
Package: tree (via r-universe)
November 1, 2024

Title Classification and Regression Trees

Version 1.0-43

Date 2023-01-31

Depends R (>= 3.6.0), grDevices, graphics, stats

Suggests MASS

Description Classification and regression trees.

License GPL-2 | GPL-3

NeedsCompilation yes

Author Brian Ripley [aut, cre]

Maintainer Brian Ripley <ripley@stats.ox.ac.uk>

Repository CRAN

Date/Publication 2023-02-05 13:05:41 UTC

Contents
cv.tree . 2
deviance.tree . 3
misclass.tree . 3
na.tree.replace . 4
partition.tree . 5
plot.tree . 6
plot.tree.sequence . 7
predict.tree . 8
prune.tree . 9
snip.tree . 11
text.tree . 12
tile.tree . 13
tree . 14
tree.control . 16
tree.screens . 17

Index 19

1

2 cv.tree

cv.tree Cross-validation for Choosing Tree Complexity

Description

Runs a K-fold cross-validation experiment to find the deviance or number of misclassifications as a
function of the cost-complexity parameter k.

Usage

cv.tree(object, rand, FUN = prune.tree, K = 10, ...)

Arguments

object An object of class "tree".

rand Optionally an integer vector of the length the number of cases used to create
object, assigning the cases to different groups for cross-validation.

FUN The function to do the pruning.

K The number of folds of the cross-validation.

... Additional arguments to FUN.

Value

A copy of FUN applied to object, with component dev replaced by the cross-validated results from
the sum of the dev components of each fit.

Author(s)

B. D. Ripley

See Also

tree, prune.tree

Examples

data(cpus, package="MASS")
cpus.ltr <- tree(log10(perf) ~ syct + mmin + mmax + cach

+ chmin + chmax, data=cpus)
cv.tree(cpus.ltr, , prune.tree)

deviance.tree 3

deviance.tree Extract Deviance from a Tree Object

Description

Extract deviance from a tree object.

Usage

S3 method for class 'tree'
deviance(object, detail = FALSE, ...)

Arguments

object an object of calls "tree"

detail logical. If true, returns a vector of deviance contributions from each node.

... arguments to be passed to or from other methods.

Value

The overall deviance, or a vector of contributions from the cases at each node. The overall deviance
is the sum over leaves in the latter case.

misclass.tree Misclassifications by a Classification Tree

Description

Report the number of mis-classifications made by a classification tree, either overall or at each node.

Usage

misclass.tree(tree, detail = FALSE)

Arguments

tree Object of class "tree", representing a classification tree.

detail If false, report overall number of mis-classifications. If true, report the number
at each node.

Details

The quantities returned are weighted by the observational weights if these are supplied in the con-
struction of tree.

4 na.tree.replace

Value

Either the overall number of misclassifications or the number for each node.

Author(s)

B. D. Ripley

See Also

tree

Examples

ir.tr <- tree(Species ~., iris)
misclass.tree(ir.tr)
misclass.tree(ir.tr, detail=TRUE)

na.tree.replace Replace NAs in Predictor Variables

Description

Adds a new level called "NA" to any discrete predictor in a data frame that contains NAs. Stops if
any continuous predictor contains an NA.

Usage

na.tree.replace(frame)

Arguments

frame data frame used to grow a tree.

Details

This function is used via the na.action argument to tree.

Value

data frame such that a new level named "NA" is added to any discrete predictor in frame with NAs.

See Also

tree, na.omit.

partition.tree 5

partition.tree Plot the Partitions of a simple Tree Model

Description

Plot the partitions of a tree involving one or two variables.

Usage

partition.tree(tree, label = "yval", add = FALSE, ordvars, ...)

Arguments

tree A object of class "tree".

label A character string giving the column of the frame component of tree to be used
to label the regions.

add If true, add to existing plot, otherwise start a new plot.

ordvars The ordering of the variables to be used in a 2D plot. Specify the names in a
character string of length 2; the first will be used on the x axis.

