Package 'trajmsm'

Title: Marginal Structural Models with Latent Class Growth Analysis of Treatment Trajectories
Description: Implements marginal structural models combined with a latent class growth analysis framework for assessing the causal effect of treatment trajectories. Based on the approach described in "Marginal Structural Models with Latent Class Growth Analysis of Treatment Trajectories" Diop, A., Sirois, C., Guertin, J.R., Schnitzer, M.E., Candas, B., Cossette, B., Poirier, P., Brophy, J., Mésidor, M., Blais, C. and Hamel, D., (2023) <doi:10.1177/09622802231202384>.
Authors: Awa Diop [aut, cre], Denis Talbot [aut]
Maintainer: Awa Diop <[email protected]>
License: GPL (>= 3)
Version: 0.1.3
Built: 2024-12-05 07:09:21 UTC
Source: CRAN

Help Index


Wrapper for flexmix

Description

Call the package flexmix to build trajectory groups

Usage

build_traj(
  obsdata,
  formula,
  number_traj,
  identifier,
  family = "binomial",
  seed = 945,
  control = list(iter.max = 1000, minprior = 0),
  ...
)

Arguments

obsdata

Data to build trajectory groups in long format.

formula

Designate the formula to model the longitudinal variable of interest.

number_traj

An integer to fix the number of trajectory groups.

identifier

A string to designate the column name for the unique identifier.

family

Designate the type of distribution ("gaussian", "binomial", "poisson", "gamma").

seed

Set a seed for replicability.

control

Object of class FLXcontrol.

...

Additional arguments passed to the flexmix function.

Value

A list containing the posterior probability matrix and the fitted trajectory model.

Examples

obsdata_long = gendata(n = 1000,format = "long", total_followup = 6, seed = 945)
formula = as.formula(cbind(statins, 1 - statins) ~ time)
restraj = build_traj(obsdata = obsdata_long, number_traj = 3, formula = formula, identifier = "id")

Generate data trajectories for MSM

Description

Provides datasets for running examples for LCGA-MSM and LCGA-HRMSM.

Usage

gendata(
  n,
  include_censor = FALSE,
  format = c("long", "wide"),
  start_year = 2011,
  total_followup,
  timedep_outcome = FALSE,
  seed
)

Arguments

n

Number of observations to generate.

include_censor

Logical, if TRUE, includes censoring.

format

Character, either "long" or "wide" for the format of the output data frame.

start_year

Baseline year.

total_followup

Number of measuring times.

timedep_outcome

Logical, if TRUE, includes a time-dependent outcome.

seed

Use a specific seed value to ensure the simulated data is replicable.

Value

A data frame with generated data trajectories.

Examples

gendata(n = 100, include_censor = FALSE, format = "wide",total_followup = 3, seed = 945)

Counterfactual means via G-Formula

Description

Calculates counterfactual means using the g-formula approach.

Usage

gformula(
  formula,
  baseline,
  covariates,
  treatment,
  outcome,
  ntimes_interval,
  obsdata
)

Arguments

formula

Specification of the model for the outcome to be fitted.

baseline

Names of the baseline covariates.

covariates

Names of the time-varying covariates (should be a list).

treatment

Names of the time-varying treatment.

outcome

Name of the outcome variable.

ntimes_interval

Length of a time-interval (s).

obsdata

Observed data in wide format.

Value

list_gform_countermeans

List of counterfactual means obtained with g-formula.

Author(s)

Awa Diop, Denis Talbot

Examples

obsdata = gendata(n = 1000, format = "wide", total_followup = 6, seed = 945)
years <- 2011:2016
baseline_var <- c("age","sex")
variables <- c("hyper", "bmi")
var_cov <- c("statins","hyper", "bmi")
covariates <- lapply(years, function(year) {
paste0(variables, year)})
treatment_var <- paste0("statins", 2011:2016)
formula = paste0("y ~", paste0(treatment_var,collapse = "+"), "+",
                paste0(unlist(covariates), collapse = "+"),"+",
                paste0(baseline_var, collapse = "+"))
res_gform <- gformula(formula = formula, baseline = baseline_var, covariates = covariates,
treatment = treatment_var, outcome = "y", ntimes_interval = 6, obsdata =   obsdata )

ggplot Trajectory

Description

Use "ggplot2" to plot trajectory groups produced by the function "build_traj" using the observed treatment.

