Package: timsac (via r-universe)

September 11, 2024

Version 1.3.8-4

Title Time Series Analysis and Control Package Author The Institute of Statistical Mathematics Maintainer Masami Saga <msaga@mtb.biglobe.ne.jp> **Depends** R $(>= 4.0.0)$ Imports graphics, grDevices, stats Description Functions for statistical analysis, prediction and control of time series based mainly on Akaike and Nakagawa (1988) <ISBN 978-90-277-2786-2>. License GPL $(>= 2)$ MailingList Please send bug reports to <ismrp@grp.ism.ac.jp>. NeedsCompilation yes

Repository CRAN

Date/Publication 2023-09-30 09:30:02 UTC

Contents

64

Index

Description

R functions for statistical analysis and control of time series.

Details

This package provides functions for statistical analysis, prediction and control of time series. The original TIMSAC (TIMe Series Analysis and Control) or TIMSAC-72 was published in Akaike and Nakagawa (1972). After that, TIMSAC-74, TIMSAC-78 and TIMSAC-84 were published as the TIMSAC series in Computer Science Monograph.

For overview of models and information criteria for model selection, see [../doc/timsac-guide_](../doc/timsac-guide_e.pdf) [e.pdf](../doc/timsac-guide_e.pdf) or ../doc/timsac-guide_j.pdf (in Japanese).

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1)*. The Institute of Statistical Mathematics.

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.6, Timsac74, A Time Series Analysis and Control Program Package (2)*. The Institute of Statistical Mathematics.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

H.Akaike, T.Ozaki, M.Ishiguro, Y.Ogata, G.Kitagawa, Y-H.Tamura, E.Arahata, K.Katsura and Y.Tamura (1985) *Computer Science Monograph, No.22, Timsac84 Part 1*. The Institute of Statistical Mathematics.

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Airpollution *Airpollution Data*

Description

An airpollution data for testing [perars](#page-48-1).

Usage

```
data(Airpollution)
```
Format

A time series of 372 observations.

Source

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

Amerikamaru *Amerikamaru Data*

Description

A multivariate non-stationary data for testing [blomar](#page-12-1).

Usage

data(Amerikamaru)

Format

A 2-dimensional array with 896 observations on 2 variables.

```
[, 1] rudder
[, 2] yawing
```
Source

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

armafit *ARMA Model Fitting*

Description

Fit an ARMA model with specified order by using DAVIDON's algorithm.

Usage

armafit(y, model.order)

auspec 5

Details

The maximum likelihood estimates of the coefficients of a scalar ARMA model

$$
y(t) - a(1)y(t-1) - \dots - a(p)y(t-p) = u(t) - b(1)u(t-1) - \dots - b(q)u(t-q)
$$

of a time series $y(t)$ are obtained by using DAVIDON's algorithm. Pure autoregression is not allowed.

Value

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1)*. The Institute of Statistical Mathematics.

Examples

```
# "arima.sim" is a function in "stats".
# Note that the sign of MA coefficient is opposite from that in "timsac".
y \le -\arima.sim(list(order=c(2,0,1), arc=c(0.64,-0.8), mac-0.5), n = 1000)z \leq -\operatorname{armafit}(y, \text{ model. order} = c(2,1))z$arcoef
z$macoef
```
auspec *Power Spectrum*

Description

Compute power spectrum estimates for two trigonometric windows of Blackman-Tukey type by Goertzel method.

Usage

```
\text{auspec}(y, \text{lag} = \text{NULL}, \text{window} = \text{"Akaike", log} = \text{FALSE}, \text{plot} = \text{TRUE})
```
Arguments

Details

Value

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Examples

 $y \le -\arima.sim(list(order=c(2,0,0), arc(c(0.64,-0.8)), n = 200)$ $\text{auspec}(y, \text{log} = \text{TRUE})$

autcor *Autocorrelation*

Description

Estimate autocovariances and autocorrelations.

Usage

 $autcor(y, lag = NULL, plot = TRUE, lag_axis = TRUE)$

autoarmafit 7

Value

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Examples

```
# Example 1 for the normal distribution
y < - rnorm(200)
autcor(y, lag_axis = FALSE)
# Example 2 for the ARIMA model
y \le -\arima.sim(list(order=c(2,0,0), arc=c(0.64,-0.8)), n = 200)\text{autcor}(y, \text{ lag} = 20)
```


Description

Provide an automatic ARMA model fitting procedure. Models with various orders are fitted and the best choice is determined with the aid of the statistics AIC.

Usage

```
autoarmafit(y, max.order = NULL)
```
Arguments

Details

The maximum likelihood estimates of the coefficients of a scalar ARMA model

$$
y(t) - a(1)y(t-1) - ... - a(p)y(t-p) = u(t) - b(1)u(t-1) - ... - b(q)u(t-q)
$$

of a time series $y(t)$ are obtained by using DAVIDON's variance algorithm. Where p is AR order, q is MA order and $u(t)$ is a zero mean white noise. Pure autoregression is not allowed.

Value

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1)*. The Institute of Statistical Mathematics.

Examples

```
# "arima.sim" is a function in "stats".
# Note that the sign of MA coefficient is opposite from that in "timsac".
y \le -\arima.sim(list(order=c(2,0,1),ar=c(0.64,-0.8),ma=-0.5), n = 1000)autoarmafit(y)
```
baysea *Bayesian Seasonal Adjustment Procedure*

Description

Decompose a nonstationary time series into several possible components.

Usage

```
baysea(y, period = 12, span = 4, shift = 1, forecast = 0, trend.order = 2,
       seasonal.order = 1, year = 0, month = 1, out = 0, rigid = 1,
       zersum = 1, delta = 7, alpha = 0.01, beta = 0.01, gamma = 0.1,
       spec = TRUE, plot = TRUE, separate.graphics = FALSE)
```


baysea 9

logical. If TRUE, a graphic device is opened for each graphics display.

Details

This function realized a decomposition of time series y into the form

 $y(t) = T(t) + S(t) + I(t) + TDC(t) + OCF(t)$

where $T(t)$ is trend component, $S(t)$ is seasonal component, $I(t)$ is irregular, $TDC(t)$ is trading day factor and $OCF(t)$ is outlier correction factor. For the purpose of comparison of models the criterion ABIC is defined

 $ABIC = -2 \log (maximum \ likelihood \ of \ the \ model).$

Smaller value of ABIC represents better fit.

Value

References

H.Akaike, T.Ozaki, M.Ishiguro, Y.Ogata, G.Kitagawa, Y-H.Tamura, E.Arahata, K.Katsura and Y.Tamura (1985) *Computer Science Monograph, No.22, Timsac84 Part 1*. The Institute of Statistical Mathematics.

Examples

data(LaborData) baysea(LaborData, forecast = 12)

bispec *Bispectrum*

Description

Compute bi-spectrum using the direct Fourier transform of sample third order moments.

Usage

```
bispec(y, lag = NULL, window = "Akaike", log = FALSE, plot = TRUE)
```


bispecData 11

Details

Value

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.6, Timsac74, A Time Series Analysis and Control Program Package (2)*. The Institute of Statistical Mathematics.

