
Package: wdpar (via r-universe)
March 7, 2025

Type Package

Version 1.3.8

Title Interface to the World Database on Protected Areas

Description Fetch and clean data from the World Database on Protected
Areas (WDPA) and the World Database on Other Effective
Area-Based Conservation Measures (WDOECM). Data is obtained
from Protected Planet <https://www.protectedplanet.net/en>. To
augment data cleaning procedures, users can install the 'prepr'
R package (available at <https://github.com/prioritizr/prepr>).
For more information on this package, see Hanson (2022)
<doi:10.21105/joss.04594>.

Imports utils, assertthat (>= 0.2.0), progress (>= 1.2.0), curl (>=
3.2), httr (>= 1.3.1), countrycode (>= 1.1.0), chromote (>=
0.2.0), xml2 (>= 1.2.0), cli (>= 1.0.1), lwgeom (>= 0.2-1),
tibble (>= 2.1.3), pingr (>= 1.1.2), rappdirs (>= 0.3.1), withr
(>= 3.0.0)

Suggests testthat (>= 2.0.1), knitr (>= 1.2.0), roxygen2 (>= 6.1.1),
rmarkdown (>= 1.10), ggmap (>= 4.0.0), ggplot2 (>= 3.1.0),
prepr (>= 0.3.0), dplyr (>= 1.0.7), ps (>= 1.5.0)

Depends R (>= 3.5.0), sf (>= 1.0-13)

License GPL-3

Encoding UTF-8

Language en-US

URL https://prioritizr.github.io/wdpar/,

https://github.com/prioritizr/wdpar

BugReports https://github.com/prioritizr/wdpar/issues

VignetteBuilder knitr

RoxygenNote 7.3.2

Collate 'internal.R' 'package.R' 'read_sf_n.R' 'st_erase_overlaps.R'
'st_repair_geometry.R' 'wdpa_clean.R' 'wdpa_dissolve.R'
'wdpa_url.R' 'wdpa_latest_version.R' 'wdpa_fetch.R'
'wdpa_read.R' 'zzz.R'

1

https://www.protectedplanet.net/en
https://github.com/prioritizr/prepr
https://doi.org/10.21105/joss.04594
https://prioritizr.github.io/wdpar/
https://github.com/prioritizr/wdpar
https://github.com/prioritizr/wdpar/issues

2 st_erase_overlaps

NeedsCompilation no

Author Jeffrey O Hanson [aut, cre]

Maintainer Jeffrey O Hanson <jeffrey.hanson@uqconnect.edu.au>

Repository CRAN

Date/Publication 2024-10-07 07:00:02 UTC

Config/pak/sysreqs chromium libgdal-dev gdal-bin libgeos-dev make
libxml2-dev libssl-dev libproj-dev libsqlite3-dev
libudunits2-dev

Contents
st_erase_overlaps . 2
st_repair_geometry . 3
wdpar . 4
wdpa_clean . 5
wdpa_dissolve . 9
wdpa_fetch . 10
wdpa_latest_version . 13
wdpa_read . 14
wdpa_url . 15

Index 17

st_erase_overlaps Erase overlaps

Description

Erase overlapping geometries in a sf::sf() object.

Usage

st_erase_overlaps(x, verbose = FALSE)

Arguments

x sf::sf() object.

verbose logical should progress be reported? Defaults to FALSE.

Details

This is a more robust – albeit slower – implementation for sf::st_difference() when y is miss-
ing.

st_repair_geometry 3

Value

A sf::sf() object.

See Also

sf::st_difference(), wdpa_dissolve().

Examples

create data
pl1 <- sf::st_polygon(list(matrix(c(0, 0, 2, 0, 1, 1, 0, 0), byrow = TRUE,

ncol = 2))) * 100
pl2 <- sf::st_polygon(list(matrix(c(0, 0.5, 2, 0.5, 1, 1.5, 0, 0.5),

byrow = TRUE, ncol = 2))) * 100
pl3 <- sf::st_polygon(list(matrix(c(0, 1.25, 2, 1.25, 1, 2.5, 0, 1.25),

byrow = TRUE, ncol = 2))) * 100
x <- sf::st_sf(order = c("A", "B", "C"),

geometry = sf::st_sfc(list(pl1, pl2, pl3), crs = 3395))

erase overlaps
y <- st_erase_overlaps(x)

plot data for visual comparison
par(mfrow = c(1, 2))
plot(sf::st_geometry(x), xlim = c(0, 200), ylim = c(0, 250),

main = "original", col = "transparent")
plot(sf::st_geometry(y), , xlim = c(0, 200), ylim = c(0, 250),

main = "no overlaps", col = "transparent")

st_repair_geometry Repair geometry

Description

Repair the geometry of a sf::st_sf() object.

