
Package: webqueue (via r-universe)
March 13, 2025

Type Package

Title Multicore HTTP Server

Version 1.0.0

Date 2025-03-12

Description Distributes HTTP requests among a pool of background R
processes. Supports timeouts and interrupts of requests to
ensure that CPU cores are utilized effectively.

URL https://cmmr.github.io/webqueue/, https://github.com/cmmr/webqueue

BugReports https://github.com/cmmr/webqueue/issues

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

Config/testthat/edition 3

Depends R (>= 4.2.0)

Imports cli, httpuv, jsonlite, jobqueue, later, parallelly, promises,
R6, rlang, semaphore, webutils, utils

Suggests httr2, knitr, RCurl, rmarkdown, testthat (>= 3.0.0), withr

NeedsCompilation no

Author Daniel P. Smith [aut, cre]
(<https://orcid.org/0000-0002-2479-2044>), Alkek Center for
Metagenomics and Microbiome Research [cph, fnd]

Maintainer Daniel P. Smith <dansmith01@gmail.com>

Repository CRAN

Date/Publication 2025-03-13 21:10:02 UTC

Config/pak/sysreqs make libssl-dev zlib1g-dev

1

https://cmmr.github.io/webqueue/
https://github.com/cmmr/webqueue
https://github.com/cmmr/webqueue/issues
https://orcid.org/0000-0002-2479-2044

2 cookie

Contents
cookie . 2
header . 3
js_obj . 4
response . 4
WebQueue . 5

Index 9

cookie Assemble an HTTP cookie.

Description

See https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie for a more in-depth
description of each parameter’s purpose.

Usage

cookie(
...,
max_age = NULL,
domain = NULL,
path = NULL,
same_site = "Lax",
secure = FALSE,
http_only = FALSE,
partitioned = FALSE,
name = ...names(),
value = ..1

)

Arguments

... A single key-value pair.

max_age The number of seconds until expiration. Omit to create a session cookie. Inf is
mapped to 34560000L (400 days).

domain Send with requests to this host.

path Send with requests to this path.

same_site 'Strict', 'Lax', or 'None'. secure required for 'None'.

secure Only send over HTTPS.

http_only Disallow javascript access.

partitioned Use partitioned storage. secure required.

name Explicitly set the name (key) in the key-value pair.

value Explicitly set the value in the key-value pair.

header 3

Value

A ’header’ object that can be passed to response().

Examples

library(webqueue)

cookie(xyz = 123, max_age = 3600, http_only = TRUE)

token <- 'randomstring123'
cookie(token)

response(cookie(token = 'randomstring123'))

header Assemble an HTTP header.

Description

See https://developer.mozilla.org/en-US/docs/Glossary/Response_header for example response head-
ers and their purpose.

Usage

header(..., expose = FALSE, name = ...names(), value = ..1)

Arguments

... A single key-value pair.

expose Allow javascript to read this header.

name Explicitly set the name (key) in the key-value pair.

value Explicitly set the value in the key-value pair.

Value

A ’header’ object that can be passed to response().

Examples

library(webqueue)

header(name = 'Location', value = '/index.html')

Location <- '/index.html'
header(Location)

response(307L, header(Location = '/index.html'))

4 response

Allow javascript to access a header value
header('x-user-id' = 100, expose = TRUE)

js_obj Ensure a list becomes a JSON object.

Description

This function returns a list that jsonlite::toJSON() will always encode as {}.

Usage

js_obj(x = list())

Arguments

x A list, or list-like object.

Value

A list with the names attribute set.

Examples

library(webqueue)

updates <- list()

response(list(updates = updates))

response(list(updates = js_obj(updates)))

response Compile an HTTP response.

Description

If your WebQueue’s handler function returns a list, json object, character vector, or scalar integer,
response() will be used to transform that result into an HTTP response.

You may also call response() within your handler to better customize the HTTP response. Or,
return a result of class ’AsIs’ to have that object passed directly on to ’httpuv’.

WebQueue 5

Usage

response(body = NULL, status = 200L, headers = NULL, ...)

Arguments

body The content. A list will be encoded as JSON. A scalar integer will be interpreted
as a status. A character vector will be concatenated with no separator.

status A HTTP response status code.

headers A named character vector of HTTP headers. A list-like object is acceptable if
all elements are simple strings.

... Objects created by header() and/or cookie(). Or key-value pairs to add to
headers.

Value

A <response/AsIs> object. Essentially a list with elements named body, status, and headers
formatted as ’httpuv’ expects.