Usage

ggtraj(traj_data, treatment, time, identifier, class, FUN = mean, ...)

Arguments

traj_data

Merged datasets containing observed data in long format and trajectory groups.

treatment

Name of the time-varying treatment.

time

Name of the time variable.

identifier

Name of the identifier variable.

class

Name of the trajectory groups.

FUN

Specify which statistics to display, by default calculate the mean.

...

Additional arguments to be passed to ggplot functions.

Value

A ggplot object representing the trajectory groups using the observed treatment.

Examples

obsdata_long = gendata(n = 1000, format = "long", total_followup = 12, seed = 945)
restraj = build_traj(obsdata = obsdata_long, number_traj = 3,
formula = as.formula(cbind(statins, 1 - statins) ~ time), identifier = "id")
datapost = restraj$data_post
head(datapost)
traj_data_long <- merge(obsdata_long, datapost, by = "id")
    AggFormula <- as.formula(paste("statins", "~", "time", "+", "class"))
    Aggtraj_data <- aggregate(AggFormula, data = traj_data_long, FUN = mean)
    Aggtraj_data
#Aggtraj_data with labels
traj_data_long[ , "traj_group"] <- factor(ifelse(traj_data_long[ , "class"] == "3" ,"Group1" ,
ifelse (traj_data_long[ , "class"]== "1" , "Group2" ,"Group3")))
AggFormula <- as.formula(paste("statins", "~", "time", "+", "traj_group"))
Aggtraj_data <- aggregate(AggFormula, data = traj_data_long, FUN = mean)
ggtraj(traj_data =  Aggtraj_data,
treatment = "statins",time= "time",identifier="id",class = "traj_group", FUN = mean)

Inverse Probability Weighting

Description

Compute stabilized and unstabilized weights, with or without censoring.

Usage

inverse_probability_weighting(
  numerator = c("stabilized", "unstabilized"),
  identifier,
  baseline,
  covariates,
  treatment,
  include_censor = FALSE,
  censor,
  obsdata
)

Arguments

numerator

To choose between stabilized and unstabilized weights.

identifier

Name of the column of the unique identifier.

baseline

Name of the baseline covariates.

covariates

Name of the time-varying covariates.

treatment

Name of the time-varying treatment.

include_censor

Logical value TRUE/FALSE to include or not a censoring variable.

censor

Name of the censoring variable.

obsdata

Observed data in wide format.

Value

Inverse Probability Weights (Stabilized and Unstabilized) with and without censoring.

Author(s)

Awa Diop, Denis Talbot

Examples

obsdata = gendata(n = 1000, format = "wide",total_followup = 3, seed = 945)
baseline_var <- c("age","sex")
covariates <- list(c("hyper2011", "bmi2011"),
c("hyper2012", "bmi2012"),c("hyper2013", "bmi2013"))
treatment_var <- c("statins2011","statins2012","statins2013")
stabilized_weights = inverse_probability_weighting(numerator = "stabilized",
identifier = "id", covariates = covariates, treatment = treatment_var,
baseline = baseline_var, obsdata = obsdata)

Counterfactual means for a Pooled LTMLE

Description

Function to estimate counterfactual means for a pooled LTMLE.

Usage

pltmle(
  formula,
  outcome,
  treatment,
  covariates,
  baseline,
  ntimes_interval,
  number_traj,
  time,
  time_values,
  identifier,
  obsdata,
  traj,
  total_followup,
  treshold = treshold,
  class_var,
  class_pred
)

Arguments

formula

Specification of the model for the outcome to be fitted.

outcome

Name of the outcome variable.

treatment

Time-varying treatment.

covariates

Covariates.

baseline

Name of baseline covariates.

ntimes_interval

Length of a time-interval (s).

number_traj

An integer to choose the number of trajectory groups.

time

Name of the time variable.

time_values

Measuring times.

identifier

Name of the column of the unique identifier.

obsdata

Observed data in wide format.

traj

Matrix of indicators for the trajectory groups.

total_followup

Number of measuring times per interval.

treshold

For weight truncation.

class_var

Name of the trajectory group variable.

class_pred

Vector of predicted trajectory groups.