... Graphical parameters.

Details

This can be used with a regression or classification tree containing one or two continuous predictors
(only).

If the tree contains one predictor, the predicted value (a regression tree) or the probability of the
first class (a classification tree) is plotted against the predictor over its range in the training set.

If the tree contains two predictors, a plot is made of the space covered by those two predictors and
the partition made by the tree is superimposed.

Value

None.

Author(s)

B. D. Ripley

See Also

tree

6 plot.tree

Examples

ir.tr <- tree(Species ~., iris)
ir.tr
ir.tr1 <- snip.tree(ir.tr, nodes = c(12, 7))
summary(ir.tr1)
par(pty = "s")
plot(iris[, 3],iris[, 4], type="n",

xlab="petal length", ylab="petal width")
text(iris[, 3], iris[, 4], c("s", "c", "v")[iris[, 5]])
partition.tree(ir.tr1, add = TRUE, cex = 1.5)

1D example
ir.tr <- tree(Petal.Width ~ Petal.Length, iris)
plot(iris[,3], iris[,4], type="n", xlab="Length", ylab="Width")
partition.tree(ir.tr, add = TRUE, cex = 1.5)

plot.tree Plot a Tree Object

Description

Plot a tree object on the current graphical device

Usage

S3 method for class 'tree'
plot(x, y = NULL, type = c("proportional", "uniform"), ...)

Arguments

x an object of class "tree".
y ignored. Used for positional matching of type.
type character string. If this partially matches "uniform", the branches are of uni-

form length. Otherwise they are proportional to the decrease in impurity.
... graphical parameters.

Value

An (invisible) list with components x and y giving the coordinates of the tree nodes.

As a side effect, the value of type == "uniform" is stored in the variable .Tree.unif.? in the
global environment, where ? is the device number.

Author(s)

B. D. Ripley

See Also

tree

plot.tree.sequence 7

plot.tree.sequence Plot a Tree Sequence

Description

Allows the user to plot a tree sequence.

Usage

S3 method for class 'tree.sequence'
plot(x, ..., type = "l", ylim = range(x$dev),

order = c("increasing", "decreasing"))

Arguments

x object of class tree.sequence. This is assumed to be the result of some func-
tion that produces an object with the same named components (size, deviance,
k) as that returned by prune.tree.

order of size on the plot. Use "decreasing" for the natural ordering of k and the
amount of pruning. Only the first character is needed.

type, ylim, ... graphical parameters.

Details

This function is a method for the generic function plot() for class tree.sequence. It can be in-
voked by calling plot(x) for an object x of the appropriate class, or directly by calling plot.tree.sequence(x)
regardless of the class of the object.

Side Effects

Plots deviance or number of misclassifications (or total loss) versus size for a sequence of trees.

Examples

data(cpus, package="MASS")
cpus.ltr <- tree(log(perf) ~ syct + mmin + mmax + cach + chmin + chmax,

data = cpus)
plot(prune.tree(cpus.ltr))

8 predict.tree

predict.tree Predictions from a Fitted Tree Object

Description

Returns a vector of predicted responses from a fitted tree object.

Usage

S3 method for class 'tree'
predict(object, newdata = list(),

type = c("vector", "tree", "class", "where"),
split = FALSE, nwts, eps = 1e-3, ...)

Arguments

object fitted model object of class tree. This is assumed to be the result of some func-
tion that produces an object with the same named components as that returned
by the tree function.

newdata data frame containing the values at which predictions are required. The predic-
tors referred to in the right side of formula(object) must be present by name
in newdata. If missing, fitted values are returned.

type character string denoting whether the predictions are returned as a vector (de-
fault) or as a tree object.

split governs the handling of missing values. If false, cases with missing values are
dropped down the tree until a leaf is reached or a node for which the attribute is
missing, and that node is used for prediction. If split = TRUE cases with missing
attributes are split into fractional cases and dropped down each side of the split.
The predicted values are averaged over the fractions to give the prediction.

nwts weights for the newdata cases, used when predicting a tree.

eps a lower bound for the probabilities, used if events of predicted probability zero
occur in newdata when predicting a tree.