Examples

data(bispecData) bispec(bispecData, lag = 30)

bispecData *Univariate Test Data*

Description

A univariate data for testing [bispec](#page-9-1) and [thirmo](#page-56-1).

Usage

data(bispecData)

Format

A time series of 1500 observations.

Source

H.Akaike, E.Arahata and T.Ozaki (1976) *Computer Science Monograph, No.6, Timsac74 A Time Series Analysis and Control Program Package (2)*. The Institute of Statistical Mathematics.

Description

Locally fit autoregressive models to non-stationary time series by a Bayesian procedure.

Usage

```
blocar(y, max.order = NULL, span, plot = TRUE)
```
Arguments

Details

The basic AR model of scalar time series $y(t)(t = 1, \ldots, n)$ is given by

$$
y(t) = a(1)y(t-1) + a(2)y(t-2) + \ldots + a(p)y(t-p) + u(t),
$$

where p is order of the model and $u(t)$ is Gaussian white noise with mean 0 and variance v. At each stage of modeling of locally AR model, a two-step Bayesian procedure is applied

- 1. Averaging of the models with different orders fitted to the newly obtained data.
- 2. Averaging of the models fitted to the present and preceding spans.

AIC of the model fitted to the new span is defined by

$$
AIC = ns \log(st) + 2k,
$$

where ns is the length of new data, sd is innovation variance and k is the equivalent number of parameters, defined as the sum of squares of the Bayesian weights. AIC of the model fitted to the preceding spans are defined by

$$
AIC(j + 1) = ns \log(s d(j)) + 2,
$$

where $sd(j)$ is the prediction error variance by the model fitted to j periods former span.

blomar and the state of the

Value

References

G.Kitagawa and H.Akaike (1978) A Procedure for The Modeling of Non-Stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike (1978) A Bayesian Extension of the Minimum AIC Procedure of Autoregressive Model Fitting. Research Memo. NO.126. The Institute of The Statistical Mathematics.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

Examples

```
data(locarData)
z <- blocar(locarData, max.order = 10, span = 300)
z$arcoef
```
blomar *Bayesian Method of Locally Stationary Multivariate AR Model Fitting*

Description

Locally fit multivariate autoregressive models to non-stationary time series by a Bayesian procedure.

Usage

```
blomar(y, max.order = NULL, span)
```


Details

The basic AR model is given by

 $y(t) = A(1)y(t-1) + A(2)y(t-2) + \ldots + A(p)y(t-p) + u(t),$

where p is order of the AR model and $u(t)$ is innovation variance v.

Value

References

G.Kitagawa and H.Akaike (1978) A Procedure for the Modeling of Non-stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike (1978) A Bayesian Extension of The Minimum AIC Procedure of Autoregressive Model Fitting. Research Memo. NO.126. The institute of Statistical Mathematics.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

Examples

data(Amerikamaru) blomar(Amerikamaru, max.order = 10, span = 300)

Blsallfood *Blsallfood Data*

Description

The BLSALLFOOD data. (the Bureau of Labor Statistics, all employees in food industries, January 1967 - December 1979)

Usage

data(Blsallfood)

bsubst 15

Format

A time series of 156 observations.

Source

H.Akaike, T.Ozaki, M.Ishiguro, Y.Ogata, G.Kitagawa, Y-H.Tamura, E.Arahata, K.Katsura and Y.Tamura (1984) *Computer Science Monographs, Timsac-84 Part 1.* The Institute of Statistical Mathematics.

bsubst *Bayesian Type All Subset Analysis*

Description

Produce Bayesian estimates of time series models such as pure AR models, AR models with nonlinear terms, AR models with polynomial type mean value functions, etc. The goodness of fit of a model is checked by the analysis of several steps ahead prediction errors.

Usage

```
bsubst(y, mtype, lag = NULL, nreg, reg = NULL, term.lag = NULL, cstep = 5,
      plot = TRUE)
```


Details

The AR model is given by ($mtype = 2$)

$$
y(t) = a(1)y(t-1) + \dots + a(p)y(t-p) + u(t).
$$

The non-linear model is given by ($mtype = 2, 3$)

$$
y(t) = a(1)z(t,1) + a(2)z(t,2) + \ldots + a(p)z(t,p) + u(t).
$$

Where p is AR order and $u(t)$ is Gaussian white noise with mean 0 and variance $v(p)$.

Value

Canadianlynx 17

References

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

Examples

```
data(Canadianlynx)
Regressor <- matrix(
     c( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 1, 3, 1, 2, 3,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 1, 2, 3,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3 ),
     nrow = 3, ncol = 19, byrow = TRUE)
z \le bsubst(Canadianlynx, mtype = 2, lag = 12, nreg = 19, Regressor)
z$arcoef.bay
```
Canadianlynx *Time series of Canadian lynx data*

Description

A time series of Canadian lynx data for testing [unimar](#page-59-1), [unibar](#page-57-1), [bsubst](#page-14-1) and [exsar](#page-23-1).

Usage

```
data(Canadianlynx)
```
Format

A time series of 114 observations.

Source

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

Description

Fit an ARMA model to stationary scalar time series through the analysis of canonical correlations between the future and past sets of observations.

Usage

canarm(y, lag = NULL, max.order = NULL, plot = TRUE)

Arguments

Details

The ARMA model of stationary scalar time series $y(t)(t = 1, ..., n)$ is given by

$$
y(t) - a(1)y(t-1) - \ldots - a(p)y(t-p) = u(t) - b(1)u(t-1) - \ldots - b(q)u(t-q),
$$

where p is AR order and q is MA order.

Value

canoca and 19

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1)*. The Institute of Statistical Mathematics.

Examples

```
# "arima.sim" is a function in "stats".
# Note that the sign of MA coefficient is opposite from that in "timsac".
y \le -\arima.sim(list(order=c(2,0,1), arc=c(0.64,-0.8), mac(-0.5)), n = 1000)z <- canarm(y, max.order = 30)
z$arcoef
z$macoef
```
canoca *Canonical Correlation Analysis of Vector Time Series*

Description

Analyze canonical correlation of a d-dimensional multivariate time series.

Usage

canoca(y)

Arguments

y a multivariate time series.

Details

First AR model is fitted by the minimum AIC procedure. The results are used to ortho-normalize the present and past variables. The present and future variables are tested successively to decide on the dependence of their predictors. When the last DIC (=chi-square - $2.0*$ N.D.F.) is negative the predictor of the variable is decided to be linearly dependent on the antecedents.

20 canoca control and the control of the control of the control of the canoca canoca canoca canoca control of the con

Value

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1)*. The Institute of Statistical Mathematics.

