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Abstract

We describe the R package uGMAR, which provides tools for estimating and analyzing
the Gaussian mixture autoregressive model, the Student’s t mixture autoregressive model,
and the Gaussian and Student’s t mixture autoregressive model. These three models consti-
tute an appealing family of mixture autoregressive models that we call the GSMAR models.
The model parameters are estimated with the method of maximum likelihood by running
multiple rounds of a two-phase estimation procedure in which a genetic algorithm is used
to find starting values for a gradient based method. For evaluating the adequacy of the
estimated models, uGMAR utilizes so-called quantile residuals and provides functions for
graphical diagnostics as well as for calculating formal diagnostic tests. uGMAR also facili-
tates simulation from the GSMAR processes and forecasting future values of the process by
a simulation-based Monte Carlo method. We illustrate the use of uGMAR with the monthly
U.S. interest rate spread between the 10-year and 1-year Treasury rates.

Keywords: mixture autoregressive model, regime-switching, Gaussian mixture, Student’s t mix-
ture.
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1. Introduction

A popular method for modeling univariate time series is to employ a linear autoregressive
(AR) model that assumes the process to be generated by a weighted sum of the preceding p
observations, an intercept term, and a random error. The error process is often assumed to
be serially uncorrelated with zero mean and constant variance. This encompasses conditionally
homoskedastic processes, such as independent and identically distributed (IID) processes, as well
as conditionally heteroskedastic processes, such as autoregressive conditional heteroskedasticity
(ARCH) processes (Engle 1982) and generalized autoregressive conditional heteroskedasticity
(GARCH) processes (Bollerslev 1986).
Several R packages accommodate linear AR modeling with various types of error processes.
The R package forecast (Hyndman, Athanasopoulos, Bergmeir, Caceres, Chhay, O’Hara-Wild,
Petropoulos, Razbash, Wang, and Yasmeen 2021), for instance, accommodates estimation of
AR models with seasonal components. The R package fGarch (Wuertz, Setz, Chalabi, Boudt,
Chausse, and Miklovac 2020), on the other hand, facilitates estimation of AR models with
ARCH and GARCH errors following various distributions, including normal, Student’s t-, and
generalized error distributions and their skewed versions. A more comprehensive set of error
processes are provided in the popular R package rugarch (Ghalanos 2020). It accommodates
a rich set of different GARCH processes with several error distributions, including the regular
and skewed versions of normal, t-, and generalized error distributions, as well as generalized
hyperbolic normal and inverse Gaussian distributions, to name a few.
A linear AR model with potentially skewed GARCH errors can often filter the autocorrelation
and conditional heteroskedasticity from the series very well. But in some cases, it cannot
adequately capture all the relevant characteristics of the series, including shifts in the mean
or volatility, and changes in the dynamics of the process. Such nonlinear features frequently
occur in economic time series when the underlying data generating dynamics vary in time, for
example, depending on the specific state of the economy.
Various types of time series models capable of capturing such regime-switching behavior have
been proposed, one of them being the class of mixture models introduced by Le, Martin, and
Raftery (1996) and further developed by, among others, Wong and Li (2000, 2001b,a), Glasbey
(2001), Lanne and Saikkonen (2003), Kalliovirta, Meitz, and Saikkonen (2015), Meitz, Preve,
and Saikkonen (2023), and Virolainen (2022). Following the recent developments by Kalliovirta
et al. (2015), Meitz et al. (2023), and Virolainen (2022), we consider the Gaussian mixture
autoregressive (GMAR) model, the Student’s t mixture autoregressive (StMAR) model, and
the Gaussian and Student’s t mixture autoregressive (G-StMAR) model. These three mod-
els constitute an appealing family of mixture autoregressive models that we call the GSMAR
models.
A GSMAR process generates each observation from one of its mixture components, which are ei-
ther conditionally homoskedastic linear Gaussian autoregressions or conditionally heteroskedas-
tic linear Student’s t autoregressions. The mixture component that generates each observation
is randomly selected according to the probabilities determined by the mixing weights that, for a
pth order model, depend on the full distribution of the previous p observations. Consequently,
the regime-switching probabilities may depend on the level, variability, kurtosis, and tempo-
ral dependence of the past observations. The specific formulation of the mixing weights also
leads to attractive theoretical properties such as ergodicity and full knowledge of the stationary
distribution of p + 1 consecutive observations.
This paper describes the R package uGMAR providing a comprehensive set of easy-to-use
tools for GSMAR modeling, including unconstrained and constrained maximum likelihood (ML)
estimation of the model parameters, quantile residual based model diagnostics, simulation from
the processes, and forecasting. The emphasis is on estimation, as it can, in our experience,
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be rather tricky. In particular, due to the endogenously determined mixing weights, the log-
likelihood function has a large number of modes, and in large areas of the parameter space,
the log-likelihood function is flat in multiple directions. The log-likelihood function’s global
maximum point is also frequently located very near the boundary of the parameter space. It
turns out, however, that such near-the-boundary estimates often maximize the log-likelihood
function for rather a technical reason, and it might be more appropriate to prefer an alternative
estimate based on the largest local maximum point that is clearly in the interior of the parameter
space.

The model parameters are estimated by running multiple rounds of a two-phase estimation
procedure in which a modified genetic algorithm is used to find starting values for a gradient
based variable metric algorithm. Because of the multimodality of the log-likelihood function,
some of the estimation rounds may end up in different local maximum points, thereby enabling
the researcher to build models not only based on the global maximum point but also on the local
ones. The estimated models can be conveniently examined with the summary and plot methods.
For evaluating their adequacy, uGMAR utilizes quantile residual diagnostics in the framework
presented in Kalliovirta (2012), including graphical diagnostics as well as Kalliovirta’s (2012)
diagnostic tests that take into account uncertainty about the true parameter value. Following
Kalliovirta et al. (2015) and Meitz et al. (2023), forecasting is based on a Monte Carlo simulation
method.

Other statistical software implementing the GSMAR models include the StMAR Toolbox for
MATLAB (Meitz, Preve, and Saikkonen 2018). It currently (version 1.0.0) covers the StMAR
model of autoregressive orders p = 1, 2, 3, 4 and M = 1, 2, 3 mixture components, and it contains
tools for maximum likelihood estimation, calculation of quantile residuals, simulation, and fore-
casting. Also the StMAR Toolbox estimates the model parameters by using a genetic algorithm
to find starting values for a gradient based method, but uGMAR takes the procedure of Meitz
et al. (2018, 2023) further by modifying a genetic algorithm for more efficient estimation. uG-
MAR also has the advantage that it does not impose restrictions on the order of the model and
it provides a wider variety of tools for analyzing the estimated models; for instance, functions
for calculating quantile residual diagnostic tests (Kalliovirta 2012) and plotting the graphs of
the profile log-likelihood functions about the estimate.

The R package gmvarkit (Virolainen 2024) functions similarly to uGMAR and accommodates
multivariate versions of the GSMAR models, including structural models with statistically iden-
tified shocks. These models include the (structural) Gaussian mixture vector autoregressive
model (Kalliovirta, Meitz, and Saikkonen 2016; Virolainen 2021b), the (structural) Student’s
t mixture vector autoregressive model (Virolainen 2021a), and the (structural) Gaussian and
Student’s t mixture vector autoregressive model (Virolainen 2021a). The R package mixAR
(Boshnakov and Ravagli 2021), in turn, allows frequentist and Bayesian estimation of mixture
(vector) autoregressive models with constant mixing weights (e.g., Wong and Li 2000; Fong, Li,
Yau, and Wong 2007) and various error distributions.

The remainder of this paper is organized as follows. Section 2 introduces the GSMAR models
and discusses some of their properties. Section 3 discusses estimation of the model parameters
and model selection. It also illustrates how the GSMAR models can be estimated and exam-
ined with uGMAR, and how parameter constraints can be tested. In Section 4, we describe
quantile residuals and demonstrate how they can be utilized to evaluate model adequacy in
uGMAR. Section 5 shows how the GSMAR models can be built with given parameter values.
In Section 6, we first show how to simulate observations from a GSMAR process, and then we
illustrate how to forecast future values of a GSMAR process with a simulation-based Monte
Carlo method. Section 7 concludes, and some useful functions in uGMAR are collected to a
single table in Section 7. Appendix A explains why some maximum likelihood estimates, that
are very near the boundary of the parameter space, might be inappropriate and demonstrates
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that a local maximum point that is clearly in the interior of the parameter space can often be a
more reasonable estimate. Finally, Appendix B derives closed form expressions for the quantile
residuals of the GSMAR models.
Throughout this paper, we use the monthly U.S. interest rate spread between the 10-year and
1-year Treasury rates for the empirical illustrations. We deploy the notation nd(µ, Γ) for the
d-dimensional normal distribution with mean µ and (positive definite) covariance matrix Γ,
and td(µ, Γ, ν) for the d-dimensional t-distribution with mean µ, (positive definite) covariance
matrix Γ, and ν > 2 degrees of freedom. The corresponding density functions are denoted as
nd(·;µ, Γ) and td(·;µ, Γ, ν), respectively. By 1p = (1, ..., 1) (p × 1), we denote p-dimensional
vector of ones.

2. Models
This section introduces the GMAR model (Kalliovirta et al. 2015), the StMAR model (Meitz
et al. 2023), and the G-StMAR model (Virolainen 2022), a family of mixture autoregressive
models that we call the GSMAR models. First, we consider the models in a general framework
and then proceed to their specific definitions. For brevity, we only give the definition of the
more general G-StMAR model but explain how the GMAR and StMAR models are obtained
as special cases of it, namely, by taking all the component models to be of either Gaussian or
Student’s t type.

2.1. Mixture autoregressive models

Let yt, t = 1, 2, ..., be the real valued time series of interest, and let Ft−1 denote the σ-algebra
generated by the random variables {yt−j , j > 0}. For a GSMAR model with autoregressive
order p and M mixture components, we have

yt =
M∑

m=1
sm,t(µm,t + σm,tεm,t), εm,t ∼ IID(0, 1), (1)

µm,t = φm,0 +
p∑

i=1
φm,iyt−i, m = 1, ..., M, (2)

where σm,t > 0 are Ft−1-measurable, εm,t are independent of Ft−1, φm,0 ∈ R, and s1,t, ..., sM,t

are unobservable regime variables such that for each t, exactly one of them takes the value
one and the others take the value zero. Given the past of yt, sm,t and εm,t are assumed to be
conditionally independent, and the conditional probability for an observation to be generated
from the mth regime at time t is expressed in terms of (Ft−1-measurable) mixing weights
αm,t ≡ P (sm,t = 1| Ft−1) that satisfy

∑M
m=1 αm,t = 1. Furthermore, we assume that for each

component model, the autoregressive parameters satisfy the usual stationarity condition, 1 −∑p
i=1 φm,iz

i ̸= 0 for |z| ≤ 1, which guarantees stationarity of the GSMAR models (Virolainen
2022, Theorem 1).
The definition (1) and (2) implies that at each t, the observation is generated by a linear au-
toregression corresponding to some randomly selected (unobserved) mixture component m, and
that µm,t and σ2

m,t can be interpreted as the conditional mean and variance of this component
process. In the GMAR model (Kalliovirta et al. 2015), the mixture components are condi-
tionally homoskedastic Gaussian autoregressions, whereas in the StMAR model (Meitz et al.
2023), they are conditionally heteroskedastic Students t autoregressions, while the G-StMAR
model (Virolainen 2022) combines both types of mixture components. The mixing weights are
functions of the preceding p observations.
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2.2. The Gaussian and Student’s t mixture autoregressive model

