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1 Introduction

The TIMSAC (TIMe Series Analysis and Control) is a general program package for

analysis, prediction and contorol of time series and has beeen developed at the Institute

of Statistical Mthematics. The original TIMSAC or TIMSAC-72 was published in Akaike

and Nakagawa (1972). After that, TIMSAC-74, TIMSAC-78 and TIMSAC-84 were pub-

lished as the TIMSAC series in Computer Science Monograph 1 . Many programs in

the TIMSAC series were developed to provide procedures for analysing practical data,

e.g., optimal control of an industrial process, analysis of economic fluctuations and so on.

In this package several information criteria are used for model selection. In TIMSAC-

72, FPE (Final Prediction Error) is used. After TIMSAC-74, AIC (Akaike Information

Criterion) is used for model selection. TIMSAC-78 contains several programs based on

Bayesian modeling where ABIC (Akaike Bayesian Information Criterion) is also used for

model selection.

The programs of the TIMSAC series are written in FORTRAN. Recently a DLL (Dy-

namic Link Library) on Windows and a shared library on Linux has been developed for

providing procedures of part of programs of the TIMSAC series. Programs written in

FORTRAN, C or Java can use these libraries.

R is a free programming language or an environment that includes many statistical

techniques. R has facilities for data manipulation on arrays and matrices, graphic and

foreign language interfaces.

We provide timsac R package for using TIMSAC libraries from R. All functions in timsac

R package use .C function of R to communicate between timsac.dll or libtimsac.so and R.

And if necessary some functions display statistical graphs using R graphical procedures.

1H. Akaike, E. Arahata, T. Ozaki: TIMSAC-74, A Time series analysis and control program package
(1) & (2), Computer Science Monographs, No.5 & 6, The Institute of Statistical Mathematics, Tokyo,
1975-1976

H. Akaike, G. Kitagawa, E. Arahata, F. Tada: TIMSAC-78, Computer Science Monographs, No.11,
The Institute of Statistical Mathematics, Tokyo, 1979

H. Akaike, T. Ozaki, M. Ishiguro, Y. Ogata, G. Kitagawa, Y.-H. Tamura, E. Arahata, K. Katsura,
Y. Tamura: TIMSAC-84 Part 1 & Part 2,Computer Science Monographs, No.22 & 23, The Institute of
Statistical Mathematics, Tokyo, 1985
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2 Functions in this package

This section briefly describes functions, thier models and information criteria for model

selection in chronological order. For further information and examples about the timsac

function, see the help documentation.

2-1 R functios in TIMSAC-72

autcor() : Autocovariance and autocorrelation computation by direct method

mulcor() : Multiple covariance and correlation computation by direct method

fftcor() : Auto and/or cross correlation via FFT

auspec() : Power spectrum estimation by Blackman-Tukey type procedure

mulspe() : Cross spectrum estimation by Blackman-Tukey type procedure

sglfre() : Frequency response function computation (single input)

mulfre() : Multiple frequency response function computation (multiple inputs)

fpeaut() : FPE computation for uni-variate AR model

fpec() : FPE computation for control system model or multivariate AR model

mulnos() : Relative power contribution computation

raspec() : Rational spectrum computation (uni-variate)

mulrsp() : Rational spectrum computation (multi-variate)

optdes() : Optimal controller design

optsim() : Optimal controller simulation

wnoise() : White noise simulation

Uni-variate AR (autoregressive) model

For the uni-variate stationary time series y(t), an AR model is given by

y(t) = a(1)y(t − 1) + · · · + a(p)y(t − p) + u(t)

where u(t) is a Gaussian white noise with mean 0 and variance σ2．For fitting AR model,

we estimate coefficients a(1), ..., a(p) and innovation variance σ2.

Multi-variate AR (autoregressive) model

In the same way as the uni-variate case, an AR model of k-dimensional stationary time

series is given by

y(t) =

p∑
m=1

A(m)y(t − m) + u(t)
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where A(m) is the k × k matrix and u(t) = (ϵ1(t), ϵ2(t), · · ·, ϵk(t))́ is a k-dimensional

Gaussian white noise with zero mean vector and variance covariance matrix [σij].

FPE (Final Prediction Error)

The information criterion FPE is given as the square of the expected prediction error.