Examples

```
ar < -array(0, dim = c(3, 3, 2))ar[, , 1] \leq matrix(c(0.4, 0, 0.3,0.2, -0.1, -0.5,0.3, 0.1, 0), nrow = 3, ncol = 3, byrow= TRUE)
ar[,, 2] <- matrix(c(0, -0.3, 0.5,0.7, -0.4, 1,
                      0, -0.5, 0.3), nrow = 3, ncol = 3, byrow = TRUE)
x <- matrix(rnorm(1000*3), nrow = 1000, ncol = 3)
y <- mfilter(x, ar, "recursive")
z \leftarrow canoca(y)z$arcoef
```


Description

Produce the Fourier transform of a power gain function in the form of an autocovariance sequence.

Usage

covgen(lag, f, gain, plot = TRUE)

Arguments

Value

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1)*. The Institute of Statistical Mathematics.

Examples

```
spec \leq raspec(h = 100, var = 1, arcoef = c(0.64,-0.8), plot = FALSE)
covgen(lag = 100, f = 0:100/200, gain = spec)
```


Description

Decompose a nonstationary time series into several possible components by square-root filter.

Usage

```
decomp(y, trend.order = 2, ar.order = 2, seasonal.order = 1,period = 1, log = FALSE, trade = FALSE, diff = 1,
      miss = 0, omas = 99999.9, plot = TRUE, ...)
```
Arguments

Details

The Basic Model

$$
y(t) = T(t) + AR(t) + S(t) + TD(t) + W(t)
$$

where $T(t)$ is trend component, $AR(t)$ is AR process, $S(t)$ is seasonal component, $TD(t)$ is trading day factor and $W(t)$ is observational noise.

Component Models

- Trend component (trend.order m1)
	- $m1 = 1 : T(t) = T(t-1) + v1(t)$ $m1 = 2 : T(t) = 2T(t-1) - T(t-2) + v1(t)$ $m1 = 3 : T(t) = 3T(t-1) - 3T(t-2) + T(t-2) + v1(t)$
- AR component (ar.order m2) $AR(t) = a(1)AR(t-1) + ... + a(m2)AR(t-m2) + v2(t)$

decomp 23

• Seasonal component (seasonal.order k, frequency f)

 $k = 1$: $S(t) = -S(t-1) - \ldots - S(t-f+1) + v3(t)$ $k = 2$: $S(t) = -2S(t-1) - \ldots - f S(t-f+1) - \ldots - S(t-2f+2) + v3(t)$

• Trading day effect

 $TD(t) = b(1) TRADE(t, 1) + \ldots + b(7) TRADE(t, 7)$ where $TRADE(t, i)$ is the number of *i*-th days of the week in *t*-th data and $b(1) + \ldots$ $b(7) = 0.$

Value

An object of class "decomp", which is a list with the following components:

References

G.Kitagawa (1981) *A Nonstationary Time Series Model and Its Fitting by a Recursive Filter* Journal of Time Series Analysis, Vol.2, 103-116.

W.Gersch and G.Kitagawa (1983) *The prediction of time series with Trends and Seasonalities* Journal of Business and Economic Statistics, Vol.1, 253-264.

G.Kitagawa (1984) *A smoothness priors-state space modeling of Time Series with Trend and Seasonality* Journal of American Statistical Association, VOL.79, NO.386, 378-389.

Examples

```
data(Blsallfood)
y <- ts(Blsallfood, start=c(1967,1), frequency=12)
z \leq - decomp(y, trade = TRUE)
z$aic
```
z\$lkhd z\$sigma2 z\$tau1 z\$tau2 z\$tau3

exsar *Exact Maximum Likelihood Method of Scalar AR Model Fitting*

Description

Produce exact maximum likelihood estimates of the parameters of a scalar AR model.

Usage

exsar(y, max.order = NULL, plot = FALSE)

Arguments

Details

The AR model is given by

$$
y(t) = a(1)y(t-1) + \dots + a(p)y(t-p) + u(t)
$$

where p is AR order and $u(t)$ is a zero mean white noise.

Value

fftcor 25

References

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

Examples

```
data(Canadianlynx)
z <- exsar(Canadianlynx, max.order = 14)
z$arcoef.maice
z$arcoef.mle
```
fftcor *Auto And/Or Cross Correlations via FFT*

Description

Compute auto and/or cross covariances and correlations via FFT.

Usage

 $fftcor(y, lag = NULL, isw = 4, plot = TRUE, lag_axis = TRUE)$

Arguments

ccor21 cross-correlation.

mean mean.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Examples

```
# Example 1
x < - rnorm(200)
y \le - rnorm(200)
xy \le -\arctan(c(x,y), \dim = c(200,2))fftcor(xy, lag_axis = FALSE)
# Example 2
xorg < -rnorm(1003)x \le - matrix(0, nrow = 1000, ncol = 2)
x[, 1] <- xorg[1:1000]
x[, 2] <- xorg[4:1003] + 0.5*rnorm(1000)
fftcor(x, lag = 20)
```
fpeaut *FPE Auto*

Description

Perform FPE(Final Prediction Error) computation for one-dimensional AR model.

Usage

```
fpeaut(y, max.order = NULL)
```
Arguments

Details

The AR model is given by

$$
y(t) = a(1)y(t-1) + \dots + a(p)y(t-p) + u(t)
$$

where p is AR order and $u(t)$ is a zero mean white noise.

 $fpec$ 27

Value

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Examples

y <- arima.sim(list(order=c(2,0,0), ar=c(0.64,-0.8)), n = 200) f peaut(y, max.order = 20)

AR model Fitting for Control

Description

Perform AR model fitting for control.

Usage

```
fpec(y, max.order = NULL, control = NULL, main = NULL)
```


Value

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Examples

```
ar \leq array(0, dim = c(3,3,2))
ar[, , 1] < - matrix(c(0.4, 0, 0.3, 0.3)0.2, -0.1, -0.5,0.3, 0.1, 0), nrow = 3, ncol = 3, byrow = TRUE)
ar[,, 2] <- matrix(c(0, -0.3, 0.5,0.7, -0.4, 1,
                     0, -0.5, 0.3), nrow = 3, ncol = 3, byrow = TRUE)
x \le - matrix(rnorm(200*3), nrow = 200, ncol = 3)
y <- mfilter(x, ar, "recursive")
fpec(y, max.order = 10)
```
LaborData *Labor force Data*

Description

Labor force U.S. unemployed 16 years or over (1972-1978) data.

Usage

data(LaborData)

Format

A time series of 72 observations.

locarData 29

Source

H.Akaike, T.Ozaki, M.Ishiguro, Y.Ogata, G.Kitagawa, Y-H.Tamura, E.Arahata, K.Katsura and Y.Tamura (1985) *Computer Science Monograph, No.22, Timsac84 Part 1.* The Institute of Statistical Mathematics.

locarData *Non-stationary Test Data*

Description

A non-stationary data for testing [mlocar](#page-31-1) and [blocar](#page-11-1).

Usage

data(locarData)

Format

A time series of 1000 observations.

Source

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

markov *Maximum Likelihood Computation of Markovian Model*

Description

Compute maximum likelihood estimates of Markovian model.

Usage

markov(y)

Arguments

y a multivariate time series.

Details

This function is usually used with [simcon](#page-54-1).