In the G-StMAR model, for m = 1, ..., M1 in (1), the terms εm,t have standard normal distri-
butions and the conditional variances σ2

m,t are constants σ2
m. For m = M1 + 1, ..., M , the terms

εm,t follow the t-distribution t1(0, 1, νm + p) and the conditional variances σ2
m,t are defined as

σ2
m,t =

νm − 2 + (yt−1 − µm1p)′Γ−1
m (yt−1 − µm1p)

νm − 2 + p
σ2

m, (3)

where yt−1 = (yt−1, ..., yt−p) (p × 1), νm > 2 is a degrees of freedom parameter, σ2
m > 0 is a

variance parameter, µm = φ0/(1−
∑p

i=1 φm,i) is the stationary mean, and Γm is the stationary
(p × p) covariance matrix of the mth component process (see Virolainen 2022, Section 2.1).
This specification leads to a model in which the conditional density function of yt given its past,
f (·| Ft−1), is

f (yt|Ft−1) =
M1∑

m=1
αm,tn1(yt; µm,t, σ2

m) +
M∑

m=M1+1
αm,tt1

(
yt; µm,t, σ2

m,t, νm + p
)

. (4)

That is, the first M1 component processes of the G-StMAR model are homoskedastic Gaussian
autoregressions, and the remaining M2 ≡ M − M1 component processes are heteroskedastic
Student’s t autoregressions.
In the GMAR model (Kalliovirta et al. 2015), all M component processes are Gaussian autore-
gressions, so its conditional density function is obtained by setting M1 = M and dropping the
second sum in (4). In the StMAR model (Meitz et al. 2023), all M component processes are
Student’s t autoregressions, so its conditional density function is obtained by setting M1 = 0
and dropping the first sum in (4). As the component processes of the G-StMAR model coincide
with those of the GMAR model and the StMAR model, we often refer to them as GMAR type
or StMAR type, accordingly.
In order to specify the mixing weights, we first define the following function for notational
convenience. Let

dm(y; µm1p, Γm, νm) =
{

np(y; µm1p, Γm), when m ≤ M1,
tp(y; µm1p, Γm, νm), when m > M1,

(5)

where the p-dimensional densities np(y; µm1p, Γm) and tp(y; µm1p, Γm, νm) correspond to the
stationary distribution of the mth component process (given, for example, in Virolainen 2022,
Equations (2.3) and (2.8)). The mixing weights of the G-StMAR model are defined as

αm,t =
αmdm(yt−1; µm1p, Γm, νm)∑M
n=1 αndn(yt−1; µn1p, Γn, νn)

, (6)

where the parameters α1, ..., αM satisfy
∑M

m=1 αm = 1. The mixing weights of the GMAR model
are obtained from (5) and (6) by setting M1 = M , whereas the mixing weights of the StMAR
model are obtained by setting M1 = 0.
Because the mixing weights are weighted stationary densities corresponding to the previous p
observations, an observation is more likely to be generated from the regime with higher relative
weighted likelihood. Moreover, as the mixing weights depend on the full distribution of the
previous p observations, the regime-switching probabilities may depend on the level, variability,
kurtosis, and temporal dependence of the past observations. This is a convenient property for
forecasting, and it also enables the researcher to associate specific characteristics to different
regimes.
The specific formulation of the mixing weights also leads to attractive theoretical properties.
Specifically, the G-StMAR process yt = (yt, ..., yt−p+1) (p×1), t = 1, 2, ..., is ergodic, and it has
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fully known marginal stationary distribution that is characterized by the density (Virolainen
2022, Theorem 1; see the proof of Theorem 1 for the stationary distribution of 1, ..., p + 1
consecutive observations)

f(y) =
M1∑

m=1
αmnp(y; µm1p, Γm) +

M2∑
m=M1+1

αmtp(y; µm1p, Γm, νm). (7)

That is, the stationary distribution is a mixture of M1 p-dimensional Gaussian distributions and
M2 p-dimensional Student’s t-distributions with constant mixing weights αm, m = 1, ..., M . For
h = 0, ..., p, the marginal stationary distribution of (yt, ..., yt−h) is also a mixture of Gaussian and
Student’s t distributions with constant mixing weights αm, so the mixing weights parameters
αm can be interpreted as the unconditional probabilities of an observation being generated from
the mth component process.
In uGMAR, the parameters of the GSMAR models are collected to a (M(p + 3) + M2 − 1 × 1)
vector θ ≡ (ϑ1, ...,ϑM , α1, ..., αM−1,ν), where ϑm = (φm,0,φm, σ2

m), φm = (φm,1, ..., φm,p),
m = 1, ..., M , and ν = (νM1+1, ..., νM ). The parameter αM is omitted because it is obtained
from the restriction

∑M
m=1 αm = 1, and in the GMAR model, the vector ν is omitted, as the

model does not contain degrees of freedom parameters. The knowledge of the parameter vector
is particularly required for building models with given parameter values, which is discussed in
Section 5.

3. Estimation and model selection

3.1. Log-likelihood function

uGMAR employs the method of maximum likelihood (ML) for estimating the parameters of
the GSMAR models. Suppose the observed time series is y−p+1, ..., y0, y1, ..., yT and that the
initial values are stationary. Then, the log-likelihood function of the G-StMAR model takes the
form

L(θ) = log

 M1∑
m=1

αmnp(y0; µm1p, Γm) +
M∑

m=M1+1
αmtp(y0; µm1p, Γm, νm)

 +
T∑

t=1
lt(θ), (8)

where

lt(θ) = log

 M1∑
m=1

αm,tn1(yt; µm,t, σ2
m) +

M∑
m=M1+1

αm,tt1
(
yt; µm,t, σ2

m,t, νm + p
) , (9)

and the density functions nd(·; ·) and td (·; ·) follow the notation described in Section 2.2. Log-
likelihood functions of the GMAR model and the StMAR model can be obtained as special
cases by setting M1 = M or M1 = 0, respectively, and dropping the redundant sums.
If stationarity of the initial values seems unreasonable, one can condition on the initial values
by dropping the first term on the right hand side of (8) and base the estimation on the resulting
conditional log-likelihood function. The ML estimator of a stationary GSMAR model is strongly
consistent and has the conventional limiting distribution under the conventional high level
conditions as is given in Kalliovirta et al. (2015, pp.254-255), Meitz et al. (2023, Theorem 3),
and Virolainen (2022, Theorem 2).

3.2. Two-phase estimation procedure
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Finding the ML estimate amounts to maximizing the log-likelihood function (8) over a high
dimensional parameter space satisfying several constraints. Due to the complexity of the log-
likelihood function, finding an analytical solution is infeasible, so numerical optimization meth-
ods are required. Following Dorsey and Mayer (1995) and Meitz et al. (2023, 2018), uGMAR
employs a two-phase estimation procedure in which a genetic algorithm is used to find starting
values for a gradient based method, which then accurately converges to a nearby local maximum
or saddle point. Because of the presence of multiple local maxima, a (sometimes large) number
of estimation rounds should be performed to obtain reliable results, for which uGMAR makes
use of parallel computing to shorten the estimation time.
The genetic algorithm in uGMAR is, at core, mostly based on the description by Dorsey and
Mayer (1995) but several modifications have been deployed to improve its performance. The
modifications include the ones proposed by Patnaik and Srinivas (1994) and Smith, Dike, and
Stegmann (1995) as well as further adjustments that take into account model specific issues
related to the mixing weights’ dependence on the preceding observations. For a more detailed
description of the genetic algorithm and its modifications, see Virolainen (2022, Appendix A).
After running the genetic algorithm, the estimation is finalized with a variable metric algo-
rithm (Nash 1990, algorithm 21, implemented by R Core Team 2021) using central difference
approximation for the gradient of the log-likelihood function.

3.3. Model selection

Before illustrating with examples how the GSMAR models can be estimated with uGMAR, it
is helpful to first briefly discuss the problem of model selection. Finding a suitable GSMAR
model involves several selections: one needs to choose the type of the model (GMAR, StMAR,
or G-StMAR), the autoregressive order p, and the number of mixture components M (in the G-
StMAR model, the number of GMAR type regimes M1 and the number of StMAR type regimes
M2). Following Kalliovirta et al. (2015, Section 3.1), we suggest starting the model selection by
first considering linear AR models, and then building up to the more complex regime-switching
models if the linear models are found inadequate. After finding a suitable GSMAR model,
simplifications obtained by parameter restrictions can be considered (constrained estimation
is discussed in Section 3.6, testing the constraints in Section 3.7, and diagnostics checks for
evaluating the adequacy of the model in Section 4).
When selecting the type of the GSMAR model, it is useful to take into account the features
of the different types of models. The GMAR model incorporates linear Gaussian AR processes
as its mixture components and can flexibly model changes in the conditional mean. But as its
component processes are conditionally homoskedastic, it can capture changes in the conditional
variance only through the regime-switching dynamics. The StMAR model, on the other hand,
incorporates ARCH type conditional heteroskedasticity within each regime with the conditional
variance (3), and can thereby account for stronger forms of conditional heteroskedasticity. In
the StMAR model, the autoregressive order p is also the lag order of the ARCH type conditional
variance. The conditional variance depends on the past observations through the same param-
eters as the conditional mean (2), which can be restrictive when the regime-specific conditional
mean is strong but conditional variance is weak1 (or vice versa). It may therefore be worthwhile
to first try whether the simpler GMAR model can adequately capture the characteristics of the
series.
If the conditional variance is constant in some regimes but time-varying in other regimes, the
G-StMAR model can be employed, as it contains both conditionally homoskedastic GMAR type
regimes and conditionally heteroskedastic StMAR type regimes. For choosing the number of
GMAR and StMAR type regimes in the G-StMAR model, we suggest following the strategy of

1By strong (weak) conditional variance or mean, we mean strong (weak) dependence on the preceding obser-
vations.
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Virolainen (2022, Section 4) and first finding a suitable StMAR model. If the estimated StMAR
model contains overly large degrees of freedom parameter estimates, those regimes should be
switched to GMAR type by estimating the appropriate G-StMAR model (this is discussed in
more detail Section 3.4).
For the illustrations, we use the monthly U.S. interest rate spread between the 10-year and 1-year
Treasury constant maturity rates, covering the period from 1982 January to 2020 December (468
observations). The series was retrieved from the Federal Reserve Bank of St. Louis database.
After installing uGMAR, the data can be loaded with the following lines of code:

R> library("uGMAR")
R> data("M10Y1Y", package = "uGMAR")

For finding the suitable type and order of the model, it is often useful to plot several figures
illustrating the statistical properties of the series. A time series plot can be examined to obtain
an overall perception of series, and to investigate whether there seem to be apparent changes in
the dynamics of series, or shifts in the mean or volatility that would indicate a possible presence
of multiple regimes.
The time series plot of the interest rate spread M10Y1Y is shown in the top left panel of Figure 2
(in Section 3.5). It shows that the process consistently produces consecutive observations of
the same magnitude, which are then followed by a transition to another magnitude. There thus
appears to be shifts in the mean of the process and the changes are occasionally rapid.
A non-parametric estimate of the density function, such as a kernel density estimate, can be
examined to evaluate whether the marginal density of a linear AR model can adequately describe
it, and if not, what might be correct number of regimes. Multiple modes in the marginal
distribution can be accounted for by accommodating each one of them with a regime in the
GSMAR model. Skewness and many other forms of non-Gaussianity can also be accommodated
with a mixture of normal or t-distributions, but it is less straightforward to determine the correct
number of regimes. One should, nevertheless, be conservative with the choice of M , because
with too many regimes in the model, some of the parameters are not identified (see Kalliovirta
et al. 2015, Sections 3.1 and 3.2.2 and the references therein).
A kernel density estimate of the interest rate spread is depicted in the right panel of Figure 2
(black solid line). There are two visible modes in the density function, so a linear model (with
unimodal error distribution) is clearly inadequate to describe it, while a two-regime mixture
model could be appropriate. Even a three-regime model could be considered in order to explain
the hump shape in the right tail of the distribution.
Examining the sample partial autocorrelation function (PACF) of the series can help in selecting
the correct autoregresive order p, as for a pth order AR process, there should be a visible break in
the PACF after the lag p. If the series is not autocorrelated, the sample partial autocorrelation
function of the squared series may similarly help to detect the order of ARCH type conditional
heteroskedasticity. In the case of an autocorrelated series, it might be useful to first fit an
AR model with a suitable autoregressive order, and then examine the PACF of the squared
residuals. The sample partial autocorrelation function of the series M10Y1Y (calculated using
the function pacf from the package stats, R Core Team 2021) is presented in the left panel of
Figure 1.
Figure 1 shows that the PACF of the series has very large partial autocorrelation coefficient
(PACC) at the first lag, relatively large PACCs at the second and fourth lags, and visibly
smaller PACCs after the fourth lag. The autoregressive order p = 4 thereby seems a reasonable
candidate for a parsimonious AR model.2 Hence, we fitted a Gaussian AR(4) model to the