FPE of a uni-variate AR model of order p is calculated by

FPE =
N + p + 1

N − p − 1
σ̂2

where N is the data length and σ̂2 is the estimate of innovation variance. The order which

gives minimum FPE is used for model selection．(fpeaut)

Similarly FPE of the multi-variate AR model is defined. (fpec)

2-2 R functions in TIMSAC-74

armafit() : ARMA model fitting (uni-variate)

autoarmafit() : Automatic ARMA model fitting (uni-variate)

canarm() : Canonical correlation analysis (uni-variate)

covgen() : Covariance generation from gain function

canoca() : Canonical correlation analysis (multi-variate)

markov() : Automatic ARMA model fitting (multi-variate)

prdctr() : Prediction by ARMA model

simcon() : Optimal controller design and simulation

nonst() : Locally stationary AR model fitting (uni-variate)

thirmo() : Third order moment computation

bispec() : Bi-spectrum computation

Uni-variate ARMA (autoregressive moving average) model

An ARMA model representation of time series y(t) is given by

y(t) −
p∑

l=1

a(l)y(t − l) = u(t) −
q∑

m=1

b(m)u(t − m)

where u(t) is a Gaussian white noise with mean 0 and variance σ2. (armafit, autoarmafit)
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Multi-variate ARMA (autoregressive moving average) model

An ARMA model representation of the i-th time series yi(t) is given by

yi(t) −
p∑

l=1

k∑
j=1

Aij(l)yj(t − l) = ui(t) −
q∑

m=1

Bi(m)ui(t − m) (i = 1, 2, ..., k)

where (u1(t), ..., uk(t)) is a k-dimensional Gaussian white noise. (markov)

AIC (Akaike Information Criterion)

The information criterion AIC is given by

AIC = −2l(θ̂) + 2k

= −2(maximum log-likelihood) + 2(the number of parameters).

In the case that the Yule-Walker equation is used for the uni-variate AR model, AIC is

given by

AIC = N log(2πσ̂2
p) + N + 2(p + 1)

where N is the data length and p is the order of the AR model. Since the data length N

is much larger than the AR order p, FPE can be approximated by

logFPE(p) = log(σ̂2
p) +

2p

N
.

We can get the following relation:

NlogFPE(p) = AIC − Nlog(2π) − N − 2.

2-3 R functions in TIMSAC-78

unimar() : AR model fitting (uni-variate, minimum AIC method)

unibar() : AR model fitting (uni-variate, Bayesian method)

bsubst() : Subset regression analysis by a model linear in parameters

(uni-variate, Bayesian method)

mulmar() : AR model fitting (multi-variate, minimum AIC method)

mulbar() : AR model fitting (multi-variate, Bayesian method)

perars() : Periodic autoregression (uni-variate, minimum AIC method)

mlocar() : Locally stationary AR model fitting (uni-variate, minimum AIC method)

blocar() : Locally stationary AR model fitting (uni-variate, Bayesian method)

mlomar() : Locally stationary AR model fitting (multi-variate, minimum AIC method)

blomar() : Locally stationary AR model fitting (multi-variate, Bayesian method)

exsar() : AR model fitting (uni-variate, exact maximum likelihood method)

xsarma() : ARMA model fitting (uni-variate, exact maximum likelihood method)
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Least squares methods via Householder Transformations are used here. For the uni-

variate AR model

y(t) = a(1)y(t − 1) + · · · + a(p)y(t − p) + u(t)

the matrix Z and vectors y and a are defined as follows.

Z =


y(p) y(p − 1) . . . y(1)

y(p + 1) y(p) . . . y(2)
...

...
...

y(N − 1) y(N − 2) . . . y(N − p)

 , y =


y(p + 1)

y(p + 2)

. . .

y(N)

 , a =

a(1)
...

a(p)

 (1)
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The least square estimate of vector a is obtained by minimizing
∥∥∥Za − y

∥∥∥2

.

We defined the (n − p) × (p + 1) matrix X by

X = [Z|y].

By the adoption of the Householder transformation U , the following upper triangle matrix

S is obtained．

UX = S =


s11 . . . s1p s1,p+1

. . .
...