Value

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1)*. The Institute of Statistical Mathematics.

Examples

```
x \le - matrix(rnorm(1000*2), nrow = 1000, ncol = 2)
ma < -array(0, dim = c(2, 2, 2))ma[,, 1] <- matrix(c(-1.0, 0.0,0.0, -1.0), nrow = 2, ncol = 2, byrow = TRUE)
ma[,, 2] <- matrix(c(-0.2, 0.0,-0.1, -0.3), nrow = 2, ncol = 2, byrow = TRUE)
y <- mfilter(x, ma, "convolution")
ar \leq array(0, dim = c(2,2,3))
ar[,, 1] <- matrix(c(-1.0, 0.0,
                       0.0, -1.0), nrow = 2, ncol = 2, byrow = TRUE)
ar[,, 2] <- matrix(c( -0.5, -0.2,
                      -0.2, -0.5), nrow = 2, ncol = 2, byrow = TRUE)
ar[,, 3] <- matrix(c( -0.3, -0.05,
                       -0.1, -0.30), nrow = 2, ncol = 2, byrow = TRUE)
z <- mfilter(y, ar, "recursive")
markov(z)
```


Description

Applies linear filtering to a multivariate time series.

Usage

```
mfilter(x, filter, method = c("convolution","recursive"), init)
```
Arguments

Details

This is a multivariate version of "filter" function. Missing values are allowed in 'x' but not in 'filter' (where they would lead to missing values everywhere in the output). Note that there is an implied coefficient 1 at lag 0 in the recursive filter, which gives

$$
y[i,]' = x[, i]'+f[, , 1] \times y[i-1,]' + ... + f[, , p] \times y[i-p,]',
$$

No check is made to see if recursive filter is invertible: the output may diverge if it is not. The convolution filter is

$$
y[i,]' = f[,
$$
, 1 \times $x[i,]' + ... + f[,$, $p \times x[i - p + 1,]'.$

Value

mfilter returns a time series object.

Note

'convolve(, type="filter")' uses the FFT for computations and so may be faster for long filters on univariate time series (and so the time alignment is unclear), nor does it handle missing values. 'filter' is faster for a filter of length 100 on a series 1000, for examples.

See Also

[convolve](#page-0-0), [arima.sim](#page-0-0)

Examples

```
#AR model simulation
ar < -array(0, dim = c(3, 3, 2))ar[,, 1] <- matrix(c(0.4, 0, 0.3,0.2, -0.1, -0.5,0.3, 0.1, 0), nrow = 3, ncol = 3, byrow = TRUE)
ar[,, 2] <- matrix(c(0, -0.3, 0.5,
                      0.7, -0.4, 1,0, -0.5, 0.3), nrow = 3, ncol = 3, byrow = TRUE)
x \le - matrix(rnorm(100*3), nrow = 100, ncol = 3)
y <- mfilter(x, ar, "recursive")
#Back to white noise
ma < -array(0, dim = c(3,3,3))ma[, , 1] < - diag(3)ma[, , 2] < -ar[, , 1]ma[, , 3] < -ar[, , 2]z <- mfilter(y, ma, "convolution")
mulcor(z)
#AR-MA model simulation
x \le - matrix(rnorm(1000*2), nrow = 1000, ncol = 2)
ma \leq -\arctan(0, \, \text{dim} = c(2, 2, 2))ma[,, 1] <- matrix(c(-1.0, 0.0,0.0, -1.0), nrow = 2, ncol = 2, byrow = TRUE)
ma[,, 2] <- matrix(c(-0.2, 0.0,-0.1, -0.3, nrow = 2, ncol = 2, byrow = TRUE)
y <- mfilter(x, ma, "convolution")
ar < -array(0, dim = c(2, 2, 3))ar[,, 1] <- matrix(c(-1.0, 0.0,
                        0.0, -1.0, nrow = 2, ncol = 2, byrow = TRUE)
ar[,, 2] <- matrix(c(-0.5, -0.2,
                       -0.2, -0.5), nrow = 2, ncol = 2, byrow = TRUE)
ar[,, 3] <- matrix(c( -0.3, -0.05,
                       -0.1, -0.30, nrow = 2, ncol = 2, byrow = TRUE)
z <- mfilter(y, ar, "recursive")
```


Minimum AIC Method of Locally Stationary AR Model Fitting; Scalar *Case*

Description

Locally fit autoregressive models to non-stationary time series by minimum AIC procedure.

Usage

```
mlocar(y, max.order = NULL, span, const = 0, plot = TRUE)
```
mlocar 33

Arguments

Details

The data of length n are divided into k locally stationary spans,

 $| < -n_1 - > | < -n_2 - > | < -n_3 - > |$ $| < -n_k - > |$

where n_i ($i = 1, \ldots, k$) denotes the number of basic spans, each of length span, which constitute the i -th locally stationary span. At each local span, the process is represented by a stationary autoregressive model.

Value

References

G.Kitagawa and H.Akaike (1978) A Procedure for The Modeling of Non-Stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

Examples

```
data(locarData)
z \le mlocar(locarData, max.order = 10, span = 300, const = 0)
z$arcoef
```


Description

Locally fit multivariate autoregressive models to non-stationary time series by the minimum AIC procedure using the householder transformation.

Usage

mlomar(y, max.order = NULL, span, const = θ)

Arguments

Details

The data of length n are divided into k locally stationary spans,

 $| \langle -n_1 - - \rangle | \langle -n_2 - - \rangle | \langle -n_3 - - \rangle |$, $| \langle -n_k - \rangle |$

where n_i $(i = 1, \ldots, k)$ denoted the number of basic spans, each of length span, which constitute the i -th locally stationary span. At each local span, the process is represented by a stationary autoregressive model.

mulbar 35

Value

References

G.Kitagawa and H.Akaike (1978) A Procedure for The Modeling of Non-Stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

Examples

```
data(Amerikamaru)
mlomar(Amerikamaru, max.order = 10, span = 300, const = 0)
```


mulbar *Multivariate Bayesian Method of AR Model Fitting*

Description

Determine multivariate autoregressive models by a Bayesian procedure. The basic least squares estimates of the parameters are obtained by the householder transformation.

Usage

 $mulbar(y, max.order = NULL, plot = FALSE)$

36 mulbar

Arguments

Details

The statistic AIC is defined by

$$
AIC = n \log(det(v)) + 2k,
$$

where n is the number of data, v is the estimate of innovation variance matrix, det is the determinant and k is the number of free parameters.

Bayesian weight of the m -th order model is defined by

$$
W(n) = const \times \frac{C(m)}{m+1},
$$

where const is the normalizing constant and $C(m) = \exp(-0.5AIC(m))$. The Bayesian estimates of partial autoregression coefficient matrices of forward and backward models are obtained by $(m =$ $1, \ldots$, $lag)$ $G(m) = G(m)D(m)$

$$
G(m) = G(m)D(m),
$$

$$
H(m) = H(m)D(m),
$$

where the original $G(m)$ and $H(m)$ are the (conditional) maximum likelihood estimates of the highest order coefficient matrices of forward and backward AR models of order m and $D(m)$ is defined by

$$
D(m) = W(m) + \ldots + W(lag).
$$

The equivalent number of parameters for the Bayesian model is defined by

$$
ek = \{D(1)^2 + \ldots + D(lag)^2\}id + \frac{id(id+1)}{2}
$$

where *id* denotes dimension of the process.