2It turns out that the order p = 4 also minimizes the Akaike information criterion among the Gaussian AR(p)
models, p = 1, ..., 24, based on the exact log-likelihood function (not shown).
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Figure 1: The sample partial autocorrelation function of the series M10Y1Y for the lags 1, ..., 25
(on the right). The sample partial autocorrelation function of the Pearson residuals of a Gaus-
sian AR(4) model (on the middle) and of the squared residuals (on the right) for the lags 1, ..., 25.
The blue dashed lines are the 95% critical bounds for partial autocorrelation coefficients of an
IID process.

series and examined the PACF of its residuals and squared residuals, which are depicted in the
middle and right panels of Figure 1, respectively.
The PACF of the AR(4) model’s residuals shows that there is not much autocorrelation left in
the residuals, so the autoregressive order p = 4 seems sufficient for capturing the autocorrelation
structure of the series. The PACF of the AR(4) model’s squared residuals shows PACCs slightly
outside the 95% critical bounds at lags 1, 3, and 8. Thereby the order 4 could be somewhat
sufficient for modelling the (potentially present) ARCH type conditional heteroskedasticity, but
the order 9 could also be considered for a less parsimonious model, as the lag 8 PACC is relatively
large. A StMAR model might, therefore, be appropriate with the autoregressive order p = 4,
although it may not be sufficient for modelling the conditional heteroskedasticity at larger lags.
As discussed above, the two modes in the kernel density estimate of the series, on the other
hand, indicate that two regimes seems like a good starting point for building the model.
If the candidate model is found inadequate, one may try to use a different autoregressive order
p or to add a regime to the model (or switch to the StMAR model, if a GMAR model is found
inadequate). Note that while with linear AR models increasing the autoregressive order typically
improves the fit, this is not necessarily the case with GSMAR models, as the autoregressive
order affects the regime-switching dynamics. In particular, because the mixing weights (6) are
calculated using the whole joint distribution of the previous p observations, with a small p,
the regime-switching probabilities react more sensitively to individual observations than with a
large p. It may hence be useful to also try to decrease the autoregressive order rather than just
increase it.
In addition to comparing model adequacy (or forecasting accuracy, for example), information
criteria can be utilized in the selection of the GSMAR model. uGMAR calculates the Akaike
(AIC), Hannan-Quinn (HQIC), and Schwarz-Bayesian (BIC) information criteria. The values
of the information criteria are not directly comparable for models with different autoregressive
orders if estimation is based on the conditional log-likelihood function, as the numbers of ob-
servations used in estimation are different due to the different number of initial values. With
the conditional log-likelihood function, the values of the information criteria can be divided by
the number of observations used in the estimation (that is, the length of the series minus p) to
obtain more comparable statistics. However, as the conditional estimation with each order p is
based on slightly different observations, the comparison should be done with caution. The ex-
act log-likelihood function, in contrast, employs the full series in estimation and thereby yields
comparable values of information criteria for models with different orders p.
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3.4. Examples of unconstrained estimation

In this section, we demonstrate how to estimate GSMAR models with uGMAR and provide
several examples in order to illustrate various frequently occurring situations. In addition to
the ordinary estimation, we particularly show how a GSMAR model can be built based on a
local-only maximum point when the ML estimate seems unreasonable (see Appendix A). We
also consider the estimation of the appropriate G-StMAR model when the estimated StMAR
model contains overly large degrees of freedom estimates (see Virolainen 2022, Section 4).
In uGMAR, the GSMAR models are defined as class gsmar S3 objects, which can be created
with given parameter values using the constructor function GSMAR (see Section 5) or by using
the estimation function fitGSMAR, which estimates the parameters and then builds the model.
For estimation, fitGSMAR needs to be supplied with a univariate time series and the arguments
specifying the model. The necessary arguments for specifying the model include the autoregres-
sive order p, the number of mixture components M, and model, which should be either "GMAR",
"StMAR", or "G-StMAR". For GMAR and StMAR models, the argument M is a positive integer,
whereas for the G-StMAR model it is a length two numeric vector specifying the number of
GMAR type regimes in the first element and the number of StMAR type regimes in the second.
Additional arguments may be supplied to fitGSMAR in order to specify, for example, whether
the exact log-likelihood function should be used instead of the conditional one (conditional),
whether the model should be parametrized with the intercepts φm,0 or the regimewise un-
conditional means µm (parametrization), how many estimation rounds should be performed
(ncalls), and how many central processing unit (CPU) cores should be used in the estimation
(ncores). Some of the estimation rounds may end up in local-only maximum points or saddle
points, but reliability of the estimation results can be improved by increasing the number of
estimation rounds. A large number of estimation rounds may be required particularly when the
number of mixture components is large, as the surface of the log-likelihood function becomes
increasingly more challenging. It is also possible to adjust the settings of the genetic algorithm
that is used to find the starting values. The available options are listed in the documentation
of the function GAfit to which the arguments adjusting the settings will be passed.
It is also possible to automatically filter out inappropriate estimates by setting the argument
filter_estimates=TRUE in fitGSMAR, which is the default option. In the following, the issue of
these inappropriate solutions is discussed among other things. Therefore, this feature filtering
out inappropriate solutions automatically is not utilized.
Section 3.3 concluded that a StMAR model with autoregressive order p = 4 and M = 2 mixture
components seems like a reasonable candidate for modeling the monthly interest rate spread
M10Y1Y. The following code fits this model to the series using the conditional log-likelihood
function and performing 12 estimation rounds with eight CPU cores. The argument seeds
supplies the seeds that initialize the random number generator at the beginning of each call to
the genetic algorithm, thereby yielding reproducible results.

R> fit42t <- fitGSMAR(M10Y1Y, p = 4, M = 2, model = "StMAR", conditional = TRUE,
+ ncalls = 10, ncores = 10, seeds = 1:10)

Using 10 cores for 10 estimation rounds...
Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=04s
Results from the genetic algorithm:
The lowest loglik: 143.403
The mean loglik: 158.323
The largest loglik: 162.947
Optimizing with a variable metric algorithm...
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|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=01s
Results from the variable metric algorithm:
The lowest loglik: 178.46
The mean loglik: 180.683
The largest loglik: 184.846
Filtering inappropriate estimates...
Finished!
Warning message:
In warn_dfs(p = p, M = M, params = params, model = model) :

The model contains overly large degrees of freedom parameter values.
Consider switching to a G-StMAR model by setting the corresponding
regimes to be GMAR type with the function 'stmar_to_gstmar'.

The progression of the estimation process is reported with a progress bar giving an estimate of
the remaining estimation time. Also statistics on the spread of the log-likelihoods are printed
after each estimation phase. The progress bars are generated during parallel computing with
the package pbapply (Solymos and Zawadzki 2020).
The function throws a warning in the above example, because the model contains at least one
very large degrees of freedom parameter estimate. Such estimates are warned about, because
very large degrees of freedom parameters are redundant in the model and their weak iden-
tification might lead to numerical problems (Virolainen 2022, Section 4). Specifically, overly
large degrees of freedom parameter estimates may induce a nearly numerically singular Hessian
matrix of the log-likelihood function when evaluated at the estimate, making the approximate
standard errors and Kalliovirta’s (2012) quantile residual tests often unavailable.
The estimates can be examined with the print method:

R> fit42t

Model:
StMAR, p = 4, M = 2, #parameters = 15, #observations = 468,
conditional, intercept parametrization, not restricted, no constraints.

Regime 1
Mix weight: 0.81
Reg mean: 1.87
Var param: 0.04
Df param: 9.75

y = [0.06] + [1.28]y.1 + [-0.36]y.2 + [0.20]y.3 + [-0.15]y.4 + [sigma_mt]eps

Regime 2
Mix weight: 0.19
Reg mean: 0.55
Var param: 0.01
Df param: 9348.94

y = [0.04] + [1.34]y.1 + [-0.59]y.2 + [0.54]y.3 + [-0.36]y.4 + [sigma_mt]eps

The parameter estimates are reported for each mixture component separately so that the es-
timates can be easily interpreted. Each regime’s autoregressive formula is presented in the
form

yt = φm,0 + φm,1yt−1 + ... + φm,pyt−p + σm,tεm,t. (10)
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The other statistics are listed above the formula, including the mixing weight pameter αm, the
unconditional mean µm, the variance parameter σ2

m, and the degrees freedom parameter νm.
For GMAR type regimes (if any), σm,t = σm so the estimate of the variance parameter σ2

m is
reported directly in the autoregressive formula.
The above printout shows that the second regime’s degrees of freedom parameter estimate is
very large, which might induce numerical problems. However, since a StMAR model with some
degrees of freedom parameters tending to infinity coincides with the G-StMAR model with the
corresponding regimes switched to GMAR type, one may avoid the problems by switching to
the appropriate G-StMAR model (Virolainen 2022, Section 4). Switching to the appropriate
G-StMAR model is recommended also because it removes the redundant degrees of freedom
parameters from the model, thereby reducing its complexity. The function stmar_to_gstmar
does this switch automatically by first removing the large degrees of freedom parameters and
then estimating the G-StMAR model with a variable metric algorithm (Nash 1990, algorithm
21) using the induced parameter vector as the initial value.
To exemplify, the following code switches all the regimes of the StMAR model fit42t with a
degrees of freedom parameter estimate larger than 100 to GMAR type, and then estimates the
corresponding G-StMAR model.

