
Package: xfun (via r-universe)
November 1, 2024

Type Package

Title Supporting Functions for Packages Maintained by 'Yihui Xie'

Version 0.49

Description Miscellaneous functions commonly used in other packages
maintained by 'Yihui Xie'.

Depends R (>= 3.2.0)

Imports grDevices, stats, tools

Suggests testit, parallel, codetools, methods, rstudioapi, tinytex (>=
0.30), mime, litedown, commonmark, knitr (>= 1.47), remotes,
pak, rhub, renv, curl, xml2, jsonlite, magick, yaml, qs,
rmarkdown

License MIT + file LICENSE

URL https://github.com/yihui/xfun

BugReports https://github.com/yihui/xfun/issues

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder litedown

NeedsCompilation yes

Author Yihui Xie [aut, cre, cph]
(<https://orcid.org/0000-0003-0645-5666>), Wush Wu [ctb],
Daijiang Li [ctb], Xianying Tan [ctb], Salim Brüggemann [ctb]
(<https://orcid.org/0000-0002-5329-5987>), Christophe Dervieux
[ctb]

Maintainer Yihui Xie <xie@yihui.name>

Repository CRAN

Date/Publication 2024-10-31 18:10:02 UTC

1

https://github.com/yihui/xfun
https://github.com/yihui/xfun/issues
https://orcid.org/0000-0003-0645-5666
https://orcid.org/0000-0002-5329-5987

2 Contents

Contents
alnum_id . 4
attr . 5
base64_encode . 5
base64_uri . 6
base_pkgs . 6
bg_process . 7
broken_packages . 8
bump_version . 8
cache_exec . 9
cache_rds . 10
crandalf_check . 13
csv_options . 14
decimal_dot . 15
del_empty_dir . 15
dir_create . 16
dir_exists . 16
divide_chunk . 17
download_cache . 18
download_file . 19
do_once . 19
embed_file . 20
env_option . 22
existing_files . 23
exit_call . 23
fenced_block . 24
file_ext . 25
file_rename . 26
file_string . 26
format_bytes . 27
from_root . 28
github_releases . 29
grep_sub . 29
gsub_file . 30
html_tag . 31
install_dir . 32
install_github . 33
in_dir . 33
is_abs_path . 34
is_ascii . 34
is_blank . 35
is_sub_path . 35
is_web_path . 36
is_windows . 37
lazy_save . 37
magic_path . 38
mark_dirs . 39

Contents 3

md5 . 40
md_table . 40
mime_type . 41
msg_cat . 42
native_encode . 43
news2md . 44
new_app . 44
normalize_path . 45
numbers_to_words . 46
optipng . 47
parse_only . 47
pkg_attach . 48
process_file . 49
proc_kill . 50
proj_root . 51
prose_index . 52
protect_math . 52
raw_string . 53
read_all . 54
read_bin . 55
read_utf8 . 56
record . 57
record_print . 59
relative_path . 60
rename_seq . 61
rest_api . 62
retry . 63
rev_check . 64
Rscript . 66
Rscript_call . 67
rstudio_type . 68
same_path . 68
session_info . 69
set_envvar . 70
shrink_images . 70
split_lines . 71
split_source . 72
strict_list . 72
strip_html . 73
submit_cran . 74
system3 . 75
tinify . 75
tojson . 77
tree . 78
try_error . 79
try_silent . 79
upload_ftp . 80
upload_imgur . 81

4 alnum_id

url_accessible . 82
url_filename . 83
valid_syntax . 83
yaml_body . 84
yaml_load . 85

Index 87

alnum_id Generate ID strings

Description

Substitute certain (by default, non-alphanumeric) characters with dashes and remove extra dashes at
both ends to generate ID strings. This function is intended for generating IDs for HTML elements,
so HTML tags in the input text will be removed first.

Usage

alnum_id(x, exclude = "[^[:alnum:]]+")

Arguments

x A character vector.

exclude A (Perl) regular expression to detect characters to be replaced by dashes. By
default, non-alphanumeric characters are replaced.

Value

A character vector of IDs.

Examples

x = c("Hello world 123!", "a &b*^##c 456")
xfun::alnum_id(x)
xfun::alnum_id(x, "[^[:alpha:]]+") # only keep alphabetical chars
when text contains HTML tags
xfun::alnum_id("<h1>Hello world!")

attr 5

attr Obtain an attribute of an object without partial matching

Description

An abbreviation of base::attr(exact = TRUE).

Usage

attr(...)

Arguments

... Passed to base::attr() (without the exact argument).

Examples

z = structure(list(a = 1), foo = 2)
base::attr(z, "f") # 2
xfun::attr(z, "f") # NULL
xfun::attr(z, "foo") # 2

base64_encode Encode/decode data into/from base64 encoding.

Description

The function base64_encode() encodes a file or a raw vector into the base64 encoding. The
function base64_decode() decodes data from the base64 encoding.

Usage

base64_encode(x)

base64_decode(x, from = NA)

Arguments

x For base64_encode(), a raw vector. If not raw, it is assumed to be a file or a
connection to be read via readBin(). For base64_decode(), a string.

from If provided (and x is not provided), a connection or file to be read via readChar(),
and the result will be passed to the argument x.

Value

base64_encode() returns a character string. base64_decode() returns a raw vector.

6 base_pkgs

Examples

xfun::base64_encode(as.raw(1:10))
logo = xfun:::R_logo()
xfun::base64_encode(logo)
xfun::base64_decode("AQIDBAUGBwgJCg==")

base64_uri Generate the Data URI for a file

Description

Encode the file in the base64 encoding, and add the media type. The data URI can be used to embed
data in HTML documents, e.g., in the src attribute of the tag.

Usage

base64_uri(x, type = mime_type(x))

Arguments

x A file path.

type The MIME type of the file, e.g., "image/png" for a PNG image file.

Value

A string of the form data:<media type>;base64,<data>.

Examples

logo = xfun:::R_logo()
img = xfun::html_tag("img", src = xfun::base64_uri(logo), alt = "R logo")
if (interactive()) xfun::html_view(img)

base_pkgs Get base R package names

Description

Return base R package names.

Usage

base_pkgs()

Value

A character vector of base R package names.

bg_process 7

Examples

xfun::base_pkgs()

bg_process Start a background process

Description

Start a background process using the PowerShell cmdlet Start-Process-PassThru on Windows
or the ampersand & on Unix, and return the process ID.

Usage

bg_process(
command,
args = character(),
verbose = getOption("xfun.bg_process.verbose", FALSE)

)

Arguments

command, args The system command and its arguments. They do not need to be quoted, since
they will be quoted via shQuote() internally.

verbose If FALSE, suppress the output from stdout (and also stderr on Windows). The
default value of this argument can be set via a global option, e.g., options(xfun.bg_process.verbose
= TRUE).

Value

The process ID as a character string.

Note

On Windows, if PowerShell is not available, try to use system2(wait = FALSE) to start the back-
ground process instead. The process ID will be identified from the output of the command tasklist.
This method of looking for the process ID may not be reliable. If the search is not success-
ful in 30 seconds, it will throw an error (timeout). If a longer time is needed, you may set
options(xfun.bg_process.timeout) to a larger value, but it should be very rare that a process
cannot be started in 30 seconds. When you reach the timeout, it is more likely that the command
actually failed.

See Also

proc_kill() to kill a process.

8 bump_version

broken_packages Find out broken packages and reinstall them

Description

If a package is broken (i.e., not loadable()), reinstall it.

Usage

broken_packages(reinstall = TRUE)

Arguments

reinstall Whether to reinstall the broken packages, or only list their names.

Details

Installed R packages could be broken for several reasons. One common reason is that you have
upgraded R to a newer x.y version, e.g., from 4.0.5 to 4.1.0, in which case you need to reinstall
previously installed packages.

Value

A character vector of names of broken package.

bump_version Bump version numbers

Description

Increase the last digit of version numbers, e.g., from 0.1 to 0.2, or 7.23.9 to 7.23.10.

Usage

bump_version(x)

Arguments

x A vector of version numbers (of the class "numeric_version"), or values that
can be coerced to version numbers via as.numeric_version().

Value

A vector of new version numbers.

Examples

xfun::bump_version(c("0.1", "91.2.14"))

cache_exec 9

cache_exec Cache the execution of an expression in memory or on disk

Description

Caching is based on the assumption that if the input does not change, the output will not change.
After an expression is executed for the first time, its result will be saved (either in memory or on
disk). The next run will be skipped and the previously saved result will be loaded directly if all
external inputs of the expression remain the same, otherwise the cache will be invalidated and the
expression will be re-executed.

Usage

cache_exec(expr, path = "cache/", id = NULL, ...)

Arguments

expr An R expression to be cached.

path The path to save the cache. The special value ":memory:" means in-memory
caching. If it is intended to be a directory path, please make sure to add a trailing
slash.

id A stable and unique string identifier for the expression to be used to identify
a unique copy of cache for the current expression from all cache files (or in-
memory elements). If not provided, an MD5 digest of the deparsed expression
will be used, which means if the expression does not change (changes in com-
ments or white spaces do not matter), the id will remain the same. This may not
be a good default is two identical expressions are cached under the same path,
because they could overwrite each other’s cache when one expression’s cache is
invalidated, which may or may not be what you want. If you do not want that to
happen, you need to manually provide an id.

... More arguments to control the behavior of caching (see ‘Details’).

Details

Arguments supported in ... include:

• vars: Names of local variables (which are created inside the expression). By default, local
variables are automatically detected from the expression via codetools::findLocalsList().
Locally created variables are cached along with the value of the expression.

• hash and extra: R objects to be used to determine if cache should be loaded or invalidated.
If (the MD5 hash of) the objects is not changed, the cache is loaded, otherwise the cache is
invalidated and rebuilt. By default, hash is a list of values of global variables in the expression
(i.e., variables created outside the expression). Global variables are automatically detected by
codetools::findGlobals(). You can provide a vector of names to override the automatic
detection if you want some specific global variables to affect caching, or the automatic de-
tection is not reliable. You can also provide additional information via the extra argument.

10 cache_rds

For example, if the expression reads an external file foo.csv, and you want the cache to be
invalidated after the file is modified, you may use extra = file.mtime("foo.csv").

• keep: By default, only one copy of the cache corresponding to an id under path is kept, and
all other copies for this id is automatically purged. If TRUE, all copies of the cache are kept. If
FALSE, all copies are removed, which means the cache is always invalidated, and can be useful
to force re-executing the expression.

• rw: A list of functions to read/write the cache files. The list is of the form list(name = 'xxx',
load = function(file) {}, save = function(x, file) {}). By default, readRDS() and
saveRDS() are used. This argument can also take a character string to use some built-
in read/write methods. Currently available methods include rds (the default), raw (using
serialize() and unserialize()), and qs (using qs::qread() and qs::qsave()). The rds
and raw methods only use base R functions (the rds method generates smaller files because it
uses compression, but is often slower than the raw method, which does not use compression).
The qs method requires the qs package, which can be much faster than base R methods and
also supports compression.

Value

If the cache is found, the cached value of the expression will be loaded and returned (other local
variables will also be lazy-loaded into the current environment as a side-effect). If cache does not
exist, the expression is executed and its value is returned.

Examples

the first run takes about 1 second
y1 = xfun::cache_exec({

x = rnorm(1e+05)
Sys.sleep(1)
x

}, path = ":memory:", id = "sim-norm")

the second run takes almost no time
y2 = xfun::cache_exec({

comments won't affect caching
x = rnorm(1e+05)
Sys.sleep(1)
x

}, path = ":memory:", id = "sim-norm")

y1, y2, and x should be identical
stopifnot(identical(y1, y2), identical(y1, x))

cache_rds Cache the value of an R expression to an RDS file

Description

Save the value of an expression to a cache file (of the RDS format). Next time the value is loaded
from the file if it exists.

cache_rds 11

Usage

cache_rds(
expr = {
},
rerun = FALSE,
file = "cache.rds",
dir = "cache/",
hash = NULL,
clean = getOption("xfun.cache_rds.clean", TRUE),
...

)

Arguments

expr An R expression.

rerun Whether to delete the RDS file, rerun the expression, and save the result again
(i.e., invalidate the cache if it exists).

file The base (see Details) cache filename under the directory specified by the dir
argument. If not specified and this function is called inside a code chunk of
a knitr document (e.g., an R Markdown document), the default is the current
chunk label plus the extension ‘.rds’.

dir The path of the RDS file is partially determined by paste0(dir, file). If not
specified and the knitr package is available, the default value of dir is the knitr
chunk option cache.path (so if you are compiling a knitr document, you do not
need to provide this dir argument explicitly), otherwise the default is ‘cache/’.
If you do not want to provide a dir but simply a valid path to the file argument,
you may use dir = "".

hash A list object that contributes to the MD5 hash of the cache filename (see De-
tails). It can also take a special character value "auto". Other types of objects
are ignored.

clean Whether to clean up the old cache files automatically when expr has changed.

... Other arguments to be passed to saveRDS().

Details

Note that the file argument does not provide the full cache filename. The actual name of the
cache file is of the form ‘BASENAME_HASH.rds’, where ‘BASENAME’ is the base name provided via
the ‘file’ argument (e.g., if file = 'foo.rds', BASENAME would be ‘foo’), and ‘HASH’ is the MD5
hash (also called the ‘checksum’) calculated from the R code provided to the expr argument and
the value of the hash argument, which means when the code or the hash argument changes, the
‘HASH’ string may also change, and the old cache will be invalidated (if it exists). If you want to find
the cache file, look for ‘.rds’ files that contain 32 hexadecimal digits (consisting of 0-9 and a-z) at
the end of the filename.

