
Package: wdnet (via r-universe)
September 30, 2024

Title Weighted and Directed Networks

Version 1.2.3

Date 2024-03-03

Maintainer Yelie Yuan <yelie.yuan@uconn.edu>

Description Assortativity coefficients, centrality measures, and
clustering coefficients for weighted and directed networks.
Rewiring unweighted networks with given assortativity
coefficients. Generating general preferential attachment
networks.

Depends R (>= 4.1.0)

License GPL (>= 3.0)

Encoding UTF-8

Imports CVXR, igraph, Matrix, rARPACK, RcppXPtrUtils, stats, wdm

LinkingTo Rcpp, RcppArmadillo

BugReports https://gitlab.com/wdnetwork/wdnet/-/issues

URL https://gitlab.com/wdnetwork/wdnet

RoxygenNote 7.2.3

Suggests testthat (>= 3.0.0)

NeedsCompilation yes

Author Yelie Yuan [aut, cre], Tiandong Wang [aut], Jun Yan [aut],
Panpan Zhang [aut]

Repository CRAN

Date/Publication 2024-03-03 17:10:02 UTC

Contents
+.rpacontrol . 2
adj_to_wdnet . 3
assortcoef . 4

1

https://gitlab.com/wdnetwork/wdnet/-/issues
https://gitlab.com/wdnetwork/wdnet

2 +.rpacontrol

centrality . 5
clustcoef . 7
cvxr_control . 9
dprewire . 10
dprewire.range . 12
edgelist_to_wdnet . 13
igraph_to_wdnet . 14
is_wdnet . 15
plot.wdnet . 15
print.rpacontrol . 16
print.wdnet . 16
rpacontrol . 17
rpanet . 18
rpa_control_edgeweight . 20
rpa_control_newedge . 20
rpa_control_preference . 21
rpa_control_reciprocal . 24
rpa_control_scenario . 25
wdnet_to_igraph . 26

Index 27

+.rpacontrol Add components to the control list

Description

‘+‘ is used to combine components to control the PA network generation process. Available com-
ponents are rpa_control_scenario(), rpa_control_edgeweight(), rpa_control_newedge(),
rpa_control_preference() and rpa_control_reciprocal().

Usage

S3 method for class 'rpacontrol'
e1 + e2

Arguments

e1 A list of class rpacontrol.

e2 A list of class rpacontrol.

Value

A list of class rpacontrol with components from e1 and e2.

adj_to_wdnet 3

Examples

control <- rpa_control_scenario(alpha = 0.5, beta = 0.5) +
rpa_control_preference(
ftype = "customized",
spref = "pow(outs, 2) + 1",
tpref = "pow(ins, 2) + 1"

)

control <- rpa_control_scenario(alpha = 1) +
rpa_control_edgeweight(

sampler = function(n) rgamma(n, shape = 5, scale = 0.2)
)

adj_to_wdnet Creates a wdnet object using an adjacency matrix

Description

Creates a wdnet object using an adjacency matrix

Usage

adj_to_wdnet(adj, directed = TRUE, weighted = TRUE, nodegroup, ...)

Arguments

adj An adjacency matrix used to extract edgelist and edgeweight using igraph.

directed Logical, whether the network is directed (TRUE) or undirected (FALSE). If adj
is asymmetric, the network is directed.

weighted Logical, whether the network is weighted (TRUE) or unweighted (FALSE).

nodegroup A numeric vector of node groups.

... Additional components to be added to the wdnet object.

Value

A wdnet object with the specified adj.

Examples

adj <- matrix(c(0, 1, 2, 0), nrow = 2, ncol = 2, byrow = TRUE)
adj_to_wdnet(adj = adj, directed = TRUE, weighted = FALSE)

4 assortcoef

assortcoef Compute the assortativity coefficient(s) for a network.

Description

Compute the assortativity coefficient(s) for a network.

Usage

assortcoef(netwk, edgelist, edgeweight, adj, directed, f1, f2)

Arguments

netwk A wdnet object that represents the network. If NULL, the function will compute
the coefficient using either edgelist and edgeweight, or adj.

edgelist A two-column matrix representing edges.

edgeweight A numeric vector of edge weights with the same length as the number of rows
in edgelist. If NULL, all edges will be assigned weight 1.

adj The adjacency matrix of a network.

directed Logical. Indicates whether the edges in edgelist or adj are directed. It will be
omitted if netwk is provided.

f1 A vector representing the first feature of existing nodes. The number of nodes
should be equal to the length of both f1 and f2. Defined for directed networks.
If NULL, out-strength will be used.

f2 A vector representing the second feature of existing nodes. Defined for directed
networks. If NULL, in-strength will be used.

Value

Assortativity coefficient for undirected networks, or a list of four assortativity coefficients for di-
rected networks.

Note

When the adjacency matrix is binary (i.e., directed but unweighted networks), assortcoef returns
the assortativity coefficient proposed in Foster et al. (2010).