R> fit42gs <- stmar_to_gstmar(fit42t, maxdf = 100)

We use the summary method to obtain a more detailed printout of the estimated the G-StMAR
model:

R> summary(fit42gs, digits = 2)

Model:
G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 14, #observations = 468,
conditional, intercept parametrization, not restricted, no constraints.

log-likelihood: 182.35, AIC: -336.71, HQIC: -313.89, BIC: -278.75

Regime 1 (GMAR type)
Moduli of AR poly roots: 1.16, 1.45, 1.45, 1.16
Mix weight: 0.19 (0.09)
Reg mean: 0.55
Reg var: 0.14

y = [0.04] + [1.34]y.1 + [-0.59]y.2 + [0.54]y.3 + [-0.36]y.4 + sqrt[0.01]eps
(0.01) (0.10) (0.20) (0.19) (0.12) (0.00)

Regime 2 (StMAR type)
Moduli of AR poly roots: 1.07, 2.02, 2.02, 1.51
Mix weight: 0.81
Reg mean: 1.87
Var param: 0.04 (0.01)
Df param: 9.75 (4.17)
Reg var: 1.01

y = [0.06] + [1.28]y.1 + [-0.36]y.2 + [0.20]y.3 + [-0.15]y.4 + [sigma_mt]eps
(0.02) (0.05) (0.09) (0.09) (0.06)
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Process mean: 1.62
Process var: 1.11
First p autocors: 0.98 0.96 0.93 0.89

In the G-StMAR model, estimates for GMAR type regimes are reported before StMAR type
regimes, in a decreasing order according to the mixing weight parameter estimates. As shown
above, the model fit42gs incorporates one GMAR type regime and one StMAR type regime.
The mixing weight parameter estimate 0.19 of the GMAR type regime indicates that in the
long run, roughly 19% of the observations are generated from this regime. Estimates of the
unconditional mean and variance (0.55 and 0.14, respectively) are visibly smaller in the GMAR
type regime than in the StMAR type regime (1.87 and 1.01, respectively). Hence, the GMAR
type seems to mostly account for the periods when the series takes smaller values and is less
volatile, while the StMAR type regime covers the more volatile periods of larger values. Inter-
estingly, the AR parameters are somewhat similar in both regimes, implying that it could be
appropriate to restrict them to be identical (this will be tested in Section 3.7).
Approximate standard errors are given in parentheses under or next to the related estimates.
Note that the last mixing weight parameter estimate does not have an approximate standard
error because it is not parametrized. Likewise, there is no standard error for the intercepts if
mean parametrization is used (by setting parametrization = "mean" in fitGSMAR) and vice
versa. In order to obtain standard errors for the regimewise unconditional means or inter-
cepts, one can easily swap between the mean and intercept parametrizations with the function
swap_parametrization.
Missing values are reported when uGMAR is not able to calculate the standard error. This
typically happens either because there is an overly large degrees of freedom parameter estimate
in the model (as discussed above) or because the estimation algorithm did not stop a local
maximum. In the latter case, the observed information matrix is not necessarily positive definite,
implying that the diagonal entries of its inverse might not all be positive. Consequently, when
extracting the approximate standard errors by taking the square roots of the diagonal entries
from the inverse of the observed information matrix, the possibly present negative entries will
lead to missing values.
Section 3.5 discusses how to evaluate with uGMAR whether the estimate is a local maximum
(and how to improve the reliability of it being the global maximum). If the estimate is not a
local maximum, one may try running more iterations of the variable metric algorithm with the
function iterate_more. However, often when the algorithm does not stop a local maximum,
it stopped to an unreasonable point very near the boundary of parameter space. As will be
discussed next, in such a case it might be more appropriate to consider an alternative estimate
that is clearly in the interior of the parameter space.
Other statistics reported in the summary printout include the log-likelihood and values of the
information criteria, the first and second moments of the process, as well as regime specific
unconditional means, unconditional variances, and moduli of the roots of the AR polynomials
1−

∑p
i=1 φm,iz

i, m = 1, ..., M . If some of the moduli are very close to one, the related estimates
are near the boundary of the stationarity region. We demonstrate in Appendix A that when
such solutions are accompanied with a very small variance parameter estimate, they might not
be reasonable estimates and maximize the log-likelihood function for a technical reason only.
Consequently, the estimate related to the next-largest local maximum could be considered.
This is possible in uGMAR, because the estimation function fitGSMAR stores the estimates
from all the estimation rounds so that a GSMAR model can be built based on any one of them,
most conveniently with the function alt_gsmar. The desired estimation round can be specified
either with the argument which_round or which_largest. The former specifies the round in
the estimation order, whereas the latter specifies it in a decreasing order of the log-likelihoods.
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To demonstrate this, we use the argument filter_estimates=FALSE in the following code to
prevent the filtering of inappropriate estimates.
To give an example of a case where the estimates are very close the boundary of the stationarity
region, we estimate the G-StMAR model directly with the following code.

R> fit42gs2 <- fitGSMAR(M10Y1Y, p = 4, M = c(1, 1), model = "G-StMAR",
+ conditional = TRUE, ncalls = 16, ncores = 8, seeds = 72:87,
+ filter_estimates = FALSE)

Using 8 cores for 16 estimation rounds...
Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=06s
Results from the genetic algorithm:
The lowest loglik: 140.441
The mean loglik: 155.421
The largest loglik: 167.858
Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=02s
Results from the variable metric algorithm:
The lowest loglik: 152.034
The mean loglik: 174.794
The largest loglik: 192.43
Finished!
Warning message:
In warn_ar_roots(ret) :

Regime 1 has near-unit-roots! Consider building a model from the next-largest
local maximum with the function 'alt_gsmar' by adjusting its argument
'which_largest'.

The function throws a warning, because the largest found maximum point incorporates a regime
that is very close to the boundary of the stationarity region, indicating that the estimate might
be inappropriate. We examine the estimates with the summary method:

R> summary(fit42gs2, digits = 2)

Model:
G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 14, #observations = 468,
conditional, intercept parametrization, not restricted, no constraints.

log-likelihood: 192.43, AIC: -356.86, HQIC: -334.05, BIC: -298.90

Regime 1 (GMAR type)
Moduli of AR poly roots: 1.00, 1.00, 1.00, 1.00
Mix weight: 0.02 (0.03)
Reg mean: 2.65
Reg var: 0.13

y = [3.77] + [1.19]y.1 + [-1.81]y.2 + [1.19]y.3 + [-1.00]y.4 + sqrt[0.00]eps
(0.02) (0.01) (0.01) (0.01) (0.00) (0.00)

Regime 2 (StMAR type)
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Moduli of AR poly roots: 1.04, 1.93, 1.93, 1.48
Mix weight: 0.98
Reg mean: 0.89
Var param: 0.04 (0.01)
Df param: 4.98 (1.67)
Reg var: 1.75

y = [0.02] + [1.30]y.1 + [-0.36]y.2 + [0.21]y.3 + [-0.17]y.4 + [sigma_mt]eps
(0.01) (0.05) (0.08) (0.08) (0.05)

Process mean: 0.92
Process var: 1.78
First p autocors: 0.99 0.97 0.95 0.93

The summary statistics reveal that there are four near-unit-roots in the GMAR type regime
and the variance parameter estimate is very small. Such estimates often occur when there are
several regimes in the model and the estimation algorithm is ran a large number of times.
If one suspects that the estimate is inappropriate, it is easy to build a model based on the
second-largest maximum point that was found in the estimation procedure. Below, the first line
of the code builds the model based on the second-largest maximum point, and the second line
calls the summary method to produce a detailed printout of the model.

R> fit42gs3 <- alt_gsmar(fit42gs2, which_largest = 2)
R> summary(fit42gs3, digits = 2)

Model:
G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 14, #observations = 468,
conditional, intercept parametrization, not restricted, no constraints.

log-likelihood: 182.35, AIC: -336.71, HQIC: -313.89, BIC: -278.75

Regime 1 (GMAR type)
Moduli of AR poly roots: 1.16, 1.45, 1.45, 1.16
Mix weight: 0.19 (0.09)
Reg mean: 0.55
Reg var: 0.14

y = [0.04] + [1.34]y.1 + [-0.59]y.2 + [0.54]y.3 + [-0.36]y.4 + sqrt[0.01]eps
(0.01) (0.10) (0.20) (0.19) (0.12) (0.00)

Regime 2 (StMAR type)
Moduli of AR poly roots: 1.07, 2.02, 2.02, 1.51
Mix weight: 0.81
Reg mean: 1.87
Var param: 0.04 (0.01)
Df param: 9.75 (4.14)
Reg var: 1.01

y = [0.06] + [1.28]y.1 + [-0.36]y.2 + [0.20]y.3 + [-0.15]y.4 + [sigma_mt]eps
(0.02) (0.05) (0.09) (0.09) (0.06)
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Process mean: 1.62
Process var: 1.11
First p autocors: 0.98 0.96 0.93 0.89

The above printout shows that the estimates related to the second-largest local maximum are
the same as of the model fit42gs (which was estimated based on a StMAR model with a very
large degrees of freedom parameter estimate) and that they are clearly inside the stationarity
region for all regimes. If also the second-largest maximum point seems unreasonable, a GS-
MAR model can be built based on the next-largest maximum point by adjusting the argument
which_largest in the function alt_gsmar accordingly.
It is also possible to automatically filter out inappropriate estimates by setting the argument
filter_estimates=TRUE in fitGSMAR, which is also the default option. Then, the function will
automatically filter out estimates that it deems "inappropriate". That is, estimates that are not
likely solutions of interest. Specifically, it filters out solutions that incorporate regimes with
any modulus of the roots of the AR polynomial less than 1.0015; a variance parameter estimate
near zero (less than 0.0015); mixing weights such that they are close to zero for almost all t for
at least one regime; or mixing weight parameterestimate close to zero (or one). You can also
set filter_estimates=FALSE and find the solutions of interest yourself by using the function
alt_gsmar. fitGSMAR then returns the solution based on the largest log-likelihood that is not
filtered out. Other solutions can be studied by using the function alt_gsmvar as usual.

3.5. Further examination of the estimates

In addition to examining the summary printout, it is often useful to visualize the model by
plotting the mixing weights together with the time series and the model’s (marginal) stationary
density together with a kernel density estimate of the time series. That is exactly what the plot
method for GSMAR models does. For instance, the following command creates Figure 2:

R> plot(fit42gs)

As Figure 2 (the top and bottom left panels) shows, the first regime prevails when the spread
takes small values, while the second regime mainly dominates when the spread takes large
values. The graph of the model’s marginal stationary density (the right panel), on the other
hand, shows that the two regimes capture the two modes in the marginal distribution of the
spread. The hump shape in the right tail of the kernel density estimate is not explained by the
mixture of the two distributions, but a third regime could be added for the purpose (for brevity,
we do not study the three regime model further).
It is also sometimes interesting to examine the time series of (one-step) conditional means and
variances of the process along with the time series the model was fitted to. This can be done
conveniently with the function cond_moment_plot, where the argument which_moment should
be specified with "mean" or "variance" accordingly. In addition to the conditional moment of
the process, cond_moment_plot also displays the conditional means or variances of the regimes
multiplied by the mixing weights. Note, however, that the conditional variance of the process is
not generally the same as the weighted sum of regimewise conditional variances, as it includes
a component that encapsulates heteroskedasticity caused by variation in the conditional mean
(see Virolainen 2022, Equation (2.19)).
The variable metric algorithm employed in the final estimation does not necessarily stop at a
local maximum point. The algorithm might also stop at a saddle point or near a local maximum,
when the algorithm is not able to increase the log-likelihood, or at any point, when the maximum
number of iterations has been reached. In the latter case, the estimation function throws a
warning, but saddle points and inaccurate estimates need to be detected by the researcher.
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Figure 2: The figure produced by the command plot(fit42gs). On the top left, the monthly
spread between the 10-year and 1-year Treasury constant maturity rates, covering the period
from 1982 January to 2020 December. On the bottom left, the estimated mixing weights of
the G-StMAR model (fit42gs) fitted to the interest rate spread (blue dashed line for the
first regime and red dashed line for the second regime). On the right, the one-dimensional
marginal stationary density of the estimated G-StMAR model (grey dashed line) along with a
kernel density estimate of the spread (black solid line) and marginal stationary densities of the
regimes multiplied by the mixing weight parameter estimates (blue and red dotted lines).