The possible ways to invalidate the cache are: 1) change the code in expr argument; 2) delete the
cache file manually or automatically through the argument rerun = TRUE; and 3) change the value
of the hash argument. The first two ways should be obvious. For the third way, it makes it possible

12 cache_rds

to automatically invalidate the cache based on changes in certain R objects. For example, when
you run cache_rds({ x + y }), you may want to invalidate the cache to rerun { x + y } when the
value of x or y has been changed, and you can tell cache_rds() to do so by cache_rds({ x + y },
hash = list(x, y)). The value of the argument hash is expected to be a list, but it can also take
a special value, "auto", which means cache_rds(expr) will try to automatically figure out the
global variables in expr, return a list of their values, and use this list as the actual value of hash.
This behavior is most likely to be what you really want: if the code in expr uses an external global
variable, you may want to invalidate the cache if the value of the global variable has changed. Here
a “global variable” means a variable not created locally in expr, e.g., for cache_rds({ x <- 1; x
+ y }), x is a local variable, and y is (most likely to be) a global variable, so changes in y should
invalidate the cache. However, you know your own code the best. If you want to be completely sure
when to invalidate the cache, you can always provide a list of objects explicitly rather than relying
on hash = "auto".

By default (the argument clean = TRUE), old cache files will be automatically cleaned up. Some-
times you may want to use clean = FALSE (set the R global option options(xfun.cache_rds.clean
= FALSE) if you want FALSE to be the default). For example, you may not have decided which ver-
sion of code to use, and you can keep the cache of both versions with clean = FALSE, so when you
switch between the two versions of code, it will still be fast to run the code.

Value

If the cache file does not exist, run the expression and save the result to the file, otherwise read the
cache file and return the value.

Note

Changes in the code in the expr argument do not necessarily always invalidate the cache, if the
changed code is parsed to the same expression as the previous version of the code. For example, if
you have run cache_rds({Sys.sleep(5);1+1}) before, running cache_rds({ Sys.sleep(5) ;
1 + 1 }) will use the cache, because the two expressions are essentially the same (they only differ in
white spaces). Usually you can add/delete white spaces or comments to your code in expr without
invalidating the cache. See the package vignette vignette('xfun', package = 'xfun') for more
examples.

When this function is called in a code chunk of a knitr document, you may not want to provide the
filename or directory of the cache file, because they have reasonable defaults.

Side-effects (such as plots or printed output) will not be cached. The cache only stores the last value
of the expression in expr.

See Also

cache_exec(), which is more flexible (e.g., it supports in-memory caching and different read/write
methods for cache files).

Examples

f = tempfile() # the cache file
compute = function(...) {

res = xfun::cache_rds({
Sys.sleep(1)

crandalf_check 13

1:10
}, file = f, dir = "", ...)
res

}
compute() # takes one second
compute() # returns 1:10 immediately
compute() # fast again
compute(rerun = TRUE) # one second to rerun
compute()
unlink(paste0(f, "_*.rds"))

crandalf_check Submit check jobs to crandalf

Description

Check the reverse dependencies of a package using the crandalf service: https://github.com/
yihui/crandalf. If the number of reverse dependencies is large, they will be split into batches and
pushed to crandalf one by one.

Usage

crandalf_check(pkg, size = 400, jobs = Inf, which = "all")

crandalf_results(pkg, repo = NA, limit = 200, wait = 5 * 60)

Arguments

pkg The package name of which the reverse dependencies are to be checked.

size The number of reverse dependencies to be checked in each job.

jobs The number of jobs to run in GitHub Actions (by default, all jobs are submitted,
but you can choose to submit the first few jobs).

which The type of dependencies (see rev_check()).

repo The crandalf repo on GitHub (of the form user/repo such as "yihui/crandalf").
Usually you do not need to specify it, unless you are not calling this function
inside the crandalf project, because gh should be able to figure out the repo
automatically.

limit The maximum of records for gh run list to retrieve. You only need a larger
number if the check results are very early in the GitHub Action history.

wait Number of seconds to wait if not all jobs have been completed on GitHub. By
default, this function checks the status every 5 minutes until all jobs are com-
pleted. Set wait to 0 to disable waiting (and throw an error immediately when
any jobs are not completed).

https://github.com/yihui/crandalf
https://github.com/yihui/crandalf

14 csv_options

Details

Due to the time limit of a single job on GitHub Actions (6 hours), you will have to split the large
number of reverse dependencies into batches and check them sequentially on GitHub (at most 5 jobs
in parallel). The function crandalf_check() does this automatically when necessary. It requires
the git command to be available.

The function crandalf_results() fetches check results from GitHub after all checks are com-
pleted, merge the results, and show a full summary of check results. It requires gh (GitHub CLI:
https://cli.github.com/manual/) to be installed and you also need to authenticate with your
GitHub account beforehand.

csv_options Parse comma-separated chunk options

Description

For knitr and R Markdown documents, code chunk options can be written using the comma-
separated syntax (e.g., opt1=value1, opt2=value2). This function parses these options and re-
turns a list. If an option is not named, it will be treated as the chunk label.

Usage

csv_options(x)

Arguments

x The chunk options as a string.

Value

A list of chunk options.

Examples

xfun::csv_options("foo, eval=TRUE, fig.width=5, echo=if (TRUE) FALSE")

https://cli.github.com/manual/

decimal_dot 15

decimal_dot Evaluate an expression after forcing the decimal point to be a dot

Description

Sometimes it is necessary to use the dot character as the decimal separator. In R, this could be
affected by two settings: the global option options(OutDec) and the LC_NUMERIC locale. This
function sets the former to . and the latter to C before evaluating an expression, such as coercing a
number to character.

Usage

decimal_dot(x)

Arguments

x An expression.

Value

The value of x.

Examples

opts = options(OutDec = ",")
as.character(1.234) # using ',' as the decimal separator
print(1.234) # same
xfun::decimal_dot(as.character(1.234)) # using dot
xfun::decimal_dot(print(1.234)) # using dot
options(opts)

del_empty_dir Delete an empty directory

Description

Use list.file() to check if there are any files or subdirectories under a directory. If not, delete
this empty directory.

Usage

del_empty_dir(dir)

Arguments

dir Path to a directory. If NULL or the directory does not exist, no action will be
performed.

16 dir_exists

dir_create Create a directory recursively by default

Description

First check if a directory exists. If it does, return TRUE, otherwise create it with dir.create(recursive
= TRUE) by default.

Usage

dir_create(x, recursive = TRUE, ...)

Arguments

x A path name.

recursive Whether to create all directory components in the path.

... Other arguments to be passed to dir.create().

Value

A logical value indicating if the directory either exists or is successfully created.

dir_exists Test the existence of files and directories

Description

These are wrapper functions of [utils::file_test()] to test the existence of directories and files.
Note that file_exists() only tests files but not directories, which is the main difference between
file.exists() in base R. If you use are using the R version 3.2.0 or above, dir_exists() is the
same as dir.exists() in base R.

Usage

dir_exists(x)

file_exists(x)

Arguments

x A vector of paths.

Value

A logical vector.

divide_chunk 17

divide_chunk Divide chunk options from the code chunk body

Description

Chunk options can be written in special comments (e.g., after #| for R code chunks) inside a code
chunk. This function partitions these options from the chunk body.

Usage

divide_chunk(engine, code)

Arguments

engine The name of the language engine (to determine the appropriate comment char-
acter).

code A character vector (lines of code).

Value

A list with the following items:

• options: The parsed options (if there are any) as a list.

• src: The part of the input that contains the options.

• code: The part of the input that contains the code.

Note

Chunk options must be written on continuous lines (i.e., all lines must start with the special com-
ment prefix such as #|) at the beginning of the chunk body.

Examples

parse yaml-like items
yaml_like = c("#| label: mine", "#| echo: true", "#| fig.width: 8", "#| foo: bar",

"1 + 1")
writeLines(yaml_like)
xfun::divide_chunk("r", yaml_like)

parse CSV syntax
csv_like = c("#| mine, echo = TRUE, fig.width = 8, foo = 'bar'", "1 + 1")
writeLines(csv_like)
xfun::divide_chunk("r", csv_like)

18 download_cache

download_cache Download a file from a URL and cache it on disk

Description

This object provides methods to download files and cache them on disk.

Usage

download_cache

Format

A list of methods:

• $get(url, type, handler) downloads a URL, caches it, and returns the file content accord-
ing to the value of type (possible values: "text" means the text content; "base64" means the
base64 encoded data; "raw" means the raw binary content; "auto" is the default and means
the type is determined by the content type in the URL headers). Optionally a handler function
can be applied to the content.

• $list() gives the list of cache files.
• $summary() gives a summary of existing cache files.
• $remove(url, type) removes a single cache file.
• $purge() deletes all cache files.

Examples

the first time it may take a few seconds
x1 = xfun::download_cache$get("https://www.r-project.org/")
head(x1)

now you can get the cached content
x2 = xfun::download_cache$get("https://www.r-project.org/")
identical(x1, x2) # TRUE

a binary file
x3 = xfun::download_cache$get("https://yihui.org/images/logo.png", "raw")
length(x3)

show a summary
xfun::download_cache$summary()
remove a specific cache file
xfun::download_cache$remove("https://yihui.org/images/logo.png", "raw")
remove all cache files
xfun::download_cache$purge()

download_file 19

download_file Try various methods to download a file

Description

Try all possible methods in download.file() (e.g., libcurl, curl, wget, and wininet) and see if
any method can succeed. The reason to enumerate all methods is that sometimes the default method
does not work, e.g., https://stat.ethz.ch/pipermail/r-devel/2016-June/072852.html.

Usage

download_file(
url,
output = url_filename(url),
...,
.error = "No download method works (auto/wininet/wget/curl/lynx)"

)

Arguments

url The URL of the file.

output Path to the output file. By default, it is determined by url_filename().

... Other arguments to be passed to download.file() (except method).

.error An error message to signal when the download fails.

Value

The integer code 0 for success, or an error if none of the methods work.

Note

To allow downloading large files, the timeout option in options() will be temporarily set to one
hour (3600 seconds) inside this function when this option has the default value of 60 seconds. If you
want a different timeout value, you may set it via options(timeout = N), where N is the number
of seconds (not 60).

do_once Perform a task once in an R session

Description

Perform a task once in an R session, e.g., emit a message or warning. Then give users an optional
hint on how not to perform this task at all.

https://stat.ethz.ch/pipermail/r-devel/2016-June/072852.html

20 embed_file

Usage

do_once(
task,
option,
hint = c("You will not see this message again in this R session.",
"If you never want to see this message,",
sprintf("you may set options(%s = FALSE) in your .Rprofile.", option))

)

Arguments

task Any R code expression to be evaluated once to perform a task, e.g., warning('Danger!')
or message('Today is ', Sys.Date()).

option An R option name. This name should be as unique as possible in options().
After the task has been successfully performed, this option will be set to FALSE
in the current R session, to prevent the task from being performed again the next
time when do_once() is called.

hint A character vector to provide a hint to users on how not to perform the task or
see the message again in the current R session. Set hint = "" if you do not want
to provide the hint.

Value

The value returned by the task, invisibly.

Examples

do_once(message("Today's date is ", Sys.Date()), "xfun.date.reminder")
if you run it again, it will not emit the message again
do_once(message("Today's date is ", Sys.Date()), "xfun.date.reminder")

do_once({
Sys.sleep(2)
1 + 1

}, "xfun.task.1plus1")
do_once({

Sys.sleep(2)
1 + 1

}, "xfun.task.1plus1")

embed_file Embed a file, multiple files, or directory on an HTML page

embed_file 21

Description

For a file, first encode it into base64 data (a character string). Then generate a hyperlink of the
form ‘Download filename’. The file can
be downloaded when the link is clicked in modern web browsers. For a directory, it will be com-
pressed as a zip archive first, and the zip file is passed to embed_file(). For multiple files, they are
also compressed to a zip file first.

Usage

embed_file(path, name = basename(path), text = paste("Download", name), ...)

embed_dir(path, name = paste0(normalize_path(path), ".zip"), ...)

embed_files(path, name = with_ext(basename(path[1]), ".zip"), ...)

Arguments

path Path to the file(s) or directory.
name The default filename to use when downloading the file. Note that for embed_dir(),

only the base name (of the zip filename) will be used.
text The text for the hyperlink.
... For embed_file(), additional arguments to be passed to html_tag() (e.g.,

class = 'foo'). For embed_dir() and embed_files(), arguments passed to
embed_file().

Details

These functions can be called in R code chunks in R Markdown documents with HTML output
formats. You may embed an arbitrary file or directory in the HTML output file, so that readers of
the HTML page can download it from the browser. A common use case is to embed data files for
readers to download.

Value

An HTML tag ‘<a>’ with the appropriate attributes.

Note

Windows users may need to install Rtools to obtain the zip command to use embed_dir() and
embed_files().
Internet Explorer does not support downloading embedded files. Chrome has a 2MB limit on the
file size.

Examples

logo = xfun:::R_logo()
link = xfun::embed_file(logo, text = "Download R logo")
link
if (interactive()) xfun::html_view(link)

22 env_option

env_option Retrieve a global option from both options() and environment vari-
ables

Description

If the option exists in options(), use its value. If not, query the environment variable with the
name R_NAME where NAME is the capitalized option name with dots substituted by underscores. For
example, for an option xfun.foo, first we try getOption('xfun.foo'); if it does not exist, we
check the environment variable R_XFUN_FOO.

Usage

env_option(name, default = NULL)

Arguments

name The option name.

default The default value if the option is not found in options() or environment vari-
ables.

Details

This provides two possible ways, whichever is more convenient, for users to set an option. For
example, global options can be set in the .Rprofile file, and environment variables can be set in the
.Renviron file.