...

spp sp,p+1

sp+1,p+1

 (2)

Since the matrix U is orthogonal, the Euclidean norm is not changed.

∥∥∥Za − y
∥∥∥2

=
∥∥∥UZa − Uy

∥∥∥2

=

∥∥∥∥∥∥∥
s11 . . . s1p

. . .
...

0 spp


a(1)

...

a(p)

 −

s1,p+1

...

sp,p+1


∥∥∥∥∥∥∥

2

+ s2
p+1,p+1 (3)

The estimates of the AR coefficients ap(1), · · · , ap(p) are given by the solution of the

following equation. s11 . . . s1p

. . .
...

0 spp


ap(1)

...

ap(p)

 =

s1,p+1

...

sp,p+1

 (4)

The estimate of the innovation variance σ̂2
p is given by

σ̂2
p =

s2
p+1,p+1

N − p
.

That is, the estimate of the innovation variance of the AR model of order k (k ≤ p) is

given by

σ̂2
k =

1

N − p

p+1∑
i=k+1

s2
i,p+1

and maximum log-likelihood is given by

−N − p

2
log(2πσ̂2

k) −
N − p

2
.

AIC for the uni-variate AR model of order k (k ≤ p) is given by

AIC(k) = (N − p)log(2πσ̂2
k) + N − p + 2(k + 1).

Above AIC is not equal to that given for AR model fitting with the aid of the Yule-

Walker equation. Because in the least squares computation an AR model of order p is

considerd, but in the Yule-Walker eauation all data is estimated. (unimar)

For the multi-variate AR model fitting AIC is defined in the same way. (mulmar)
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ABIC (Akaike Bayesian Information Criterion)

The Bayesian AR model fitting is based on the idea that AIC is the estimate of the

expected log-likelihood. For an AR model of order k the likelihood of the model is given

by

f(y|k) = exp(−1

2
AIC(k)).

The posterior probability of the k-th AR model is given by

π(k|y) =
f(y|k)π(k)∫
f(y|k)π(k)dk

where π(k) is the prior proability. The Bayesian estimate of the AR model is given as

the average of the models of various orders weighted with the posterior probabilities. The

information criterion ABIC is defined by

ABIC = (N − p)logσ̂2
B + 2(

p∑
i=1

d(i)2 + 1)

where σ̂2
B is the estimate of innovation variance and d(i) is given by

d(i) =

p∑
k=i

π(k|y)

and π(k|y) is the posterior probability as mentioned above. For the Bayesian model the

goodness of fit is evaluated by ABIC. (unibar, mulbar)

Locally stationary AR model fitting

The uni-variate locally stationary AR model for the l-th span is given by

y(t) = al(1)y(t − 1) + · · · + al(p)y(t − p) + ϵl(t), for sl−1 < s ≤ sl.

The basic idea of locally stationary AR model fitting is as follows. We divide N data

into some spans (sets of data) and consider two competing models. The first model is

two independent AR models fitted to two sets of data respectively. The second model is

an AR model fitted to the set of pooled data. For model selection following two AIC are

compared.

AIC1 = (n1 − p)log(2πσ̂2
p0

) + n2log(2πσ̂2
p1

) + n1 + n2 − p + 2(p0 + p1 + 2)

AIC2 = (n1 + n2 − p)log(2πσ̂2
p2

) + n1 + n2 − p + 2(p2 + 1)

Here n1 and n2 are the length of data of each span and p0, p1 and p2 are the orders of

AR models fitted to the sets of data {y(1), · · ·, y(n1)}, {y(n1 + 1), · · ·, y(n1 + n2)} and

{y(1), · · ·, y(n1 + n2)} respectively. (mlocar)

For the multi-variate AR model fitting AIC is defined in the same way. (mlomar)
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2-4 R function in TIMSAC-84

decomp() : Decomposition of a nonstationary time series　

decomp is a procedure for the decomposition of a nonstationary time series into several

possible components. that is, a time series y(t) is represented by the sum of components

y(t) = T (t) + AR(t) + S(t) + TD(t) + W (t)

where T (s) : a trend component

AR(t) : an autoregressive (AR) component

S(t) : a seasonal component

TD(t) : a trading day effect component

W (t) : a white noise
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