Value

list_pltmle_countermeans

Counterfactual means and influence functions with the pooled ltmle.

D

Influence functions

Author(s)

Awa Diop, Denis Talbot

Examples

obsdata_long = gendata(n = 2000, format = "long",total_followup = 3, seed = 945)
baseline_var <- c("age","sex")
covariates <- list(c("hyper2011", "bmi2011"),
c("hyper2012", "bmi2012"),c("hyper2013", "bmi2013"))
treatment_var <- c("statins2011","statins2012","statins2013")
time_values <- c(2011,2012,2013)
formulaA = as.formula(cbind(statins, 1 - statins) ~ time)
restraj = build_traj(obsdata = obsdata_long, number_traj = 3,
formula = formulaA, identifier = "id")
datapost = restraj$data_post
trajmsm_long <- merge(obsdata_long, datapost, by = "id")
    AggFormula <- as.formula(paste("statins", "~", "time", "+", "class"))
    AggTrajData <- aggregate(AggFormula, data = trajmsm_long, FUN = mean)
    AggTrajData
trajmsm_long[ , "traj_group"] <- trajmsm_long[ , "class"]
obsdata= reshape(trajmsm_long, direction = "wide", idvar = "id",
v.names = c("statins","bmi","hyper"), timevar = "time", sep ="")
formula =  as.formula(" y ~ statins2011 + statins2012 + statins2013 +
hyper2011 + bmi2011 + hyper2012 + bmi2012 +
 hyper2013 + bmi2013 + age + sex ")
class = factor(predict_traj(identifier = "id", total_followup = 3,
        treatment = "statins", time = "time", time_values = time_values,
        trajmodel = restraj$traj_model)$post_class);
traj=t(sapply(1:8,function(x)sapply(1:3,function(i)ifelse(class[x]==i,1,0))))
traj[,1]=1
res_pltmle = pltmle(formula = formula, outcome = "y",treatment = treatment_var,
covariates = covariates, baseline = baseline_var, ntimes_interval = 3, number_traj = 3,
 time =  "time",time_values = time_values,identifier = "id",obsdata = obsdata,
traj=traj, treshold = 0.99, class_pred= class, class_var = "class")
res_pltmle$counter_means

Predict trajectory groups for deterministic treatment regimes

Description

Function to predict trajectory groups for deterministic treatment regimes used with gformula and pooled LTMLE.

Usage

predict_traj(
  identifier,
  total_followup,
  treatment,
  time,
  time_values,
  trajmodel
)

Arguments

identifier

Name of the column of the unique identifier.

total_followup

Number of measuring times.

treatment

Name of the time-varying treatment.

time

Name of the variable time.

time_values

Values of the time variable.

trajmodel

Trajectory model built with the observed treatment.

Value

A data.frame with the posterior probabilities.

Author(s)

Awa Diop, Denis Talbot


Split observed data into multiple subsets

Description

Function to split the data into multiple subsets of size s each one subset corresponding to one time-interval.

Usage

split_data(
  obsdata,
  total_followup,
  ntimes_interval,
  time,
  time_values,
  identifier
)

Arguments

obsdata

Observed data in wide format.

total_followup

Total length of follow-up.

ntimes_interval

Number of measuring times per interval.

time

Name of the time variable.

time_values

Measuring times.

identifier

Identifier of individuals.

Value

all_df

All subsets, list of time intervals.

Author(s)

Awa Diop Denis Talbot

Examples

obsdata = gendata(n = 1000, format = "long", total_followup = 8, seed = 945)
years <- 2011:2018
res = split_data(obsdata = obsdata, total_followup = 8,
ntimes_interval = 6,time = "time", time_values = years,identifier = "id")

History Restricted MSM and Latent Class of Growth Analysis estimated with G-formula.