References

• Foster, J.G., Foster, D.V., Grassberger, P. and Paczuski, M. (2010). Edge direction and the
structure of networks. Proceedings of the National Academy of Sciences of the United States,
107(24), 10815–10820.

• Yuan, Y. Zhang, P. and Yan, J. (2021). Assortativity coefficients for weighted and directed
networks. Journal of Complex Networks, 9(2), cnab017.

centrality 5

Examples

set.seed(123)
control <- rpa_control_edgeweight(

sampler = function(n) rgamma(n, shape = 5, scale = 0.2)
)
netwk <- rpanet(nstep = 10^4, control = control)
ret <- assortcoef(netwk)
ret <- assortcoef(

edgelist = netwk$edgelist,
edgeweight = netwk$edge.attr$weight,
directed = TRUE

)

centrality Centrality measures

Description

Computes the centrality measures of the nodes in a weighted and directed network.

Usage

centrality(
netwk,
adj,
edgelist,
edgeweight,
directed = TRUE,
measure = c("degree", "closeness", "wpr"),
degree.control = list(alpha = 1, mode = "out"),
closeness.control = list(alpha = 1, mode = "out", method = "harmonic", distance =

FALSE),
wpr.control = list(gamma = 0.85, theta = 1, prior.info = NULL)

)

Arguments

netwk A wdnet object that represents the network. If NULL, the function will compute
the coefficient using either edgelist and edgeweight, or adj.

adj An adjacency matrix of a weighted and directed network.

edgelist A two-column matrix representing edges of a directed network.

edgeweight A vector representing the weight of edges.

directed Logical. Indicates whether the edges in edgelist or adj are directed.

measure Which measure to use: "degree" (degree-based centrality), "closeness" (close-
ness centrality), or "wpr" (weighted PageRank centrality)?

6 centrality

degree.control A list of parameters passed to the degree centrality measure:

• ‘alpha‘ A tuning parameter. The value of alpha must be nonnegative. By
convention, alpha takes a value from 0 to 1 (default).

• ‘mode‘ Which mode to compute: "out" (default) or "in"? For undirected
networks, this setting is irrelevant.

closeness.control

A list of parameters passed to the closeness centrality measure:

• ‘alpha‘ A tuning parameter. The value of alpha must be nonnegative. By
convention, alpha takes a value from 0 to 1 (default).

• ‘mode‘ Which mode to compute: "out" (default) or "in"? For undirected
networks, this setting is irrelevant.

• ‘method‘ Which method to use: "harmonic" (default) or "standard"?
• ‘distance‘ Whether to consider the entries in the adjacency matrix as dis-

tances or strong connections. The default setting is FALSE.

wpr.control A list of parameters passed to the weighted PageRank centrality measure:

• ‘gamma‘ The damping factor; it takes 0.85 (default) if not given.
• ‘theta‘ A tuning parameter leveraging node degree and strength; theta =

0 does not consider edge weight; theta = 1 (default) fully considers edge
weight.

• ‘prior.info‘ Vertex-specific prior information for restarting when arriving at
a sink. When it is not given (NULL), a random restart is implemented.

Value

A list of node names and associated centrality measures

Note

The degree-based centrality measure is an extension of function strength in package igraph and
an alternative of function degree_w in package tnet.

The closeness centrality measure is an extension of function closeness in package igraph and
function closeness_w in package tnet. The method of computing distances between vertices is
the Dijkstra’s algorithm.

The weighted PageRank centrality measure is an extension of function page_rank in package
igraph.

References

• Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische Math-
ematik, 1, 269–271.

• Newman, M.E.J. (2003). The structure and function of complex networks. SIAM review,
45(2), 167–256.

• Opsahl, T., Agneessens, F., Skvoretz, J. (2010). Node centrality in weighted networks: Gen-
eralizing degree and shortest paths. Social Networks, 32, 245–251.

clustcoef 7

• Zhang, P., Wang, T. and Yan, J. (2022) PageRank centrality and algorithms for weighted,
directed networks with applications to World Input-Output Tables. Physica A: Statistical Me-
chanics and its Applications, 586, 126438.

• Zhang, P., Zhao, J. and Yan, J. (2020+) Centrality measures of networks with application to
world input-output tables

Examples

Generate a network according to the Erd\"{o}s-Renyi model of order 20
and parameter p = 0.3
edge_ER <- rbinom(400, 1, 0.3)
weight_ER <- sapply(edge_ER, function(x) x * sample(3, 1))
adj_ER <- matrix(weight_ER, 20, 20)
mydegree <- centrality(

adj = adj_ER,
measure = "degree", degree.control =
list(alpha = 0.8, mode = "in")

)
myclose <- centrality(

adj = adj_ER,
measure = "closeness", closeness.control =
list(alpha = 0.8, mode = "out", method = "harmonic", distance = FALSE)

)
mywpr <- centrality(

adj = adj_ER,
measure = "wpr", wpr.control =
list(gamma = 0.85, theta = 0.75)

)

clustcoef Directed clustering coefficient

Description

Compute the clustering coefficient of a weighted and directed network.