Figure 3: The figure produced by the command profile_logliks(fit42gs). Graphs of the
profile log-likelihood functions of the estimated G-StMAR model fit42gs with the red vertical
lines pointing the estimates.
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It is well known that in a local maximum point, the gradient of the log-likelihood function is zero,
and the eigenvalues of the Hessian matrix are all negative. In a local minimum, the eigenvalues
of the Hessian matrix are all positive, whereas in a saddle point, some of them are positive
and some negative. Nearly numerically singular Hessian matrices occur when the surface of
the log-likelihood function is very flat about the estimate in some directions. This particularly
happens when the model contains overly large degrees of freedom parameter estimates or the
mixing weights αm,t are estimated close to zero for all t = 1, ..., T for some regime m.
uGMAR provides several functions for evaluating whether the estimate is a local maximum
point. The function get_foc returns the (numerically approximated) gradient of the log-
likelihood function evaluated at the estimate, and the function get_soc returns eigenvalues
of the (numerically approximated) Hessian matrix of the log-likelihood function evaluated at
the estimate. The numerical derivatives are calculated using a central difference approximation

∂L(θ)
∂θi

≈ f(θ + h(i)) − f(θ − h(i))
2h

, h > 0, (11)

where θi is the ith element of θ and h(i) = (0, ..., 0, h, 0, ..., 0) contains h as its ith element. By
default, the difference h = 6 · 10−6 is used for all parameters except for overly large degrees of
freedom parameters, whose partial derivatives are approximated using larger differences. The
difference is increased for large degrees of freedom parameters, because the limited precision of
the float point presentation induces artificially rugged surfaces to the their profile log-likelihood
functions, and the increased differences diminish the related numerical error. On the other
hand, as the surface of the profile log-likelihood function is very flat about a large degrees of
freedom parameter estimate, large differences work well for the approximation.
For example, the following code calculates the first order condition for the G-StMAR model
fit42gs:

R> get_foc(fit42gs)

[1] 0.0576396128 -0.0364233988 -0.0242331476 -0.0144442609 -0.0161249574
[6] 0.0411603528 -0.0171471584 -0.0490156277 -0.0659635759 -0.0587742714

[11] -0.0635655297 0.0686981920 -0.0374653647 0.0002778317

and the following code calculates the second order condition:

R> get_soc(fit42gs)

[1] -5.753554e-02 -1.354508e+01 -4.394382e+01 -6.467642e+01 -1.204519e+02
[6] -1.672692e+02 -2.619181e+02 -8.869383e+02 -2.045380e+03 -4.862797e+03

[11] -4.355348e+04 -5.455077e+04 -2.727695e+05 -5.564824e+05

All eigenvalues of the Hessian matrix are negative, which points to a local maximum, but the
gradient of the log-likelihood function seems to somewhat deviate from zero. The gradient
might be inaccurate, because it is based on a numerical approximation. It is also possible that
the estimate is inaccurate, because it is based on approximative numerical estimation, and the
estimates are therefore not expected to be exactly accurate. Whether the estimate is a local
maximum point with accuracy that is reasonable enough, can be evaluated by plotting the
graphs of the profile log-likelihood functions about the estimate. In uGMAR, this can be done
conveniently with the function profile_logliks.
The exemplify, the following command plots the graphs of profile log-likelihood functions of the
estimated G-StMAR model fit42gs:
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R> profile_logliks(fit42gs, scale = 0.02, precision = 200)

The output is displayed in Figure 3, showing that the estimate’s accuracy is reasonable, as chang-
ing any individual parameter value marginally would not visibly increase the log-likelihood. The
argument scale can be adjusted to shorten or lengthen the interval shown in the horizontal
axis. If one zooms in enough by setting scale to a very small number, it can be seen that the
estimate is not exactly at the local maximum, but it is so close that moving there would not
increase the log-likelihood notably. The argument precision can be adjusted to increase the
number of points the graph is based on. For faster plotting, it can be decreased, and for more
precision, it can be increased.
We have discussed tools that can be utilized to evaluate whether the found estimate is a local
maximum with a reasonable accuracy. It is, however, more difficult to establish that the estimate
is the global maximum. With uGMAR, the best way to increase the reliability that the found
estimate is the global maximum, is to run more estimation rounds by adjusting the argument
ncalls of the estimation function fitGSMAR. When a large number of estimation rounds is run
(and M > 1), fitGSMAR often finds peculiar near-the-boundary estimates that have extremely
spiky profile log-likelihood functions for some parameters and are thus difficult to find (see
Appendix A). Therefore, it seems plausible that fitGSMAR also finds a reasonable ML estimate
with a good reliability.

3.6. Examples of constrained estimation

Alternatively to the unconstrained estimation, one may impose linear constraints on the au-
toregressive (AR) parameters of the model; that is, on φm,1, ..., φm,p, m = 1, ..., M . uGMAR
deploys two types of constraints: the AR parameters can be restricted to be the same for all
regimes and linear constraints can be applied to each regime separately. In order to impose
the former type of constraints, the estimation function simply needs to be supplied with the
argument restricted = TRUE.
For instance, the G-StMAR, p = 4, M1 = 1, M2 = 1 model (fit42gs) estimated in Section 3.4
obtained somewhat similar estimates for the AR parameters in both regimes. The following code
estimates a version of this model such that the AR parameters are restricted to be the same in
both regimes. Note that this model still allows for shifts in the conditional (and unconditional)
mean, as the intercept parameters can vary across the regimes. The argument print_res =
FALSE tells fitGSMAR not to the print the spread of the log-likelihoods obtained from each phase
of estimation.

R> fit42gsr <- fitGSMAR(M10Y1Y, p = 4, M = c(1, 1), model = "G-StMAR",
+ restricted = TRUE, ncalls = 12, ncores = 8, seeds = 1:12,
+ print_res = FALSE)

Using 8 cores for 12 estimation rounds...
Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=07s
Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=01s
Finished!

The summary printout of the model shows the AR parameter estimates are the same in both
regimes:

R> summary(fit42gsr)
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Model:
G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 10, #observations = 468,
conditional, intercept parametrization, AR parameters restricted, no
constraints.

log-likelihood: 180.02, AIC: -340.04, HQIC: -323.74, BIC: -298.64

Regime 1 (GMAR type)
Moduli of AR poly roots: 1.21, 1.83, 1.83, 1.21
Mix weight: 0.51 (0.17)
Reg mean: 2.13
Reg var: 0.46

y = [0.13] + [1.29]y.1 + [-0.40]y.2 + [0.25]y.3 + [-0.20]y.4 + sqrt[0.03]eps
(0.03) (0.05) (0.08) (0.08) (0.05) (0.00)

Regime 2 (StMAR type)
Moduli of AR poly roots: 1.21, 1.83, 1.83, 1.21
Mix weight: 0.49
Reg mean: 0.54
Var param: 0.05 (0.06)
Df param: 2.76 (1.18)
Reg var: 0.83

y = [0.03] + [1.29]y.1 + [-0.40]y.2 + [0.25]y.3 + [-0.20]y.4 + [sigma_mt]eps
(0.01) (0.05) (0.08) (0.08) (0.05)

Process mean: 1.35
Process var: 1.27
First p autocors: 0.98 0.95 0.91 0.87

In constrast to the unrestricted model, this model has larger regimewise unconditonal mean
in the GMAR type regime than in the StMAR type regime. According to the unconditional
regimewise variances, the StMAR type regime is the more volatilite regime in this model as
well.
Whether imposing the constraints is reasonable, can be evaluated by employing a statistical test,
comparing values of the information criteria, or examining the model adequacy, for example.
As the summary printout shows, the information criteria values all decreased as opposed to the
unrestricted model, implying that the constraints could be appropriate. Discussion on testing
the constraints is postponed to Section 3.7, whereas diagnostics checks for evaluating the model
adequacy are covered in Section 4.
The other type constraints in uGMAR are of the form

φm = Cmψm, m = 1, ..., M, (12)

where Cm is a known (p × qm) constraint matrix with full column rank, ψm is a (qm × 1)
parameter vector, and φm = (φm,1, ..., φm,p) contains the AR coefficients of the mth regime. In
order to apply the constraints, the estimation function should be supplied with the argument
constraints containing a list of the constraint matrices Cm, m = 1, ..., M .
To exemplify, consider a GMAR model with autoregressive order p = 3 and M = 2 mixture
components. To constrain the third AR coefficient of the second regime (φ2,3) to zero but
leaving the first regime unconstrained, we deploy the following list of constraint matrices:
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R> C_list <- list(diag(3), matrix(c(1, 0, 0, 0, 1, 0), nrow = 3))
R> C_list

[[1]]
[,1] [,2] [,3]

[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

[[2]]
[,1] [,2]

[1,] 1 0
[2,] 0 1
[3,] 0 0

After setting up the constraints, the constrained model can be estimated as follows:

R> fit32c <- fitGSMAR(M10Y1Y, p = 3, M = 2, model = "GMAR",
+ constraints = C_list, ncalls = 12, ncores = 8, seeds = 1:12,
+ print_res = FALSE)

Using 8 cores for 12 estimation rounds...
Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=05s
Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=01s
Finished!

Printout of the model shows that the third AR parameter estimate of the second regime is zero:

R> fit32c

Model:
GMAR, p = 3, M = 2, #parameters = 10, #observations = 468,
conditional, intercept parametrization, not restricted, linear constraints
imposed.

Regime 1
Mix weight: 0.56
Reg mean: 1.26

y = [0.02] + [1.25]y.1 + [-0.19]y.2 + [-0.07]y.3 + sqrt[0.01]eps

Regime 2
Mix weight: 0.44
Reg mean: 1.72

y = [0.07] + [1.27]y.1 + [-0.32]y.2 + [0.00]y.3 + sqrt[0.05]eps

Notice that even when the pth AR coefficient is restricted to zero, the pth lag of that regime
is accounted for in the mixing weights (6) and in the case of a StMAR type regime also in the
conditional variance (3).
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If both types of constraints are applied at the same time, only a single constraint matrix should
be supplied (not in a list). Consider a GSMAR model with p = 2 and M = 2, for example,
and suppose the AR coefficients should be restricted to be the same in both regimes and the
second AR coefficient (φm,2) should be constrained to be the negative of the first coefficient
(φm,1). Then, the estimation function should be supplied with the arguments restricted =
TRUE and constraints = matrix(c(1, -1), nrow = 2). As demonstrated above, uGMAR’s
implementation for applying linear constraints is not the most general one, but it makes applying
some of the most typical constraints convenient, as the constraint matrices remain small.

3.7. Testing parameter constraints

One way to asses the validity of the imposed constraints is to compare the values of information
criteria of the constrained and unconstrained models. uGMAR, however, also provides functions
for testing the constraints with the likelihood ratio test and Wald test, which are applicable as
the ML estimator of a GSMAR model has the conventional asymptotic distribution (as long
as the model is correctly specified and one is willing to assume the validity of the required
unverified assumptions, see Kalliovirta et al. 2015, pp. 254-255, Meitz et al. 2023, Theorem 3,
and Virolainen 2022, Theorem 2). For a discussion on the likelihood ratio and Wald tests, see
Buse (1982) and the references therein, for example.
The likelihood ratio test considers the null hypothesis that the true parameter value θ0 satisfies
some constraints imposed on these parameters (such that the constrained parameter space is a
subset of the parameter space, which is presented in Virolainen 2022, Section 2.2 for the GSMAR
models). Denoting by L̂U and L̂C the (maximized) log-likelihoods based on the unconstrained
and constrained ML estimates, respectively, the test statistic takes the form

LR = 2(L̂U − L̂C). (13)

Under the null, the test statistic is asymptotically χ2-distributed with the degrees of freedom
given by the difference in the dimensions of the unconstrained and constrained parameter spaces.
With uGMAR, the likelihood ratio test can be calculated with the function LR_test, which
takes the unconstrained model (a class gsmar object) as its first argument and the constrained
model as the second argument. For instance, in Section 3.6 we estimated a G-StMAR, p = 4,
M1 = 1, M2 = 1 model such that the AR parameters are restricted to be equal in both regimes
(the model fit42gsr), i.e., φ1 = φ2. The following code tests those constraints against the
unconstrained model fit42gs with the likelihood ratio test and prints the results.