... further arguments passed to or from other methods.

Details

This function is a method for the generic function predict() for class tree. It can be invoked by
calling predict(x) for an object x of the appropriate class, or directly by calling predict.tree(x)
regardless of the class of the object.

Value

If type = "vector": vector of predicted responses or, if the response is a factor, matrix of predicted
class probabilities. This new object is obtained by dropping newdata down object. For factor
predictors, if an observation contains a level not used to grow the tree, it is left at the deepest
possible node and frame$yval or frame$yprob at that node is the prediction.

prune.tree 9

If type = "tree": an object of class "tree" is returned with new values for frame$n and frame$dev.
If newdata does not contain a column for the response in the formula the value of frame$dev will
be NA, and if some values in the response are missing, the some of the deviances will be NA.

If type = "class": for a classification tree, a factor of the predicted classes (that with highest
posterior probability, with ties split randomly).

If type = "where": the nodes the cases reach.

References

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge University Press,
Cambridge. Chapter 7.

See Also

predict, tree.

Examples

data(shuttle, package="MASS")
shuttle.tr <- tree(use ~ ., shuttle, subset=1:253,

mindev=1e-6, minsize=2)
shuttle.tr
shuttle1 <- shuttle[254:256,] # 3 missing cases
predict(shuttle.tr, shuttle1)

prune.tree Cost-complexity Pruning of Tree Object

Description

Determines a nested sequence of subtrees of the supplied tree by recursively “snipping” off the least
important splits.

Usage

prune.tree(tree, k = NULL, best = NULL, newdata, nwts,
method = c("deviance", "misclass"), loss, eps = 1e-3)

prune.misclass(tree, k = NULL, best = NULL, newdata,
nwts, loss, eps = 1e-3)

Arguments

tree fitted model object of class tree. This is assumed to be the result of some func-
tion that produces an object with the same named components as that returned
by the tree() function.

10 prune.tree

k cost-complexity parameter defining either a specific subtree of tree (k a scalar)
or the (optional) sequence of subtrees minimizing the cost-complexity measure
(k a vector). If missing, k is determined algorithmically.

best integer requesting the size (i.e. number of terminal nodes) of a specific subtree
in the cost-complexity sequence to be returned. This is an alternative way to
select a subtree than by supplying a scalar cost-complexity parameter k. If there
is no tree in the sequence of the requested size, the next largest is returned.

newdata data frame upon which the sequence of cost-complexity subtrees is evaluated. If
missing, the data used to grow the tree are used.

nwts weights for the newdata cases.

method character string denoting the measure of node heterogeneity used to guide cost-
complexity pruning. For regression trees, only the default, deviance, is ac-
cepted. For classification trees, the default is deviance and the alternative is
misclass (number of misclassifications or total loss).

loss a matrix giving for each true class (row) the numeric loss of predicting the class
(column). The classes should be in the order of the levels of the response. It is
conventional for a loss matrix to have a zero diagonal. The default is 0–1 loss.

eps a lower bound for the probabilities, used to compute deviances if events of pre-
dicted probability zero occur in newdata.

Details

Determines a nested sequence of subtrees of the supplied tree by recursively "snipping" off the least
important splits, based upon the cost-complexity measure. prune.misclass is an abbreviation for
prune.tree(method = "misclass") for use with cv.tree.

If k is supplied, the optimal subtree for that value is returned.

The response as well as the predictors referred to in the right side of the formula in tree must
be present by name in newdata. These data are dropped down each tree in the cost-complexity
sequence and deviances or losses calculated by comparing the supplied response to the prediction.
The function cv.tree() routinely uses the newdata argument in cross-validating the pruning pro-
cedure. A plot method exists for objects of this class. It displays the value of the deviance, the
number of misclassifications or the total loss for each subtree in the cost-complexity sequence. An
additional axis displays the values of the cost-complexity parameter at each subtree.