Description

Estimate parameters of LCGA-HRMSM using g-formula. and bootstrap to get standard errors.

Usage

trajhrmsm_gform(
  degree_traj = c("linear", "quadratic", "cubic"),
  rep = 50,
  treatment,
  covariates,
  baseline,
  outcome,
  ntimes_interval,
  total_followup,
  time,
  time_values,
  identifier,
  var_cov,
  number_traj = 3,
  family = "poisson",
  obsdata
)

Arguments

degree_traj

To specify the polynomial degree for modelling the time-varying treatment.

rep

Number of repetition for the bootstrap.

treatment

Name of the time-varying treatment.

covariates

Names of the time-varying covariates (should be a list).

baseline

Name of baseline covariates.

outcome

Name of the outcome variable.

ntimes_interval

Length of a time-interval (s).

total_followup

Total length of follow-up.

time

Name of the time variable.

time_values

Measuring times.

identifier

Name of the column of the unique identifier.

var_cov

Names of the time-varying variables.

number_traj

Number of trajectory groups.

family

Specification of the error distribution and link function to be used in the model.

obsdata

Data in a long format.

Value

A list containing the following components:

results_hrmsm_gform

Matrix of estimates for LCGA-MSM, obtained using the g-formula method.

result_coef_boot

Matrix of estimates obtained with bootstrap.

restraj

Fitted trajectory model.

mean_adh

Matrix of mean adherence per trajectory group.

Author(s)

Awa Diop Denis Talbot

Examples

obsdata_long = gendata(n = 5000, format = "long", total_followup = 8,
timedep_outcome = TRUE,  seed = 845)
baseline_var <- c("age","sex")
years <- 2011:2018
variables <- c("hyper", "bmi")
covariates <- lapply(years, function(year) {
paste0(variables, year)})
treatment_var <- paste0("statins", 2011:2018)
var_cov <- c("statins","hyper", "bmi")
reshrmsm_gform = trajhrmsm_gform(degree_traj = "linear", rep=50 ,
treatment = treatment_var,covariates = covariates, baseline = baseline_var,
outcome = "y",var_cov = var_cov, ntimes_interval = 6, total_followup = 8,
 time = "time",time_values = years, identifier = "id",
number_traj = 3, family = "poisson", obsdata = obsdata_long)
reshrmsm_gform$results_hrmsm_gform

History Restricted MSM and Latent Class of Growth Analysis estimated with IPW.

Description

Estimate parameters of LCGA-HRMSM using IPW.

Usage

trajhrmsm_ipw(
  degree_traj = c("linear", "quadratic", "cubic"),
  numerator = c("stabilized", "unstabilized"),
  identifier,
  baseline,
  covariates,
  treatment,
  outcome,
  var_cov,
  include_censor = FALSE,
  ntimes_interval,
  total_followup,
  time,
  time_values,
  family = "poisson",
  censor = censor,
  number_traj,
  obsdata,
  weights = NULL,
  treshold = 0.999
)

Arguments

degree_traj

To specify the polynomial degree for modelling the time-varying treatment.

numerator

To choose between stabilized and unstabilized weights.

identifier

Name of the column of the unique identifier.

baseline

Names of the baseline covariates.

covariates

Names of the time-varying covariates (should be a list).

treatment

Name of the time-varying treatment.

outcome

Name of the outcome variable.

var_cov

Names of the time-varying variables.

include_censor

Logical, if TRUE, includes censoring.

ntimes_interval

Length of a time-interval (s).

total_followup

Total length of follow-up.

time

Name of the time variable.

time_values

Values of the time variable.

family

specification of the error distribution and link function to be used in the model.

censor

Name of the censoring variable.

number_traj

Number of trajectory groups.

obsdata

Data in a long format.

weights

A vector of estimated weights. If NULL, the weights are computed by the function.

treshold

For weight truncation.