Examples

library(webqueue)

response(list(name = unbox('Peter'), pi = pi))

response(307L, Location = '/new/file.html')

The `body` and `status` slots also handle header objects.
response(cookie(id = 123, http_only = TRUE))

Allow javascript to access custom headers.
uid <- header('x-user-id' = 100, expose = TRUE)
sid <- header('x-session-id' = 303, expose = TRUE)
response(uid, sid)

WebQueue Queues and Services HTTP Requests

Description

Connects the ’httpuv’ and ’jobqueue’ R packages.

Active bindings

url URL where the server is available.

6 WebQueue

Methods

Public methods:

• WebQueue$new()

• WebQueue$print()

• WebQueue$stop()

Method new(): Creates an httpuv::WebServer with requests handled by a jobqueue::Queue.

Usage:
WebQueue$new(
handler,
host = "0.0.0.0",
port = 8080L,
parse = NULL,
globals = list(),
packages = NULL,
namespace = NULL,
init = NULL,
max_cpus = availableCores(),
workers = ceiling(max_cpus * 1.2),
timeout = NULL,
hooks = NULL,
reformat = NULL,
stop_id = NULL,
copy_id = NULL,
bg = TRUE,
quiet = FALSE,
onHeaders = NULL,
staticPaths = NULL,
staticPathOptions = NULL

)

Arguments:

handler A function (request) that will be run on a background worker process. The re-
turned value will be passed through reformat, then sent as the server’s response to the web
client.

host A string that is a valid IPv4 address that is owned by this server, or '0.0.0.0' to listen
on all IP addresses.

port A number or integer that indicates the server port that should be listened on. Note that
on most Unix-like systems including Linux and macOS, port numbers smaller than 1024
require root privileges.

parse A function (req) that is run on the foreground process to transform the HTTP request
prior to passing it to handler. req is the environment object provided by ’httpuv’, amended
with $ARGS and $COOKIES. Return value is used as req going forward.

globals A list of variables to add to handler’s evaluation environment.
packages Character vector of package names to load on workers.
namespace The name of a package to attach to the worker’s environment.

WebQueue 7

init A call or R expression wrapped in curly braces to evaluate on each worker just once,
immediately after start-up. Will have access to variables defined by globals and assets
from packages and namespace. Returned value is ignored.

max_cpus Total number of CPU cores that can be reserved by all running Jobs (sum(cpus)).
Does not enforce limits on actual CPU utilization.

workers How many background jobqueue::Worker processes to start. Set to more than max_cpus
to enable interrupted workers to be quickly swapped out with standby Workers while a re-
placement Worker boots up.

timeout A named numeric vector indicating the maximum number of seconds allowed for each
state the job passes through, or ’total’ to apply a single timeout from ’submitted’ to ’done’.
Example: timeout = c(total = 2.5, running = 1).

hooks A list of functions to run when the Job state changes, of the form hooks = list(created
= function (job) {...}, done = ~{...}). See vignette('hooks').

reformat A function (job) that is run in the foreground process to transform the output from
handler. The default, reformat = NULL, is essentially function (job) { job$output }.

stop_id A function (job). If two Jobs generate the same value from this function, then the
earlier Job will be aborted. If the returned value is NULL, no Jobs will be stopped.

copy_id A function (job). If two Jobs generate the same value from this function, then the
later Job will clone its output from the earlier Job. If the returned value is NULL, no Jobs
will be cloned.

bg Where/how to run the server. TRUE: on a separate R process. FALSE: blocking on the current
R process. NULL: non-blocking on the current R process.

quiet If TRUE, suppress error messages from starting the ’httpuv’ server.
onHeaders A function (request) triggered when headers are received by ’httpuv’. Return

NULL to continue normal processing of the request, or a Rook response to send that re-
sponse, stop processing the request, and ask the client to close the connection. (This can be
used to implement upload size limits, for example.)

staticPaths A named list of paths that will be served without invoking handler() or onHeaders().
The name of each one is the URL path, and the value is either a string referring to a local
path, or an object created by the httpuv::staticPath() function.

staticPathOptions A set of default options to use when serving static paths. If not set or
NULL, then it will use the result from calling httpuv::staticPathOptions() with no
arguments.

Returns: A WebQueue object.

Method print(): Print method for a WebQueue.

Usage:
WebQueue$print(...)

Arguments:

... Arguments are not used currently.

Method stop(): Shuts down the WebQueue and all associated subprocesses. Stopped Jobs will
have their $output set to a object of class <interrupt/condition>

Usage:
WebQueue$stop(reason = "server stopped")

8 WebQueue

Arguments:

reason A brief message for the condition object.

Returns: This WebQueue, invisibly.

Examples

library(webqueue)

wq <- WebQueue$new(function (req) 'Hello World!\n')
readLines(wq$url)
wq$stop()

Index

cookie, 2

header, 3

jobqueue::Worker, 7
js_obj, 4

response, 4

WebQueue, 5

9

	cookie
	header
	js_obj
	response
	WebQueue
	Index