Usage

clustcoef(
netwk,
edgelist,
edgeweight,
adj,
directed = TRUE,
method = c("Clemente", "Fagiolo"),
isolates = 0

)

8 clustcoef

Arguments

netwk A wdnet object that represents the network. If NULL, the function will compute
the coefficient using either edgelist, edgeweight, or adj.

edgelist A two-column matrix, each row represents a directed edge of the network.

edgeweight A vector representing the weight of edges.

adj An adjacency matrix of a weighted and directed network.

directed Logical. Indicates whether the edges in edgelist or adj are directed.

method Which method used to compute clustering coefficients: Clemente and Grassi
(2018) or Fagiolo (2007).

isolates Binary, defines how to treat vertices with degree zero and one. If 0, then their
clustering coefficient is returned as 0 and are included in the averaging. Oth-
erwise, their clustering coefficient is NaN and are excluded in the averaging.
Default value is 0.

Value

Lists of local clustering coefficients (in terms of a vector), global clustering coefficient (in terms of
a scalar) and number of weighted directed triangles (in terms of a vector) based on total, in, out,
middleman (middle), or cycle triplets.

Note

Self-loops (if exist) are removed prior to the computation of clustering coefficient. When the adja-
cency matrix is symmetric (i.e., undirected but possibly unweighted networks), clustcoef returns
local and global clustering coefficients proposed by Barrat et al. (2010).

References

• Barrat, A., Barthelemy, M., Pastor-Satorras, R. and Vespignani, A. (2004). The architecture
of complex weighted networks. Proceedings of National Academy of Sciences of the United
States of America, 101(11), 3747–3752.

• Clemente, G.P. and Grassi, R. (2018). Directed clustering in weighted networks: A new
perspective. Chaos, Solitons & Fractals, 107, 26–38.

• Fagiolo, G. (2007). Clustering in complex directed networks. Physical Review E, 76, 026107.

Examples

Generate a network according to the Erd\"{o}s-Renyi model of order 20
and parameter p = 0.3
edge_ER <- rbinom(400, 1, 0.3)
weight_ER <- sapply(edge_ER, function(x) x * sample(3, 1))
adj_ER <- matrix(weight_ER, 20, 20)
mycc <- clustcoef(adj = adj_ER, method = "Clemente")
system.time(mycc)

cvxr_control 9

cvxr_control Parameters passed to CVXR::solve().

Description

Defined for the convex optimization problems for solving eta.

Usage

cvxr_control(
solver = "ECOS",
ignore_dcp = FALSE,
warm_start = FALSE,
verbose = FALSE,
parallel = FALSE,
gp = FALSE,
feastol = 1e-05,
reltol = 1e-05,
abstol = 1e-05,
num_iter = NULL,
...

)

Arguments

solver (Optional) A string indicating the solver to use. Defaults to "ECOS".

ignore_dcp (Optional) A logical value indicating whether to override the DCP check for a
problem.

warm_start (Optional) A logical value indicating whether the previous solver result should
be used to warm start.

verbose (Optional) A logical value indicating whether to print additional solver output.

parallel (Optional) A logical value indicating whether to solve in parallel if the problem
is separable.

gp (Optional) A logical value indicating whether the problem is a geometric pro-
gram. Defaults to FALSE.

feastol The feasible tolerance on the primal and dual residual. Defaults to 1e-5.

reltol The relative tolerance on the duality gap. Defaults to 1e-5.

abstol The absolute tolerance on the duality gap. Defaults to 1e-5.

num_iter The maximum number of iterations.

... Additional options that will be passed to the specific solver. In general, these
options will override any default settings imposed by CVXR.

Value

A list containing the parameters.

10 dprewire

Examples

control <- cvxr_control(solver = "OSQP", abstol = 1e-5)

dprewire Degree preserving rewiring.

Description

Rewire a given network to have predetermined assortativity coefficient(s) while preserving node
degree.

Usage

dprewire(
netwk,
edgelist,
directed,
adj,
target.assortcoef = list(outout = NULL, outin = NULL, inout = NULL, inin = NULL),
control = list(iteration = 200, nattempts = NULL, history = FALSE, cvxr_control =

cvxr_control(), eta.obj = function(x) 0),
eta

)

Arguments

netwk A wdnet object representing an unweighted network. If NULL, the function will
construct a network using either edgelist, or adj.

edgelist A two column matrix, each row represents an edge of the network.

directed Logical, whether the network is directed or not. It will be ignored if netwk is
provided.

adj An adjacency matrix of an unweighted network.
target.assortcoef

For directed networks, it is a list represents the predetermined value or range of
assortativity coefficients. For undirected networks, it is a constant between -1 to
1. It will be ignored if eta is provided.

control A list of parameters for controlling the rewiring process and the process for
solving eta.