Value

Provides a matrix of estimates for LCGA-HRMSM, obtained using IPW.

Author(s)

Awa Diop, Denis Talbot

Examples

obsdata_long = gendata(n = 5000, format = "long", total_followup = 8,
timedep_outcome = TRUE,  seed = 845)
baseline_var <- c("age","sex")
years <- 2011:2018
variables <- c("hyper", "bmi")
covariates <- lapply(years, function(year) {
paste0(variables, year)})
treatment_var <- paste0("statins", 2011:2018)
var_cov <- c("statins","hyper", "bmi","y")
reshrmsm_ipw <- trajhrmsm_ipw(degree_traj = "linear", numerator = "stabilized",
identifier = "id", baseline = baseline_var,
covariates = covariates, treatment = treatment_var,
outcome = "y", var_cov= var_cov,include_censor = FALSE,
 ntimes_interval = 6,total_followup = 8, time = "time", time_values = 2011:2018,
family = "poisson", number_traj = 3, obsdata = obsdata_long, treshold = 1)
reshrmsm_ipw$res_trajhrmsm_ipw

History Restricted MSM and Latent Class of Growth Analysis estimated with a Pooled LTMLE.

Description

Estimate parameters of LCGA-HRMSM using a Pooled LTMLE.

Usage

trajhrmsm_pltmle(
  degree_traj = c("linear", "quadratic", "cubic"),
  treatment,
  covariates,
  baseline,
  outcome,
  ntimes_interval,
  total_followup,
  time,
  time_values,
  identifier,
  var_cov,
  number_traj = 3,
  family = "poisson",
  obsdata,
  treshold = 0.99
)

Arguments

degree_traj

To specify the polynomial degree for modelling the time-varying treatment.

treatment

Name of time-varying treatment.

covariates

Names of time-varying covariates (should be a list).

baseline

Names of baseline covariates.

outcome

Name of the outcome variable.

ntimes_interval

Length of a time-interval (s).

total_followup

Total length of follow-up.

time

Name of the time variable.

time_values

Measuring times.

identifier

Name of the column for unique identifiant.

var_cov

Names of the time-varying variables.

number_traj

Number of trajectory groups.

family

Specification of the error distribution and link function to be used in the model.

obsdata

Data in a long format.

treshold

For weight truncation.

Value

A list containing the following components:

results_hrmsm_pltmle

Matrix of estimates for LCGA-HRMSM, obtained using the pooled ltlmle method.

restraj

Fitted trajectory model.

mean_adh

Matrix of the mean adherence per trajectory group.

Author(s)

Awa Diop Denis Talbot

Examples

obsdata_long = gendata(n = 5000, format = "long",
total_followup = 8, timedep_outcome = TRUE,  seed = 845)
baseline_var <- c("age","sex")
years <- 2011:2018
variables <- c("hyper", "bmi")
covariates <- lapply(years, function(year) {
  paste0(variables, year)})
treatment_var <- paste0("statins", 2011:2018)
var_cov <- c("statins","hyper", "bmi","y")
respltmle = trajhrmsm_pltmle(degree_traj = "linear", treatment = treatment_var,
covariates = covariates, baseline = baseline_var,
outcome = paste0("y", 2016:2018),var_cov = var_cov, ntimes_interval = 6,
total_followup = 8, time = "time",time_values = years, identifier = "id",
number_traj = 3, family = "poisson", obsdata = obsdata_long,treshold = 1)
respltmle$results_hrmsm_pltmle

Parametric g-formula

Description

Estimate parameters of LCGA-MSM using g-formula and bootstrap to get standard errors.

