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In this note we describe two ways of generating random variables with the Gibbs sam-
pling approach for a truncated multivariate normal variable x, whose density function can be
expressed as:

f (x, µ, Σ, a, b) =
exp

{
− 1

2 (x − µ)′Σ−1(x − µ)
}

∫ b
a exp

{
− 1

2 (x − µ)′Σ−1(x − µ)
}

dx

for a ≤ x ≤ b and 0 otherwise.

The first approach, as described by Kotecha and Djuric [1999], uses the covariance matrix
Σ and has been implemented in the R package tmvtnorm since version 0.9 (Wilhelm and Man-
junath [2010]). The second way is based on the works of Geweke [1991, 2005] and uses the
precision matrix H = Σ−1. As will be shown below, the usage of the precision matrix offers
some computational advantages, since it does not involve matrix inversions and is therefore
favorable in higher dimensions and settings where the precision matrix is readily available.
Applications are for example the analysis of spatial data, such as from telecommunications or
social networks.

Both versions of the Gibbs sampler can also be used for general linear constraints a ≤ Dx ≤
b, what we will show in the last section. The function rtmvnorm() in the package tmvtnorm
contains the R implementation of the methods described in this note (Wilhelm and Manjunath
[2011]).

1 Gibbs Sampler with convariance matrix Σ

We describe here a Gibbs sampler for sampling from a truncated multinormal distribution as
proposed by Kotecha and Djuric [1999]. It uses the fact that conditional distributions are trun-
cated normal again. Kotecha use full conditionals f (xi|x−i) = f (xi|x1, . . . , xi−1, xi+1, . . . , xd).

We use the fact that the conditional density of a multivariate normal distribution is multi-
variate normal again. We cite Geweke [2005], p.171 for the following theorem on the Condi-
tional Multivariate Normal Distribution.

Let z =

(
x
y

)
∼ N(µ, Σ) with µ =

(
µx
µy

)
and Σ =

[
Σxx Σxy
Σyx Σyy

]
Denote the corresponding precision matrix

H = Σ−1 =

[
Hxx Hxy
Hyx Hyy

]
(1)
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Then the distribution of y conditional on x is normal with variance

Σy.x = Σyy − ΣyxΣ−1
xx Σxy = H−1

yy (2)

and mean
µy.x = µy + ΣyxΣ−1

xx (x − µx) = µy − H−1
yy Hyx(x − µx) (3)

In the case of the full conditionals f (xi|x−i), which we will denote as i.− i this results in the

following formulas: z =

(
xi

x−i

)
∼ N(µ, Σ) with µ =

(
µi

µ−i

)
and Σ =

[
Σii Σi,−i

Σ−i,i Σ−i,−i

]
Then the distribution of i conditional on −i is normal with variance

Σi.−i = Σii − Σi,−iΣ
−1
−i,−iΣ−i,i = H−1

ii (4)

and mean
µi.−i = µi + Σi,−iΣ

−1
−i,−i(x−i − µ−i) = µi − H−1

ii H i,−i(x−i − µ−i) (5)

We can then construct a Markov chain which continously draws from f (xi|x−i) subject to
ai ≤ xi ≤ bi. Let x(j) denote the sample drawn at the j-th MCMC iteration. The steps of the
Gibbs sampler for generating N samples x(1), . . . , x(N) are:

• Since the conditional variance Σi.−i is independent from the actual realisation x(j)
−i , we

can well precalculate it before running the Markov chain.

• Choose a start value x(0) of the chain.

• In each round j = 1, . . . , N we go from i = 1, . . . , d and sample from the conditional
density x(j)

i |x(j)
1 , . . . , x(j)

i−1, x(j−1)
i+1 , . . . , x(j−1)

d .

• Draw a uniform random variate U ∼ Uni(0, 1). This is where our approach slightly
differs from Kotecha and Djuric [1999]. They draw a normal variate y and then apply
Φ(y), which is basically uniform.

• We draw from univariate conditional normal distributions with mean µ and variance
σ2. See for example Greene [2003] or Griffiths [2004] for a transformation between a
univariate normal random y ∼ N(µ, σ2) and a univariate truncated normal variate x ∼
TN(µ, σ2, a, b). For each realisation y we can find a x such as P(Y ≤ y) = P(X ≤ x):

Φ
(

x−µ
σ

)
− Φ

(
a−µ

σ

)
Φ
(

b−µ
σ

)
− Φ

(
a−µ

σ

) = Φ
(

y − µ

σ

)
= U

• Draw xi.−i from conditional univariate truncated normal distribution
TN(µi.−i, Σi.−i, ai, bi) by

xi.−i = µi.−i+

σi.−iΦ−1
[

U
(

Φ
(

bi − µi.−i
σi.−i

)
− Φ

(
ai − µi.−i

σi.−i

))
+ Φ

(
ai − µi.−i

σi.−i

)] (6)

2 Gibbs Sampler with precision matrix H

The Gibbs Sampler stated in terms of the precision matrix H = Σ−1 instead of the covariance
matrix Σ is much easier to write and to implement: Then the distribution of i conditional on
−i is normal with variance

Σi.−i = H−1
ii (7)
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and mean
µi.−i = µi − H−1

ii H i,−i(x−i − µ−i) (8)

Most importantly, if the precision matrix H is known, the Gibbs sampler does only involve
matrix inversions of H ii which in our case is a diagonal element/scalar. Hence, from the com-
putational and performance perspective, especially in high dimensions, using H rather than Σ
is preferable. When using Σ in d dimensions, we have to solve for d (d − 1)× (d − 1) matrices
Σ−i,−i, i = 1, . . . , d, which can be quite substantial computations.

3 Gibbs Sampler for linear constraints

In this section we present the Gibbs sampling for general linear constraints based on Geweke
[1991]. We want to sample from x ∼ N(µ, Σ) subject to linear constraints a ≤ Dx ≤ b for a
full-rank matrix D.
Defining

z = Dx − Dµ, (9)

we have E[z] = DE[x]− Dµ = 0 and Var[z] = DVar[x]D′ = DΣD′. Hence, this problem can
be transformed to the rectangular case α ≤ z ≤ β with α = a − Dµ and β = b − Dµ. It follows
z ∼ N(0, T) with T = DΣD′.
In the precision matrix case, the corresponding precision matrix of the transformed problem
will be T−1 = (DΣD′)−1 = D′−1HD−1. We can then sample from z the way described in the
previous sections (either with covariance or precision matrix approach) and then transform z
back to x by

x = µ + D−1z (10)
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