Value

If k is supplied and is a scalar, a tree object is returned that minimizes the cost-complexity measure
for that k. If best is supplied, a tree object of size best is returned. Otherwise, an object of class
tree.sequence is returned. The object contains the following components:

size number of terminal nodes in each tree in the cost-complexity pruning sequence.

deviance total deviance of each tree in the cost-complexity pruning sequence.

k the value of the cost-complexity pruning parameter of each tree in the sequence.

snip.tree 11

Examples

data(fgl, package="MASS")
fgl.tr <- tree(type ~ ., fgl)
print(fgl.tr); plot(fgl.tr)

fgl.cv <- cv.tree(fgl.tr,, prune.tree)
for(i in 2:5) fgl.cv$dev <- fgl.cv$dev +

cv.tree(fgl.tr,, prune.tree)$dev
fgl.cv$dev <- fgl.cv$dev/5
plot(fgl.cv)

snip.tree Snip Parts of Tree Objects

Description

snip.tree has two related functions. If nodes is supplied, it removes those nodes and all their
descendants from the tree.

If nodes is not supplied, the user is invited to select nodes interactively; this makes sense only if the
tree has already been plotted. A node is selected by clicking with the left mouse button; its number
and the deviance of the current tree and that which would remain if that node were removed are
printed. Selecting the same node again causes it to be removed (and the lines of its sub-tree erased).
Clicking any other button terminates the selection process.

Usage

snip.tree(tree, nodes, xy.save = FALSE,
digits = getOption("digits") - 3)

Arguments

tree An object of class "tree".

nodes An integer vector giving those nodes that are the roots of sub-trees to be snipped
off. If missing, the user is invited to select a node at which to snip.

xy.save If true, the x and y coordinates selected interactively are saved as attribute .xy
of the returned value.

digits Precision used in printing statistics for selected nodes.

Value

A tree object containing the nodes that remain after specified or selected subtrees have been snipped
off.

Note

Prior to version 1.0-34, the saved coordinates were place in object .xy in the workspace.

12 text.tree

Author(s)

B. D. Ripley

See Also

tree, prune.tree.

text.tree Annotate a Tree Plot

Description

Add text to a tree plot.

Usage

S3 method for class 'tree'
text(x, splits = TRUE, label = "yval", all = FALSE,

pretty = NULL, digits = getOption("digits") - 3,
adj = par("adj"), xpd = TRUE, ...)

Arguments

x an object of class "tree"

splits logical. If TRUE the splits are labelled

label The name of column in the frame component of x, to be used to label the nodes.
Can be NULL to suppress node-labelling

all logical. By default, only the leaves are labelled, but if true interior nodes are
also labelled.

pretty the manipulation used for split labels involving attributes. See Details.

digits significant digits for numerical labels.

adj, xpd, ... graphical parameters such as cex and font.

Details

If pretty = 0 then the level names of a factor split attributes are used unchanged. If pretty = NULL,
the levels are presented by a, b, . . . z, 0 . . .5. If pretty is a positive integer, abbreviate is applied
to the labels with that value for its argument minlength.

If the lettering is vertical (par srt = 90) and adj is not supplied it is adjusted appropriately.

Value

None.

tile.tree 13

Author(s)

B. D. Ripley

See Also

plot.tree

Examples

ir.tr <- tree(Species ~., iris)
plot(ir.tr)
text(ir.tr)

tile.tree Add Class Barcharts to a Classification Tree Plot

Description

This computes the frequencies of level of var for cases reaching each leaf of the tree, and plots
barcharts of the set of frequencies underneath each leaf.

Usage

tile.tree(tree, var, screen.arg = ascr + 1, axes = TRUE)

Arguments

tree fitted object of class "tree".

var a factor variable to be displayed: by default it is the response factor of the tree.

screen.arg The screen to be used: default the next after the currently active screen.

axes logical flag for drawing of axes for the barcharts.

Value

A matrix of counts of categories (rows) for each leaf (columns). The principal effect is the plot.