Usage

trajmsm_gform(
  formula = formula,
  rep = 50,
  identifier,
  baseline,
  covariates,
  treatment,
  outcome,
  total_followup,
  time = time,
  time_values,
  var_cov,
  trajmodel,
  ref,
  obsdata
)

Arguments

formula

Specification of the model for the outcome to be fitted.

rep

Number of repetitions for the bootstrap.

identifier

Name of the column of the unique identifier.

baseline

Vector of names of the baseline covariates.

covariates

List of names of the time-varying covariates.

treatment

Vector of names of the time-varying treatment.

outcome

Name of the outcome of interest.

total_followup

Total length of follow-up.

time

Name of the time variable.

time_values

Measuring times.

var_cov

Names of the time-varying covariates.

trajmodel

Trajectory model built with the observed treatment.

ref

The reference trajectory group.

obsdata

Observed data in wide format.

Value

Provides a matrix of estimates for LCGA-MSM, obtained using the g-formula method.

Author(s)

Awa Diop Denis Talbot

Examples

obsdata_long = gendata(n = 1000, format = "long", total_followup = 6, seed = 845)
years <- 2011:2016
baseline_var <- c("age","sex")
variables <- c("hyper", "bmi")
var_cov <- c("statins","hyper", "bmi")
covariates <- lapply(years, function(year) {
paste0(variables, year)})
treatment_var <- paste0("statins", 2011:2016)
formula_treatment = as.formula(cbind(statins, 1 - statins) ~ time)
restraj = build_traj(obsdata = obsdata_long, number_traj = 3,
formula = formula_treatment, identifier = "id")
datapost = restraj$data_post
trajmsm_long <- merge(obsdata_long, datapost, by = "id")
    AggFormula <- as.formula(paste("statins", "~", "time", "+", "class"))
    AggTrajData <- aggregate(AggFormula, data = trajmsm_long, FUN = mean)
    AggTrajData
obsdata = reshape(data = trajmsm_long, direction = "wide", idvar = "id",
v.names = c("statins","bmi","hyper"), timevar = "time", sep ="")
formula = paste0("y ~", paste0(treatment_var,collapse = "+"), "+",
                paste0(unlist(covariates), collapse = "+"),"+",
                paste0(baseline_var, collapse = "+"))
resmsm_gform <- trajmsm_gform(formula = formula, identifier = "id",rep = 5,
baseline = baseline_var, covariates = covariates, var_cov = var_cov,
treatment = treatment_var, outcome = "y", total_followup = 6,time = "time",
time_values = years, trajmodel = restraj$traj_model,ref = "1", obsdata =   obsdata )
resmsm_gform

Marginal Structural Model and Latent Class of Growth Analysis estimated with IPW

Description

Estimate parameters of LCGA-MSM using IPW.

Usage

trajmsm_ipw(
  formula1,
  formula2,
  family,
  identifier,
  treatment,
  covariates,
  baseline,
  obsdata,
  numerator = "stabilized",
  include_censor = FALSE,
  censor,
  weights = NULL,
  treshold = 0.99
)

Arguments

formula1

Specification of the model for the outcome to be fitted for a binomial or gaussian distribution.

formula2

Specification of the model for the outcome to be fitted for a survival outcome.

family

Specification of the error distribution and link function to be used in the model.

identifier

Name of the column of the unique identifier.

treatment

Time-varying treatment.

covariates

Names of the time-varying covariates (should be a list).

baseline

Name of the baseline covariates.

obsdata

Dataset to be used in the analysis.

numerator

Type of weighting ("stabilized" or "unstabilized").

include_censor

Logical, if TRUE, includes censoring.

censor

Name of the censoring variable.

weights

A vector of estimated weights. If NULL, the weights are computed by the function IPW.

treshold

For weight truncation.

Value

Provides a matrix of estimates for LCGA-MSM, obtained using IPW.

Provides a matrix of estimates for LCGA-MSM, obtained using IPW.

