
Package: ttutils (via r-universe)
September 2, 2024

Version 1.0-1.1

Date 2009-06-18

Title Utility Functions

Author Thorn Thaler <thorn.thaler@thothal.com>

Maintainer Thorn Thaler <thorn.thaler@thothal.com>

Description Contains some auxiliary functions.

License GPL-2

Repository CRAN

Date/Publication 2022-04-04 09:25:58 UTC

NeedsCompilation no

Contents
ttutils-package . 1
check . 2
interval . 3
isInteger . 4
merge.list . 6
plotAndSave . 7

Index 9

ttutils-package Utility Functions

Description

The package ttutils contains some auxiliary functions.

See section ‘Index’ for a list of exported functions. Section ‘Internals’ lists the internal functions of
the package, which are not exported but may be referenced by ttutils:::.functionName.

1

2 check

Details

Version: 1.0-1
Date: 2009-06-18
License: GPL-2
Built: R 2.8.1; ; 2009-06-22 15:18:40; unix

Index

check : Generic function to check the validity of a given object
interval : Interval class
isInteger : Test for integrity
liesWithin : Test for interval coverage
merge.list : Merge two lists
plotAndSave : Display and save a plot

Internals

.parseRelation : Parse a relation symbol and return the result of the comparison
.saveDevice : Save a plot on a given device

Author(s)

Thorn Thaler <thorn.thaler@thothal.com>

Maintainer: Thorn Thaler <thorn.thaler@thothal.com>

check Check Objects

Description

check is a generic function that tests the validity of a given object.

Usage

check(object, ...)

interval 3

Arguments

object an object to be tested for validity.

... further arguments to be passed to the particular dispatched function.

Details

check tests if a given object meets the formal requirements of being a valid object of its class. If
the test fails, additional warnings should be provided, giving some information why the test failed.

Value

returns TRUE if object passes the validity test for the specific class and FALSE otherwise.

Note

R’s dispatching mechanism determines the class of a given object and then calls the function
check.<class-name>. If no specific check function is found, check.default is called. The
function check.default does not make much sense, for the purpose of check is to test the validity
for a specific class. Hence, check.default simply returns FALSE together with a warning message
that no specific check.<class-name> function was found.

The dispatching mechanism has immediately two consequences:

1. a class specific check routine need not to check whether the object belongs to the class itself,
because if it would not, the function would not have been called.

2. if no specific check routine is found, the result for a call of check will be FALSE, since in this
case the default function is called which will return FALSE in any case.

Author(s)

Thorn Thaler

interval Interval Class

Description

interval constructs an object of class interval representing an interval.

liesWithin checks if a number lies within a given interval.

Usage

interval(lower, upper, left=c(">=", ">"), right=c("<=", "<"))

liesWithin(x, int)

4 isInteger

Arguments

lower the lower boundary of the interval. Can be set to -Inf.

upper the upper boundary of the interval. Can be set to Inf.

left, right a comparison symbol. Must be one of (“>=”, “>”) for left and (“<=”, “<”) for
right, respectively. Determines whether the boundary values are included in
the interval or not. The default is “>=” and “<=”, respectively.

x a numeric vector or array giving the numbers to be checked.

int an interval object.

Value

interval returns an object of class interval containing the following components:

lower the lower boundary of the interval

upper the upper boundary of the interval

left the left comparison operator

right the right comparison operator

liesWithin returns TRUE if the given number lies within the interval and FALSE otherwise.

Author(s)

Thorn Thaler

Examples

i <- interval(-3, 3, left=">")

liesWithin(-3:5, i)

isInteger Test For Integrity

Description

isInteger tests if a given number is an integer.

Usage

isInteger(n, tol = .Machine$double.eps)

Arguments

n a vector or an array of values to be tested.

tol a numeric value giving the tolerance level.

isInteger 5

Details

As opposed to is.integer this function tests for integrity of a given value, rather than being of
type integer.

In R integers are specified by the suffix L (e.g. 1L), whereas all other numbers are of class numeric
independent of their value. The function is.integer does not test whether a given variable has an
integer value, but whether it belongs to the class integer.

In contrast, the function isInteger compares the difference between its argument and its rounded
argument. If it is smaller than some predefined tolerance level, the variable is regarded as integer.

Value

TRUE if the argument n has an integer value, FALSE otherwise.

Note

The R function c concatenates its argument and forms a vector. In doing so, it coerces the values
to a common type. Hence, attention has to be paid, because isInteger may give some unexpected
results in this case. The R command list, however, does not coerce its arguments (see the exam-
ple).

Author(s)

Thorn Thaler

See Also

is.integer

Examples

isInteger tests if the _value_ of a variable is an integer
'c' as opposed to 'list' coerces its arguments!
isInteger(c("test", 1, 2, 2.1)) # FALSE FALSE FALSE FALSE
isInteger(list("test", 1, 2, 2.1)) # FALSE TRUE TRUE FALSE

class(1L) # integer
typeof(1L) # integer
class(1) # numeric
typeof(1) # double

is.integer tests if the _class_ of a variable is 'integer'
is.integer(c("test", 1, 2)) # FALSE
is.integer(list("test", 1, 2)) # FALSE
is.integer(1) # FALSE
is.integer(1L) # TRUE

6 merge.list

merge.list Merge Two Lists

Description

merge.list merges two lists. If there are identical names in both lists, only the elements of the
first list are considered.