Author(s)

B. D. Ripley

See Also

tree.screens

14 tree

Examples

data(fgl, package="MASS")
fgl.tr <- tree(type ~ ., fgl)
summary(fgl.tr)
plot(fgl.tr); text(fgl.tr, all=TRUE, cex=0.5)
fgl.tr1 <- snip.tree(fgl.tr, node=c(108, 31, 26))
tree.screens()
plot(fgl.tr1)
text(fgl.tr1)
tile.tree(fgl.tr1, fgl$type)
close.screen(all = TRUE)

tree Fit a Classification or Regression Tree

Description

A tree is grown by binary recursive partitioning using the response in the specified formula and
choosing splits from the terms of the right-hand-side.

Usage

tree(formula, data, weights, subset,
na.action = na.pass, control = tree.control(nobs, ...),
method = "recursive.partition",
split = c("deviance", "gini"),
model = FALSE, x = FALSE, y = TRUE, wts = TRUE, ...)

Arguments

formula A formula expression. The left-hand-side (response) should be either a numeri-
cal vector when a regression tree will be fitted or a factor, when a classification
tree is produced. The right-hand-side should be a series of numeric or factor
variables separated by +; there should be no interaction terms. Both . and - are
allowed: regression trees can have offset terms.

data A data frame in which to preferentially interpret formula, weights and subset.

weights Vector of non-negative observational weights; fractional weights are allowed.

subset An expression specifying the subset of cases to be used.

na.action A function to filter missing data from the model frame. The default is na.pass
(to do nothing) as tree handles missing values (by dropping them down the tree
as far as possible).

control A list as returned by tree.control.

method character string giving the method to use. The only other useful value is "model.frame".

split Splitting criterion to use.

tree 15

model If this argument is itself a model frame, then the formula and data arguments
are ignored, and model is used to define the model. If the argument is logical
and true, the model frame is stored as component model in the result.

x logical. If true, the matrix of variables for each case is returned.

y logical. If true, the response variable is returned.

wts logical. If true, the weights are returned.

... Additional arguments that are passed to tree.control. Normally used for
mincut, minsize or mindev.

Details

A tree is grown by binary recursive partitioning using the response in the specified formula and
choosing splits from the terms of the right-hand-side. Numeric variables are divided into X < a
and X > a; the levels of an unordered factor are divided into two non-empty groups. The split
which maximizes the reduction in impurity is chosen, the data set split and the process repeated.
Splitting continues until the terminal nodes are too small or too few to be split.

Tree growth is limited to a depth of 31 by the use of integers to label nodes.

Factor predictor variables can have up to 32 levels. This limit is imposed for ease of labelling, but
since their use in a classification tree with three or more levels in a response involves a search over
2(k−1) − 1 groupings for k levels, the practical limit is much less.

Value

The value is an object of class "tree" which has components

frame A data frame with a row for each node, and row.names giving the node num-
bers. The columns include var, the variable used at the split (or "<leaf>" for
a terminal node), n, the (weighted) number of cases reaching that node, dev the
deviance of the node, yval, the fitted value at the node (the mean for regression
trees, a majority class for classification trees) and split, a two-column matrix
of the labels for the left and right splits at the node. Classification trees also have
yprob, a matrix of fitted probabilities for each response level.

where An integer vector giving the row number of the frame detailing the node to which
each case is assigned.

terms The terms of the formula.

call The matched call to Tree.

model If model = TRUE, the model frame.

x If x = TRUE, the model matrix.

y If y = TRUE, the response.

wts If wts = TRUE, the weights.

and attributes xlevels and, for classification trees, ylevels.

A tree with no splits is of class "singlenode" which inherits from class "tree".

16 tree.control

Author(s)

B. D. Ripley

References

Breiman L., Friedman J. H., Olshen R. A., and Stone, C. J. (1984) Classification and Regression
Trees. Wadsworth.

Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge University Press, Cam-
bridge. Chapter 7.