Usage

st_repair_geometry(x, geometry_precision = 1500)

Arguments

x sf::sf() object.
geometry_precision

numeric level of precision for processing the spatial data (used with sf::st_set_precision()).
The default argument is 1500 (higher values indicate higher precision). This
level of precision is generally suitable for analyses at the national-scale. For
analyses at finer-scale resolutions, please consider using a greater value (e.g.
10000).

4 wdpar

Details

This function works by first using the sf::st_make_valid() function to attempt to fix geome-
try issues. Since the sf::st_make_valid() function sometimes produce incorrect geometries in
rare cases (e.g. when fixing invalid geometries that cross the dateline), this function then uses
the st_prepair() function from the prepr package to fix those geometries instead (see https:
//github.com/dickoa/prepr for details).

Value

A sf::sf() object.

Installation

This function uses the prepr package to help repair geometries in certain cases. Because the prepr
package is not available on the Comprehensive R Archive Network (CRAN), it must be installed
from its online code repository. To achieve this, please use the following code:

if (!require(remotes)) install.packages("remotes")
remotes::install_github("dickoa/prepr")

Note that the prepr package has system dependencies that need to be installed before the package
itself can be installed (see package README file for platform-specific instructions).

Examples

create sf object
p1 <- st_sf(

id = 1,
geometry = st_as_sfc("POLYGON((0 0, 0 10, 10 0, 10 10, 0 0))", crs = 3857)

)

repair geometry
p2 <- st_repair_geometry(p1)

print object
print(p2)

wdpar wdpar: Interface to the World Database on Protected Areas

Description

The wdpar R package provides an interface to data provided by Protected Planet. Specifically, it can
be used to automatically obtain data from the World Database on Protected Areas (WDPA) and the
World Database on Other Effective Area-Based Conservation Measures (WDOECM). It also pro-
vides methods for cleaning data from these databases following best practices (outlined in Butchart
et al. 2015; Protected Planet 2021; Runge et al. 2015). The main functions are wdpa_fetch()
for downloading data and wdpa_clean() for cleaning data. For more information, please see the
package vignette. To cite this package, please see citation("wdpar").

https://github.com/dickoa/prepr
https://github.com/dickoa/prepr
https://www.protectedplanet.net/en

wdpa_clean 5

Author(s)

Maintainer: Jeffrey O Hanson <jeffrey.hanson@uqconnect.edu.au>

References

Butchart SH, Clarke M, Smith RJ, Sykes RE, Scharlemann JP, Harfoot M, ... & Brooks TM (2015)
Shortfalls and solutions for meeting national and global conservation area targets. Conservation
Letters, 8: 329–337.

Protected Planet (2021) Calculating protected and OECM area coverage. Available at: https:
//www.protectedplanet.net/en/resources/calculating-protected-area-coverage.

Runge CA, Watson JEM, Butchart HM, Hanson JO, Possingham HP & Fuller RA (2015) Protected
areas and global conservation of migratory birds. Science, 350: 1255–1258.

See Also

Useful links:

• https://prioritizr.github.io/wdpar/

• https://github.com/prioritizr/wdpar

• Report bugs at https://github.com/prioritizr/wdpar/issues

wdpa_clean Clean data

Description

Clean data obtained from Protected Planet. Specifically, this function is designed to clean data
obtained from the World Database on Protected Areas (WDPA) and the World Database on Other
Effective Area-Based Conservation Measures (WDOECM). For recommended practices on clean-
ing large datasets (e.g. datasets that span multiple countries or a large geographic area), please see
below.