R> LR_test(fit42gs, fit42gsr)

Likelihood ratio test

data: fit42gs and fit42gsr
LR = 4.6695, df = 4, p-value = 0.3229
alternative hypothesis: the true parameter does not satisfy the constraints
imposed in fit42gsr

The large p-value indicates that we cannot reject the constraints at any conventional level of
significance, and it might thereby be reasonable to consider the constrained model if it is found
adequate.
uGMAR implements the Wald test of the null hypothesis

Aθ0 = c, (14)
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where A is a (k × d) matrix with full row rank, c is a (k × 1) vector, θ0 is the true parameter
value, d is the dimension of the parameter space, and k is the number of constraints. The Wald
test statistic takes the form

W = (Aθ̂ − c)′[AJ (θ̂)−1A′]−1(Aθ̂ − c), (15)

where J (θ̂) is the observed information matrix evaluated at the ML estimate θ̂. Under the
null, the test statistic is asymptotically χ2-distributed with k degrees of freedom (which is the
difference in dimensions of the constrained and unconstrained parameter spaces).
With uGMAR, the Wald test can be calculated with function Wald_test, which takes the
estimated unconstrained model (as a class gsmar object) as the first argument, the matrix A as
the second argument, and the vector c as the third argument. To exemplify, we test whether the
AR parameters and intercepts are identical in both regimes of the G-StMAR, p = 4, M1 = 1,
M2 = 1 model, i.e., the null hypothesis (φ1,0,φ1) = (φ2,0,φ2). The (d × 1) parameter vector θ
(which is presented at the end of Section 2.2 and again in Section 5) contains the intercept and
AR parameters of the first regime in the entries 1, ..., 5 and the intercept and AR parameters
of the second regime in the entries 7, ..., 11. The appropriate matrix A and vector c that state
the hypothesis are set in the first two lines of the following code, and the third line calculates
the test.

R> c <- rep(0, times = 5)
R> A <- cbind(diag(5), c, -diag(5), c, c, c)
Wald_test(fit42gs, A = A, c = c)

Wald test

data: fit42gs, A, c
W = 15.107, df = 5, p-value = 0.009916
alternative hypothesis: the true parameter theta does not satisfy
A%*%theta = c

As the above printout shows, the p-value is small enough to reject the null at the 1% level of
significance, even though the null hypothesis that the AR parameters are equal in both regimes
could not be rejected by the likelihood ratio test. Using the model fit42gsr to calculate
a Wald test, that tests equality of the intercepts conditional on the constraint that the AR
parameters are identical in both regimes, produces the p-value 0.00025 (not shown for brevity).
Thus, the intercepts are not likely equal if the AR parameters are identical in both regimes.3
As is demonstrated above, the Wald test has the benefit that it does not require estimation
of the constrained model, and it is, therefore, not limited to the type of constraints uGMAR
accommodates. The likelihood ratio test, on the other hand, is more conveniently calculated
once the constrained model has been estimated.
Note that the standard tests are not applicable if the number of GMAR or StMAR type regimes
is chosen too large, as then some of the parameters are not identified, causing the result of the
asymptotic normality of the ML estimator to break down. This particularly happens when one

3The test results do not, however, allow to infer that the process is likely bimodal, because GSMAR pro-
cesses incorporating component processes with distinct means can have unimodal skewed marginal distribu-
tions. Moreover, one cannot infer about the (in)equality of the means of the component processes based on
the (in)equality of the intercepts if the AR parameters are allowed vary freely. In particular, our null hypoth-
esis (φ1,0,φ1) = (φ2,0,φ2) does not test whether the component processes have identical means, as identical
means can be obtained also with various other constraints. Identicality of the means can, however, be tested
directly by switching to the mean parametrization (with the function swap_parametrization) and calculating
the appropriate Wald test.
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tests for the number of regimes in the model, as under the null some of the regimes are reduced
from the model4 (see the related discussion in Kalliovirta et al. 2015, Section 3.3.2). Similar
caution applies for testing whether a regime is of the GMAR type against the alternative that
it is of the StMAR type. Then νm = ∞ under the null for the regime m to be tested, which
violates the assumption that the parameter value is in the interior of a compact subset of the
parameter space (see Virolainen 2022, Theorem 2 and Assumption 1).

4. Quantile residual based model diagnostics
In the GSMAR models, the empirical counterparts of the error terms εm,t in (1) cannot be
calculated, because the regime that generated each observation is unknown, making the con-
ventional residual based diagnostics unavailable. Therefore, uGMAR utilizes so called quantile
residuals, which are suitable for evaluating adequacy of the GSMAR models. Deploying the
framework presented in Kalliovirta (2012), quantile residuals are defined as

Rt = Φ−1(F (yt|Ft−1)), t = 1, 2, ..., T, (16)

where Φ−1(·) is the standard normal quantile function and F (·|Ft−1) is the conditional cu-
mulative distribution function of the considered GSMAR process (conditional on the previous
observations). Closed form expressions for the quantile residuals of the GSMAR processes are
derived in Appendix B.
The empirical counterparts of the quantile residuals are calculated by using the parameter
estimate and the observed data in (16). For a correctly specified GSMAR model, the empirical
counterparts of the quantile residuals based on the ML estimator are asymptotically independent
with standard normal distributions (Kalliovirta 2012, Lemma 2.1). Hence, quantile residuals
can be used for graphical analysis similarly to the conventional Pearson residuals.
In uGMAR, quantile residuals can be analyzed graphically with the function diagnostic_plot,
which plots the quantile residual time series, normal quantile-quantile plot, and sample au-
tocorrelation functions of the quantile residuals and squared quantile residuals. If one sets
plot_indstats = TRUE in the function arguments, diagnostic_plot also plots the standard-
ized individual statistics discussed in Kalliovirta (2012, pp. 369-370) with their approximate
95% critical bounds.
The individual statistics, which test for remaining autocorrelation or heteroskestacity in specific
lags, can be calculated either based on the observed data or based on the simulation procedure
proposed by Kalliovirta (2012). In the simulation procedure, the individual statistics’ approxi-
mate standard errors are based on a sample simulated from the estimated process. According to
Kalliovirta’s (2012) Monte Carlo study, the simulation procedure may improve size properties
of the related tests, but it makes calculation of the statistics computationally more demanding
- particularly if the simulated sample is very large.
The likelihood ratio test accepted hypothesis that the AR coefficients of the G-StMAR p = 4,
M1 = 1, M2 = 2 model are identical in both regimes (see Section 3.7). In order to evaluate
whether this constrained model (fit42gsr) can adequately capture the autocorrelation struc-
ture, conditional heteroskedasticity, and distribution of the series, we create a diagnostic plot
with the following code. We include Kalliovirta’s (2012) individual statistic to the figure based
on the observed data and calculated for the first 20 lags.

R> diagnostic_plot(fit42gsr, nlags = 20, plot_indstats = TRUE)

4Meitz and Saikkonen (2021) have, however, recently developed such tests for mixture models with Gaussian
conditional densities.
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Figure 4: Diagnostic plot for the fitted model fit42gsr created using the function
diagnostic_plot. The quantile residual time series (top left), normal quantile-quantile plot
(top right), sample autocorrelation functions of the quantile residuals (middle left) and squared
quantile residuals (middle right), and the individual autocorrelation (bottom left) and het-
eroskedasticity (bottom right) statistics discussed in Kalliovirta (2012, pp. 369-370). The blue
dashed lines in the sample autocorrelation figures are the 1.96T −1/2 lines denoting 95% critical
bounds for IID-observations, whereas for Kalliovirta’s (2012) individual statistics they are the
approximate 95% critical bounds.

The resulting plot is presented in Figure 4. The quantile residual time series (the top left
panel) has a period when it takes several consecutive negative values (roughly the observations
260, ..., 300 with also some positive observations in between), but other than that it seems to
somewhat resemble an IID normal process. The normal quantile-quantile plot (the top right
panel) shows that the quantile residuals’ distribution has too fat right tail. This is possibly due
to the inability to explain the hump shape in the right tail of the series’ distribution with a
mixture of one normal and one t-distribution, when the two modes are accounted for.
The sample autocorrelation function of the quantile residuals (the middle left panel) shows that
there are no particularly large autocorrelation coefficients in the lags 1, ..., 20. Moreover, as
all Kalliovirta’s (2012) autocorrelation statistics fall inside the asymptotic 95% critical bounds,
the model seems to adequately describe the autocorrelation structure of the series. The sample
autocorrelation function of the squared quantile residuals (the middle right panel), on the
other hand, has a relatively large coefficient at the lag eight. Kalliovirta’s (2012) conditional
heteroskedasticity statistics (the bottom right panel) fall outside the asymptotic 95% critical
bounds at the lags four and six, but at the lag eight the statistic is inside the bounds. Overall,
it appears that in addition to the distribution, the model might not adequately explain the
conditional heteroskedasticity of the series.
In order to employ the simulation procedure for calculating the individual statistics, one needs
to set the length of the simulated sample with the argument nsimu. If nsimu is not larger
than the length of the observed data, the statistics will be based on the observed data. In
addition to diagnostic_plot, quantile residuals can be graphically examined with the function
quantile_residual_plot, which plots the quantile residual time series and a histogram.
Analyzing quantile residuals graphically gives an overview of the model’s adequacy, but it is often
appealing to also carry out a formal testing procedure. Kalliovirta (2012) proposes three specific
tests for testing normality, autocorrelation, and conditional heteroskedasticity of the quantile
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residuals. Kalliovirta’s (2012) tests take into account the uncertainty caused by estimation of
the parameters and they are shown to perform well in a simulation study (Kalliovirta 2012,
Section 4).
In uGMAR, the quantile residual tests can be applied with the function quantile_residual_tests
whose arguments include the model and the numbers of lags to be included in the autocorre-
lation (lags_ac) and heteroskedasticity tests (lags_ch). Similarly to the individual statistics
discussed in the context of the diagnostic plot, the tests can be based either on the observed
data or on the simulation procedure. The simulation procedure can be deployed by setting the
argument nsimu to be larger than the data length.
The following code calculates the quantile residual tests for the restricted G-StMAR model
fit42gsr by deploying the simulation procedure based on a simulated sample of length 10000
and taking into account 1, 3, 6, and 12 lags in the autocorrelation and heteroskedasticity tests.
By default, the lags for the heteroskedasticity tests are the same as for the autocorrelation tests,
so it is enough to set the autocorrelation test lags with the argument lags_ac.

R> set.seed(1)
R> qrtr <- quantile_residual_tests(fit42gsr, lags_ac = c(1, 3, 6, 12),
+ nsimu = 10000)

Normality test p-value: 0.018

Autocorrelation tests:
lags | p-value

1 | 0.849
3 | 0.084
6 | 0.488
12 | 0.213

Conditional heteroskedasticity tests:
lags | p-value

1 | 0.713
3 | 0.299
6 | 0.017
12 | 0.000

The test results reveal that the model does not seem to adequately capture the conditional
heteroskedasticity in the series when taking into account 12 lags. Also, the normality test
and the heteroskedasticity test with six lags pass only at 1% level of significance. The rest
of the tests, including all the autocorrelation tests pass at 5% level of significance, confirming
our findings from examining the diagnostic plot: the model seem to adequately explain the
autocorrelation structure of the series but struggles in capturing the distribution and conditional
heteroskedasticity. Nevertheless, the inadequacies do not seem very serious.
Because the restricted model was found somewhat inadequate, we run the quantile residual
tests for the unrestricted model as well in order to evaluate whether it captures the statistical
properties of the series more adequately. The following code runs the same diagnostics tests for
the unrestricted model fit42gs.