Value

The option value.

Examples

xfun::env_option("xfun.test.option") # NULL

Sys.setenv(R_XFUN_TEST_OPTION = "1234")
xfun::env_option("xfun.test.option") # 1234

options(xfun.test.option = TRUE)
xfun::env_option("xfun.test.option") # TRUE (from options())
options(xfun.test.option = NULL) # reset the option
xfun::env_option("xfun.test.option") # 1234 (from env var)

Sys.unsetenv("R_XFUN_TEST_OPTION")
xfun::env_option("xfun.test.option") # NULL again

xfun::env_option("xfun.test.option", FALSE) # use default

existing_files 23

existing_files Find file paths that exist

Description

This is a shorthand of x[file.exists(x)], and optionally returns the first existing file path.

Usage

existing_files(x, first = FALSE, error = TRUE)

Arguments

x A vector of file paths.
first Whether to return the first existing path. If TRUE and no specified files exist, it

will signal an error unless the argument error = FALSE.
error Whether to throw an error when first = TRUE but no files exist. It can also take

a character value, which will be used as the error message.

Value

A vector of existing file paths.

Examples

xfun::existing_files(c("foo.txt", system.file("DESCRIPTION", package = "xfun")))

exit_call Call on.exit() in a parent function

Description

The function on.exit() is often used to perform tasks when the current function exits. This
exit_call() function allows calling a function when a parent function exits (thinking of it as
inserting an on.exit() call into the parent function).

Usage

exit_call(fun, n = 2, ...)

Arguments

fun A function to be called when the parent function exits.
n The parent frame number. For n = 1, exit_call(fun) is the same as on.exit(fun());

n = 2 means adding on.exit(fun()) in the parent function; n = 3 means the
grandparent, etc.

... Other arguments to be passed to on.exit().

24 fenced_block

References

This function was inspired by Kevin Ushey: https://yihui.org/en/2017/12/on-exit-parent/

Examples

f = function(x) {
print(x)
xfun::exit_call(function() print("The parent function is exiting!"))

}
g = function(y) {

f(y)
print("f() has been called!")

}
g("An argument of g()!")

fenced_block Create a fenced block in Markdown

Description

Wrap content with fence delimiters such as backticks (code blocks) or colons (fenced Div). Option-
ally the fenced block can have attributes. The function fenced_div() is a shorthand of fenced_block(char
= ':').

Usage

fenced_block(x, attrs = NULL, fence = make_fence(x, char), char = "`")

fenced_div(...)

make_fence(x, char = "`", start = 3)

Arguments

x A character vector of the block content.
attrs A vector of block attributes.
fence The fence string, e.g., ::: or ```. This will be generated from the char argu-

ment by default.
char The fence character to be used to generate the fence string by default.
... Arguments to be passed to fenced_block().
start The number of characters to start searching x with. If the string of this number

of characters is found, add one more character, and repeat the search.

Value

fenced_block() returns a character vector that contains both the fences and content.

make_fence() returns a character string. If the block content contains N fence characters (e.g.,
backticks), use N + 1 characters as the fence.

https://yihui.org/en/2017/12/on-exit-parent/

file_ext 25

Examples

code block with class 'r' and ID 'foo'
xfun::fenced_block("1+1", c(".r", "#foo"))
fenced Div
xfun::fenced_block("This is a **Div**.", char = ":")
three backticks by default
xfun::make_fence("1+1")
needs five backticks for the fences because content has four
xfun::make_fence(c("````r", "1+1", "````"))

file_ext Manipulate filename extensions

Description

Functions to obtain (file_ext()), remove (sans_ext()), and change (with_ext()) extensions in
filenames.

Usage

file_ext(x, extra = "")

sans_ext(x, extra = "")

with_ext(x, ext, extra = "")

Arguments

x A character of file paths.

extra Extra characters to be allowed in the extensions. By default, only alphanumeric
characters are allowed (and also some special cases in ‘Details’). If other charac-
ters should be allowed, they can be specified in a character string, e.g., "-+!_#".

ext A vector of new extensions. It must be either of length 1, or the same length as
x.

Details

file_ext() is similar to tools::file_ext(), and sans_ext() is similar to tools::file_path_sans_ext().
The main differences are that they treat tar.(gz|bz2|xz) and nb.html as extensions (but func-
tions in the tools package doesn’t allow double extensions by default), and allow characters ~ and
to be present at the end of a filename.

Value

A character vector of the same length as x.

26 file_string

Examples

library(xfun)
p = c("abc.doc", "def123.tex", "path/to/foo.Rmd", "backup.ppt~", "pkg.tar.xz")
file_ext(p)
sans_ext(p)
with_ext(p, ".txt")
with_ext(p, c(".ppt", ".sty", ".Rnw", "doc", "zip"))
with_ext(p, "html")

allow for more characters in extensions
p = c("a.c++", "b.c--", "c.e##")
file_ext(p) # -/+/# not recognized by default
file_ext(p, extra = "-+#")

file_rename Rename files and directories

Description

First try file.rename(). If it fails (e.g., renaming a file from one volume to another on disk is
likely to fail), try file.copy() instead, and clean up the original files if the copy succeeds.

Usage

file_rename(from, to)

Arguments

from, to Original and target paths, respectively.

Value

A logical vector (TRUE for success and FALSE for failure).

file_string Read a text file and concatenate the lines by ’\n’

Description

The source code of this function should be self-explanatory.

Usage

file_string(file)

format_bytes 27

Arguments

file Path to a text file (should be encoded in UTF-8).

Value

A character string of text lines concatenated by '\n'.

Examples

xfun::file_string(system.file("DESCRIPTION", package = "xfun"))

format_bytes Format numbers of bytes using a specified unit

Description

Call the S3 method format.object_size() to format numbers of bytes.

Usage

format_bytes(x, units = "auto", ...)

Arguments

x A numeric vector (each element represents a number of bytes).

units, ... Passed to format().

Value

A character vector.

Examples

xfun::format_bytes(c(1, 1024, 2000, 1e+06, 2e+08))
xfun::format_bytes(c(1, 1024, 2000, 1e+06, 2e+08), units = "KB")

28 from_root

from_root Get the relative path of a path in a project relative to the current work-
ing directory

Description

First compose an absolute path using the project root directory and the relative path components,
i.e., file.path(root, ...). Then convert it to a relative path with relative_path(), which is
relative to the current working directory.

Usage

from_root(..., root = proj_root(), error = TRUE)

Arguments

... A character vector of path components relative to the root directory of the
project.

root The root directory of the project.

error Whether to signal an error if the path cannot be converted to a relative path.

Details

This function was inspired by here::here(), and the major difference is that it returns a relative
path by default, which is more portable.

Value

A relative path, or an error when the project root directory cannot be determined or the conversion
failed and error = TRUE.

Examples

Not run:
xfun::from_root("data", "mtcars.csv")

End(Not run)

github_releases 29

github_releases Get the tags of GitHub releases of a repository

Description

Use the GitHub API (github_api()) to obtain the tags of the releases.

Usage

github_releases(
repo,
tag = "",
pattern = "v[0-9.]+",
use_jsonlite = loadable("jsonlite")

)

Arguments

repo The repository name of the form user/repo, e.g., "yihui/xfun".

tag A tag as a character string. If provided, it will be returned if the tag exists. If
tag = "latest", the tag of the latest release is returned.

pattern A regular expression to match the tags.

use_jsonlite Whether to use jsonlite to parse the releases info.

Value

A character vector of (GIT) tags.

Examples

xfun::github_releases("yihui/xfun")
xfun::github_releases("gohugoio/hugo")

grep_sub Perform replacement with gsub() on elements matched from grep()

Description

This function is a shorthand of gsub(pattern, replacement, grep(pattern, x, value = TRUE)).

Usage

grep_sub(pattern, replacement, x, ...)

30 gsub_file

Arguments

pattern, replacement, x, ...
Passed to grep() and gsub().

Value

A character vector.

Examples

find elements that matches 'a[b]+c' and capitalize 'b' with perl regex
xfun::grep_sub("a([b]+)c", "a\\U\\1c", c("abc", "abbbc", "addc", "123"), perl = TRUE)

gsub_file Search and replace strings in files

Description

These functions provide the "file" version of gsub(), i.e., they perform searching and replacement
in files via gsub().

Usage

gsub_file(file, ..., rw_error = TRUE)

gsub_files(files, ...)

gsub_dir(..., dir = ".", recursive = TRUE, ext = NULL, mimetype = ".*")

gsub_ext(ext, ..., dir = ".", recursive = TRUE)

Arguments

file Path of a single file.

... For gsub_file(), arguments passed to gsub(). For other functions, arguments
passed to gsub_file(). Note that the argument x of gsub() is the content of
the file.

rw_error Whether to signal an error if the file cannot be read or written. If FALSE, the file
will be ignored (with a warning).

files A vector of file paths.

dir Path to a directory (all files under this directory will be replaced).

recursive Whether to find files recursively under a directory.

ext A vector of filename extensions (without the leading periods).

mimetype A regular expression to filter files based on their MIME types, e.g., '^text/'
for plain text files.

html_tag 31

Note

These functions perform in-place replacement, i.e., the files will be overwritten. Make sure you
backup your files in advance, or use version control!

Examples

library(xfun)
f = tempfile()
writeLines(c("hello", "world"), f)
gsub_file(f, "world", "woRld", fixed = TRUE)
readLines(f)

html_tag Tools for HTML tags

Description

Given a tag name, generate an HTML tag with optional attributes and content. html_tag() can be
viewed as a simplified version of htmltools::tags, html_value() adds classes on the value so
that it will be treated as raw HTML (not escaped by html_tag()), html_escape() escapes special
characters in HTML, and html_view() launches a browser or viewer to view the HTML content.

Usage

html_tag(.name, .content = NULL, .attrs = NULL, ...)

html_value(x)

html_escape(x, attr = FALSE)

html_view(x, ...)

Arguments

.name The tag name.

.content The content between opening and closing tags. Ignored for void tags such as
. Special characters such as &, <, and > will be escaped unless the value
was generated from html_value(). The content can be either a character vector
or a list. If it is a list, it may contain both normal text and HTML content.

.attrs A named list of attributes.

... For html_tag(), named arguments as an alternative way to provide attributes.
For html_view(), other arguments to be passed to new_app().

x A character vector to be treated as raw HTML content for html_value(), es-
caped for html_escape(), and viewed for html_view().

attr Whether to escape ", \r, and \n (which should be escaped for tag attributes).

32 install_dir

Value

A character string.

Examples

xfun::html_tag("a", "<R Project>", href = "https://www.r-project.org", target = "_blank")
xfun::html_tag("br")
xfun::html_tag("a", xfun::html_tag("strong", "R Project"), href = "#")
xfun::html_tag("a", list("<text>", xfun::html_tag("b", "R Project")), href = "#")
xfun::html_escape("\" quotes \" & brackets < >")
xfun::html_escape("\" & < > \r \n", attr = TRUE)

install_dir Install a source package from a directory

Description

Run R CMD build to build a tarball from a source directory, and run R CMD INSTALL to install it.

Usage

install_dir(pkg, build = TRUE, build_opts = NULL, install_opts = NULL)

Arguments

pkg The package source directory.

build Whether to build a tarball from the source directory. If FALSE, run R CMD INSTALL
on the directory directly (note that vignettes will not be automatically built).

build_opts The options for R CMD build.

install_opts The options for R CMD INSTALL.

Value

Invisible status from R CMD INSTALL.

install_github 33

install_github An alias of remotes::install_github()

Description

This alias is to make autocomplete faster via xfun::install_github, because most remotes::install_*
functions are never what I want. I only use install_github and it is inconvenient to autocomplete
it, e.g. install_git always comes before install_github, but I never use it. In RStudio, I only
need to type xfun::ig to get xfun::install_github.

Usage

install_github(...)

Arguments

... Arguments to be passed to remotes::install_github().

in_dir Evaluate an expression under a specified working directory

Description

Change the working directory, evaluate the expression, and restore the working directory.

Usage

in_dir(dir, expr)

Arguments

dir Path to a directory.

expr An R expression.

Examples

library(xfun)
in_dir(tempdir(), {

print(getwd())
list.files()

})

34 is_ascii

is_abs_path Test if paths are relative or absolute

Description

On Unix, check if the paths start with ‘/’ or ‘~’ (if they do, they are absolute paths). On Windows,
check if a path remains the same (via same_path()) if it is prepended with ‘./’ (if it does, it is a
relative path).

Usage

is_abs_path(x)

is_rel_path(x)

Arguments

x A vector of paths.

Value

A logical vector.

Examples

xfun::is_abs_path(c("C:/foo", "foo.txt", "/Users/john/", tempdir()))
xfun::is_rel_path(c("C:/foo", "foo.txt", "/Users/john/", tempdir()))

is_ascii Check if a character vector consists of entirely ASCII characters

Description

Converts the encoding of a character vector to 'ascii', and check if the result is NA.

Usage

is_ascii(x)

Arguments

x A character vector.

Value

A logical vector indicating whether each element of the character vector is ASCII.

is_blank 35

Examples

library(xfun)
is_ascii(letters) # yes
is_ascii(intToUtf8(8212)) # no

is_blank Test if a character vector consists of blank strings

Description

Return a logical vector indicating if elements of a character vector are blank (white spaces or empty
strings).

Usage

is_blank(x)

Arguments

x A character vector.

Value

TRUE for blank elements, or FALSE otherwise.

Examples

xfun::is_blank("")
xfun::is_blank("abc")
xfun::is_blank(c("", " ", "\n\t"))
xfun::is_blank(c("", " ", "abc"))

is_sub_path Test if a path is a subpath of a dir

Description

Check if the path starts with the dir path.