Usage

wdpa_clean(
x,
crs = paste("+proj=cea +lon_0=0 +lat_ts=30 +x_0=0",
"+y_0=0 +datum=WGS84 +ellps=WGS84 +units=m +no_defs"),

exclude_unesco = TRUE,
retain_status = c("Designated", "Inscribed", "Established"),
snap_tolerance = 1,
simplify_tolerance = 0,
geometry_precision = 1500,
erase_overlaps = TRUE,
verbose = interactive()

)

https://www.protectedplanet.net/en/resources/calculating-protected-area-coverage
https://www.protectedplanet.net/en/resources/calculating-protected-area-coverage
https://prioritizr.github.io/wdpar/
https://github.com/prioritizr/wdpar
https://github.com/prioritizr/wdpar/issues
https://www.protectedplanet.net/en

6 wdpa_clean

Arguments

x sf::sf() object containing protected area data.

crs character or integer object representing a coordinate reference system. De-
faults to World Behrmann (ESRI:54017).

exclude_unesco logical should UNESCO Biosphere Reserves be excluded? Defaults to TRUE.

retain_status character vector containing the statuses for protected areas that should be re-
tained during the cleaning process. Available statuses include: "Proposed",
"Inscribed", "Adopted", "Designated", and "Established". Additionally,
a NULL argument can be specified to ensure that no protected areas are excluded
according to their status. The default argument is a character vector contain-
ing "Designated", "Inscribed", and "Established". This default argument
ensures that protected areas that are not currently implemented are excluded.

snap_tolerance numeric tolerance for snapping geometry to a grid for resolving invalid geome-
tries. Defaults to 1 meter.

simplify_tolerance

numeric simplification tolerance. Defaults to 0 meters.
geometry_precision

numeric level of precision for processing the spatial data (used with sf::st_set_precision()).
The default argument is 1500 (higher values indicate higher precision). This
level of precision is generally suitable for analyses at the national-scale. For
analyses at finer-scale resolutions, please consider using a greater value (e.g.
10000).

erase_overlaps logical should overlapping boundaries be erased? This is useful for making
comparisons between individual protected areas and understanding their "effec-
tive" geographic coverage. On the other hand, this processing step may not be
needed (e.g. if the protected area boundaries are going to be rasterized), and so
processing time can be substantially by skipping this step and setting the argu-
ment to FALSE. Defaults to TRUE.

verbose logical should progress on data cleaning be reported? Defaults to TRUE in an
interactive session, otherwise FALSE.

Details

This function cleans data following best practices (Butchart et al. 2015; Protected Planet 2021;
Runge et al. 2015). To obtain accurate protected area coverage statistics for a country, please note
that you will need to manually clip the cleaned data to the countries’ coastline and its Exclusive
Economic Zone (EEZ).

1. Exclude protected areas according to their status (i.e. "STATUS" field). Specifically, protected
areas that have a status not specified in the argument to retain_status are excluded. By
default, only protected areas that have a "Designated", "Inscribed", or "Established"
status are retained. This means that the default behavior is to exclude protected that are not
currently implemented.

2. Exclude United Nations Educational, Scientific and Cultural Organization (UNESCO) Bio-
sphere Reserves (Coetzer et al. 2014). This step is only performed if the argument to
exclude_unesco is TRUE.

wdpa_clean 7

3. Standardize column names. This is important so that data imported as in shapefile or file
geodatabase format have the same column names. Specifically, if present, the "PARENT_ISO3"
field is renamed to "PARENT_ISO" and the "SHAPE" field is renamed to "geometry".

4. Create a field ("GEOMETRY_TYPE") indicating if areas are represented as point localities ("POINT")
or as polygons ("POLYGON").

5. Exclude areas represented as point localities that do not have a reported spatial extent (i.e.
missing data for the field

6. Geometries are wrapped to the dateline (using sf::st_wrap_dateline() with the options
"WRAPDATELINE=YES" and "DATELINEOFFSET=180").

7. Reproject data to coordinate system specified in argument to crs (using sf::st_transform()).

8. Repair any invalid geometries that have manifested (using st_repair_geometry()).

9. Buffer areas represented as point localities to circular areas using their reported spatial extent
(using data in the field "REP_AREA" and sf::st_buffer(); see Visconti et al. 2013).

10. Snap the geometries to a grid to fix any remaining geometry issues (using argument to snap_tolerance
and lwgeom::st_snap_to_grid()).

11. Repair any invalid geometries that have manifested (using st_repair_geometry()).

12. Simplify the protected area geometries to reduce computational burden (using argument to
simplify_tolerance and sf::st_simplify()).

13. Repair any invalid geometries that have manifested (using st_repair_geometry()).

14. The "MARINE" field is converted from integer codes to descriptive names (i.e. 0 = "terrestrial",
1 = "partial", 2 = "marine").