Value

mulcor 37

References

H.Akaike (1978) A Bayesian Extension of The Minimum AIC Procedure of Autoregressive Model Fitting. Research Memo. NO.126, The Institute of Statistical Mathematics.

G.Kitagawa and H.Akaike (1978) A Procedure for The Modeling of Non-stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

Examples

data(Powerplant) z <- mulbar(Powerplant, max.order = 10) z\$pacoef.for z\$pacoef.back

mulcor *Multiple Correlation*

Description

Estimate multiple correlation.

Usage

```
mulcor(y, lag = NULL, plot = TRUE, lag_axis = TRUE)
```


38 mulfrf

Value

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Examples

```
# Example 1
y <- rnorm(1000)
dim(y) <- c(500,2)
mulcor(y, lag_axis = FALSE)
# Example 2
```

```
xorg <- rnorm(1003)
x \le - matrix(0, nrow = 1000, ncol = 2)
x[, 1] <- xorg[1:1000]
x[, 2] <- xorg[4:1003] + 0.5*rnorm(1000)
mulcor(x, lag = 20)
```
mulfrf *Frequency Response Function (Multiple Channel)*

Description

Compute multiple frequency response function, gain, phase, multiple coherency, partial coherency and relative error statistics.

Usage

mulfrf(y, lag = NULL, iovar = NULL)

mulmar 39

Value

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Examples

```
ar < -array(0, dim = c(3, 3, 2))ar[,, 1] <- matrix(c(0.4, 0, 0.3, ...)0.2, -0.1, -0.5,0.3, 0.1, 0), nrow = 3, ncol = 3, byrow = TRUE)
ar[,, 2] <- matrix(c(0, -0.3, 0.5,0.7, -0.4, 1,
                     0, -0.5, 0.3), nrow = 3, ncol = 3, byrow = TRUE)
x \le - matrix(rnorm(200*3), nrow = 200, ncol = 3)
y <- mfilter(x, ar, "recursive")
multipff(y, lag = 20)
```
mulmar *Multivariate Case of Minimum AIC Method of AR Model Fitting*

Description

Fit a multivariate autoregressive model by the minimum AIC procedure. Only the possibilities of zero coefficients at the beginning and end of the model are considered. The least squares estimates of the parameters are obtained by the householder transformation.

Usage

 $mulmar(y, max.order = NULL, plot = FALSE)$

Details

Multivariate autoregressive model is defined by

$$
y(t) = A(1)y(t-1) + A(2)y(t-2) + \ldots + A(p)y(t-p) + u(t),
$$

where p is order of the model and $u(t)$ is Gaussian white noise with mean 0 and variance matrix matv. AIC is defined by

$$
AIC = n \log(det(v)) + 2k,
$$

where n is the number of data, v is the estimate of innovation variance matrix, det is the determinant and k is the number of free parameters.

Value

References

G.Kitagawa and H.Akaike (1978) A Procedure for The Modeling of Non-stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

mulnos 41

Examples

```
# Example 1
data(Powerplant)
z <- mulmar(Powerplant, max.order = 10)
z$arcoef
# Example 2
ar \leq array(0, dim = c(3,3,2))
ar[,, 1] <- matrix(c(0.4, 0, 0.3, 0.3)0.2, -0.1, -0.5,0.3, 0.1, 0), nrow = 3, ncol = 3, byrow = TRUE)
ar[,, 2] <- matrix(c(0, -0.3, 0.5,0.7, -0.4, 1,
                      0, -0.5, 0.3), nrow = 3, ncol = 3,byrow = TRUE)
x \le - matrix(rnorm(200*3), nrow = 200, ncol = 3)
y <- mfilter(x, ar, "recursive")
z \le mulmar(y, max.order = 10)
z$arcoef
```
mulnos *Relative Power Contribution*

Description

Compute relative power contributions in differential and integrated form, assuming the orthogonality between noise sources.

Usage

```
mulnos(y, max.order = NULL, control = NULL, manip = NULL, h)
```
Arguments

Value

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Examples

```
ar < -array(0, dim = c(3, 3, 2))ar[,, 1] <- matrix(c(0.4, 0, 0.3,0.2, -0.1, -0.5,0.3, 0.1, 0), nrow = 3, ncol = 3, byrow = TRUE)
ar[,, 2] <- matrix(c(0, -0.3, 0.5,0.7, -0.4, 1,
                     0, -0.5, 0.3), nrow = 3, ncol = 3, byrow = TRUE)
x \le - matrix(rnorm(200*3), nrow = 200, ncol = 3)
y <- mfilter(x, ar, "recursive")
mulnos(y, max.order = 10, h = 20)
```
mulrsp *Multiple Rational Spectrum*

Description

Compute rational spectrum for d-dimensional ARMA process.

Usage

mulrsp(h, d, cov, ar = NULL, ma = NULL, $log =$ FALSE, plot = TRUE, ...)

Arguments

Details

ARMA process :

 $y(t) - A(1)y(t-1) - ... - A(p)y(t-p) = u(t) - B(1)u(t-1) - ... - B(q)u(t-q)$

where $u(t)$ is a white noise with zero mean vector and covariance matrix cov.

mulspe and the state of the

Value

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Examples

```
# Example 1 for the normal distribution
xorg < -rnorm(1003)x \le - matrix(0, nrow = 1000, ncol = 2)
x[, 1] <- xorg[1:1000]
x[, 2] <- xorg[4:1003] + 0.5*rnorm(1000)aaa \leftarrow ar(x)mulrsp(h = 20, d = 2, cov = aaa$var.pred, ar = aaa$ar)
# Example 2 for the AR model
ar < -array(0, dim = c(3, 3, 2))ar[,, 1] <- matrix(c(0.4, 0, 0.3,0.2, -0.1, -0.5,0.3, 0.1, 0), nrow = 3, ncol = 3, byrow = TRUE)
ar[,, 2] <- matrix(c(0, -0.3, 0.5,0.7, -0.4, 1,
                      0, -0.5, 0.3), nrow = 3, ncol = 3, byrow = TRUE)
x \le - matrix(rnorm(200*3), nrow = 200, ncol = 3)
y <- mfilter(x, ar, "recursive")
z \leftarrow fpec(y, max.order = 10)mulrsp(h = 20, d = 3, cov = z\{sperr}, ar = z\{arcoef})
```


mulspe *Multiple Spectrum*

Description

Compute multiple spectrum estimates using Akaike window or Hanning window.