Usage

is_sub_path(x, dir, n = nchar(dir))

36 is_web_path

Arguments

x A vector of paths.

dir A vector of directory paths.

n The length of dir paths.

Value

A logical vector.

Note

You may want to normalize the values of the x and dir arguments first (with normalize_path()),
to make sure the path separators are consistent.

Examples

xfun::is_sub_path("a/b/c.txt", "a/b") # TRUE
xfun::is_sub_path("a/b/c.txt", "d/b") # FALSE
xfun::is_sub_path("a/b/c.txt", "a\\b") # FALSE (even on Windows)

is_web_path Test if a path is a web path

Description

Check if a path starts with ‘http://’ or ‘https://’ or ‘ftp://’ or ‘ftps://’.

Usage

is_web_path(x)

Arguments

x A vector of paths.

Value

A logical vector.

Examples

xfun::is_web_path("https://www.r-project.org") # TRUE
xfun::is_web_path("www.r-project.org") # FALSE

is_windows 37

is_windows Test for types of operating systems

Description

Functions based on .Platform$OS.type and Sys.info() to test if the current operating system is
Windows, macOS, Unix, or Linux.

Usage

is_windows()

is_unix()

is_macos()

is_linux()

is_arm64()

Examples

library(xfun)
only one of the following statements should be true
is_windows()
is_unix() && is_macos()
is_linux()
In newer Macs, CPU can be either Intel or Apple
is_arm64() # TRUE on Apple silicone machines

lazy_save Save objects to files and lazy-load them

Description

The function lazy_save() saves objects to files with incremental integer names (e.g., the first
object is saved to 1.rds, and the second object is saved to 2.rds, etc.). The function lazy_load()
lazy-load objects from files saved via lazy_save(), i.e., a file will not be read until the object is
used.

Usage

lazy_save(list = NULL, path = "./", method = "auto", envir = parent.frame())

lazy_load(path = "./", method = "auto", envir = parent.frame())

38 magic_path

Arguments

list A character vector of object names. This list will be written to an index file with
0 as the base name (e.g., 0.rds).

path The path to write files to / read files from.

method The file save/load method. It can be a string (e.g., rds, raw, or qs) or a list. See
the rw argument of cache_exec(). By default, it is automatically detected by
checking the existence of the index file (e.g., 0.rds, 0.raw, or 0.qs).

envir The environment to get or assign objects.

Value

lazy_save() returns invisible NULL; lazy_load() returns the object names invisibly.

See Also

delayedAssign()

magic_path Find a file or directory under a root directory

Description

Given a path, try to find it recursively under a root directory. The input path can be an incomplete
path, e.g., it can be a base filename, and magic_path() will try to find this file under subdirectories.

Usage

magic_path(
...,
root = proj_root(),
relative = TRUE,
error = TRUE,
message = getOption("xfun.magic_path.message", TRUE),
n_dirs = getOption("xfun.magic_path.n_dirs", 10000)

)

Arguments

... A character vector of path components.

root The root directory under which to search for the path. If NULL, the current work-
ing directory is used.

relative Whether to return a relative path.

error Whether to signal an error if the path is not found, or multiple paths are found.

message Whether to emit a message when multiple paths are found and error = FALSE.

mark_dirs 39

n_dirs The number of subdirectories to recursively search. The recursive search may
be time-consuming when there are a large number of subdirectories under the
root directory. If you really want to search for all subdirectories, you may try
n_dirs = Inf.

Value

The path found under the root directory, or an error when error = TRUE and the path is not found
(or multiple paths are found).

Examples

Not run:
xfun::magic_path("mtcars.csv") # find any file that has the base name mtcars.csv

End(Not run)

mark_dirs Mark some paths as directories

Description

Add a trailing backlash to a file path if this is a directory. This is useful in messages to the console
for example to quickly identify directories from files.

Usage

mark_dirs(x)

Arguments

x Character vector of paths to files and directories.

Details

If x is a vector of relative paths, directory test is done with path relative to the current working dir.
Use in_dir() or use absolute paths.

Examples

mark_dirs(list.files(find.package("xfun"), full.names = TRUE))

40 md_table

md5 Calculate the MD5 checksums of R objects

Description

Serialize an object and calculate the checksum via tools::md5sum(). If tools::md5sum() does
not have the argument bytes, the object will be first serialized to a temporary file, which will be
deleted after the checksum is calculated, otherwise the raw bytes of the object will be passed to the
bytes argument directly (which will be faster than writing to a temporary file).

Usage

md5(...)

Arguments

... Any number of R objects.

Value

A character vector of the checksums of objects passed to md5(). If the arguments are named, the
results will also be named.

Examples

x1 = 1
x2 = 1:10
x3 = seq(1, 10)
x4 = iris
x5 = paste
(m = xfun::md5(x1, x2, x3, x4, x5))
stopifnot(m[2] == m[3]) # x2 and x3 should be identical

xfun::md5(x1 = x1, x2 = x2) # named arguments

md_table Generate a simple Markdown pipe table

Description

A minimal Markdown table generator using the pipe | as column separators.

Usage

md_table(x, digits = NULL, na = NULL, newline = NULL, limit = NULL)

mime_type 41

Arguments

x A 2-dimensional object (e.g., a matrix or data frame).

digits The number of decimal places to be passed to round(). It can be a integer vector
of the same length as the number of columns in x to round columns separately.
The default is 3.

na A character string to represent NA values. The default is an empty string.

newline A character string to substitute \n in x (because pipe tables do not support line
breaks in cells). The default is a space.

limit The maximum number of rows to show in the table. If it is smaller than the
number of rows, the data in the middle will be omitted. If it is of length 2, the
second number will be used to limit the number of columns. Zero and negative
values are ignored.

Details

The default argument values can be set via global options with the prefix xfun.md_table., e.g.,
options(xfun.md_table.digits 2, xfun.md_table.na = 'n/a').

Value

A character vector.

See Also

knitr::kable() (which supports more features)

Examples

xfun::md_table(head(iris))
xfun::md_table(mtcars, limit = c(10, 6))

mime_type Get the MIME types of files

Description

If the mime package is installed, call mime::guess_type(), otherwise use the system command
file --mime-type to obtain the MIME type of a file. Typically, the file command exists on *nix.
On Windows, the command should exist if Cygwin or Rtools is installed. If it is not found, .NET’s
MimeMapping class will be used instead (which requires the .NET framework).

Usage

mime_type(x, use_mime = loadable("mime"), empty = "text/plain")

42 msg_cat

Arguments

x A vector of file paths.

use_mime Whether to use the mime package.

empty The MIME type for files without extensions (e.g., Makefile). If NA, the type will
be obtained from system command. This argument is used only for use_mime =
FALSE.

Value

A character vector of MIME types.

Note

When querying the MIME type via the system command, the result will be cached to xfun:::cache_dir().
This will make future queries much faster, since running the command in real time can be a little
slow.

Examples

f = list.files(R.home("doc"), full.names = TRUE)
mime_type(f)
mime_type(f, FALSE) # don't use mime
mime_type(f, FALSE, NA) # run command for files without extension

msg_cat Generate a message with cat()

Description

This function is similar to message(), and the difference is that msg_cat() uses cat() to write out
the message, which is sent to stdout() instead of stderr(). The message can be suppressed by
suppressMessages().

Usage

msg_cat(...)

Arguments

... Character strings of messages, which will be concatenated into one string via
paste(c(...), collapse = '').

Value

Invisible NULL, with the side-effect of printing the message.

native_encode 43

Note

By default, a newline will not be appended to the message. If you need a newline, you have to
explicitly add it to the message (see ‘Examples’).

See Also

This function was inspired by rlang::inform().

Examples

{
a message without a newline at the end
xfun::msg_cat("Hello world!")
add a newline at the end
xfun::msg_cat(" This message appears right after the previous one.\n")

}
suppressMessages(xfun::msg_cat("Hello world!"))

native_encode Try to use the system native encoding to represent a character vector

Description

Apply enc2native() to the character vector, and check if enc2utf8() can convert it back without
a loss. If it does, return enc2native(x), otherwise return the original vector with a warning.

Usage

native_encode(x)

Arguments

x A character vector.

Note

On platforms that supports UTF-8 as the native encoding (l10n_info()[['UTF-8']] returns TRUE),
the conversion will be skipped.

Examples

library(xfun)
s = intToUtf8(c(20320, 22909))
Encoding(s)

s2 = native_encode(s)
Encoding(s2)

44 new_app

news2md Convert package news to the Markdown format

Description

Read the package news with news(), convert the result to Markdown, and write to an output file
(e.g., ‘NEWS.md’). Each package version appears in a first-level header, each category (e.g., ‘NEW
FEATURES’ or ‘BUG FIXES’) is in a second-level header, and the news items are written into bullet
lists.

Usage

news2md(package, ..., output = "NEWS.md", category = TRUE)

Arguments

package, ... Arguments to be passed to news().

output The output file path.

category Whether to keep the category names.

Value

If output = NA, returns the Markdown content as a character vector, otherwise the content is written
to the output file.

Examples

news for the current version of R
xfun::news2md("R", Version == getRversion(), output = NA)

new_app Create a local web application

Description

An experimental function to create a local web application based on R’s internal httpd server
(which is primarily for running R’s dynamic help system).

Usage

new_app(name, handler, open = interactive(), ports = 4321 + 1:10)

normalize_path 45

Arguments

name The app name (a character string, and each app should have a unique name).

handler A function that takes the HTTP request information (the first argument is the
requested path) and returns a response.

open Whether to open the app, or a function to open the app URL.

ports A vector of ports to try for starting the server.

Value

The app URL of the form http://127.0.0.1:port/custom/name/.

Note

This function is not based on base R’s public API, and is possible to break in the future, which is
also why the documentation here is terse. Please avoid creating public-facing web apps with it. You
may consider packages like httpuv and Rserve for production web apps.

normalize_path Normalize paths

Description

A wrapper function of normalizePath() with different defaults.

Usage

normalize_path(x, winslash = "/", must_work = FALSE, resolve_symlink = TRUE)

Arguments

x, winslash, must_work
Arguments passed to normalizePath().

resolve_symlink

Whether to resolve symbolic links.

Examples

library(xfun)
normalize_path("~")

46 numbers_to_words

numbers_to_words Convert numbers to English words

Description

This can be helpful when writing reports with knitr/rmarkdown if we want to print numbers as
English words in the output. The function n2w() is an alias of numbers_to_words().

Usage

numbers_to_words(x, cap = FALSE, hyphen = TRUE, and = FALSE)

n2w(x, cap = FALSE, hyphen = TRUE, and = FALSE)

Arguments

x A numeric vector. The absolute values should be less than 1e15.

cap Whether to capitalize the first letter of the word. This can be useful when the
word is at the beginning of a sentence. Default is FALSE.

hyphen Whether to insert hyphen (-) when the number is between 21 and 99 (except 30,
40, etc.).

and Whether to insert and between hundreds and tens, e.g., write 110 as “one hun-
dred and ten” if TRUE instead of “one hundred ten”.

Value

A character vector.

Author(s)

Daijiang Li

Examples

library(xfun)
n2w(0, cap = TRUE)
n2w(0:121, and = TRUE)
n2w(1e+06)
n2w(1e+11 + 12345678)
n2w(-987654321)
n2w(1e+15 - 1)
n2w(123.456)
n2w(123.45678901)
n2w(123.456789098765)

optipng 47

optipng Run OptiPNG on all PNG files under a directory

Description

Call the command optipng via system2() to optimize all PNG files under a directory.

Usage

optipng(dir = ".", files = all_files("[.]png$", dir), ...)

Arguments

dir Path to a directory.

files Alternatively, you can choose the specific files to optimize.

... Arguments to be passed to system2().

References

OptiPNG: https://optipng.sourceforge.net.

parse_only Parse R code and do not keep the source

Description

An abbreviation of parse(keep.source = FALSE).

Usage

parse_only(code)

Arguments

code A character vector of the R source code.

Value

R expression()s.

Examples

library(xfun)
parse_only("1+1")
parse_only(c("y~x", "1:5 # a comment"))
parse_only(character(0))

https://optipng.sourceforge.net

48 pkg_attach

pkg_attach Attach or load packages, and automatically install missing packages
if requested

Description

pkg_attach() is a vectorized version of library() over the package argument to attach multiple
packages in a single function call. pkg_load() is a vectorized version of requireNamespace() to
load packages (without attaching them). The functions pkg_attach2() and pkg_load2() are wrap-
pers of pkg_attach(install = TRUE) and pkg_load(install = TRUE), respectively. loadable()
is an abbreviation of requireNamespace(quietly = TRUE). pkg_available() tests if a package
with a minimal version is available.

Usage

pkg_attach(
...,
install = FALSE,
message = getOption("xfun.pkg_attach.message", TRUE)

)

pkg_load(..., error = TRUE, install = FALSE)

loadable(pkg, strict = TRUE, new_session = FALSE)

pkg_available(pkg, version = NULL)

pkg_attach2(...)

pkg_load2(...)

Arguments

... Package names (character vectors, and must always be quoted).

install Whether to automatically install packages that are not available using install.packages().
Besides TRUE and FALSE, the value of this argument can also be a function to in-
stall packages (install = TRUE is equivalent to install = install.packages),
or a character string "pak" (equivalent to install = pak::pkg_install, which
requires the pak package). You are recommended to set a CRAN mirror in the
global option repos via options() if you want to automatically install pack-
ages.

message Whether to show the package startup messages (if any startup messages are
provided in a package).

error Whether to signal an error when certain packages cannot be loaded.

pkg A single package name.

process_file 49

strict If TRUE, use requireNamespace() to test if a package is loadable; otherwise
only check if the package is in .packages(TRUE) (this does not really load the
package, so it is less rigorous but on the other hand, it can keep the current R
session clean).

new_session Whether to test if a package is loadable in a new R session. Note that new_session
= TRUE implies strict = TRUE.

version A minimal version number. If NULL, only test if a package is available and do
not check its version.