See Also

tree.control, prune.tree, predict.tree, snip.tree

Examples

data(cpus, package="MASS")
cpus.ltr <- tree(log10(perf) ~ syct+mmin+mmax+cach+chmin+chmax, cpus)
cpus.ltr
summary(cpus.ltr)
plot(cpus.ltr); text(cpus.ltr)

ir.tr <- tree(Species ~., iris)
ir.tr
summary(ir.tr)

tree.control Select Parameters for Tree

Description

A utility function for use with the control argument of tree.

Usage

tree.control(nobs, mincut = 5, minsize = 10, mindev = 0.01)

Arguments

nobs The number of observations in the training set.

mincut The minimum number of observations to include in either child node. This is a
weighted quantity; the observational weights are used to compute the ‘number’.
The default is 5.

minsize The smallest allowed node size: a weighted quantity. The default is 10.

mindev The within-node deviance must be at least this times that of the root node for the
node to be split.

tree.screens 17

Details

This function produces default values of mincut and minsize, and ensures that mincut is at most
half minsize.

To produce a tree that fits the data perfectly, set mindev = 0 and minsize = 2, if the limit on tree
depth allows such a tree.

Value

A list:

mincut The maximum of the input or default mincut and 1

minsize The maximum of the input or default minsize and 2.

nmax A estimate of the maximum number of nodes that might be grown.

nobs The input nobs.

Note

The interpretation of mindev given here is that of Chambers and Hastie (1992, p. 415), and appar-
ently not what is actually implemented in S. It seems S uses an absolute bound.

Author(s)

B. D. Ripley

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

tree

tree.screens Split Screen for Plotting Trees

Description

Splits the screen in a way suitable for using tile.tree.

Usage

tree.screens(figs, screen.arg = 0, ...)

18 tree.screens

Arguments

figs A specification of the split of the screen. See split.screen for the allowed
forms.

screen.arg the screen to divide, by default the whole display area.

... plot parameters to be passed to par.

Value

A vector of screen numbers for the newly-created screens.

Author(s)

B. D. Ripley

See Also

tile.tree, split.screen

Examples

data(fgl, package="MASS")
fgl.tr <- tree(type ~ ., fgl)
summary(fgl.tr)
plot(fgl.tr); text(fgl.tr, all=TRUE, cex=0.5)
fgl.tr1 <- snip.tree(fgl.tr, node=c(108, 31, 26))
tree.screens()
plot(fgl.tr1)
tile.tree(fgl.tr1, fgl$type)
close.screen(all = TRUE)

Index

∗ hplot
partition.tree, 5
plot.tree, 6
text.tree, 12
tile.tree, 13
tree.screens, 17

∗ tree
cv.tree, 2
deviance.tree, 3
misclass.tree, 3
na.tree.replace, 4
partition.tree, 5
plot.tree, 6
plot.tree.sequence, 7
predict.tree, 8
prune.tree, 9
snip.tree, 11
text.tree, 12
tile.tree, 13
tree, 14
tree.control, 16
tree.screens, 17

abbreviate, 12

cv.tree, 2, 10

deviance.singlenode (deviance.tree), 3
deviance.tree, 3

misclass.tree, 3

na.omit, 4
na.tree.replace, 4

partition.tree, 5
plot.tree, 6, 13
plot.tree.sequence, 7
predict, 9
predict.tree, 8, 16
print.summary.tree (tree), 14

print.tree (tree), 14
prune.misclass (prune.tree), 9
prune.tree, 2, 7, 9, 12, 16

residuals.tree (tree), 14

snip.tree, 11, 16
split.screen, 18
summary.tree (tree), 14

text.tree, 12
tile.tree, 13, 18
tree, 2, 4–6, 9, 12, 14, 17
tree.control, 16, 16
tree.screens, 13, 17

19

	cv.tree
	deviance.tree
	misclass.tree
	na.tree.replace
	partition.tree
	plot.tree
	plot.tree.sequence
	predict.tree
	prune.tree
	snip.tree
	text.tree
	tile.tree
	tree
	tree.control
	tree.screens
	Index