15. The "PA_DEF" field is converted from integer codes to descriptive names (i.e. 0 = "OECM", and
1 = "PA").

16. Zeros in the "STATUS_YR" field are replaced with missing values (i.e. NA_real_ values).

17. Zeros in the "NO_TK_AREA" field are replaced with NA values for areas where such data are not
reported or applicable (i.e. areas with the values "Not Applicable" or "Not Reported" in
the "NO_TK_AREA" field).

18. Overlapping geometries are erased from the protected area data (discussed in Deguignet et al.
2017). Geometries are erased such that areas associated with more effective management cate-
gories ("IUCN_CAT") or have historical precedence are retained (using sf::st_difference()).

19. Slivers are removed (geometries with areas less than 0.1 square meters).

20. The size of areas are calculated in square kilometers and stored in the field "AREA_KM2".

21. Trimming extra leading or trailing white space characters from the "MANG_PLAN" field (e.g., "
", "\n", "\r").

Value

A sf::sf() object.

8 wdpa_clean

Recommended practices for large datasets

This function can be used to clean large datasets assuming that sufficient computational resources
and time are available. Indeed, it can clean data spanning large countries, multiple countries, and
even the full global dataset. When processing the full global dataset, it is recommended to use
a computer system with at least 32 GB RAM available and to allow for at least one full day for
the data cleaning procedures to complete. It is also recommended to avoid using the computer
system for any other tasks while the data cleaning procedures are being completed, because they
are very computationally intensive. Additionally, when processing large datasets – and especially
for the global dataset – it is strongly recommended to disable the procedure for erasing overlapping
areas. This is because the built-in procedure for erasing overlaps is very time consuming when
processing many protected areas, so that information on each protected area can be output (e.g.
IUCN category, year established). Instead, when cleaning large datasets, it is recommended to run
the data cleaning procedures with the procedure for erasing overlapping areas disabled (i.e. with
erase_overlaps = FALSE). After the data cleaning procedures have completed, the protected area
data can be manually dissolved to remove overlapping areas (e.g. using wdpa_dissolve()). For an
example of processing a large protected area dataset, please see the vignette.

References

Butchart SH, Clarke M, Smith RJ, Sykes RE, Scharlemann JP, Harfoot M, ... & Brooks TM (2015)
Shortfalls and solutions for meeting national and global conservation area targets. Conservation
Letters, 8: 329–337.

Coetzer KL, Witkowski ET, & Erasmus BF (2014) Reviewing Biosphere Reserves globally: Effec-
tive conservation action or bureaucratic label? Biological Reviews, 89: 82–104.

Deguignet M, Arnell A, Juffe-Bignoli D, Shi Y, Bingham H, MacSharry B & Kingston N (2017)
Measuring the extent of overlaps in protected area designations. PloS One, 12: e0188681.

Runge CA, Watson JEM, Butchart HM, Hanson JO, Possingham HP & Fuller RA (2015) Protected
areas and global conservation of migratory birds. Science, 350: 1255–1258.

Protected Planet (2021) Calculating protected and OECM area coverage. Available at: https:
//www.protectedplanet.net/en/resources/calculating-protected-area-coverage.

Visconti P, Di Marco M, Alvarez-Romero JG, Januchowski-Hartley SR, Pressey, RL, Weeks R &
Rondinini C (2013) Effects of errors and gaps in spatial data sets on assessment of conservation
progress. Conservation Biology, 27: 1000–1010.

See Also

wdpa_fetch(), wdpa_dissolve().

Examples

Not run:
fetch data for the Liechtenstein
lie_raw_data <- wdpa_fetch("LIE", wait = TRUE)

clean data
lie_data <- wdpa_clean(lie_raw_data)

plot cleaned dataset

https://www.protectedplanet.net/en/resources/calculating-protected-area-coverage
https://www.protectedplanet.net/en/resources/calculating-protected-area-coverage

wdpa_dissolve 9

plot(lie_data)

End(Not run)

wdpa_dissolve Dissolve data

Description

Create a dataset of spatial boundaries that contains no overlapping geometries.

Usage

wdpa_dissolve(x, geometry_precision = 1500)

Arguments

x sf::sf() object.
geometry_precision

numeric level of precision for processing the spatial data (used with sf::st_set_precision()).
The default argument is 1500 (higher values indicate higher precision). This
level of precision is generally suitable for analyses at the national-scale. For
analyses at finer-scale resolutions, please consider using a greater value (e.g.
10000).

Details

This function is basically a wrapper for sf::st_union(). It also contains additional parameters to
assist with processing large and complex geometry data.

