Package 'uskewFactors'

Title: Model-Based Clustering via Mixtures of Unrestricted Skew-t Sactor Analyzer Models
Description: Implements mixtures of unrestricted skew-t factor analyzer models via the EM algorithm.
Authors: Paula M. Murray, Ryan P. Browne, and Paul D. McNicholas
Maintainer: Paula M. Murray <[email protected]>
License: GPL (>= 2)
Version: 2.0
Built: 2024-11-28 06:34:10 UTC
Source: CRAN

Help Index


The Swiss Banknote Data

Description

This package contains measurements on 200 Swiss banknotes: 100 genuine and 100 counterfeit. The variables are length of bill, width of left edge, width of right edge , bottom margin width and top margin width. All measurements are in millimetres. The data source is noted below. This data is also available in the alr package in R.

Usage

data(banknote)

References

Flury, B. and Riedwyl, H. (1988). Multivariate Statistics: A practical approach. London: Chapman and Hall.

Examples

data(banknote) # Loads the brown bread data set
head(banknote) # Displays the first six rows of the brown bread data set

Mixtures of 'Unrestricted' Skew-t Factor Analyzers via the EM algorithm

Description

Fits a mixture of 'unrestricted' skew-t factor analyzers via the EM algorithm for estimation of model parameters

Usage

uskewFA(x, G, q, init=1, max.it=100)

Arguments

x

A numeric matrix.

G

The number of mixture components to fit.

q

The number of latent factors.

init

This number controls the starting values that are used: (1) k-means, or (2) random.

max.it

The maximum number of iterations of the EM algorithm.

Value

map

A vector of the maximum a posteriori group memberships.

bic

The value of the Bayesian Information Criterion.

zhat

The matrix of estimated probabilities of group membership.

likelihood

A vector containing the value of the complete-data log-likelihood computed at each iteration of the EM algorithm.

Note

This package contains measurements on 200 Swiss banknotes: 100 genuine and 100 counterfeit. The variables are length of bill, width of left edge, width of right edge , bottom margin width and top margin width. All measurements are in millimetres. The data source is noted below.

Author(s)

Paula M. Murray, Ryan P. Browne, and Paul D. McNicholas

Maintainer: Paula M. Murray <[email protected]>

References

Murray, P.M., Browne, R.P., and McNicholas, P.D. (2014), "Mixtures of 'Unrestricted' Skew-t Factor Analyzers". Arxiv preprint arXiv:1310.6224

See Also

Flury, B. and Riedwyl, H. (1988). Multivariate Statistics: A practical approach. London: Chapman and Hall.

Examples

data("banknote")
x=banknote[,c(5,6)]
# We let max.it=3 for a speedy illustration.
# More 	iterations are needed to ensure
# convergence.
results=uskewFA(x,G=2,q=1,max.it=3)
results

Model-Based Clustering via Mixtures of 'Unrestricted' Skew-t Factor Analyzers

Description

Contains the function uskewFA for fitting mixtures of 'unrestricted' skew-t factor analyzer models

Details

Package: uskewFactors
Type: Package
Version: 2.0
Date: 2016-05-20
License: WGPL (>=2)

Author(s)

Paula M. Murray, Ryan P. Browne, and Paul D. McNicholas

Maintainer: Paula M. Murray <[email protected]>

References

Murray, P.M., Browne, R.P., and McNicholas, P.D. (2014), "Mixtures of 'Unrestricted' Skew-t Factor Analyzers". Arxiv preprint arXiv:1310.6224

See Also

Details, references, and examples are given under uskewFA.