanditeratorsKernSmoothlabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmgcvmovMFmunsellneurobasenlmeoro.niftipillarpkgconfigR.methodsS3R.ooR.utilsR6RColorBrewerRcppRcppArmadilloRcppEigenrlangRNiftirstiefelscalesshapeskmeansslamsurvivalsvdtibbleutf8vctrsviridisLitewithr

BSPBSS-vignette

Rendered fromBSPBSS-vignette.Rmdusingknitr::rmarkdownon Dec 30 2024.

Last update: 2022-09-18
Started: 2022-09-02