• ‘iteration‘ An integer, represents the number of rewiring iterations. Each
iteration consists of nattempts rewiring attempts. The assortativity coeffi-
cient(s) of the network will be recorded after each iteration.

• ‘nattempts‘ An integer representing the number of rewiring attempts for
each iteration. Default value equals the number of rows of edgelist.

• ‘history‘ Logical, whether the rewiring attempts should be recorded and
returned.

dprewire 11

• ‘eta.obj‘ A convex function of eta to be minimized when solving for eta
with given target.assortcoef. Defaults to 0. It will be ignored if eta is
provided.

• ‘cvxr_control‘ A list of parameters passed to CVXR::solve() for solving
eta with given target.assortcoef. It will be ignored if eta is provided.

eta A matrix represents the target network structure. If specified, target.assortcoef
will be ignored. For directed networks, the element at row "i-j" and column "k-l"
represents the proportion of directed edges linking a source node with out-degree
i and in-degree j to a target node with out-degree k and in-degree l. For undi-
rected networks, eta is symmetric, the summation of the elements at row "i",
column "j" and row "j", column "i" represents the proportion of edges linking to
a node with degree i and a node with degree j.

Details

The algorithm first solves for an appropriate eta using target.assortcoef, eta.obj, and cvxr_control,
then proceeds to the rewiring process and rewire the network towards the solved eta. If eta is given,
the algorithm will skip the first step. This function only works for unweighted networks.

Each rewiring attempt samples two rows from edgelist, for instance Edge 1:(v_1, v_2) and Edge
2:(v_3, v_4). For directed networks, if the rewiring attempt is accepted, the sampled edges are
rewired as (v_1, v_4), (v_3, v_2); for undirected networks, the algorithm try to rewire the sampled
edges as {v_1, v_4}, {v_3, v_2} (type 1) or {v_1, v_3}, {v_2, v_4} (type 2), each with probability
1/2.

Value

Rewired network; assortativity coefficient(s) after each iteration; rewiring history (including the
index of sampled edges and rewiring result) and solver results.

Examples

set.seed(123)
netwk1 <- rpanet(1e4, control = rpa_control_scenario(

alpha = 0.4, beta = 0.3, gamma = 0.3
))
rewire a directed network
target.assortcoef <- list("outout" = -0.2, "outin" = 0.2)
ret1 <- dprewire(

netwk = netwk1,
target.assortcoef = target.assortcoef,
control = list(iteration = 200)

)
plot(ret1$assortcoef$Iteration, ret1$assortcoef$"outout")
plot(ret1$assortcoef$Iteration, ret1$assortcoef$"outin")

rewire an undirected network
netwk2 <- rpanet(1e4,

control = rpa_control_scenario(
alpha = 0.3, beta = 0.1, gamma = 0.3, xi = 0.3

),

12 dprewire.range

initial.network = list(
directed = FALSE)

)
ret2 <- dprewire(

netwk = netwk2,
target.assortcoef = 0.3,
control = list(
iteration = 300, eta.obj = CVXR::norm2,
history = TRUE

)
)
plot(ret2$assortcoef$Iteration, ret2$assortcoef$Value)

dprewire.range Range of assortativity coefficients.

Description

The assortativity coefficient of a given network may not reach all the values between -1 and 1 via de-
gree preserving rewiring. This function calculates the range of assortativity coefficients achievable
through degree preserving rewiring. The algorithm is designed for unweighted networks.

Usage

dprewire.range(
netwk,
edgelist,
adj,
directed,
which.range = c("outout", "outin", "inout", "inin"),
control = cvxr_control(),
target.assortcoef = list(outout = NULL, outin = NULL, inout = NULL, inin = NULL)

)

Arguments

netwk A wdnet object representing an unweighted network. If NULL, the function will
construct a network using either edgelist or adj.

edgelist A two-column matrix, where each row represents an edge of the network.

adj An adjacency matrix of an unweighted network.

directed Logical, whether the network is directed or not. It will be ignored if netwk is
provided.

which.range The type of interested assortativity coefficient. For directed networks, it takes
one of the values: "outout", "outin", "inout" and "inin". It will be ignored if the
network is undirected.

edgelist_to_wdnet 13

control A list of parameters passed to CVXR::solve() for solving an appropriate eta,
given the constraints target.assortcoef.

target.assortcoef

A list of constraints, it contains the predetermined value or range imposed on as-
sortativity coefficients other than which.range. It will be ignored if the network
is undirected.

Details

The ranges are computed using convex optimization. The optimization problems are defined and
solved via the R package CVXR. For undirected networks, the function returns the range of the assor-
tativity coefficient. For directed networks, the function computes the range of which.range while
other assortativity coefficients are restricted through target.assortcoef.