Value

A sf::sf() object.

See Also

sf::st_union(), st_erase_overlaps().

Examples

create data
pl1 <- sf::st_polygon(list(matrix(c(0, 0, 2, 0, 1, 1, 0, 0), byrow = TRUE,

ncol = 2))) * 100
pl2 <- sf::st_polygon(list(matrix(c(0, 0.5, 2, 0.5, 1, 1.5, 0, 0.5),

byrow = TRUE, ncol = 2))) * 100
pl3 <- sf::st_polygon(list(matrix(c(0, 1.25, 2, 1.25, 1, 2.5, 0, 1.25),

byrow = TRUE, ncol = 2))) * 100
x <- sf::st_sf(order = c("A", "B", "C"),

10 wdpa_fetch

geometry = sf::st_sfc(list(pl1, pl2, pl3), crs = 3395))

dissolve data
y <- wdpa_dissolve(x)

plot data for visual comparison
par(mfrow = c(1, 2))
plot(sf::st_geometry(x), xlim = c(0, 200), ylim = c(0, 250),

main = "original", col = "transparent")
plot(sf::st_geometry(y), , xlim = c(0, 200), ylim = c(0, 250),

main = "dissolved", col = "transparent")

wdpa_fetch Fetch data

Description

Fetch data from Protected Planet. Specifically, data are downloaded from the World Database on
Protected Areas (WDPA) and the World Database on Other Effective Area-Based Conservation
Measures (WDOECM). Note that data are downloaded assuming non-commercial use.

Usage

wdpa_fetch(
x,
wait = FALSE,
download_dir = tempdir(),
force_download = FALSE,
check_version = TRUE,
n = NULL,
page_wait = 2,
datatype = "gdb",
verbose = interactive()

)

Arguments

x character country for which to download data. This argument can be the name
of the country (e.g. "Liechtenstein") or the ISO-3 code for the country (e.g.
"LIE"). This argument can also be set to "global" to download all of the pro-
tected areas available in the database (approximately 1.1 GB).

wait logical if data is not immediately available for download should the session be
paused until it is ready for download? If argument to wait is FALSE and the data
is not ready then NA will be returned. Defaults to FALSE.

download_dir character folder path to download the data. Defaults to a temporary direc-
tory. To avoid downloading the same dataset multiple times, it is recommended
to use a persistent directory (e.g. rappdirs::user_data_dir("wdpar"); see
Examples below).

https://www.protectedplanet.net/en

wdpa_fetch 11

force_download logical if the data has previously been downloaded and is available at argument
to download_dir, should a fresh copy be downloaded? Defaults to FALSE.

check_version logical if the data are being imported from from the argument to download_dir,
should the data be checked to see if the version number matches the latest ver-
sion available online? Defaults to TRUE.

n integer number of records to import per data source. Defaults to NULL such
that all data are imported.

page_wait numeric number of seconds to wait for web pages to load when finding the
download URL on Protected Planet. Defaults to 2. Since the process of find-
ing a download URL requires navigating through multiple web pages, the de-
fault argument means that the function will take at least 8 seconds to complete.
Users on slow internet connections may experience issues with the default ar-
gument (e.g. resulting in an error containing the message Error: Summary:
NoSuchElement). To avoid this, users can try specifying a greater value (e.g. 5
seconds).

datatype character denoting the file format for which to download protected area data.
Available options include: ("shp") shapefile format and ("gdb") file geodatabase
format. Defaults to ‘"gdb". Note that global data are only available in file geo-
database format.

verbose logical should a progress on downloading data be reported? Defaults to TRUE
in an interactive session, otherwise FALSE.

Details

This function obtains and imports data from Protected Planet. By default (per force_download =
FALSE), it will check to see if the data have already been downloaded and, if so, simply import the
previously downloaded data. It will also check to see if a newer version of the dataset is available
on Protected Planet (per check_version = TRUE) and, if so, provide an alert. If the latest version is
not required, this alert can be safely ignored. However, if the latest version of the data is required,
then using force_download = TRUE will ensure that the latest version is always obtained. After im-
porting the data, it is strongly recommended to clean the data prior to analysis (see wdpa_clean()).

Value

A sf::sf() object.