R> set.seed(1)
R> qrt <- quantile_residual_tests(fit42gs, lags_ac = c(1, 3, 6, 12),
+ nsimu = 10000)
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Normality test p-value: 0.087

Autocorrelation tests:
lags | p-value

1 | 0.475
3 | 0.020
6 | 0.289
12 | 0.077

Conditional heteroskedasticity tests:
lags | p-value

1 | 0.579
3 | 0.137
6 | 0.002
12 | 0.000

As the p-values show, relaxing the restrictions improved the model’s capability to capture the
distribution of the series but according to the test results, the unrestricted model does not
explain conditional heteroskedasticity as well as the restricted one when taking into account
six lags (since the test now rejects at 1% level of significance). Also the autocorrelation test
with three lags only passes at 1% level of significance. It thereby appears that the parsimonious
restricted model could be more appropriate. Adding a third regime to the model or trying a
different autoregressive order could also be considered for potentially improving the adequacy.
uGMAR often fails to calculate the quantile residual tests for GSMAR models with very large
degrees of freedom parameter estimates, but the problem can be avoided by switching to the
appropriate G-StMAR model with the function stmar_to_gstmar, which removes the redundant
degrees of freedom parameters (see Virolainen 2022, Section 4, and Section 3.4 of this paper).
Calculation of the tests may also fail when the estimate is very close to the boundary of the
parameter space in which case it might be appropriate to consider an estimate from the next-
largest local maximum point of the log-likelihood function. To that end, the function alt_gsmar
can be used as demonstrated in Section 3.4 and in Appendix A.

5. Building a GSMAR model with specific parameter values
The function GSMAR facilitates building GSMAR models without estimation, for instance, in
order to simulate observations from a GSMAR process with specific parameter values. The
parameter vector (of length M(p + 3) + M2 − 1 for unconstrained models) has the form θ =
(ϑ1, ...,ϑM , α1, ..., αM−1,ν) where

ϑm = (φm,0, φm,1, ..., φm,p, σ2
m), m = 1, ..., M, and (17)

ν = (νM1+1, ..., νM ). (18)

In the GMAR model (when M1 = M), the vector ν is omitted, as the GMAR model does
not contain degrees of freedom parameters. For models with constraints on the autoregressive
parameters, the parameter vectors are expressed in a different way. For brevity, they are only
presented in the package documentation, because the hand-specified parameter values can be
set to satisfy any constraints as is.
In addition to the parameter vector, GSMAR should be supplied with arguments p and M specifying
the order of the model similarly to the estimation function fitGSMAR discussed in Sections 3.4
and 3.6. If one wishes to parametrize the model with the regimewise unconditional means (µm)
instead of the intercepts (φm,0), the argument parametrization should be set to "mean" in
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which case the intercept parameters φm,0 are replaced with µm in the parameter vector. By
default, uGMAR uses intercept parametrization.
To exemplify, we build the GMAR p = 2, M = 2 model that is used in the simulation
experiment in Appendix A. The model has intercept parametrization and parameter values
ϑ1 = (0.9, 0.4, 0.2, 0.5), ϑ2 = (0.7, 0.5, −0.2, 0.7), and α1 = 0.7. After building the model, we
use the print method to examine it:

R> params22 <- c(0.9, 0.4, 0.2, 0.5, 0.7, 0.5, -0.2, 0.7, 0.7)
R> mod22 <- GSMAR(p = 2, M = 2, params = params22, model = "GMAR")
R> mod22

Model:
GMAR, p = 2, M = 2, #parameters = 9,
conditional, intercept parametrization, not restricted, no constraints.

Regime 1
Mix weight: 0.70
Reg mean: 2.25

y = [0.90] + [0.40]y.1 + [0.20]y.2 + sqrt[0.50]eps

Regime 2
Mix weight: 0.30
Reg mean: 1.00

y = [0.70] + [0.50]y.1 + [-0.20]y.2 + sqrt[0.70]eps

It is possible to include data in the models built with GSMAR by either providing the data in the
argument data when creating the model or by adding the data afterwards with the function
add_data. When the model is supplied with data, the mixing weights, one-step conditional
means and variances, and quantile residuals can be calculated and included in the model. The
function add_data can also be used to update data to an estimated GSMAR model without
re-estimating the model.

6. Simulation and forecasting

6.1. Simulation

uGMAR implements the S3 method simulate for simulating observations from GSMAR pro-
cesses. The method requires the process to be given as a class gsmar object, which are typically
created either by estimating a model with the function fitGSMAR or by specifying the param-
eter values by hand and building the model with the constructor function GSMAR. The initial
values required to simulate the first p observations can be either set by hand (with the argu-
ment init_values) or drawn from the stationary distribution of the process (by default). The
argument nsim sets the length of the sample path to be simulated.
To give an example, the following code sets the random number generator seed to one and
simulates the 500 observations long sample path that is used in the simulation experiment in
Appendix A from the GMAR process built in Section 5:

R> mysim <- simulate(mod22, nsim = 500, seed = 1)
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Figure 5: The figure created by the predict method for the G-StMAR model fit42gs. Twelve-
months-ahead point prediction for the monthly interest rate spread (top) and the model’s mixing
weights (bottom) together with several preceding observations and prediction intervals with
confidence levels 0.95 (outer interval) and 0.80 (inner interval).

Our implementation of simulate returns a list containing the simulated sample path in $sample,
the mixture component that generated each observation in $component, and the mixing weights
in $mixing_weights.

6.2. Simulation based forecasting

Deriving multiple-steps-ahead point predictions and prediction intervals analytically for the GS-
MAR models is very complicated, so uGMAR employs the following simulation-based method.
By using the last p observations of the data up to the date of forecasting as initial values, a
large number of sample paths for the future values of the process are simulated. Then, sample
quantiles from the simulated sample paths are calculated to obtain prediction intervals, and the
median or mean is used for point predictions. A similar procedure is also applied to forecast
future values of the mixing weights, which might be of interest because the researcher can often
associate specific characteristics to different regimes.
Forecasting is most conveniently done with the predict method. The available arguments
include the number of steps ahead to be predicted (n_ahead), the number sample paths the
forecast is based on (nsimu), possibly multiple confidence levels for prediction intervals (pi),
prediction type (pred_type), and prediction interval type (pi_type). The prediction type
can be either median, mean, or for one-step-ahead forecasts also the exact conditional mean,
cond_mean. The prediction interval type can be any of "two-sided", "upper", "lower", or
"none".
As an example, we use the unrestricted G-StMAR p = 4, M1 = 1, M2 = 1 model fitted to the
monthly interest rate spread in Section 3.4 to forecast the spread 12 months ahead, i.e., for the
year 2021. The point prediction is based on median and 10000 simulated future sample paths,
and the two-sided prediction intervals are calculated for the confidence levels 0.95 and 0.80.

R> set.seed(1)
R> mypred <- predict(fit42gs, n_ahead = 12, nsimu = 10000,
+ pi = c(0.95, 0.8), pred_type = "median", pi_type = "two-sided")
R> mypred
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Prediction by median, two-sided prediction intervals with levels 0.95, 0.8.
Forecast 12 steps ahead, based on 10000 simulations.

0.025 0.1 median 0.9 0.975
1 0.66 0.74 0.87 1.00 1.11
2 0.55 0.66 0.89 1.13 1.32
3 0.46 0.62 0.90 1.23 1.49
4 0.36 0.56 0.91 1.33 1.65
5 0.26 0.49 0.91 1.45 1.83
6 0.17 0.44 0.91 1.55 2.01
7 0.09 0.38 0.91 1.65 2.15
8 0.02 0.34 0.91 1.73 2.26
9 -0.02 0.30 0.92 1.82 2.36
10 -0.05 0.27 0.92 1.89 2.47
11 -0.08 0.25 0.93 1.95 2.58
12 -0.10 0.23 0.93 2.02 2.65

Point forecasts and prediction intervals for mixing weights can be obtained
with $mix_pred and $mix_pred_ints, respectively.

The predict method plots the results by default but this can be also avoided by setting
plot_res = FALSE in the arguments. The results can be plotted afterwards by using the plot
method for the class gsmarpred objects that the predict method returns.
The figure created by the above example is presented in Figure 5. The point forecast does
not predict any significant movements for the spread, but the prediction intervals appear to be
skewed to the right. A possible explanation to the skewed prediction intervals is that at time of
forecasting, the spread takes a value that is closer to the mean of the low-mean first regime than
to the mean of the high-mean second regime. Hence, even if the process proceeds in the first
regime, it does not (on average) move much lower, but switching to the second regime would (on
average) lead to notably larger observations. Also, the forecast for the mixing weights reveals
that after a few months, the high-mean second regime is predicted to become more probable
than than the low-mean first regime, thus, explaining the skewed prediction intervals.

7. Summary
Mixture autoregressive models are useful for analyzing time series that exhibit nonlinear, regime-
switching features. The GMAR model, the StMAR model, and the G-StMAR model constitute
an appealing family of such models, the GSMAR models, with attractive theoretical and prac-
tical properties. This paper introduced the R package uGMAR providing a comprehensive set
of easy-to-use tools for GSMAR modeling, including unconstrained and constrained maximum
likelihood estimation of the model parameters, quantile residual based model diagnostics, sim-
ulation, forecasting, and more. For convenience, we have collected some useful functions in
uGMAR to Table 1.
The model parameters are estimated with the method of maximum likelihood by employing
a two-phase procedure, which uses a genetic algorithm to find starting values for a variable
metric algorithm. Notably, due to the endogenously determined mixing weights, the maximum
likelihood estimate is occasionally found very close to the boundary of the stationarity region
of some regimes. We explained in Appendix A why such estimates might be inappropriate
and showed how a GSMAR model can be built based on an alternative estimate related to the
next-largest local maximum point.
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Computational details
uGMAR takes use of the R package Brobdingnag (Hankin 2007) to handle values extremely close
to zero in the evaluation of the first term of the exact log-likelihood function (8). The package gsl
(Hankin 2006) is utilized to calculate some of the quantile residuals (16) with a hypergeometric
function. In order to improve computational efficiency in the numerical estimation procedure,
the formula proposed by Galbraith and Galbraith (1974) is utilized to directly compute the
inverses of the covariance matrices Γm, m = 1, ..., M , (which appear in (3), (5), (6), and in
the first term of (8)), as only the inverses are required for calculating the quantities in the
log-likelihood function. Finally, the algorithm proposed by Monahan (1984) is employed to
generate random stationary autoregressive coefficients in the genetic algorithm.
Some of the estimation results (and thereby everything that is calculated based on the estimates)
may vary slightly when running the code on different computers. This is due to a small numerical
error in the gradient of the log-likelihood function caused by the limited precision of the floating-
point representation. The negligible numerical error accumulates in each iteration of the variable
metric algorithm, which hence advances in slightly different paths on different computers (with
given initial values). After a large number of iterations, the algorithm might therefore end up
in slightly different points. This particularly occurs when there are StMAR type regimes in
the model, possibly because there are many different pairs of degrees of freedom and variance
parameter values that are relatively close to each other and yield almost the same log-likelihoods.
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A table of some useful functions

Related to Name Description
Estimation fitGSMAR Estimate a GSMAR model.

alt_gsmar Build a GSMAR model based on results
from any estimation round.

stmar_to_gstmar Estimate a G-StMAR model based on a
StMAR (or G-StMAR) model with large
degrees of freedom parameters.

iterate_more Run more iterations of the variable met-
ric algorithm for a preliminary estimated
GSMAR model.

Estimates summary (method) Detailed printout of the estimates.
plot (method) Plot the series with the estimated mixing

weights and a kernel density estimate of
the series with the stationary density of
the model.

get_foc Calculate numerically approximated gra-
dient of the log-likelihood function evalu-
ated at the estimate.

get_soc Calculate eigenvalues of numerically ap-
proximated Hessian of the log-likelihood
function evaluated at the estimate.

profile_logliks Plot the graphs of the profile log-
likelihood functions.

cond_moment_plot Plot the model implied one-step condi-
tional means or variances.