Examples

obsdata_long = gendata(n = 1000, format = "long", total_followup = 6, seed = 845)
years <- 2011:2016
baseline_var <- c("age","sex")
variables <- c("hyper", "bmi")
covariates <- lapply(years, function(year) {
paste0(variables, year)})
treatment_var <- paste0("statins", 2011:2016)
formula_treatment = as.formula(cbind(statins, 1 - statins) ~ time)
restraj = build_traj(obsdata = obsdata_long, number_traj = 3,
formula = formula_treatment, identifier = "id")
datapost = restraj$data_post
trajmsm_long <- merge(obsdata_long, datapost, by = "id")
    AggFormula <- as.formula(paste("statins", "~", "time", "+", "class"))
    AggTrajData <- aggregate(AggFormula, data = trajmsm_long, FUN = mean)
    AggTrajData
trajmsm_long$ipw_group <- relevel(trajmsm_long$class, ref = "1")
obsdata = reshape(data = trajmsm_long, direction = "wide", idvar = "id",
v.names = c("statins","bmi","hyper"), timevar = "time", sep ="")
formula = paste0("y ~", paste0(treatment_var,collapse = "+"), "+",
                paste0(unlist(covariates), collapse = "+"),"+",
                paste0(baseline_var, collapse = "+"))

resmsm_ipw = trajmsm_ipw(formula1 = as.formula("y ~ ipw_group"),
           identifier = "id", baseline = baseline_var, covariates = covariates,
           treatment = treatment_var, family = "binomial",
           obsdata = obsdata,numerator = "stabilized", include_censor = FALSE, treshold = 0.99)
resmsm_ipw

Pooled LTMLE

Description

Estimate parameters of LCGA-MSM using pooled LTMLE with influence functions to estimate standard errors.

Usage

trajmsm_pltmle(
  formula = formula,
  identifier,
  baseline,
  covariates,
  treatment,
  outcome,
  number_traj,
  total_followup,
  time,
  time_values,
  trajmodel,
  ref,
  treshold = 0.99,
  obsdata,
  class_var
)

Arguments

formula

Specification of the model for the outcome to be fitted.

identifier

Name of the column for unique identifiant.

baseline

Names of the baseline covariates.

covariates

Names of the time-varying covariates (should be a list).

treatment

Name of the time-varying treatment.

outcome

Name of the outcome variable.

number_traj

An integer to choose the number of trajectory groups.

total_followup

Total length of follow-up.

time

Name of the time variable.

time_values

Measuring times.

trajmodel

Trajectory model built with the observed treatment.

ref

The reference group.

treshold

For weight truncation.

obsdata

Observed data in wide format.

class_var

Name of the trajectory group variable.

Value

Provides a matrix of estimates for LCGA-MSM, obtained using the pooled ltlmle method.

results_msm_pooledltmle

Estimates of a LCGA-MSM with pooled LTMLE.

Author(s)

Awa Diop, Denis Talbot

Examples

obsdata_long = gendata(n = 1000, format = "long", total_followup = 6, seed = 845)
years <- 2011:2016
baseline_var <- c("age","sex")
variables <- c("hyper", "bmi")
covariates <- lapply(years, function(year) {
paste0(variables, year)})
treatment_var <- paste0("statins", 2011:2016)
formula_treatment = as.formula(cbind(statins, 1 - statins) ~ time)
restraj = build_traj(obsdata = obsdata_long, number_traj = 3,
formula = formula_treatment, identifier = "id")
datapost = restraj$data_post
trajmsm_long <- merge(obsdata_long, datapost, by = "id")
    AggFormula <- as.formula(paste("statins", "~", "time", "+", "class"))
    AggTrajData <- aggregate(AggFormula, data = trajmsm_long, FUN = mean)
trajmsm_wide = reshape(data = trajmsm_long, direction = "wide", idvar = "id",
v.names = c("statins","bmi","hyper"), timevar = "time", sep ="")
formula = paste0("y ~", paste0(treatment_var,collapse = "+"), "+",
                paste0(unlist(covariates), collapse = "+"),"+",
                paste0(baseline_var, collapse = "+"))
resmsm_pltmle <- trajmsm_pltmle(formula = formula, identifier = "id",
 baseline = baseline_var,
 covariates = covariates, treatment = treatment_var,
 outcome = "y", time = "time", time_values = years,
 number_traj = 3, total_followup = 6,
 trajmodel = restraj$traj_model, ref = "1", obsdata = trajmsm_wide,
  treshold = 1,class_var = "class")
 resmsm_pltmle