Data source

The PA_DEF column indicates the data source for individual areas and sites that comprise the im-
ported dataset. Specifically, data obtained through the World Database on Protected Areas (WDPA)
are indicated with a value of 1 in the PA_DEF column. Additionally, data obtained through the World
Database on Other Effective Area-Based Conservation Measures (WDOECM) are indicated with a
value of 0 in the PA_DEF column. For more details on data conventions, please consult the official
manual (UNEP-WCMC 2019).

https://www.protectedplanet.net/en

12 wdpa_fetch

Troubleshooting

The function requires a Chromium-based browser (e.g., Google Chrome, Chromium, or Brave)
to be installed. This is because it uses the chromote to find the URL for downloading data from
Protected Planet. If you don’t have one of these browsers installed, then please try installing Google
Chrome. If you do have one of these browsers installed and this function throws an error indicating
that it can’t find the browser, try setting the CHROMOTE_CHROME environment variable to the file path
of the executable. For example, you could do this with:

Sys.setenv(CHROMOTE_CHROME = "INSERT_FILE_PATH_HERE.exe")

Also, the function will sometimes produce a message that complains about a handle_read_frame
error. Please understand that this message is, in fact, not an error and can be safely ignored (see
https://github.com/rstudio/chromote/pull/111). As such, if you see this message when
running the function, you can assume that the function still worked correctly. For reference, the
misleading message will look something like this:

[error] handle_read_frame error: websocketpp.transport:7 (End of File)

For further help with troubleshooting, please refer to the documentation for the chromote package
(https://rstudio.github.io/chromote/).

References

UNEP-WCMC (2019). User Manual for the World Database on Protected Areas and world database
on other effective area-based conservation measures: 1.6. UNEP-WCMC: Cambridge, UK. Avail-
able at: https://wcmc.io/WDPA_Manual.

See Also

wdpa_clean(), wdpa_read(), wdpa_url(), countrycode::countrycode().

Examples

Not run:
fetch data for Liechtenstein
lie_raw_data <- wdpa_fetch("Liechtenstein", wait = TRUE)

print data
print(lie_raw_data)

plot data
plot(lie_raw_data)

fetch data for Liechtenstein using the ISO3 code
lie_raw_data <- wdpa_fetch("LIE", wait = TRUE)

since data are saved in a temporary directory by default,
a persistent directory can be specified to avoid having to download the
same dataset every time the R session is restarted
lie_raw_data <- wdpa_fetch("LIE", wait = TRUE,

https://github.com/rstudio/chromote/pull/111
https://wcmc.io/WDPA_Manual

wdpa_latest_version 13

download_dir = rappdirs::user_data_dir("wdpar"))

data for multiple countries can be downloaded separately and combined,
this is useful to avoid having to download the global dataset
load packages to easily merge datasets
library(dplyr)
library(tibble)

define country names to download
country_codes <- c("LIE", "MHL")

download data for each country
mult_data <- lapply(country_codes, wdpa_fetch, wait = TRUE)

merge datasets together
mult_dat <- st_as_sf(as_tibble(bind_rows(mult_data)))

print data
print(mult_dat)

End(Not run)

wdpa_latest_version Query latest version

Description

Find the latest version of the combined World Database on Protected Areas (WDPA) and World
Database on Other Effective Area-Based Conservation Measures (WDOECM) dataset. This is a
character identifier representing the month and year (e.g. Sep2020) the data were released.

Usage

wdpa_latest_version()

Details

The version number is determined using a web address where the global dataset is available. For
specific details, please refer to the source code for this function.

Value

A character value with the dataset version.

Examples

Not run:
find the latest version
wdpa_latest_version()

14 wdpa_read

End(Not run)

wdpa_read Read data

Description

Read data obtained from Protected Planet. Specifically, this function is designed to import data
obtained from the World Database on Protected Areas (WDPA) and the World Database on Other
Effective Area-Based Conservation Measures (WDOECM).

Usage

wdpa_read(x, n = NULL)

Arguments

x character file name for a zip archive file downloaded from https://www.
protectedplanet.net/en.

n integer number of records to import per data source. Defaults to NULL such
that all data are imported.

Details

This function assumes that data have previously been downloaded to your computer, and need to
import the data. After importing the data, it is strongly recommended to clean the data prior to
analysis (see wdpa_clean()).

Value

A sf::sf() object.

Data source

The PA_DEF column indicates the data source for individual areas and sites that comprise the im-
ported dataset. Specifically, data obtained through the World Database on Protected Areas (WDPA)
are indicated with a value of 1 in the PA_DEF column. Additionally, data obtained through the World
Database on Other Effective Area-Based Conservation Measures (WDOECM) are indicated with a
value of 0 in the PA_DEF column. For more details on data conventions, please consult the official
manual (UNEP-WCMC 2019).

