Package: ARTtransfer 1.0.0

Boxiang Wang

ARTtransfer: Adaptive and Robust Pipeline for Transfer Learning

Adaptive and Robust Transfer Learning (ART) is a flexible framework for transfer learning that integrates information from auxiliary data sources to improve model performance on primary tasks. It is designed to be robust against negative transfer by including the non-transfer model in the candidate pool, ensuring stable performance even when auxiliary datasets are less informative. See the paper, Wang, Wu, and Ye (2023) <doi:10.1002/sta4.582>.

Authors:Boxiang Wang [aut, cre], Yunan Wu [aut], Chenglong Ye [aut]

ARTtransfer_1.0.0.tar.gz
ARTtransfer_1.0.0.tar.gz(r-4.5-noble)ARTtransfer_1.0.0.tar.gz(r-4.4-noble)
ARTtransfer_1.0.0.tgz(r-4.4-emscripten)ARTtransfer_1.0.0.tgz(r-4.3-emscripten)
ARTtransfer.pdf |ARTtransfer.html
ARTtransfer/json (API)

# Install 'ARTtransfer' in R:
install.packages('ARTtransfer', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.70 score 1 scripts 11 exports 13 dependencies

Last updated 5 days agofrom:54301995f8. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-linuxOKOct 25 2024

Exports:ARTART_I_AMfit_gbmfit_glmnet_lmfit_glmnet_logitfit_lmfit_logitfit_nnetfit_rfgenerate_datastan

Dependencies:codetoolsforeachgbmglmnetiteratorslatticeMatrixnnetrandomForestRcppRcppEigenshapesurvival

Introduction to R Package ARTtransfer for Transfer Learning

Rendered fromARTtransfer.Rmdusingknitr::rmarkdownon Oct 25 2024.

Last update: 2024-10-24
Started: 2024-10-24