Usage

S3 method for class 'list'
merge(x, y = NULL, mergeUnnamed = TRUE, ...)

Arguments

x a list of possibly named elements. All of these are in the merged list.

y a list of possibly named elements or any object, which can be coerced to list.
If an element has a name occuring also in the argument x, it will not be included
in the merged list to avoid duplicate names. If NULL, x is returned.

mergeUnnamed logical. If TRUE (the default) unnamed elements in the second list are always
included.

... arguments to be passed to or from methods.

Details

The purpose of this function is to merge two lists (e.g. argument lists). If a named element is found
as well in the first list as in the second, only the value of the element in the first list is considered.
One can think of the second list as a list of default values, which should be considered only if they
are not set explicitly in the first list.

Unnamed elements in y are included in the merged list only if mergeUnnamed is TRUE.

Value

a list containing all elements of the argument x and those of y having names not occuring in x.

Author(s)

Thorn Thaler

Examples

merge(list(a=1, b="test"), list(3, b=2)) # list(a=1, b="test", 3)
merge(list(1), "test") # list(1, "test")
merge(list(1), "test", FALSE) # list(1)
merge(list(1)) # list(1)
merge(list(1, a=2, b=3), list(2, b=4)) # list(1, a=2, b=3, 2)
merge(list(1), list(2, b=3), FALSE) # list(1, b=3)

plotAndSave 7

a <- list(1, 2, 3)
b <- list("a", "b", "c")
names(a)[2] <- names(b)[2] <- "z"
all.equal(merge(a, b), list(1, z=2, 3, "a", "c")) # TRUE

plotAndSave Display And Save A Plot

Description

plotAndSave saves a plot as “pdf”, “(e)ps”, “jp(e)g”, “png”, “bmp”, “tiff”, “emf” and/or “wmf”
and additionally displays the plot.

Usage

plotAndSave(plot.func, plot.name, ..., folder=getwd(),
format=c("eps", "pdf"),
options=list(eps = list(onefile=TRUE, horizontal=FALSE,

paper="special",
width=7, height=7),

ps = list(onefile=TRUE, horizontal=FALSE,
paper="special",
width=7, height=7),

pdf = list(onefile=TRUE)),
do.plot=TRUE, do.return=do.plot)

Arguments

plot.func either a function or a non-empty character string naming the plotting function to
be called.

plot.name a character string (without any suffix such as “.pdf” or “.eps”) giving the name
of the file where the plot should be saved to.

... additional arguments to be passed to the plotting function.

folder a character string giving the name of the folder to which the plot should be saved.
The default is the current directory.

format output format. Must be a subset of (“pdf”, “(e)ps”, “jp(e)g”, “png”, “bmp”,
“tiff”, “emf”, “wmf”). The latter two can be used only on with a Windows OS.
The default is to produce both an eps-file and a pdf-file. Can be abbreviated.

options named list of options to be passed to the respective device driver. Each entry of
the list is an option list for the device corresponding to the name of the list item.

do.plot logical. If TRUE (the default) the plot is displayed.

do.return logical. If TRUE the return value of the plotting function is returned. Defaults to
the value of the parameter do.plot.

8 plotAndSave

Details

The purpose of this function is to produce a plot on the monitor and to save it to a file simultaneously.

The file name must be given without any file-suffix. Depending on the argument format the func-
tion then generates the respective file with the appropriate suffix. The path should not be included
in the file name, since the location where the files should be saved to is controlled by the parameter
folder.

The function needs a plotting function to be defined, which actually does the plotting itself. Addi-
tional arguments (e.g. further graphical parameters) can be passed to plotAndSave, which in turn,
passes these arguments down to the plotting function,

The parameters of devices are controlled by the arguments options.

Value

the return value of the plotting function.

Note

When using Trellis plots from package lattice one has to assure that the plotting function actually
does the plotting. Since the default behaviour of Trellis plots is just to return the Trellis object, one
should wrap the call to the particular lattice function in a call of the function print. The generic
function print ensures that the plot is displayed and not just returned as an object.

Author(s)

Thorn Thaler

See Also

pdf, postscript, jpeg, png, bmp, tiff

Examples

Not run:
Plotting Function
For 'lattice' graphics:
WRONG:
f <- function(x, ...) xyplot(x~sin(x), ...)
CORRECT:
f <- function(x, ...) print(xyplot(x~sin(x), ...))

f <- function(x, ...) plot(x, sin(x), col=2, type="l", ...)

Save the plot as "Sine_Function.pdf" in the current folder
and add a title to the plot

plotAndSave(f, "Sine_Function", x=seq(-pi, pi, length=100),
main="Sine-Function", format="pd")

End(Not run)

Index

∗ package
ttutils-package, 1

bmp, 8

c, 5
check, 2, 2

integer, 5
interval, 2, 3
is.integer, 5
isInteger, 2, 4

jpeg, 8

liesWithin, 2
liesWithin (interval), 3
list, 5

merge.list, 2, 6

numeric, 5

pdf, 8
plotAndSave, 2, 7
png, 8
postscript, 8

tiff, 8
ttutils (ttutils-package), 1
ttutils-package, 1

9

	ttutils-package
	check
	interval
	isInteger
	merge.list
	plotAndSave
	Index