Diagnostics quantile_residual_tests Calculate quantile residual tests.
diagnostic_plot Plot quantile residual diagnostics.
quantile_residual_plot Plot quantile residual time series and his-

togram.
Forecasting predict (method) Forecast future observations and mixing

weights of the process.
Simulation simulate (method) Simulate from a GSMAR process.
Create model GSMAR Construct a GSMAR model based on spe-

cific parameter values.
Hypothesis testing LR_test Calculate likelihood ratio test.

Wald_test Calculate Wald test.
Other add_data Add data to a GSMAR model

swap_parametrization Swap between mean and intercept
parametrizations

Table 1: Some useful functions in uGMAR sorted according to their usage. The note "method"
in parentheses after the name of a function signifies that it is an S3 method for a class gsmar
object (often generated by the function fitGSMAR or GSMAR).
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A. Simulation experiment
This simulation experiment demonstrates why the log-likelihood function’s global maximum
point, that is found very near the boundary of the parameter space, might not be a reasonable
estimate and why it might be more appropriate to consider a local-only maximum point that
is clearly in the interior of the parameter space. We generated 500 observations from a GMAR
p = 2‚ M = 2 process with the parameter values given in the first row of Table 2 (θ) and
initial values generated from the stationary distribution of the process. This model is built
with uGMAR as an example in Section 5, and the sample path is generated as an example in
Section 6.1.
We estimated a GMAR p = 2‚ M = 2 model to the generated sample based on the exact
log-likelihood function by performing 100 estimation rounds using the following code (output
is omitted for brevity):

R> fit22 <- fitGSMAR(mysim$sample, p = 2, M = 2, model = "GMAR",
+ conditional = FALSE, ncalls = 100, ncores = 8, seeds = 1:100)

The obtained estimates are reported on the second row of Table 2 (θ̂1) together with the moduli
of each regime’s AR polynomial’s (1 −

∑p
i=1 φm,iz

i) roots. The modulus of the ith root in the
mth regime is denoted by the symbol ξm,i. The stationarity condition requires that all the
moduli are strictly greater than one, so the second regime is very close to the boundary of the
stationarity region (both roots are approximately 1.000011). Also the variance parameter σ2

2 is
close to its lower bound zero (it is approximately 9 · 10−6).
These estimates produce a large log-likelihood, because the second regime’s very small condi-
tional variance makes the related density function in the term lt(θ) (9) to take large values
near its mean, and the strong conditional mean targets individual observations there. This is
illustrated in Figure 6 (bottom panel), where the terms lt(θ) are presented (green solid line)
together with the second regime’s related weighted densities α2,tn1(yt; µ2,t, σ2

2) (red dotted line).
The black "X"-symbols denote the points where the second regime’s conditional mean deviates
from the corresponding observation by less than 0.005. Evidently, the second regime contributes
to the log-likelihood function only in the individual points where both, the terms lt(θ) and the
scaled densities α2,tn1(yt; µ2,t, σ2

2), take large values due to the observation being close to the
mean of the second regime’s spikelike conditional density function. Because the scaled densities
take large enough values in those individual points, the log-likelihood is larger for this kind of
estimate than for a reasonable estimate.
The top panel of Figure 6 presents the true mixing weights of the GMAR process’s second
regime (black solid line) together with the mixing weights based on the estimate θ̂1 (red dashed
line). As the figure shows, the estimated mixing weights are spiky and have no resemblance to
the true mixing weights. Although the true mixing weights can be spiky for some GSMAR pro-
cesses, spiking mixing weights are also typical for potentially inappropriate near-the-boundary
estimates.
This kind of near-the-boundary estimates are often found when a subset of the regimes explains
the variation in the series reasonably well, leaving some of the regimes available for targeting
individual observations with very small conditional variance and very strong conditional mean.
As such estimates seem to maximize the log-likelihood function for a technical reason, and
not necessarily because they represent a good guess for the true parameter value, it might
be appropriate to consider an alternative estimate related to the next-largest local maximum
point. To exemplify, we build a model based on the largest local maximum point that is clearly
in the interior of the parameter space. In our estimation based on 100 rounds of the two-phase
procedure, such an estimate is found at the point that induced the third largest log-likelihood,
and it is obtained as follows:
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φ1,0 φ1,1 φ1,2 σ2
1 φ2,0 φ2,1 φ2,2 σ2

2 α1 ξ1,1 ξ1,2 ξ2,1 ξ2,2
θ 0.90 0.40 0.20 0.50 0.70 0.50 −0.20 0.70 0.70 1.45 3.45 2.24 2.24
θ̂1 0.58 0.56 0.10 0.61 7.85 −1.67 −1.00 0.00 0.99 1.42 6.86 1.00 1.00
θ̂2 1.16 0.39 0.08 0.54 0.77 0.35 −0.17 0.53 0.63 1.86 6.90 2.42 2.42

Table 2: On the first row, the true parameter values of the GMAR p = 2, M = 2 process that
generated the sample path used in the simulation experiment. On the second row, the estimates
that maximized the log-likelihood function based 100 estimation rounds. On the third row, the
estimates from the largest such log-likelihood function’s maximum point that is not very near
the boundary of the stationarity region. In each row after the estimates or parameter values,
the moduli of the related AR polynomial’s roots are presented.

Figure 6: On the top, the GMAR p = 2, M = 2 process’s second regime’s true mixing weights
(black solid line), the mixing weights based on the estimate θ̂1 in the second row of Table 2
(red dashed line), and the mixing weights based on the estimate θ̂2 in the third row of Table 2
(blue dashed line). On the bottom, the terms (9) from the second term of the log-likelihood
function (8) (green solid line) and the second regime’s densities in the terms (9) multiplied
by the estimated mixing weights (blue dotted line), i.e., α2,tn1(yt; µ2,t, σ2

2), both based on the
estimate θ̂1. The "X"-symbols denote the points where the second regime’s conditional mean
for the model based on estimate θ̂1 deviates from the corresponding observation by less than
0.005.
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R> fit22_alt <- alt_gsmar(fit22, which_largest = 3)

The corresponding estimate is presented on the third row of Table 2 (θ̂2). This local maximum
point is substantially closer to the true parameter value in the second regime. The resemblance
to the true parameter value is also highlighted in Figure 6 (top panel), where the second regime’s
estimated mixing weights (blue dashed line) are presented together with the true mixing weights
(black solid line).
Finally, observe that the estimate θ̂1 presented in Table 2 is not the accurate maximum likeli-
hood estimate, which can be noticed by examining graphs of the related profile log-likelihood
functions with the command profile_logliks(fit22) (not shown). The numerical estimation
using numerical approximation for the gradient of the log-likelihood function can be inaccurate
near the boundary of a multidimensional parameter space subject to several constraints. Conse-
quently, other similar near-the-boundary points that induce larger log-likelihood than θ̂1 can be
found by running more estimation rounds. It should also be noted that sometimes the estimate
is near the boundary of the stationarity region because the series is very persistent, and being
near the boundary does not hence necessarily imply that the MLE is inappropriate.

B. Closed form expressions of quantile residuals
This section derives closed form expressions for the quantile residuals utilized by uGMAR and
discussed in Section 4. For the GSMAR models, the quantile residuals are defined as

Rt = Φ−1(F (yt|Ft−1)), t = 1, 2, ..., T, (19)

where Φ−1(·) is the standard normal quantile function,

F (yt|Ft−1) =
M∑

m=1
αm,t

∫ yt

−∞
fm(ut|Ft−1)dut (20)

is the conditional cumulative distribution function of the considered GSMAR process (condi-
tional on the previous observations), and fm(·|Ft−1) is the conditional density function of the
mth component process. To find a closed form expression for the quantile residuals defined in
(19) and (20), it therefore suffices to solve the integrals

∫ yt
−∞ fm(ut|Ft−1)dut, m = 1, ..., M , for

GMAR type and StMAR type mixture components.
In the case of a GMAR type component, the conditional density function is the Gaussian density
function with mean µm,t and variance σ2

m. For m ≤ M1 in (20), we therefore have∫ yt

−∞
fm(ut|Ft−1)dut =

∫ yt

−∞
n1(ut; µm,t, σ2

m)dut = Φ
(

ut − µm,t

σm

)
, (21)

where Φ(·) is the standard normal cumulative distribution function.
In the case of a StMAR type component, the conditional density function is the Student’s t
density function with mean µm,t, variance σ2

m,t, and νm + p degrees of freedom given as (Meitz
et al. 2023, Appendix A)

t1(ut; µm,t, σ2
m,t, νm + p) =

Γ
(

1+νm+p
2

)
√

π(νm + p − 2)Γ
(

νm+p
2

)σ−1
m,t

(
1 + (ut − µm,t)2

(νm + p − 2)σ2
m,t

)−(1+νm+p)/2

(22)
where Γ (·) is the gamma function. Taking use of the symmetry of the Student’s t distribution
about its mean µm,t, we obtain∫ yt

−∞
fm(ut|Ft−1)dut = 1

2 +
∫ yt

µm,t

t1(ut; µm,t, σ2
m,t, νm + p)dut. (23)
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By applying the change of variables ũm,t ≡ ut − µm,t in the integral, the right side of (23) can
be expressed as

1
2 +

Γ
(

1+νm+p
2

)
√

π(νm + p − 2)Γ
(

νm+p
2

)σ−1
m,t

∫ ỹm,t

0

(
1 +

ũ2
m,t

am,t

)−bm

dũm,t, (24)

where ỹm,t ≡ yt − µm,t, am,t ≡ (νm + p − 2)σ2
m,t, and bm ≡ (1 + νm + p)/2. Then, by applying

the change of variables zm,t ≡ ũ2
m,t/ỹm,t, we can express the integral in the expression (24) as

∫ ỹm,t

0

(
1 +

ũ2
m,t

am,t

)−bm

dũm,t = 1
2

∫ ỹm,t

0

(
ỹm,t

zm,t

)1/2(
1 + zm,tỹm,t

am,t

)−bm

dzm,t. (25)

By applying the third change of variables xm,t ≡ zm,t/ỹm,t and using the properties of the
gamma function, the right side of (25) can be expressed using a hypergeometric function as

ỹm,t

2

∫ 1

0
x

−1/2
m,t

(
1 − xm,t

(
−

ỹ2
m,t

am,t

))−bm

dxm,t = ỹm,t × 2F1

(
1
2 , bm,

3
2; −

ỹ2
m,t

am,t

)
, (26)

where the hypergeometric function is defined as (Aomoto and Kita 2011, Section 1.3.1)

2F1 (a, b, c; x) = Γ(c)
Γ(a)Γ(c − a)

∫ 1

0
sa−1(1 − s)c−a−1(1 − sx)−bds, (27)

when |x| < 1, a > 0, and c − a > 0 (when a, c ∈ R).
Using the above result, we have

∫ yt

−∞
fm(ut|Ft−1) = 1

2 +
Γ
(

1+νm+p
2

)
√

π(νm + p − 2)Γ
(

νm+p
2

)σ−1
m,tỹm,t × 2F1

(
1
2 , bm,

3
2; −

ỹ2
m,t

am,t

)
(28)

for m > M1, whenever
∣∣∣∣− ỹ2

m,t

am,t

∣∣∣∣ < 1. That is, the closed form expression (28) exists when

|yt − µm,t| <
√

(νm + p − 2)σ2
m,t. (29)

If this condition does not hold, uGMAR calculates the quantile residual by numerically inte-
grating the conditional density function fm(·|Ft−1).
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