References

UNEP-WCMC (2019). User Manual for the World Database on Protected Areas and world database
on other effective area-based conservation measures: 1.6. UNEP-WCMC: Cambridge, UK. Avail-
able at: https://wcmc.io/WDPA_Manual.

https://www.protectedplanet.net/en
https://www.protectedplanet.net/en
https://www.protectedplanet.net/en
https://wcmc.io/WDPA_Manual

wdpa_url 15

See Also

wdpa_fetch(), wdpa_clean().

Examples

Not run:
find url for Liechtenstein dataset
download_url <- wdpa_url("LIE", wait = TRUE)

path to save file zipfile with data
path <- tempfile(pattern = "WDPA_", fileext = ".zip")

download zipfile
result <- httr::GET(download_url, httr::write_disk(path))

load data
lie_raw_data <- wdpa_read(path)

plot data
plot(lie_raw_data)

End(Not run)

wdpa_url Download URL

Description

Obtain a URL to download data from Protected Planet. Specifically, the URL provides access to
data available through the World Database on Protected Areas (WDPA) and the World Database
on Other Effective Area-Based Conservation Measures (WDOECM). Note that data are accessed
assuming non-commercial use.

Usage

wdpa_url(x, wait = FALSE, page_wait = 2, datatype = "gdb")

Arguments

x character country for desired data. This argument can be the name of the
country (e.g. "Liechtenstein") or the ISO-3 code for the country (e.g. "LIE").
This argument can also be set to "global" to obtain the URL for the global
dataset.

wait logical if data is not immediately available for download should the session be
paused until it is ready for download? If argument to wait is FALSE and the data
is not ready then an error will be thrown. Defaults to FALSE.

https://www.protectedplanet.net/en

16 wdpa_url

page_wait numeric number of seconds to wait for web pages to load when finding the
download URL on Protected Planet. Defaults to 2. Since the process of find-
ing a download URL requires navigating through multiple web pages, the de-
fault argument means that the function will take at least 8 seconds to complete.
Users on slow internet connections may experience issues with the default ar-
gument (e.g. resulting in an error containing the message Error: Summary:
NoSuchElement). To avoid this, users can try specifying a greater value (e.g. 5
seconds).

datatype character denoting the file format for which to download protected area data.
Available options include: ("shp") shapefile format and ("gdb") file geodatabase
format. Defaults to ‘"gdb". Note that global data are only available in file geo-
database format.

Value

A character value with the URL to download the data.

See Also

wdpa_fetch(), countrycode::countrycode().

Examples

Not run:
obtain url for New Zealand data
nzl_url <- wdpa_url("New Zealand", wait = TRUE)
print(nzl_url)

obtain url for New Zealand data using its ISO3 code
nzl_url <- wdpa_url("NZL", wait = TRUE)
print(nzl_url)

obtain url for global data
global_url <- wdpa_url("global")
print(global_url)

End(Not run)

https://www.protectedplanet.net/en

Index

countrycode::countrycode(), 12, 16

lwgeom::st_snap_to_grid(), 7

sf::sf(), 2–4, 6, 7, 9, 11, 14
sf::st_buffer(), 7
sf::st_difference(), 2, 3, 7
sf::st_make_valid(), 4
sf::st_set_precision(), 3, 6, 9
sf::st_sf(), 3
sf::st_simplify(), 7
sf::st_transform(), 7
sf::st_union(), 9
sf::st_wrap_dateline(), 7
st_erase_overlaps, 2
st_erase_overlaps(), 9
st_repair_geometry, 3
st_repair_geometry(), 7

wdpa_clean, 5
wdpa_clean(), 4, 11, 12, 14, 15
wdpa_dissolve, 9
wdpa_dissolve(), 3, 8
wdpa_fetch, 10
wdpa_fetch(), 4, 8, 15, 16
wdpa_latest_version, 13
wdpa_read, 14
wdpa_read(), 12
wdpa_url, 15
wdpa_url(), 12
wdpar, 4
wdpar-package (wdpar), 4

17

	st_erase_overlaps
	st_repair_geometry
	wdpar
	wdpa_clean
	wdpa_dissolve
	wdpa_fetch
	wdpa_latest_version
	wdpa_read
	wdpa_url
	Index