Details

These are convenience functions that aim to solve these common problems: (1) We often need to
attach or load multiple packages, and it is tedious to type several library() calls; (2) We are likely
to want to install the packages when attaching/loading them but they have not been installed.

Value

pkg_attach() returns NULL invisibly. pkg_load() returns a logical vector, indicating whether the
packages can be loaded.

See Also

pkg_attach2() is similar to pacman::p_load(), but does not allow non-standard evaluation (NSE)
of the ... argument, i.e., you must pass a real character vector of package names to it, and all names
must be quoted. Allowing NSE adds too much complexity with too little gain (the only gain is that
it saves your effort in typing two quotes).

Examples

library(xfun)
pkg_attach("stats", "graphics")
pkg_attach2('servr') # automatically install servr if it is not installed

(pkg_load("stats", "graphics"))

process_file Read a text file, process the text with a function, and write the text back

Description

Read a text file with the UTF-8 encoding, apply a function to the text, and write back to the original
file if the processed text is different with the original input.

Usage

process_file(file, fun = identity, x = read_utf8(file))

sort_file(..., fun = sort)

50 proc_kill

Arguments

file Path to a text file.

fun A function to process the text.

x The content of the file.

... Arguments to be passed to process_file().

Details

sort_file() is an application of process_file(), with the processing function being sort(),
i.e., it sorts the text lines in a file and write back the sorted text.

Value

If file is provided, invisible NULL (the file is updated as a side effect), otherwise the processed
content (as a character vector).

Examples

f = tempfile()
xfun::write_utf8("Hello World", f)
xfun::process_file(f, function(x) gsub("World", "woRld", x))
xfun::read_utf8(f) # see if it has been updated
file.remove(f)

proc_kill Kill a process and (optionally) all its child processes

Description

Run the command taskkill /f /pid on Windows and kill on Unix, respectively, to kill a process.

Usage

proc_kill(pid, recursive = TRUE, ...)

Arguments

pid The process ID.

recursive Whether to kill the child processes of the process.

... Arguments to be passed to system2() to run the command to kill the process.

Value

The status code returned from system2().

proj_root 51

proj_root Return the (possible) root directory of a project

Description

Given a path of a file (or dir) in a potential project (e.g., an R package or an RStudio project), return
the path to the project root directory.

Usage

proj_root(path = "./", rules = root_rules)

root_rules

Arguments

path The initial path to start the search. If it is a file path, its parent directory will be
used.

rules A matrix of character strings of two columns: the first column contains regular
expressions to look for filenames that match the patterns, and the second column
contains regular expressions to match the content of the matched files. The
regular expression can be an empty string, meaning that it will match anything.

Format

An object of class matrix (inherits from array) with 2 rows and 2 columns.

Details

The search for the root directory is performed by a series of tests, currently including looking for
a ‘DESCRIPTION’ file that contains Package: * (which usually indicates an R package), and a
‘*.Rproj’ file that contains Version: * (which usually indicates an RStudio project). If files with
the expected patterns are not found in the initial directory, the search will be performed recursively
in upper-level directories.

Value

Path to the root directory if found, otherwise NULL.

Note

This function was inspired by the rprojroot package, but is much less sophisticated. It is a rather
simple function designed to be used in some of packages that I maintain, and may not meet the need
of general users until this note is removed in the future (which should be unlikely). If you are sure
that you are working on the types of projects mentioned in the ‘Details’ section, this function may
be helpful to you, otherwise please consider using rprojroot instead.

52 protect_math

prose_index Find the indices of lines in Markdown that are prose (not code blocks)

Description

Filter out the indices of lines between code block fences such as ``` (could be three or four or more
backticks).

Usage

prose_index(x, warn = TRUE)

Arguments

x A character vector of text in Markdown.

warn Whether to emit a warning when code fences are not balanced.

Value

An integer vector of indices of lines that are prose in Markdown.

Note

If the code fences are not balanced (e.g., a starting fence without an ending fence), this function
will treat all lines as prose.

Examples

library(xfun)
prose_index(c("a", "```", "b", "```", "c"))
prose_index(c("a", "````", "```r", "1+1", "```", "````", "c"))

protect_math Protect math expressions in pairs of backticks in Markdown

Description

For Markdown renderers that do not support LaTeX math, we need to protect math expressions as
verbatim code (in a pair of backticks), because some characters in the math expressions may be
interpreted as Markdown syntax (e.g., a pair of underscores may make text italic). This function
detects math expressions in Markdown (by heuristics), and wrap them in backticks.

Usage

protect_math(x, token = "", use_block = FALSE)

raw_string 53

Arguments

x A character vector of text in Markdown.

token A character string to wrap math expressions at both ends. This can be a unique
token so that math expressions can be reliably identified and restored after the
Markdown text is converted.

use_block Whether to use code blocks (```md-math) to protect $$ $$ expressions that
span across multiple lines. This is necessary when a certain line in the math ex-
pression starts with a special character that can accidentally start a new element
(e.g., a leading + may start a bullet list). Only code blocks can prevent this case.

Details

Expressions in pairs of dollar signs or double dollar signs are treated as math, if there are no spaces
after the starting dollar sign, or before the ending dollar sign. There should be a space or (before
the starting dollar sign, unless the math expression starts from the very beginning of a line. For a
pair of single dollar signs, the ending dollar sign should not be followed by a number, and the inner
math expression should not be wrapped in backticks. With these assumptions, there should not be
too many false positives when detecing math expressions.

Besides, LaTeX environments (\begin{*} and \end{*}) are also protected in backticks.

Value

A character vector with math expressions in backticks.

Note

If you are using Pandoc or the rmarkdown package, there is no need to use this function, because
Pandoc’s Markdown can recognize math expressions.

Examples

library(xfun)
protect_math(c("hi $a+b$", "hello $$\\alpha$$", "no math here: $x is $10 dollars"))
protect_math(c("hi $$", "\\begin{equation}", "x + y = z", "\\end{equation}"))
protect_math("$a+b$", "===")

raw_string Print a character vector in its raw form

Description

The function raw_string() assigns the class xfun_raw_string to the character vector, and the
corresponding printing function print.xfun_raw_string() uses cat(x, sep = '\n') to write the
character vector to the console, which will suppress the leading indices (such as [1]) and double
quotes, and it may be easier to read the characters in the raw form (especially when there are escape
sequences).

54 read_all

Usage

raw_string(x)

S3 method for class 'xfun_raw_string'
print(x, ...)

Arguments

x For raw_string(), a character vector. For the print method, the raw_string()
object.

... Other arguments (currently ignored).

Examples

library(xfun)
raw_string(head(LETTERS))
raw_string(c("a \"b\"", "hello\tworld!"))

read_all Read all text files and concatenate their content

Description

Read files one by one, and optionally add text before/after the content. Then combine all content
into one character vector.

Usage

read_all(files, before = function(f, x) NULL, after = function(f, x) NULL)

Arguments

files A vector of file paths.

before, after A function that takes one file path and its content as the input and returns values
to be added before or after the content of the file. Alternatively, they can be
constant values to be added.

Value

A character vector.

read_bin 55

Examples

two files in this package
fs = system.file("scripts", c("call-fun.R", "child-pids.sh"), package = "xfun")
xfun::read_all(fs)

add file paths before file content and an empty line after content
xfun::read_all(fs, before = function(f) paste("#-----", f, "-----"), after = "")

add constants
xfun::read_all(fs, before = "/*", after = c("*/", ""))

read_bin Read all records of a binary file as a raw vector by default

Description

This is a wrapper function of readBin() with default arguments what = "raw" and n = file.size(file),
which means it will read the full content of a binary file as a raw vector by default.

Usage

read_bin(file, what = "raw", n = file.info(file)$size, ...)

Arguments

file, what, n, ...
Arguments to be passed to readBin().

Value

A vector returned from readBin().

Examples

f = tempfile()
cat("abc", file = f)
xfun::read_bin(f)
unlink(f)

56 read_utf8

read_utf8 Read / write files encoded in UTF-8

Description

Read or write files, assuming they are encoded in UTF-8. read_utf8() is roughly readLines(encoding
= 'UTF-8') (a warning will be issued if non-UTF8 lines are found), and write_utf8() calls
writeLines(enc2utf8(text), useBytes = TRUE).

Usage

read_utf8(con, error = FALSE)

write_utf8(text, con, ...)

append_utf8(text, con, sort = TRUE)

append_unique(text, con, sort = function(x) base::sort(unique(x)))

Arguments

con A connection or a file path.

error Whether to signal an error when non-UTF8 characters are detected (if FALSE,
only a warning message is issued).

text A character vector (will be converted to UTF-8 via enc2utf8()).

... Other arguments passed to writeLines() (except useBytes, which is TRUE in
write_utf8()).

sort Logical (FALSE means not to sort the content) or a function to sort the content;
TRUE is equivalent to base::sort.

Details

The function append_utf8() appends UTF-8 content to a file or connection based on read_utf8()
and write_utf8(), and optionally sort the content. The function append_unique() appends
unique lines to a file or connection.

Value

read_utf8() returns a character vector of the file content; write_utf8() returns the con argument
(invisibly).

record 57

record Run R code and record the results

Description

Run R code and capture various types of output, including text output, plots, messages, warnings,
and errors.

Usage

record(
code = NULL,
dev = "png",
dev.path = "xfun-record",
dev.ext = dev_ext(dev),
dev.args = list(),
message = TRUE,
warning = TRUE,
error = NA,
cache = list(),
print = record_print,
print.args = list(),
verbose = getOption("xfun.record.verbose", 0),
envir = parent.frame()

)

S3 method for class 'xfun_record_results'
format(x, to = c("text", "html"), encode = FALSE, template = FALSE, ...)

S3 method for class 'xfun_record_results'
print(
x,
browse = interactive(),
to = if (browse) "html" else "text",
template = TRUE,
...

)

Arguments

code A character vector of R source code.

dev A graphics device. It can be a function name, a function, or a character string
that can be evaluated to a function to open a graphics device.

dev.path A base file path for plots. Actual plot filenames will be this base path plus
incremental suffixes. For example, if dev.path = "foo", the plot files will be
foo-1.png, foo-2.png, and so on. If dev.path is not character (e.g., FALSE),
plots will not be recorded.

58 record

dev.ext The file extension for plot files. By default, it will be inferred from the first
argument of the device function if possible.

dev.args Extra arguments to be passed to the device. The default arguments are list(units
= 'in', onefile = FALSE, width = 7, height = 7, res = 96). If any of these
arguments is not present in the device function, it will be dropped.

message, warning, error
If TRUE, record and store messages / warnings / errors in the output. If FALSE,
suppress them. If NA, do not process them (messages will be emitted to the
console, and errors will halt the execution).

cache A list of options for caching. See the path, id, and ... arguments of cache_exec().

print A (typically S3) function that takes the value of an expression in the code as
input and returns output. The default is record_print().

print.args A list of arguments for the print function. By default, the whole list is not
passed directly to the function, but only an element in the list with a name
identical to the first class name of the returned value of the expression, e.g.,
list(data.frame = list(digits = 3), matrix = list()). This makes it pos-
sible to apply different print arguments to objects of different classes. If the
whole list is intended to be passed to the print function directly, wrap the list in
I().

verbose 2 means to always print the value of each expression in the code, no matter
if the value is invisible() or not; 1 means to always print the value of the
last expression; 0 means no special handling (i.e., print only when the value is
visible).

envir An environment in which the code is evaluated.

x An object returned by record().

to The output format (text or html).

encode For HTML output, whether to base64 encode plots.

template For HTML output, whether to embed the formatted results in an HTML tem-
plate. Alternatively, this argument can take a file path, i.e., path to an HTML
template that contains the variable $body$. If TRUE, the default template in this
package will be used (xfun:::pkg_file('resources', 'record.html')).

... Currently ignored.

browse Whether to browse the results on an HTML page.

Value

record() returns a list of the class xfun_record_results that contains elements with these pos-
sible classes: record_source (source code), record_output (text output), record_plot (plot
file paths), record_message (messages), record_warning (warnings), and record_error (errors,
only when the argument error = TRUE).

The format() method returns a character vector of plain-text output or HTML code for displaying
the results.

The print() method prints the results as plain text or HTML to the console or displays the HTML
page.

record_print 59

Examples

code = c("# a warning test", "1:2 + 1:3", "par(mar = c(4, 4, 1, .2))",
"barplot(5:1, col = 2:6, horiz = TRUE)", "head(iris)",
"sunflowerplot(iris[, 3:4], seg.col = 'purple')",
"if (TRUE) {\n message('Hello, xfun::record()!')\n}",
"# throw an error", "1 + 'a'")

res = xfun::record(code, dev.args = list(width = 9, height = 6.75),
error = TRUE)

xfun::tree(res)
format(res)
find and clean up plot files
plots = Filter(function(x) inherits(x, "record_plot"),

res)
file.remove(unlist(plots))

record_print Print methods for record()

Description

An S3 generic function to be called to print visible values in code when the code is recorded by
record(). It is similar to knitr::knit_print(). By default, it captures the normal print() out-
put and returns the result as a character vector. The knitr_kable method is for printing knitr::kable()
output. Users and package authors can define other S3 methods to extend this function.

Usage

record_print(x, ...)

Default S3 method:
record_print(x, ...)