Value

Returns the range of the selected assortativity coefficient and the results from the solver.

Examples

set.seed(123)
netwk <- rpanet(5e3,

control =
rpa_control_scenario(alpha = 0.5, beta = 0.5)

)
ret1 <- dprewire.range(

netwk = netwk, which.range = "outin",
target.assortcoef = list("outout" = c(-0.3, 0.3), "inout" = 0.1)

)
ret1$range

edgelist_to_wdnet Creates a wdnet object using edgelist.

Description

Creates a wdnet object using edgelist.

Usage

edgelist_to_wdnet(edgelist, edgeweight, directed, nodegroup, ...)

14 igraph_to_wdnet

Arguments

edgelist A two-column matrix representing the edges.
edgeweight A numeric vector of edge weights with the same length as the number of rows

in edgelist. If NULL, all edges will be assigned weight 1.
directed Logical, whether the network is directed (TRUE) or undirected (FALSE).
nodegroup A numeric vector of node groups.
... Additional components to be added to the wdnet object.

Value

A wdnet object with the specified edgelist, edgeweight and directed.

Examples

edgelist <- matrix(c(1, 2, 2, 3, 3, 1), ncol = 2, byrow = TRUE)
edgeweight <- c(1, 2, 3)
nodegroup <- c(1, 1, 2)
netwk <- edgelist_to_wdnet(

edgelist = edgelist,
edgeweight = edgeweight,
directed = TRUE,
nodegroup = nodegroup

)

igraph_to_wdnet Converts an igraph object to a wdnet object

Description

Converts an igraph object to a wdnet object

Usage

igraph_to_wdnet(g)

Arguments

g An igraph object.

Value

A wdnet object.

Examples

g <- igraph::sample_pa(50)
netwk <- igraph_to_wdnet(g)

is_wdnet 15

is_wdnet Checks if the input is a wdnet object

Description

Checks if the input is a wdnet object

Usage

is_wdnet(netwk)

Arguments

netwk A wdnet object.

Value

Logical, TRUE if argument netwk is a wdnet object.

Examples

netwk <- rpanet(nstep = 1e3)
is_wdnet(netwk)

plot.wdnet Plots the input network

Description

Plots the input network via igraph::plot.igraph().

Usage

S3 method for class 'wdnet'
plot(x, ...)

Arguments

x A wdnet object.

... Additional parameters passed to igraph::plot.igraph().

Value

Returns NULL, invisibly.

16 print.wdnet

print.rpacontrol Prints rpacontrol objects

Description

These functions print rpacontrol objects in the terminal. print.rpacontrol() shows only the
current controls, whereas summary.rpacontrol() includes both specified controls and the unspec-
ified controls that use default values.

Usage

S3 method for class 'rpacontrol'
print(x, ...)

S3 method for class 'rpacontrol'
summary(object, ...)

Arguments

x An object of class rpacontrol.
... Additional arguments.
object An object of class rpacontrol.

Value

Returns the controls invisibly.

Examples

control <- rpa_control_scenario()
print(control)

print.wdnet Prints the input network

Description

These functions print a network to the terminal.

Usage

S3 method for class 'wdnet'
print(x, node.attrs = TRUE, edge.attrs = TRUE, max.lines = 5, ...)

S3 method for class 'wdnet'
summary(object, ...)

rpacontrol 17

Arguments

x A wdnet object.

node.attrs Logical, whether to print node attributes, if available.

edge.attrs Logical, whether to print edge attributes, if available.

max.lines Integer, the maximum number of lines of edgelist and node attributes to print.
The rest of the output will be truncated.

... Additional arguments.

object The graph of which the summary will be printed.

Details

summary.wdnet prints the number of nodes and edges, preference functions, and whether the net-
work is directed, weighted. print.wdnet prints the same information, and also lists some edges
and node attributes, if available. Edge scenarios are 0: from initial network; 1: alpha; 2: beta; 3:
gamma; 4: xi; 5; rho; 6: reciprocal.

rpacontrol rpacontrol: Controls the Preferential Attachment (PA) Network Gen-
eration Process

Description

The rpacontrol object is designed to control the Preferential Attachment (PA) network generation
process within the rpanet() function. It can have the following components:

• scenario: controls the edge scenarios at each step. For more information, please refer to
rpa_control_scenario().

• edgeweight: controls the weight of the edges; see rpa_control_edgeweight() for details.

• newedge: controls the creation of new edges at each step; see rpa_control_newedge() for
details.

• preference: sets preference functions; see rpa_control_preference() for details.

• reciprocal: controls the creation of reciprocal edges; see rpa_control_reciprocal() for
details.

18 rpanet

rpanet Generate PA networks.

Description

Generate preferential attachment (PA) networks with linear or non-linear preference functions.

