Package: uwedragon (via r-universe)

August 24, 2024

Type Pa	ckage
	ata Research, Access, Governance Network : Statistical sclosure Control
Version	0.1.0
Author	Ben Derrick
Maintair	ner Ben Derrick <ben.derrick@uwe.ac.uk></ben.derrick@uwe.ac.uk>
_	cion A tool for checking how much information is disclosed when corting summary statistics.
License	GPL-3
Encodin	g UTF-8
Roxygen	Note 7.1.2.9000
Imports	gtools
NeedsCo	ompilation no
Reposito	ory CRAN
Date/Pu	blication 2022-03-02 19:40:01 UTC
Conte	ents
	disguise
Index	
disgu	ise Disguise the sample mean and sample deviation

Description

Disguises the sample mean and standard deviation via a choice of methods.

2 disguise

Usage

```
disguise(usersample, method = 2)
```

Arguments

usersample A vector of all individual sample values.

method Approach for disguising mean and standard deviation. (default = 1)

Details

Method 1

Randomly split the sample into two (approx. equal size) samples A, and B. For sample A calculate and report mean. For sample B calculate and standard deviation.

```
*Method 2* (default)
```

Take a sample of size N with replacement; calculate and report mean. Repeat to calculate and report standard deviation.

```
*Method 3*
```

Generate a random number (RN1) between N/2 and N. Sample with replacement a sample size of RN1; calculate and report mean. Generate a random number (RN2) between N/2 and N. Sample with replacement a sample size of RN2; calculate and report standard deviation.

Method 4

As Method 3, but sampling without replacement.

Value

Outputs disguised mean and disguised standard deviation.

References

Derrick, B., Green, L., Kember, K., Ritchie, F. & White P, 2022, Safety in numbers: Minimum thresholding, Maximum bounds, and Little White Lies. Scottish Economic Society Annual Conference, University of Glasgow, 25th-27th April 2022

Examples

```
usersample<-c(1,1,2,3,4,4,5)
disguise(usersample,method=1)
disguise(usersample,method=2)
disguise(usersample,method=3)
disguise(usersample,method=4)</pre>
```

SDCdragon 3

|--|

Description

A tool for checking how much information is disclosed when reporting summary statistics

solutions	Find individual sample values from the sample mean and standard deviation

Description

For integer based scales, finds possible solutions for each value within a sample. This is revealed upon providing sample size, minimum possible value, maximum possible value, mean, standard deviation (and optionally median).

Usage

```
solutions(
   n,
   min_poss,
   max_poss,
   usermean,
   usersd,
   meandp = NULL,
   sddp = NULL,
   usermed = NULL)
```

Arguments

n	Sample size.
min_poss	Minimum possible value. If sample minimum is disclosed, this can be inserted here, otherwise use the theoretical minimum. If there is no theoretical maximum 'Inf' can be inserted.
max_poss	Maximum possible value. If sample maximum is disclosed, this can be inserted here, otherwise use the theoretical maximum. If there is no theoretical minimum '-Inf' can be inserted.
usermean	Sample mean.
usersd	Sample standard deviation, i.e. n-1 denominator.
meandp	(optional, default=NULL) Number of decimal places mean is reported to, only required if including trailing zeroes.

4 solutions

sddp (optional, default=NULL) Number of decimal places standard deviation is re-

ported to, only required if including trailing zeroes.

usermed (optional, default=NULL) Sample median.

Details

For use with data measured on a scale with 1 unit increments. Samuelson's inequality [1] used to further restrict the minimum and maximum. All possible combinations within this inequality are calculated [2] for factorial(n+k-1)/(factorial(k)*factorial(n-1))<65,000,000.

No restriction on number of decimal places input. Reporting less than two decimal places will reduce the chances of unique solution to all sample values being uncovered [3]

Additional options to specify number of digits following the decimal place that are reported, required for trailing zeroes.

Value

Outputs possible combinations of original integer sample values.

References

- [1] Samuelson, P.A, 1968, How deviant can you be? Journal of the American Statistical Association, Vol 63, 1522-1525.
- [2] Allenby, R.B. and Slomson, A., 2010. How to count: An introduction to combinatorics. Chapman and Hall/CRC.
- [3] Derrick, B., Green, L., Kember, K., Ritchie, F. & White P, 2022, Safety in numbers: Minimum thresholding, Maximum bounds, and Little White Lies. Scottish Economic Society Annual Conference, University of Glasgow, 25th-27th April 2022

Examples

solutions 5

```
# The mean is '4.00'.
# The standard deviation is '2.00'.
# Narrower set of solutions found specifying 2dp including trailing zeroes.
solutions(3,-Inf,Inf,4.00,2.00,2,2)
# uniquely reveals the raw sample values:
# 2 4 6
```

Index

 ${\tt disguise}, \\ 1$

 $\begin{array}{c} \text{SDCdragon, 3} \\ \text{solutions, 3} \end{array}$