S3 method for class 'record_asis'
record_print(x, ...)

new_record(x, class)

Arguments

x For record_print(), the value to be printed. For new_record(), a character
vector to be included in the printed results.

... Other arguments to be passed to record_print() methods.

class A class name. Possible values are xfun:::.record_cls.

60 relative_path

Value

A record_print() method should return a character vector or a list of character vectors. The
original classes of the vector will be discarded, and the vector will be treated as console output by
default (i.e., new_record(class = "output")). If it should be another type of output, wrap the
vector in new_record() and specify a class name.

relative_path Get the relative path of a path relative to a directory

Description

Given a directory, return the relative path that is relative to this directory. For example, the path
‘foo/bar.txt’ relative to the directory ‘foo/’ is ‘bar.txt’, and the path ‘/a/b/c.txt’ relative to
‘/d/e/’ is ‘../../a/b/c.txt’.

Usage

relative_path(x, dir = ".", use.. = TRUE, error = TRUE)

Arguments

x A vector of paths to be converted to relative paths.

dir Path to a directory.

use.. Whether to use double-dots (‘..’) in the relative path. A double-dot indicates
the parent directory (starting from the directory provided by the dir argument).

error Whether to signal an error if a path cannot be converted to a relative path.

Value

A vector of relative paths if the conversion succeeded; otherwise the original paths when error =
FALSE, and an error when error = TRUE.

Examples

xfun::relative_path("foo/bar.txt", "foo/")
xfun::relative_path("foo/bar/a.txt", "foo/haha/")
xfun::relative_path(getwd())

rename_seq 61

rename_seq Rename files with a sequential numeric prefix

Description

Rename a series of files and add an incremental numeric prefix to the filenames. For example, files
‘a.txt’, ‘b.txt’, and ‘c.txt’ can be renamed to ‘1-a.txt’, ‘2-b.txt’, and ‘3-c.txt’.

Usage

rename_seq(
pattern = "^[0-9]+-.+[.]Rmd$",
format = "auto",
replace = TRUE,
start = 1,
dry_run = TRUE

)

Arguments

pattern A regular expression for list.files() to obtain the files to be renamed. For
example, to rename .jpeg files, use pattern = "[.]jpeg$".

format The format for the numeric prefix. This is passed to sprintf(). The default
format is "\%0Nd" where N = floor(log10(n)) + 1 and n is the number of files,
which means the prefix may be padded with zeros. For example, if there are 150
files to be renamed, the format will be "\%03d" and the prefixes will be 001,
002, ..., 150.

replace Whether to remove existing numeric prefixes in filenames.

start The starting number for the prefix (it can start from 0).

dry_run Whether to not really rename files. To be safe, the default is TRUE. If you have
looked at the new filenames and are sure the new names are what you want, you
may rerun rename_seq() with dry_run = FALSE to actually rename files.

Value

A named character vector. The names are original filenames, and the vector itself is the new file-
names.

Examples

xfun::rename_seq()
xfun::rename_seq("[.](jpeg|png)$", format = "%04d")

62 rest_api

rest_api Get data from a REST API

Description

Read data from a REST API and optionally with an authorization token in the request header. The
function rest_api_raw() returns the raw text of the response, and rest_api() will parse the
response with jsonlite::fromJSON() (assuming that the response is in the JSON format).

Usage

rest_api(...)

rest_api_raw(root, endpoint, token = "", params = list(), headers = NULL)

github_api(
endpoint,
token = "",
params = list(),
headers = NULL,
raw = !loadable("jsonlite")

)

Arguments

... Arguments to be passed to rest_api_raw().
root The API root URL.
endpoint The API endpoint.
token A named character string (e.g., c(token = "xxxx")), which will be used to cre-

ate an authorization header of the form ‘Authorization: NAME TOKEN’ for the
API call, where ‘NAME’ is the name of the string and ‘TOKEN’ is the string. If the
string does not have a name, ‘Basic’ will be used as the default name.

params A list of query parameters to be sent with the API call.
headers A named character vector of HTTP headers, e.g., c(Accept = "application/vnd.github.v3+json").
raw Whether to return the raw response or parse the response with jsonlite.

Details

These functions are simple wrappers based on url() and read_utf8(). Specifically, the headers
argument is passed to url(), and read_utf8() will send a ‘GET’ request to the API server. This
means these functions only support the ‘GET’ method. If you need to use other HTTP methods (such
as ‘POST’), you have to use other packages such as curl and httr.
github_api() is a wrapper function based on rest_api_raw() to obtain data from the GitHub
API: https://docs.github.com/en/rest. You can provide a personal access token (PAT) via
the token argument, or via one of the environment variables GITHUB_PAT , GITHUB_TOKEN ,
GH_TOKEN . A PAT allows for a much higher rate limit in API calls. Without a token, you can
only make 60 calls in an hour.

https://docs.github.com/en/rest

retry 63

Value

A character vector (the raw JSON response) or an R object parsed from the JSON text.

Examples

a normal GET request
xfun::rest_api("https://httpbin.org", "/get")
xfun::rest_api_raw("https://httpbin.org", "/get")

send the request with an auth header
xfun::rest_api("https://httpbin.org", "/headers", "OPEN SESAME!")

with query parameters
xfun::rest_api("https://httpbin.org", "/response-headers", params = list(foo = "bar"))

get the rate limit info from GitHub
xfun::github_api("/rate_limit")

retry Retry calling a function for a number of times

Description

If the function returns an error, retry it for the specified number of times, with a pause between
attempts.

Usage

retry(fun, ..., .times = 3, .pause = 5)

Arguments

fun A function.

... Arguments to be passed to the function.

.times The number of times.

.pause The number of seconds to wait before the next attempt.

Details

One application of this function is to download a web resource. Since the download might fail
sometimes, you may want to retry it for a few more times.

Examples

read the GitHub releases info of the repo yihui/xfun
xfun::retry(xfun::github_releases, "yihui/xfun")

64 rev_check

rev_check Run R CMD check on the reverse dependencies of a package

Description

Install the source package, figure out the reverse dependencies on CRAN, download all of their
source packages, and run R CMD check on them in parallel.

Usage

rev_check(
pkg,
which = "all",
recheck = NULL,
ignore = NULL,
update = TRUE,
timeout = getOption("xfun.rev_check.timeout", 15 * 60),
src = file.path(src_dir, pkg),
src_dir = getOption("xfun.rev_check.src_dir")

)

compare_Rcheck(status_only = TRUE, output = "00check_diffs.md")

Arguments

pkg The package name.

which Which types of reverse dependencies to check. See tools::package_dependencies()
for possible values. The special value 'hard' means the hard dependencies, i.e.,
c('Depends', 'Imports', 'LinkingTo').

recheck A vector of package names to be (re)checked. If not provided and there are any
‘*.Rcheck’ directories left by certain packages (this often means these packages
failed the last time), recheck will be these packages; if there are no ‘*.Rcheck’
directories but a text file ‘recheck’ exists, recheck will be the character vector
read from this file. This provides a way for you to manually specify the packages
to be checked. If there are no packages to be rechecked, all reverse dependencies
will be checked.

ignore A vector of package names to be ignored in R CMD check. If this argument is
missing and a file ‘00ignore’ exists, the file will be read as a character vector
and passed to this argument.

update Whether to update all packages before the check.

timeout Timeout in seconds for R CMD check to check each package. The (approximate)
total time can be limited by the global option xfun.rev_check.timeout_total.

src The path of the source package directory.

src_dir The parent directory of the source package directory. This can be set in a global
option if all your source packages are under a common parent directory.

rev_check 65

status_only If TRUE, only compare the final statuses of the checks (the last line of ‘00check.log’),
and delete ‘*.Rcheck’ and ‘*.Rcheck2’ if the statuses are identical, otherwise
write out the full diffs of the logs. If FALSE, compare the full logs under ‘*.Rcheck’
and ‘*.Rcheck2’.

output The output Markdown file to which the diffs in check logs will be written. If the
markdown package is available, the Markdown file will be converted to HTML,
so you can see the diffs more clearly.

Details

Everything occurs under the current working directory, and you are recommended to call this func-
tion under a designated directory, especially when the number of reverse dependencies is large,
because all source packages will be downloaded to this directory, and all ‘*.Rcheck’ directories
will be generated under this directory, too.

If a source tarball of the expected version has been downloaded before (under the ‘tarball’ direc-
tory), it will not be downloaded again (to save time and bandwidth).

After a package has been checked, the associated ‘*.Rcheck’ directory will be deleted if the check
was successful (no warnings or errors or notes), which means if you see a ‘*.Rcheck’ directory, it
means the check failed, and you need to take a look at the log files under that directory.

The time to finish the check is recorded for each package. As the check goes on, the total remaining
time will be roughly estimated via n * mean(times), where n is the number of packages remaining
to be checked, and times is a vector of elapsed time of packages that have been checked.

If a check on a reverse dependency failed, its ‘*.Rcheck’ directory will be renamed to ‘*.Rcheck2’,
and another check will be run against the CRAN version of the package unless options(xfun.rev_check.compare
= FALSE) is set. If the logs of the two checks are the same, it means no new problems were intro-
duced in the package, and you can probably ignore this particular reverse dependency. The function
compare_Rcheck() can be used to create a summary of all the differences in the check logs under
‘*.Rcheck’ and ‘*.Rcheck2’. This will be done automatically if options(xfun.rev_check.summary
= TRUE) has been set.

A recommended workflow is to use a special directory to run rev_check(), set the global options()
xfun.rev_check.src_dir and repos in the R startup (see ?Startup) profile file .Rprofile under
this directory, and (optionally) set R_LIBS_USER in ‘.Renviron’ to use a special library path (so that
your usual library will not be cluttered). Then run xfun::rev_check(pkg) once, investigate and fix
the problems or (if you believe it was not your fault) ignore broken packages in the file ‘00ignore’,
and run xfun::rev_check(pkg) again to recheck the failed packages. Repeat this process until all
‘*.Rcheck’ directories are gone.

As an example, I set options(repos = c(CRAN = 'https://cran.rstudio.com'), xfun.rev_check.src_dir
= '~/Dropbox/repo') in ‘.Rprofile’, and R_LIBS_USER=~/R-tmp in ‘.Renviron’. Then I can
run, for example, xfun::rev_check('knitr') repeatedly under a special directory ‘~/Downloads/revcheck’.
Reverse dependencies and their dependencies will be installed to ‘~/R-tmp’, and knitr will be in-
stalled from ‘~/Dropbox/repo/kintr’.

Value

A named numeric vector with the names being package names of reverse dependencies; 0 indicates
check success, 1 indicates failure, and 2 indicates that a package was not checked due to global
timeout.

66 Rscript

See Also

devtools::revdep_check() is more sophisticated, but currently has a few major issues that affect
me: (1) It always deletes the ‘*.Rcheck’ directories (https://github.com/r-lib/devtools/
issues/1395), which makes it difficult to know more information about the failures; (2) It does
not fully install the source package before checking its reverse dependencies (https://github.
com/r-lib/devtools/pull/1397); (3) I feel it is fairly difficult to iterate the check (ignore the
successful packages and only check the failed packages); by comparison, xfun::rev_check()
only requires you to run a short command repeatedly (failed packages are indicated by the existing
‘*.Rcheck’ directories, and automatically checked again the next time).

xfun::rev_check() borrowed a very nice feature from devtools::revdep_check(): estimating
and displaying the remaining time. This is particularly useful for packages with huge numbers of
reverse dependencies.

Rscript Run the commands Rscript and R CMD

Description

Wrapper functions to run the commands Rscript and R CMD.

Usage

Rscript(args, ...)

Rcmd(args, ...)

Arguments

args A character vector of command-line arguments.

... Other arguments to be passed to system2().

Value

A value returned by system2().

Examples

library(xfun)
Rscript(c("-e", "1+1"))
Rcmd(c("build", "--help"))

https://github.com/r-lib/devtools/issues/1395
https://github.com/r-lib/devtools/issues/1395
https://github.com/r-lib/devtools/pull/1397
https://github.com/r-lib/devtools/pull/1397

Rscript_call 67

Rscript_call Call a function in a new R session via Rscript()

Description

Save the argument values of a function in a temporary RDS file, open a new R session via Rscript(),
read the argument values, call the function, and read the returned value back to the current R session.

Usage

Rscript_call(
fun,
args = list(),
options = NULL,
...,
wait = TRUE,
fail = sprintf("Failed to run '%s' in a new R session", deparse(substitute(fun))[1])

)

Arguments

fun A function, or a character string that can be parsed and evaluated to a function.

args A list of argument values.

options A character vector of options to passed to Rscript(), e.g., "--vanilla".

..., wait Arguments to be passed to system2().

fail The desired error message when an error occurred in calling the function. If the
actual error message during running the function is available, it will be appended
to this message.

Value

If wait = TRUE, the returned value of the function in the new R session. If wait = FALSE, three file
paths will be returned: the first one stores fun and args (as a list), the second one is supposed to
store the returned value of the function, and the third one stores the possible error message.

Examples

factorial(10)
should return the same value
xfun::Rscript_call("factorial", list(10))

the first argument can be either a character string or a function
xfun::Rscript_call(factorial, list(10))

Run Rscript starting a vanilla R session
xfun::Rscript_call(factorial, list(10), options = c("--vanilla"))

68 same_path

rstudio_type Type a character vector into the RStudio source editor

Description

Use the rstudioapi package to insert characters one by one into the RStudio source editor, as if they
were typed by a human.

Usage

rstudio_type(x, pause = function() 0.1, mistake = 0, save = 0)

Arguments

x A character vector.

pause A function to return a number in seconds to pause after typing each character.

mistake The probability of making random mistakes when typing the next character. A
random mistake is a random string typed into the editor and deleted immediately.

save The probability of saving the document after typing each character. Note that If
a document is not opened from a file, it will never be saved.