Usage

rpanet(
nstep,
initial.network = list(edgelist = matrix(c(1, 2), nrow = 1), edgeweight = 1, directed =

TRUE),
control,
method = c("binary", "linear", "bagx", "bag")

)

Arguments

nstep Number of steps.
initial.network

A wdnet object or a list representing the initial network. By default, initial.network
has one directed edge from node 1 to node 2 with weight 1. It can contain
the following components: a two-column matrix edgelist representing the
edges; a vector edgeweight representing the weight of edges; a logical argu-
ment directed indicating whether the initial network is directed. If edgeweight
is not specified, all edges from the initial network are assumed to have weight
1. In addition, an integer vector nodegroup can be added to the list for specif-
ing node groups; nodegroup is defined for directed networks, if NULL, all nodes
from the seed network are assumed to be in group 1.

control An rpacontrol object controlling the PA network generation process. If not
specified, all the control parameters will be set to default. For more details, see
rpa_control_scenario(), rpa_control_newedge(), rpa_control_edgeweight(),
rpa_control_preference and rpa_control_reciprocal(). Under the de-
fault setup, at each step, a new edge of weight 1 is added from a new node
A to an existing node B (alpha scenario), where B is chosen with probability
proportional to its in-strength + 1.

method Which method to use: binary, linear, bagx or bag. For bag and bagx meth-
ods, beta.loop must be TRUE, default preference functions must be used, and
sparams should be set to c(1, 1, 0, 0, a), tparams to c(0, 0, 1, 1, b), and
param to c(1, c), where a, b, and c are non-negative constants; furthermore,
reciprocal edges and sampling without replacement are not considered, i.e.,
option rpa_control_reciprocal() must be set as default, snode.replace,
tnode.replace and node.replace must be TRUE. In addition, bag method
only works for unweighted networks and does not consider multiple edges, i.e.,
rpa_control_edgeweight() and rpa_control_newedge() must be set as de-
fault.

rpanet 19

Value

Returns a wdnet object that includes the following components:

• directed: Logical, whether the network is directed.

• weighted: Logical, whether the network is weighted.

• edgelist: A two-column matrix representing the edges.

• edge.attr: A data frame including edge weights and edge scenarios (0: from initial network;
1: alpha; 2: beta; 3: gamma; 4: xi; 5; rho; 6: reciprocal edge).

• node.attr: A data frame including node out- and in-strength, node source and target pref-
erence scores (for directed networks), node strength and preference scores (for undirected
networks), and node group (if applicable).

• newedge: The number of new edges at each step, including reciprocal edges.

• control: An rpacontrol object that is used to generate the network.

Note

The binary method implements binary search algorithm; linear represents linear search algo-
rithm; bag method implements the algorithm from Wan et al. (2017); bagx puts all the edges into a
bag, then samples edges and find the source/target node of the sampled edge.

References

• Wan P, Wang T, Davis RA, Resnick SI (2017). Fitting the Linear Preferential Attachment
Model. Electronic Journal of Statistics, 11(2), 3738–3780.

Examples

Control edge scenario and edge weight through rpa_control_scenario()
and rpa_control_edgeweight(), respectively,
while keeping rpa_control_newedge(),
rpa_control_preference() and rpa_control_reciprocal() as default.
set.seed(123)
control <- rpa_control_scenario(alpha = 0.5, beta = 0.5) +

rpa_control_edgeweight(
sampler = function(n) rgamma(n, shape = 5, scale = 0.2)

)
ret1 <- rpanet(nstep = 1e3, control = control)

In addition, set node groups and probability of creating reciprocal edges.
control <- control + rpa_control_reciprocal(

group.prob = c(0.4, 0.6),
recip.prob = matrix(runif(4), ncol = 2)

)
ret2 <- rpanet(nstep = 1e3, control = control)

Further, set the number of new edges in each step as Poisson(2) + 1 and use
ret2 as a seed network.
control <- control + rpa_control_newedge(

sampler = function(n) rpois(n, lambda = 2) + 1

20 rpa_control_newedge

)
ret3 <- rpanet(nstep = 1e3, initial.network = ret2, control = control)

rpa_control_edgeweight

Control weight of new edges. Defined for rpanet.

Description

Control weight of new edges. Defined for rpanet.

Usage

rpa_control_edgeweight(sampler = NULL)

Arguments

sampler A function used for sampling edge weights. If NULL, all new edges will default
to a weight of 1. If a function is provided, it must accept a single argument, n,
and return a vector of length n that represents the sampled edge weights.

Value

A list of class rpacontrol containing the sampler function.

Examples

Sample edge weights from Gamma(5, 0.2).
my_gamma <- function(n) rgamma(n, shape = 5, scale = 0.2)
control <- rpa_control_edgeweight(

sampler = my_gamma
)

rpa_control_newedge Control new edges in each step. Defined for rpanet.