Usage

mulspe(y, lag = NULL, window = "Akaike", plot = TRUE, \ldots)

Details

Value

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Examples

```
sgnl <- rnorm(1003)
x \le - matrix(0, nrow = 1000, ncol = 2)
x[, 1] <- sgnl[4:1003]
# x[i,2] = 0.9*x[i-3,1] + 0.2*N(0,1)x[, 2] <- 0.9*sgnl[1:1000] + 0.2*rnorm(1000)
mulspe(x, \text{lag} = 100, window = "Hanning")
```
Description

Locally fit autoregressive models to non-stationary time series by AIC criterion.

Usage

 $nont(y, span, max.order = NULL, plot = TRUE)$

Arguments

Details

The basic AR model is given by

 $y(t) = A(1)y(t-1) + A(2)y(t-2) + ... + A(p)y(t-p) + u(t),$

where p is order of the AR model and $u(t)$ is innovation variance. AIC is defined by

$$
AIC = n \log(det(sd)) + 2k,
$$

where n is the length of data, sd is the estimates of the innovation variance and k is the number of parameter.

Value

References

H.Akaike, E.Arahata and T.Ozaki (1976) *Computer Science Monograph, No.6, Timsac74 A Time Series Analysis and Control Program Package (2)*. The Institute of Statistical Mathematics.

Examples

Non-stationary Test Data data(nonstData) nonst(nonstData, span = 700, max.order = 49)

nonstData *Non-stationary Test Data*

Description

A non-stationary data for testing [nonst](#page-44-1).

Usage

data(nonstData)

Format

A time series of 2100 observations.

Source

H.Akaike, E.Arahata and T.Ozaki (1976) *Computer Science Monograph, No.6, Timsac74 A Time Series Analysis and Control Program Package (2)*. The Institute of Statistical Mathematics.

optdes *Optimal Controller Design*

Description

Compute optimal controller gain matrix for a quadratic criterion defined by two positive definite matrices Q and R.

Usage

optdes(y, max.order = NULL, ns, q, r)

optsim 47

Arguments

Value

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Examples

```
# Multivariate Example Data
ar < -array(0, dim = c(3, 3, 2))ar[, , 1] < - matrix(c(0.4, 0, 0.3, 0.3)0.2, -0.1, -0.5,0.3, 0.1, 0), nrow= 3, ncol= 3, byrow = TRUE)
ar[,, 2] <- matrix(c(0, -0.3, 0.5,0.7, -0.4, 1,
                      0, -0.5, 0.3), nrow= 3, ncol= 3, byrow = TRUE)
x \le - matrix(rnorm(200*3), nrow = 200, ncol = 3)
y <- mfilter(x, ar, "recursive")
q.mat <- matrix(c(0.16, 0, 0, 0.09), nrow = 2, ncol = 2)
r.mat <- as.matrix(0.001)
optdes(y, ns = 20, q = q.mat, r = r.mat)
```
optsim *Optimal Control Simulation*

Description

Perform optimal control simulation and evaluate the means and variances of the controlled and manipulated variables X and Y.

Usage

optsim(y, max.order = NULL, ns, q, r, noise = NULL, len, plot = TRUE)

Arguments

Value

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

perars and the contract of the

Examples

```
# Multivariate Example Data
ar \leq -\arctan(0, \, \text{dim} = c(3, 3, 2))ar[,, 1] <- matrix(c(0.4, 0, 0.3,0.2, -0.1, -0.5,0.3, 0.1, 0), nrow = 3, ncol = 3, byrow = TRUE)
ar[,, 2] <- matrix(c(0, -0.3, 0.5,0.7, -0.4, 1,
                      0, -0.5, 0.3), nrow = 3, ncol = 3, byrow = TRUE)
x \le - matrix(rnorm(200*3), nrow = 200, ncol = 3)
y <- mfilter(x, ar, "recursive")
q.mat <- matrix(c(0.16, 0, 0, 0.09), nrow = 2, ncol = 2)
r.mat \leftarrow as.matrix(0.001)optsim(y, max.order = 10, ns = 20, q = q.mat, r = r.mat, len = 20)
```
perars *Periodic Autoregression for a Scalar Time Series*

Description

This is the program for the fitting of periodic autoregressive models by the method of least squares realized through householder transformation.

Usage

 $perars(y, ni, lag = NULL, ksw = 0)$

Arguments

Details

Periodic autoregressive model ($i = 1, \ldots, nd, j = 1, \ldots, n$ i) is defined by

$$
z(i, j) = y(ni(i - 1) + j),
$$

\n
$$
z(i, j) = c(j) + A(1, j, 0)z(i, 1) + \ldots + A(j - 1, j, 0)z(i, j - 1) + A(1, j, 1)z(i - 1, 1) + \ldots + A(ni, j, 1)z(i - 1, ni) + \ldots + u(i, j),
$$

where nd is the number of periods, ni is the number of instants in one period and $u(i, j)$ is the Gaussian white noise. When ksw is set to '0', the constant term $c(j)$ is excluded.

The statistics AIC is defined by $AIC = n \log(det(v)) + 2k$, where n is the length of data, v is the estimate of the innovation variance matrix and k is the number of parameters. The outputs are the estimates of the regression coefficients and innovation variance of the periodic AR model for each instant.

Value

References

M.Pagano (1978) On Periodic and Multiple Autoregressions. Ann. Statist., 6, 1310–1317.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

Examples

data(Airpollution) perars(Airpollution, ni = 6, lag = 2, ksw = 1)

plot.decomp *Plot Trend, Seasonal, AR Components and Trading Day Factor*

Description

Plot trend component, seasonal component, AR component, noise and trading day factor returned by [decomp](#page-20-1).

Usage

S3 method for class 'decomp' plot(x, ...)

Description

Plot spectrum returned by [mulspe](#page-42-1) and [mulrsp](#page-41-1). On and lower diagonal are real parts, and upper diagonal are imaginary parts.

Usage

```
## S3 method for class 'specmx'
plot(x, plot-scale = TRUE, ...)
```
Arguments

Description

A Power plant data for testing [mulbar](#page-34-1) and [mulmar](#page-38-1).

Usage

```
data(Powerplant)
```
Format

A 2-dimensional array with 500 observations on 3 variables.

- [, 1] command
- [, 2] temperature
- [, 3] fuel

Source

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

Description

Operate on a real record of a vector process and compute predicted values.

Usage

```
prdctr(y, r, s, h, arcoef, macoef = NULL, impulse = NULL, v, plot = TRUE)
```
Arguments

Details

One step ahead Prediction starts at time R and ends at time S. Prediction is continued without new observations until time $S + H$. Basic model is the autoregressive moving average model of $y(t)$ which is given by

 $y(t) - A(t)y(t-1) - \ldots - A(p)y(t-p) = u(t) - B(1)u(t-1) - \ldots - B(q)u(t-q),$

where p is AR order and q is MA order.

Value

raspec 53

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.6, Timsac74, A Time Series Analysis and Control Program Package (2)*. The Institute of Statistical Mathematics.