Examples

library(xfun)
if (loadable("rstudioapi") && rstudioapi::isAvailable()) {

rstudio_type("Hello, RStudio! xfun::rstudio_type() looks pretty cool!",
pause = function() runif(1, 0, 0.5), mistake = 0.1)

}

same_path Test if two paths are the same after they are normalized

Description

Compare two paths after normalizing them with the same separator (/).

Usage

same_path(p1, p2, ...)

Arguments

p1, p2 Two vectors of paths.

... Arguments to be passed to normalize_path().

session_info 69

Examples

library(xfun)
same_path("~/foo", file.path(Sys.getenv("HOME"), "foo"))

session_info An alternative to sessionInfo() to print session information

Description

This function tweaks the output of sessionInfo(): (1) It adds the RStudio version information
if running in the RStudio IDE; (2) It removes the information about matrix products, BLAS, and
LAPACK; (3) It removes the names of base R packages; (4) It prints out package versions in a
single group, and does not differentiate between loaded and attached packages.

Usage

session_info(packages = NULL, dependencies = TRUE)

Arguments

packages A character vector of package names, of which the versions will be printed. If
not specified, it means all loaded and attached packages in the current R session.

dependencies Whether to print out the versions of the recursive dependencies of packages.

Details

It also allows you to only print out the versions of specified packages (via the packages argument)
and optionally their recursive dependencies. For these specified packages (if provided), if a function
xfun_session_info() exists in a package, it will be called and expected to return a character
vector to be appended to the output of session_info(). This provides a mechanism for other
packages to inject more information into the session_info output. For example, rmarkdown (>=
1.20.2) has a function xfun_session_info() that returns the version of Pandoc, which can be very
useful information for diagnostics.

Value

A character vector of the session information marked as raw_string().

Examples

xfun::session_info()
if (xfun::loadable("MASS")) xfun::session_info("MASS")

70 shrink_images

set_envvar Set environment variables

Description

Set environment variables from a named character vector, and return the old values of the variables,
so they could be restored later.

Usage

set_envvar(vars)

Arguments

vars A named character vector of the form c(VARIABLE = VALUE). If any value is NA,
this function will try to unset the variable.

Details

The motivation of this function is that Sys.setenv() does not return the old values of the environ-
ment variables, so it is not straightforward to restore the variables later.

Value

Old values of the variables (if not set, NA).

Examples

vars = xfun::set_envvar(c(FOO = "1234"))
Sys.getenv("FOO")
xfun::set_envvar(vars)
Sys.getenv("FOO")

shrink_images Shrink images to a maximum width

Description

Use magick::image_resize() to shrink an image if its width is larger than the value specified by
the argument width, and optionally call tinify() to compress it.

Usage

shrink_images(
width = 800,
dir = ".",
files = all_files("[.](png|jpe?g|webp)$", dir),
tinify = FALSE

)

split_lines 71

Arguments

width The desired maximum width of images.

dir The directory of images.

files A vector of image file paths. By default, this is all ‘.png’, ‘.jpeg’, and ‘.webp’
images under dir.

tinify Whether to compress images using tinify().

Examples

f = xfun:::all_files("[.](png|jpe?g)$", R.home("doc"))
file.copy(f, tempdir())
f = file.path(tempdir(), basename(f))
magick::image_info(magick::image_read(f)) # some widths are larger than 300
xfun::shrink_images(300, files = f)
magick::image_info(magick::image_read(f)) # all widths <= 300 now
file.remove(f)

split_lines Split a character vector by line breaks

Description

Call unlist(strsplit(x, '\n')) on the character vector x and make sure it works in a few
edge cases: split_lines('') returns '' instead of character(0) (which is the returned value
of strsplit('', '\n')); split_lines('a\n') returns c('a', '') instead of c('a') (which is
the returned value of strsplit('a\n', '\n').

Usage

split_lines(x)

Arguments

x A character vector.

Value

All elements of the character vector are split by '\n' into lines.

Examples

xfun::split_lines(c("a", "b\nc"))

72 strict_list

split_source Split source lines into complete expressions

Description

Parse the lines of code one by one to find complete expressions in the code, and put them in a list.

Usage

split_source(x, merge_comments = FALSE, line_number = FALSE)

Arguments

x A character vector of R source code.
merge_comments Whether to merge consecutive lines of comments as a single expression to be

combined with the next non-comment expression (if any).
line_number Whether to store the line numbers of each expression in the returned value.

Value

A list of character vectors, and each vector contains a complete R expression, with an attribute
lines indicating the starting and ending line numbers of the expression if the argument line_number
= TRUE.

Examples

code = c("# comment 1", "# comment 2", "if (TRUE) {", "1 + 1", "}", "print(1:5)")
xfun::split_source(code)
xfun::split_source(code, merge_comments = TRUE)

strict_list Strict lists

Description

A strict list is essentially a normal list() but it does not allow partial matching with $.

Usage

strict_list(...)

as_strict_list(x)

S3 method for class 'xfun_strict_list'
x$name

S3 method for class 'xfun_strict_list'
print(x, ...)

strip_html 73

Arguments

... Objects (list elements), possibly named. Ignored in the print() method.

x For as_strict_list(), the object to be coerced to a strict list.
For print(), a strict list.

name The name (a character string) of the list element.

Details

To me, partial matching is often more annoying and surprising than convenient. It can lead to bugs
that are very hard to discover, and I have been bitten by it many times. When I write x$name, I
always mean precisely name. You should use a modern code editor to autocomplete the name if it is
too long to type, instead of using partial names.

Value

Both strict_list() and as_strict_list() return a list with the class xfun_strict_list.
Whereas as_strict_list() attempts to coerce its argument x to a list if necessary, strict_list()
just wraps its argument ... in a list, i.e., it will add another list level regardless if ... already is of
type list.

Examples

library(xfun)
(z = strict_list(aaa = "I am aaa", b = 1:5))
z$a # NULL!
z$aaa # I am aaa
z$b
z$c = "create a new element"

z2 = unclass(z) # a normal list
z2$a # partial matching

z3 = as_strict_list(z2) # a strict list again
z3$a # NULL again!

strip_html Strip HTML tags

Description

Remove HTML tags and comments from text.

Usage

strip_html(x)

74 submit_cran

Arguments

x A character vector.

Value

A character vector with HTML tags and comments stripped off.

Examples

xfun::strip_html("Hello <!-- comment -->world!")

submit_cran Submit a source package to CRAN

Description

Build a source package and submit it to CRAN with the curl package.

Usage

submit_cran(file = pkg_build(), comment = "")

Arguments

file The path to the source package tarball. By default, the current working direc-
tory is treated as the package root directory, and automatically built into a tarball,
which is deleted after submission. This means you should run xfun::submit_cran()
in the root directory of a package project, unless you want to pass a path explic-
itly to the file argument.

comment Submission comments for CRAN. By default, if a file ‘cran-comments.md’
exists, its content will be read and used as the comment.

See Also

devtools::submit_cran() does the same job, with a few more dependencies in addition to curl
(such as cli); xfun::submit_cran() only depends on curl.

system3 75

system3 Run system2() and mark its character output as UTF-8 if appropriate

Description

This is a wrapper function based on system2(). If system2() returns character output (e.g., with
the argument stdout = TRUE), check if the output is encoded in UTF-8. If it is, mark it with UTF-8
explicitly.

Usage

system3(...)

Arguments

... Passed to system2().

Value

The value returned by system2().

Examples

a = shQuote(c("-e", "print(intToUtf8(c(20320, 22909)))"))
x2 = system2("Rscript", a, stdout = TRUE)
Encoding(x2) # unknown

x3 = xfun::system3("Rscript", a, stdout = TRUE)
encoding of x3 should be UTF-8 if the current locale is UTF-8
!l10n_info()[["UTF-8"]] || Encoding(x3) == "UTF-8" # should be TRUE

tinify Use the Tinify API to compress PNG and JPEG images

Description

Compress PNG/JPEG images with ‘api.tinify.com’, and download the compressed images. These
functions require R packages curl and jsonlite. tinify_dir() is a wrapper function of tinify()
to compress images under a directory.

76 tinify

Usage

tinify(
input,
output,
quiet = FALSE,
force = FALSE,
key = env_option("xfun.tinify.key"),
history = env_option("xfun.tinify.history")

)

tinify_dir(dir = ".", ...)

Arguments

input A vector of input paths of images.

output A vector of output paths or a function that takes input and returns a vector of
output paths (e.g., output = identity means output = input). By default,
if the history argument is not a provided, output is input with a suffix -min
(e.g., when input = 'foo.png', output = 'foo-min.png'), otherwise output
is the same as input, which means the original image files will be overwritten.

quiet Whether to suppress detailed information about the compression, which is of the
form ‘input.png (10 Kb) ==> output.png (5 Kb, 50%); compression count:
42’. The percentage after output.png stands for the compression ratio, and
the compression count shows the number of compressions used for the current
month.

force Whether to compress an image again when it appears to have been compressed
before. This argument only makes sense when the history argument is pro-
vided.

key The Tinify API key. It can be set via either the global option xfun.tinify.key
or the environment variable R_XFUN_TINIFY_KEY (see env_option()).

history Path to a history file to record the MD5 checksum of compressed images. If the
checksum of an expected output image exists in this file and force = FALSE, the
compression will be skipped. This can help you avoid unnecessary API calls.

dir A directory under which all ‘.png’, ‘.jpeg’, and ‘.webp’ files are to be com-
pressed.

... Arguments passed to tinify().

Details

You are recommended to set the API key in ‘.Rprofile’ or ‘.Renviron’. After that, the only
required argument of this function is input. If the original images can be overwritten by the com-
pressed images, you may either use output = identity, or set the value of the history argument
in ‘.Rprofile’ or ‘.Renviron’.

Value

The output file paths.

tojson 77

References

Tinify API: https://tinypng.com/developers.

See Also

The tinieR package (https://github.com/jmablog/tinieR/) is a more comprehensive imple-
mentation of the Tinify API, whereas xfun::tinify() has only implemented the feature of shrink-
ing images.

Examples

f = xfun:::R_logo("jpg$")
xfun::tinify(f) # remember to set the API key before trying this

tojson A simple JSON serializer

Description

A JSON serializer that only works on a limited types of R data (NULL, lists, logical scalars, charac-
ter/numeric vectors). A character string of the class JS_EVAL is treated as raw JavaScript, so will
not be quoted. The function json_vector() converts an atomic R vector to JSON.

Usage

tojson(x)

json_vector(x, to_array = FALSE, quote = TRUE)

Arguments

x An R object.

to_array Whether to convert a vector to a JSON array (use []).

quote Whether to double quote the elements.

Value

A character string.

See Also

The jsonlite package provides a full JSON serializer.

https://tinypng.com/developers
https://github.com/jmablog/tinieR/

78 tree

Examples

library(xfun)
tojson(NULL)
tojson(1:10)
tojson(TRUE)
tojson(FALSE)
cat(tojson(list(a = 1, b = list(c = 1:3, d = "abc"))))
cat(tojson(list(c("a", "b"), 1:5, TRUE)))

the class JS_EVAL is originally from htmlwidgets::JS()
JS = function(x) structure(x, class = "JS_EVAL")
cat(tojson(list(a = 1:5, b = JS("function() {return true;}"))))

tree Turn the output of str() into a tree diagram

Description

The super useful function str() uses .. to indicate the level of sub-elements of an object, which
may be difficult to read. This function uses vertical pipes to connect all sub-elements on the same
level, so it is clearer which elements belong to the same parent element in an object with a nested
structure (such as a nested list).

Usage

tree(...)

Arguments

... Arguments to be passed to str() (note that the comp.str is hardcoded inside
this function, and it is the only argument that you cannot customize).

Value

A character string as a raw_string().

Examples

fit = lsfit(1:9, 1:9)
str(fit)
xfun::tree(fit)

fit = lm(dist ~ speed, data = cars)
str(fit)
xfun::tree(fit)

some trivial examples
xfun::tree(1:10)
xfun::tree(iris)

try_error 79

try_error Try an expression and see if it throws an error

Description

Use tryCatch() to check if an expression throws an error.

Usage

try_error(expr)

Arguments

expr An R expression.

Value

TRUE (error) or FALSE (success).

Examples

xfun::try_error(stop("foo")) # TRUE
xfun::try_error(1:10) # FALSE

try_silent Try to evaluate an expression silently

Description

An abbreviation of try(silent = TRUE).

Usage

try_silent(expr)

Arguments

expr An R expression.

Examples

library(xfun)
z = try_silent(stop("Wrong!"))
inherits(z, "try-error")

80 upload_ftp

upload_ftp Upload to an FTP server via curl

Description

The function upload_ftp() runs the command curl -T file server to upload a file to an FTP
server if the system command curl is available, otherwise it uses the R package curl. The function
upload_win_builder() uses upload_ftp() to upload packages to the win-builder server.

Usage

upload_ftp(file, server, dir = "")

upload_win_builder(
file = pkg_build(),
version = c("R-devel", "R-release", "R-oldrelease"),
server = c("ftp", "https"),
solaris = pkg_available("rhub")

)

Arguments

file Path to a local file.

server The address of the FTP server. For upload_win_builder(), server = 'https'
means uploading to 'https://win-builder.r-project.org/upload.aspx'.

dir The remote directory to which the file should be uploaded.

version The R version(s) on win-builder.

solaris Whether to also upload the package to the Rhub server to check it on Solaris.

Details

These functions were written mainly to save package developers the trouble of going to the win-
builder web page and uploading packages there manually.