Description

Control new edges in each step. Defined for rpanet.

rpa_control_preference 21

Usage

rpa_control_newedge(
sampler = NULL,
snode.replace = TRUE,
tnode.replace = TRUE,
node.replace = TRUE

)

Arguments

sampler A function used for sampling the number of new edges to be added at each step.
If NULL, one new edge will be added at each step. If a function is provided, it
must accept a single argument, n, and return a vector of length n that represents
the sampled number of new edges.

snode.replace Logical. Determines whether the source nodes in the same step should be sam-
pled with replacement. Defined for directed networks.

tnode.replace Logical. Determines whether the target nodes in the same step should be sam-
pled with replacement. Defined for directed networks.

node.replace Logical. Determines whether the nodes in the same step should be sampled with
replacement. Defined for undirected networks. If FALSE, self-loops will not be
allowed under beta scenario.

Value

A list of class rpacontrol with components sampler, snode.replace, tnode.replace and node.replace
with meanings as explained under ’Arguments’.

Examples

my_rpois <- function(n) rpois(n, lambda = 2) + 1
control <- rpa_control_newedge(

sampler = my_rpois,
node.replace = FALSE

)

rpa_control_preference

Set preference function(s). Defined for rpanet.

Description

Set preference function(s). Defined for rpanet.

22 rpa_control_preference

Usage

rpa_control_preference(
ftype = c("default", "customized"),
sparams = c(1, 1, 0, 0, 1),
tparams = c(0, 0, 1, 1, 1),
params = c(1, 1),
spref = "outs + 1",
tpref = "ins + 1",
pref = "s + 1"

)

Arguments

ftype Preference function type. Either "default" or "customized". "customized" pref-
erence functions require "binary" or "linear" generation methods. If using de-
fault preference functions, sparams, tparams and params must be specified. If
using customized preference functions, spref, tpref and pref must be speci-
fied.

sparams A numerical vector of length 5 giving the parameters of the default source pref-
erence function. Defined for directed networks. Probability of choosing an exist-
ing node as the source node is proportional to sparams[1] * out-strength^sparams[2]
+ sparams[3] * in-strength^sparams[4] + sparams[5].

tparams A numerical vector of length 5 giving the parameters of the default target prefer-
ence function. Defined for directed networks. Probability of choosing an exist-
ing node as the target node is proportional to tparams[1] * out-strength^tparams[2]
+ tparams[3] * in-strength^tparams[4] + tparams[5].

params A numerical vector of length 2 giving the parameters of the default preference
function. Defined for undirected networks. Probability of choosing an existing
node is proportional to strength^params[1] + params[2].

spref Character expression or an object of class XPtr giving the customized source
preference function. Defined for directed networks. Default value is "outs +
1", i.e., node out-strength + 1. See Details and Examples for more information.

tpref Character expression or an object of class XPtr giving the customized target
preference function. Defined for directed networks. Default value is "ins + 1",
i.e., node in-strength + 1.

pref Character expression or an object of class XPtr giving the customized preference
function. Defined for undirected networks. Default value is "s + 1", i.e, node
strength + 1.

Details

If choosing customized preference functions, spref, tpref and pref will be used and the net-
work generation method must be "binary" or "linear". spref (tpref) defines the source (target)
preference function, it can be a character expression or an object of class XPtr.

• Character expression; it must be a one-line C++ style expression of outs (node out-strength)
and ins (node in-strength). For example, "pow(outs, 2) + 1", "pow(outs, 2) + pow(ins,

rpa_control_preference 23

2) + 1", etc. The expression will be used to define an XPtr via RcppXPtrUtils::cppXPtr.
The XPtr will be passed to the network generation function. The expression must not have
variables other than outs and ins.

• ‘XPtr‘ an external pointer wrapped in an object of class XPtr defined via RcppXPtrUtils::cppXPtr.
An example for defining an XPtr with C++ source code is included in Examples. For more
information about passing function pointers, see https://gallery.rcpp.org/articles/
passing-cpp-function-pointers-rcppxptrutils/. Please note the supplied C++ func-
tion accepts two double arguments and returns a double. The first and second arguments rep-
resent node out- and in-strength, respectively. Note that the XPtr will be invalid and cannot be
used to control network generation in another separate R session. Therefore, we recommend
preserving the source code of your preference function for future use.

pref is defined analogously. If using character expression, it must be a one-line C++ style expression
of s (node strength). If using XPtr, the supplied C++ function accepts only one double argument
and returns a double.

Value

A list of class rpacontrol with components ftype, sparams, tparams, params or ftype, spref,
tpref, pref with function pointers spref.pointer, tpref.pointer, pref.pointer.