Examples

```
# "arima.sim" is a function in "stats".
# Note that the sign of MA coefficient is opposite from that in "timsac".
y \le -\arima.sim(list(order=c(2,0,1), arc=c(0.64,-0.8), mac(-0.5)), n = 1000)y1 <- y[1:900]
z <- autoarmafit(y1)
ar <- z$model[[1]]$arcoef
ma <- z$model[[1]]$macoef
var <- z$model[[1]]$v
y2 <- y[901:990]
prdctr(y2, r = 50, s = 90, h = 10, arcoef = ar, macoef = ma, v = var)
```
raspec *Rational Spectrum*

Description

Compute power spectrum of ARMA process.

Usage

```
raspec(h, var, arcoef = NULL, macoef = NULL, log = FALSE, plot = TRUE)
```
Arguments

Details

ARMA process :

$$
y(t) - a(1)y(t-1) - \ldots - a(p)y(t-p) = u(t) - b(1)u(t-1) - \ldots - b(q)u(t-q)
$$

where p is AR order, q is MA order and $u(t)$ is a white noise with zero mean and variance equal to var.

Value

raspec gives the rational spectrum.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Examples

```
# Example 1 for the AR model
raspec(h = 100, var = 1, arcoef = c(0.64,-0.8))
# Example 2 for the MA model
raspec(h = 20, var = 1, macoef = c(0.64, -0.8))
```


Frequency Response Function (Single Channel)

Description

Compute 1-input,1-output frequency response function, gain, phase, coherency and relative error statistics.

Usage

sglfre(y, lag = NULL, invar, outvar)

Arguments

Value

simcon 55

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Examples

```
ar < -array(0, dim = c(3, 3, 2))ar[, , 1] < - matrix(c(0.4, 0, 0.3, 0.3)0.2, -0.1, -0.5,0.3, 0.1, 0), nrow = 3, ncol = 3, byrow = TRUE)
ar[,, 2] <- matrix(c(0, -0.3, 0.5,0.7, -0.4, 1,
                       0, -0.5, 0.3), nrow = 3, ncol = 3, byrow = TRUE)
x \le - matrix(rnorm(200*3), nrow = 200, ncol = 3)
y <- mfilter(x, ar, "recursive")
\text{sglfre}(y, \text{lag} = 20, \text{ invar} = 1, \text{ outvar} = 2)
```


simcon *Optimal Controller Design and Simulation*

Description

Produce optimal controller gain and simulate the controlled process.

Usage

simcon(span, len, r, arcoef, impulse, v, weight)

Details

The basic state space model is obtained from the autoregressive moving average model of a vector process $y(t)$;

$$
y(t) - A(1)y(t-1) - \ldots - A(p)y(t-p) = u(t) - B(1)u(t-1) - \ldots - B(p-1)u(t-p+1),
$$

where $A(i)$ $(i = 1, \ldots, p)$ are the autoregressive coefficients of the ARMA representation of $y(t)$.

Value

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.6, Timsac74, A Time Series Analysis and Control Program Package (2)*. The Institute of Statistical Mathematics.

Examples

```
x \le - matrix(rnorm(1000*2), nrow = 1000, ncol = 2)
ma < - array(0, dim = c(2, 2, 2))ma[,, 1] <- matrix(c(-1.0, 0.0,0.0, -1.0, nrow = 2, ncol = 2, byrow = TRUE)
ma[,, 2] <- matrix(c(-0.2, 0.0,-0.1, -0.3, nrow = 2, ncol = 2, byrow = TRUE)
y <- mfilter(x, ma, "convolution")
ar < -array(0, dim = c(2, 2, 3))ar[,, 1] <- matrix(c(-1.0, 0.0,
                       0.0, -1.0), nrow = 2, ncol = 2, byrow = TRUE)
ar[,, 2] <- matrix(c( -0.5, -0.2,
                      -0.2, -0.5), nrow = 2, ncol = 2, byrow = TRUE)
ar[,, 3] <- matrix(c( -0.3, -0.05,
                       -0.1, -0.3), nrow = 2, ncol = 2, byrow = TRUE)
y <- mfilter(y, ar, "recursive")
z < - markov(y)
weight <- matrix(c(0.0002, 0.0,
                    0.0, 2.9 ), nrow = 2, ncol = 2, byrow = TRUE)
simcon(span = 50, len = 700, r = 1, z$arcoef, z$impulse, z$v, weight)
```


Description

Compute the third order moments.

Usage

 $\text{thirmo}(y, \text{ lag} = \text{NULL}, \text{ plot} = \text{TRUE})$

Arguments

Value

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.6, Timsac74, A Time Series Analysis and Control Program Package (2)*. The Institute of Statistical Mathematics.

Examples

```
data(bispecData)
z <- thirmo(bispecData, lag = 30)
z$tmomnt
```


Description

This program fits an autoregressive model by a Bayesian procedure. The least squares estimates of the parameters are obtained by the householder transformation.

Usage

 $unibar(y, ar.order = NULL, plot = TRUE)$

Arguments

Details

The AR model is given by

$$
y(t) = a(1)y(t-1) + \ldots + a(p)y(t-p) + u(t),
$$

where p is AR order and $u(t)$ is Gaussian white noise with mean 0 and variance $v(p)$. The basic statistic AIC is defined by

$$
AIC = n \log(det(v)) + 2m,
$$

where n is the length of data, v is the estimate of innovation variance, and m is the order of the model.

Bayesian weight of the m -th order model is defined by

$$
W(m) = CONST \times \frac{C(m)}{m+1},
$$

where CONST is the normalizing constant and $C(m) = \exp(-0.5AIC(m))$. The equivalent number of free parameter for the Bayesian model is defined by

$$
ek = D(1)^2 + \ldots + D(k)^2 + 1,
$$

where $D(j)$ is defined by $D(j) = W(j) + \ldots + W(k)$. m in the definition of AIC is replaced by ek to be define an equivalent AIC for a Bayesian model.

unibar 59

Value

References

H.Akaike (1978) A Bayesian Extension of The Minimum AIC Procedure of Autoregressive model Fitting. Research memo. No.126. The Institute of Statistical Mathematics.

G.Kitagawa and H.Akaike (1978) A Procedure for The Modeling of Non-Stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

Examples

```
data(Canadianlynx)
z <- unibar(Canadianlynx, ar.order = 20)
z$arcoef
```


Description

This is the basic program for the fitting of autoregressive models of successively higher by the method of least squares realized through householder transformation.

Usage

```
unimar(y, max.order = NULL, plot = FALSE)
```
Arguments

Details

The AR model is given by

$$
y(t) = a(1)y(t-1) + \ldots + a(p)y(t-p) + u(t),
$$

where p is AR order and $u(t)$ is Gaussian white noise with mean 0 and variance v. AIC is defined by

$$
AIC = n \log(det(v)) + 2k,
$$

where *n* is the length of data, *v* is the estimates of the innovation variance and *k* is the number of parameter.

Value

whoise 61

References

G.Kitagawa and H.Akaike (1978) A Procedure For The Modeling of Non-Stationary Time Series. Ann. Inst. Statist. Math.,30, B, 351–363.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

Examples

```
data(Canadianlynx)
z <- unimar(Canadianlynx, max.order = 20)
z$arcoef
```
wnoise *White Noise Generator*

Description

Generate approximately Gaussian vector white noise.