Value

Status code returned from system2() or curl::curl_fetch_memory().

upload_imgur 81

upload_imgur Upload an image to imgur.com

Description

This function uses the curl package or the system command curl (whichever is available) to upload
a image to https://imgur.com.

Usage

upload_imgur(
file,
key = env_option("xfun.upload_imgur.key", "9f3460e67f308f6"),
use_curl = loadable("curl"),
include_xml = FALSE

)

Arguments

file Path to the image file to be uploaded.

key Client ID for Imgur. It can be set via either the global option xfun.upload_imgur.key
or the environment variable R_XFUN_UPLOAD_IMGUR_KEY (see env_option()).
If neither is set, this uses a client ID registered by Yihui Xie.

use_curl Whether to use the R package curl to upload the image. If FALSE, the system
command curl will be used.

include_xml Whether to include the XML response in the returned value.

Details

One application is to upload local image files to Imgur when knitting a document with knitr: you
can set the knitr::opts_knit$set(upload.fun = xfun::upload_imgur, so the output docu-
ment does not need local image files any more, and it is ready to be published online.

Value

A character string of the link to the image. If include_xml = TRUE, this string carries an attribute
named XML, which is the XML response from Imgur (it will be parsed by xml2 if available). See
Imgur API in the references.

Note

Please register your own Imgur application to get your client ID; you can certainly use mine, but
this ID is in the public domain so everyone has access to all images associated to it.

Author(s)

Yihui Xie, adapted from the imguR package by Aaron Statham

https://imgur.com

82 url_accessible

References

A demo: https://yihui.org/knitr/demo/upload/

Examples

Not run:
f = tempfile(fileext = ".png")
png(f)
plot(rnorm(100), main = R.version.string)
dev.off()

res = imgur_upload(f, include_xml = TRUE)
res # link to original URL of the image
attr(res, "XML") # all information
if (interactive())

browseURL(res)

to use your own key
options(xfun.upload_imgur.key = "your imgur key")

End(Not run)

url_accessible Test if a URL is accessible

Description

Try to send a HEAD request to a URL using curlGetHeaders() or the curl package, and see if it
returns a successful status code.

Usage

url_accessible(x, use_curl = !capabilities("libcurl"), ...)

Arguments

x A URL as a character string.
use_curl Whether to use the curl package or the curlGetHeaders() function in base R

to send the request to the URL. By default, curl will be used when base R does
not have the libcurl capability (which should be rare).

... Arguments to be passed to curlGetHeaders().

Value

TRUE or FALSE.

Examples

xfun::url_accessible("https://yihui.org")

https://yihui.org/knitr/demo/upload/

url_filename 83

url_filename Extract filenames from a URLs

Description

Get the base names of URLs via basename(), and remove the possible query parameters or hash
from the names.

Usage

url_filename(x, default = "index.html")

Arguments

x A character vector of URLs.

default The default filename when it cannot be determined from the URL, e.g., when
the URL ends with a slash.

Value

A character vector of filenames at the end of URLs.

Examples

xfun::url_filename("https://yihui.org/images/logo.png")
xfun::url_filename("https://yihui.org/index.html")
xfun::url_filename("https://yihui.org/index.html?foo=bar")
xfun::url_filename("https://yihui.org/index.html#about")
xfun::url_filename("https://yihui.org")
xfun::url_filename("https://yihui.org/")

valid_syntax Check if the syntax of the code is valid

Description

Try to parse() the code and see if an error occurs.

Usage

valid_syntax(code, silent = TRUE)

Arguments

code A character vector of R source code.

silent Whether to suppress the error message when the code is not valid.

84 yaml_body

Value

TRUE if the code could be parsed, otherwise FALSE.

Examples

xfun::valid_syntax("1+1")
xfun::valid_syntax("1+")
xfun::valid_syntax(c("if(T){1+1}", "else {2+2}"), silent = FALSE)

yaml_body Partition the YAML metadata and the body in a document

Description

Split a document into the YAML metadata (which starts with --- in the beginning of the document)
and the body. The YAML metadata will be parsed.

Usage

yaml_body(x, ...)

Arguments

x A character vector of the document content.

... Arguments to be passed to yaml_load().

Value

A list of components yaml (the parsed YAML data), lines (starting and ending line numbers of
YAML), and body (a character vector of the body text). If YAML metadata does not exist in the
document, the components yaml and lines will be missing.

Examples

xfun::yaml_body(c("---", "title: Hello", "output: litedown::html_format", "---",
"", "Content."))

yaml_load 85

yaml_load Read YAML data

Description

If the yaml package is installed, use yaml::yaml.load() to read the data. If not, use a simple
parser instead, which only supports a limited number of data types (see “Examples”). In particular,
it does not support values that span across multiple lines (such as multi-line text).

Usage

yaml_load(
x,
...,
handlers = NULL,
envir = parent.frame(),
use_yaml = loadable("yaml")

)

Arguments

x A character vector of YAML data.

..., handlers Arguments to be passed to yaml::yaml.load().

envir The environment in which R expressions in YAML are evaluated. To disable the
evaluation, use envir = FALSE.

use_yaml Whether to use the yaml package.

Value

An R object (typically a list).

Note

R expressions in YAML will be returned as expressions when they are not evaluated. This is differ-
ent with yaml::yaml.load(), which returns character strings for expressions.

Examples

test the simple parser without using the yaml package
read_yaml = function(...) xfun::yaml_load(..., use_yaml = FALSE)
read_yaml("a: 1")
read_yaml("a: 1\nb: \"foo\"\nc: null")
read_yaml("a:\n b: false\n c: true\n d: 1.234\ne: bar")
read_yaml("a: !expr paste(1:10, collapse = \", \")")
read_yaml("a: [1, 3, 4, 2]")
read_yaml("a: [1, \"abc\", 4, 2]")
read_yaml("a: [\"foo\", \"bar\"]")

86 yaml_load

read_yaml("a: [true, false, true]")
the other form of array is not supported
read_yaml("a:\n - b\n - c")
and you must use the yaml package
if (loadable("yaml")) yaml_load("a:\n - b\n - c")

Index

∗ datasets
download_cache, 18
proj_root, 51

.Renviron, 22

.Rprofile, 22

.packages, 49
$.xfun_strict_list (strict_list), 72

alnum_id, 4
append_unique (read_utf8), 56
append_utf8 (read_utf8), 56
as_strict_list (strict_list), 72
assign, 38
attr, 5

base64_decode (base64_encode), 5
base64_encode, 5
base64_uri, 6
base::attr, 5
base::attr(), 5
base_pkgs, 6
basename(), 83
bg_process, 7
broken_packages, 8
bump_version, 8

cache_exec, 9
cache_exec(), 12, 38, 58
cache_rds, 10
cat(), 42
codetools::findGlobals(), 9
codetools::findLocalsList(), 9
compare_Rcheck (rev_check), 64
crandalf_check, 13
crandalf_results (crandalf_check), 13
csv_options, 14
curlGetHeaders(), 82

decimal_dot, 15
del_empty_dir, 15

delayedAssign(), 38
deparse, 9
dir.create, 16
dir.create(), 16
dir.exists(), 16
dir_create, 16
dir_exists, 16
divide_chunk, 17
do_once, 19
download.file(), 19
download_cache, 18
download_file, 19

embed_dir (embed_file), 20
embed_file, 20
embed_files (embed_file), 20
enc2utf8(), 56
env_option, 22
env_option(), 76, 81
existing_files, 23
exit_call, 23
expression, 85
expression(), 47

fenced_block, 24
fenced_div (fenced_block), 24
file.copy(), 26
file.exists(), 16
file.path, 28
file.rename(), 26
file.size, 55
file_exists (dir_exists), 16
file_ext, 25
file_rename, 26
file_string, 26
format(), 27
format.xfun_record_results (record), 57
format_bytes, 27
from_root, 28

87

88 INDEX

get, 38
github_api (rest_api), 62
github_api(), 29
github_releases, 29
grep(), 30
grep_sub, 29
gsub(), 30
gsub_dir (gsub_file), 30
gsub_ext (gsub_file), 30
gsub_file, 30
gsub_files (gsub_file), 30

html_escape (html_tag), 31
html_escape(), 31
html_tag, 31
html_tag(), 21, 31
html_value (html_tag), 31
html_value(), 31
html_view (html_tag), 31

I(), 58
identity, 76
in_dir, 33
in_dir(), 39
install.packages(), 48
install_dir, 32
install_github, 33
invisible(), 58
is_abs_path, 34
is_arm64 (is_windows), 37
is_ascii, 34
is_blank, 35
is_linux (is_windows), 37
is_macos (is_windows), 37
is_rel_path (is_abs_path), 34
is_sub_path, 35
is_unix (is_windows), 37
is_web_path, 36
is_windows, 37

json_vector (tojson), 77

knitr::kable(), 41, 59
knitr::knit_print(), 59

l10n_info(), 43
lazy_load (lazy_save), 37
lazy_load(), 37, 38
lazy_save, 37

lazy_save(), 37, 38
library(), 48
list(), 72
list.files(), 61
loadable (pkg_attach), 48
loadable(), 8

magic_path, 38
magick::image_resize(), 70
make_fence (fenced_block), 24
mark_dirs, 39
md5, 40
md_table, 40
message(), 42
mime::guess_type(), 41
mime_type, 41
msg_cat, 42

n2w (numbers_to_words), 46
native_encode, 43
new_app, 44
new_app(), 31
new_record (record_print), 59
new_record(), 60
news(), 44
news2md, 44
normalize_path, 45
normalize_path(), 36, 68
normalizePath(), 45
numbers_to_words, 46

on.exit(), 23
options(), 19, 20, 22, 48, 65
optipng, 47

parse, 12
parse(), 83
parse_only, 47
pkg_attach, 48
pkg_attach2 (pkg_attach), 48
pkg_available (pkg_attach), 48
pkg_load (pkg_attach), 48
pkg_load2 (pkg_attach), 48
print(), 59
print.xfun_raw_string (raw_string), 53
print.xfun_record_results (record), 57
print.xfun_strict_list (strict_list), 72
proc_kill, 50
proc_kill(), 7

INDEX 89

process_file, 49
proj_root, 51
prose_index, 52
protect_math, 52

qs::qread(), 10
qs::qsave(), 10

raw_string, 53
raw_string(), 69, 78
Rcmd (Rscript), 66
read_all, 54
read_bin, 55
read_utf8, 56
read_utf8(), 62
readBin(), 55
readRDS(), 10
record, 57
record(), 59
record_print, 59
record_print(), 58
relative_path, 60
relative_path(), 28
remotes::install_github(), 33
rename_seq, 61
requireNamespace(), 48, 49
rest_api, 62
rest_api_raw (rest_api), 62
retry, 63
rev_check, 64
rev_check(), 13
root_rules (proj_root), 51
round(), 41
Rscript, 66
Rscript(), 67
Rscript_call, 67
rstudio_type, 68

same_path, 68
same_path(), 34
sans_ext (file_ext), 25
saveRDS(), 10, 11
Serialize, 40
serialize(), 10
session_info, 69
sessionInfo(), 69
set_envvar, 70
shQuote(), 7
shrink_images, 70

sort(), 50
sort_file (process_file), 49
split_lines, 71
split_source, 72
sprintf(), 61
Startup, 65
stderr(), 42
stdout(), 42
str(), 78
strict_list, 72
strip_html, 73
submit_cran, 74
suppressMessages(), 42
Sys.setenv(), 70
system2, 7
system2(), 50, 66, 67, 75, 80
system3, 75

tinify, 75
tinify(), 70, 71, 76
tinify_dir (tinify), 75
tojson, 77
tools::file_ext(), 25
tools::file_path_sans_ext(), 25
tools::md5sum(), 40
tools::package_dependencies(), 64
tree, 78
try_error, 79
try_silent, 79
tryCatch(), 79

unserialize(), 10
upload_ftp, 80
upload_imgur, 81
upload_win_builder (upload_ftp), 80
url(), 62
url_accessible, 82
url_filename, 83
url_filename(), 19

valid_syntax, 83

with_ext (file_ext), 25
write_utf8 (read_utf8), 56
writeLines(), 56

yaml::yaml.load(), 85
yaml_body, 84
yaml_load, 85

	alnum_id
	attr
	base64_encode
	base64_uri
	base_pkgs
	bg_process
	broken_packages
	bump_version
	cache_exec
	cache_rds
	crandalf_check
	csv_options
	decimal_dot
	del_empty_dir
	dir_create
	dir_exists
	divide_chunk
	download_cache
	download_file
	do_once
	embed_file
	env_option
	existing_files
	exit_call
	fenced_block
	file_ext
	file_rename
	file_string
	format_bytes
	from_root
	github_releases
	grep_sub
	gsub_file
	html_tag
	install_dir
	install_github
	in_dir
	is_abs_path
	is_ascii
	is_blank
	is_sub_path
	is_web_path
	is_windows
	lazy_save
	magic_path
	mark_dirs
	md5
	md_table
	mime_type
	msg_cat
	native_encode
	news2md
	new_app
	normalize_path
	numbers_to_words
	optipng
	parse_only
	pkg_attach
	process_file
	proc_kill
	proj_root
	prose_index
	protect_math
	raw_string
	read_all
	read_bin
	read_utf8
	record
	record_print
	relative_path
	rename_seq
	rest_api
	retry
	rev_check
	Rscript
	Rscript_call
	rstudio_type
	same_path
	session_info
	set_envvar
	shrink_images
	split_lines
	split_source
	strict_list
	strip_html
	submit_cran
	system3
	tinify
	tojson
	tree
	try_error
	try_silent
	upload_ftp
	upload_imgur
	url_accessible
	url_filename
	valid_syntax
	yaml_body
	yaml_load
	Index