Examples

Set source preference as out-strength^2 + in-strength + 1,
target preference as out-strength + in-strength^2 + 1.
1. use default preference functions
ctr1 <- rpa_control_preference(

ftype = "default",
sparams = c(1, 2, 1, 1, 1), tparams = c(1, 1, 1, 2, 1)

)
2. use character expressions
ctr2 <- rpa_control_preference(

ftype = "customized",
spref = "pow(outs, 2) + ins + 1", tpref = "outs + pow(ins, 2) + 1"

)
3. define XPtr's with C++ source code
spref.pointer <- RcppXPtrUtils::cppXPtr(

code =
"double spref(double outs, double ins) {return pow(outs, 2) + ins + 1;}"

)
tpref.pointer <- RcppXPtrUtils::cppXPtr(

code =
"double tpref(double outs, double ins) {return outs + pow(ins, 2) + 1;}"

)
ctr3 <- rpa_control_preference(

ftype = "customized",
spref = spref.pointer,
tpref = tpref.pointer

)
ret <- rpanet(1e5, control = ctr3)

https://gallery.rcpp.org/articles/passing-cpp-function-pointers-rcppxptrutils/
https://gallery.rcpp.org/articles/passing-cpp-function-pointers-rcppxptrutils/

24 rpa_control_reciprocal

rpa_control_reciprocal

Control reciprocal edges. Defined for rpanet.

Description

Control reciprocal edges. Defined for rpanet.

Usage

rpa_control_reciprocal(
group.prob = NULL,
recip.prob = NULL,
selfloop.recip = FALSE

)

Arguments

group.prob A vector of probability weights for sampling the group of new nodes. Defined
for directed networks. Groups are from 1 to length(group.prob). Its length
must equal to the number of rows of recip.prob.

recip.prob A square matrix giving the probability of adding a reciprocal edge after a new
edge is introduced. Defined for directed networks. Its element p_{ij} repre-
sents the probability of adding a reciprocal edge from node A, which belongs to
group i, to node B, which belongs to group j, immediately after a directed edge
from B to A is added.

selfloop.recip Logical, whether reciprocal edge of self-loops are allowed.

Value

A list of class rpacontrol with components group.prob, recip.prob, and selfloop.recip with
meanings as explained under ’Arguments’.

Examples

control <- rpa_control_reciprocal(
group.prob = c(0.4, 0.6),
recip.prob = matrix(runif(4), ncol = 2)

)

rpa_control_scenario 25

rpa_control_scenario Control edge scenarios. Defined for rpanet.

Description

Control edge scenarios. Defined for rpanet.

Usage

rpa_control_scenario(
alpha = 1,
beta = 0,
gamma = 0,
xi = 0,
rho = 0,
beta.loop = TRUE,
source.first = TRUE

)

Arguments

alpha Probability of adding an edge from a new node to an existing node.

beta Probability of adding an edge between existing nodes.

gamma Probability of adding an edge from an existing node to a new node.

xi Probability of adding an edge between two new nodes.

rho Probability of adding a new node with a self-loop.

beta.loop Logical. Determines whether self-loops are allowed under the beta scenario.
Default value is TRUE.

source.first Logical. Defined for beta scenario edges of directed networks. If TRUE, the
source node of a new edge is sampled from existing nodes before the target node
is sampled; if FALSE, the target node is sampled from existing nodes before the
source node is sampled. Default value is TRUE.

Value

A list of class rpacontrol with components alpha, beta, gamma, xi, rho, beta.loop and source.first
with meanings as explained under ’Arguments’.

Examples

control <- rpa_control_scenario(alpha = 0.5, beta = 0.5, beta.loop = FALSE)

26 wdnet_to_igraph

wdnet_to_igraph Converts a wdnet object to an igraph object

Description

Converts a wdnet object to an igraph object

Usage

wdnet_to_igraph(netwk)

Arguments

netwk A wdnet object.

Value

An igraph object.

Examples

netwk <- rpanet(nstep = 1e3)
g <- wdnet_to_igraph(netwk)

Index

+.rpacontrol, 2

adj_to_wdnet, 3
assortcoef, 4

centrality, 5
clustcoef, 7
cvxr_control, 9

dprewire, 10
dprewire.range, 12

edgelist_to_wdnet, 13

igraph_to_wdnet, 14
is_wdnet, 15

plot.wdnet, 15
print.rpacontrol, 16
print.wdnet, 16

rpa_control_edgeweight, 20
rpa_control_newedge, 20
rpa_control_preference, 21
rpa_control_reciprocal, 24
rpa_control_scenario, 25
rpacontrol, 17
rpanet, 18

summary.rpacontrol (print.rpacontrol),
16

summary.wdnet (print.wdnet), 16

wdnet_to_igraph, 26

27

	+.rpacontrol
	adj_to_wdnet
	assortcoef
	centrality
	clustcoef
	cvxr_control
	dprewire
	dprewire.range
	edgelist_to_wdnet
	igraph_to_wdnet
	is_wdnet
	plot.wdnet
	print.rpacontrol
	print.wdnet
	rpacontrol
	rpanet
	rpa_control_edgeweight
	rpa_control_newedge
	rpa_control_preference
	rpa_control_reciprocal
	rpa_control_scenario
	wdnet_to_igraph
	Index