Usage

wnoise(len, perr, plot = TRUE)

Arguments

Value

wnoise gives white noises.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems.* Kluwer Academic publishers.

Examples

```
# Example 1
wnoise(len = 100, perr = 1)
# Example 2
v \le matrix(c(1, 0, 0,
             0, 2, 0,
             0, 0, 3), nrow = 3, ncol = 3, byrow = TRUE)
wnoise(len = 20, perr = v)
```


Description

Produce exact maximum likelihood estimates of the parameters of a scalar ARMA model.

Usage

```
xsarma(y, arcoefi, macoefi)
```
Arguments

Details

The ARMA model is given by

$$
y(t) - a(1)y(t-1) - \ldots - a(p)y(t-p) = u(t) - b(1)u(t-1) - \ldots - b(q)u(t-q),
$$

where p is AR order, q is MA order and $u(t)$ is a zero mean white noise.

Value

References

H.Akaike (1978) Covariance matrix computation of the state variable of a stationary Gaussian process. Research Memo. No.139. The Institute of Statistical Mathematics.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

xsarma 63

Examples

```
# "arima.sim" is a function in "stats".
# Note that the sign of MA coefficient is opposite from that in "timsac".
\arccos f \leq c(1.45, -0.9)macoef <-c(-0.5)y \le -\arima.sim(list(order=c(2,0,1), ar=arcoef, ma=macoef), n = 100)arcoefi <- c(1.5, -0.8)
macoefi <- c(0.0)
z <- xsarma(y, arcoefi, macoefi)
z$arcoef
z$macoef
```
Index

∗ datasets Airpollution, [3](#page-2-0) Amerikamaru , [4](#page-3-0) bispecData , [11](#page-10-0) Blsallfood , [14](#page-13-0) Canadianlynx , [17](#page-16-0) LaborData, [28](#page-27-0) locarData , [29](#page-28-0) nonstData , [46](#page-45-0) Powerplant , [51](#page-50-0) ∗ package timsac-package , [3](#page-2-0) ∗ ts armafit , [4](#page-3-0) auspec, [5](#page-4-0) autcor , [6](#page-5-0) autoarmafit , [7](#page-6-0) baysea, <mark>[8](#page-7-0)</mark> bispec, [10](#page-9-0) blocar , [12](#page-11-0) blomar , [13](#page-12-0) bsubst , [15](#page-14-0) canarm , [18](#page-17-0) canoca , [19](#page-18-0) covgen , [21](#page-20-0) decomp , [21](#page-20-0) exsar , [24](#page-23-0) fftcor , [25](#page-24-0) fpeaut , [26](#page-25-0) fpec, [27](#page-26-0) markov , [29](#page-28-0) mfilter , [31](#page-30-0) mlocar , [32](#page-31-0) mlomar , [34](#page-33-0) mulbar, [35](#page-34-0) mulcor, [37](#page-36-0) mulfrf, [38](#page-37-0) mulmar, [39](#page-38-0) mulnos , [41](#page-40-0)

mulrsp , [42](#page-41-0) mulspe, [43](#page-42-0) nonst , [45](#page-44-0) optdes , [46](#page-45-0) optsim , [47](#page-46-0) perars , [49](#page-48-0) plot.decomp , [50](#page-49-0) plot.specmx , [51](#page-50-0) prdctr , [52](#page-51-0) raspec , [53](#page-52-0) sglfre , [54](#page-53-0) simcon , [55](#page-54-0) thirmo , [57](#page-56-0) unibar, <mark>[58](#page-57-0)</mark> unimar , [60](#page-59-0) wnoise , [61](#page-60-0) xsarma , [62](#page-61-0) Airpollution, [3](#page-2-0) Amerikamaru,[4](#page-3-0) arima.sim , *[31](#page-30-0)* armafit , [4](#page-3-0) auspec, [5](#page-4-0) autcor , [6](#page-5-0) autoarmafit , [7](#page-6-0) baysea, <mark>[8](#page-7-0)</mark> bispec , [10](#page-9-0) , *[11](#page-10-0)* bispecData , [11](#page-10-0) blocar , [12](#page-11-0) , *[29](#page-28-0)* blomar , *[4](#page-3-0)* , [13](#page-12-0) Blsallfood , [14](#page-13-0) bsubst , [15](#page-14-0) , *[17](#page-16-0)* Canadianlynx, [17](#page-16-0) canarm , [18](#page-17-0) canoca , [19](#page-18-0) convolve , *[31](#page-30-0)* covgen , [21](#page-20-0) decomp , [21](#page-20-0) , *[50](#page-49-0)*

INDEX 65

exsar , *[17](#page-16-0)* , [24](#page-23-0) fftcor , [25](#page-24-0) fpeaut, [26](#page-25-0) fpec, [27](#page-26-0) LaborData, [28](#page-27-0) locarData , [29](#page-28-0) markov , [29](#page-28-0) mfilter , [31](#page-30-0) mlocar , *[29](#page-28-0)* , [32](#page-31-0) mlomar , [34](#page-33-0) mulbar , [35](#page-34-0) , *[51](#page-50-0)* mulcor, [37](#page-36-0) mulfrf, [38](#page-37-0) mulmar , [39](#page-38-0) , *[51](#page-50-0)* mulnos , [41](#page-40-0) mulrsp , [42](#page-41-0) , *[51](#page-50-0)* mulspe , [43](#page-42-0) , *[51](#page-50-0)* nonst , [45](#page-44-0) , *[46](#page-45-0)* nonstData , [46](#page-45-0) optdes , [46](#page-45-0) optsim , [47](#page-46-0) perars , *[3](#page-2-0)* , [49](#page-48-0) plot.decomp , *[22](#page-21-0)* , [50](#page-49-0) plot.specmx , *[42](#page-41-0)* , *[44](#page-43-0)* , [51](#page-50-0) Powerplant , [51](#page-50-0) prdctr , [52](#page-51-0) print.autoarmafit *(*autoarmafit *)* , [7](#page-6-0) print.blomar *(*blomar *)* , [13](#page-12-0) print.fpec *(*fpec *)* , [27](#page-26-0) print.mlomar *(*mlomar *)* , [34](#page-33-0) print.mulcor *(*mulcor *)* , [37](#page-36-0) print.perars *(*perars *)* , [49](#page-48-0) print.prdctr *(*prdctr *)* , [52](#page-51-0) ptint.mulspe *(*mulspe *)* , [43](#page-42-0) raspec, [53](#page-52-0) sglfre , [54](#page-53-0) simcon, [29](#page-28-0), [55](#page-54-0) thirmo , *[11](#page-10-0)* , [57](#page-56-0) timsac *(*timsac-package *)* , [3](#page-2-0) timsac-package , [3](#page-2-0) unibar , *[17](#page-16-0)* , [58](#page-57-0)

unimar , *[17](#page-16-0)* , [60](#page-59-0) wnoise , [61](#page-60-0) xsarma , [62](#page-61-0)