Title: | VPC Percentiles and Prediction Intervals |
---|---|
Description: | Perform a Visual Predictive Check (VPC), while accounting for stratification, censoring, and prediction correction. Using piping from 'magrittr', the intuitive syntax gives users a flexible and powerful method to generate VPCs using both traditional binning and a new binless approach Jamsen et al. (2018) <doi:10.1002/psp4.12319> with Additive Quantile Regression (AQR) and Locally Estimated Scatterplot Smoothing (LOESS) prediction correction. |
Authors: | Olivier Barriere [aut], Benjamin Rich [aut], James Craig [aut, cre] , Samer Mouksassi [aut], Bill Denney [ctb] , Michael Tomashevskiy [ctb], Kris Jamsen [ctb], Certara USA, Inc. [cph, fnd] |
Maintainer: | James Craig <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.5.2 |
Built: | 2024-11-25 16:47:39 UTC |
Source: | CRAN |
tidyvpcobj
Obtain information about the bins from a tidyvpcobj
bininfo(o, ...) ## S3 method for class 'tidyvpcobj' bininfo(o, by.strata = o$bin.by.strata, ...)
bininfo(o, ...) ## S3 method for class 'tidyvpcobj' bininfo(o, by.strata = o$bin.by.strata, ...)
o |
An object. |
... |
Additional arguments. |
by.strata |
Should the calculations be done by strata? Defaults to what was specified when the binning was done. |
A 'data.table' containing the following columns:
nobs
: Number of observed data points in the bin
xmedian
: Median x-value of the observed data points in the bin
xmean
: Mean x-value of the observed data points in the bin
xmax
: Maximum x-value of the observed data points in the bin
xmin
: Minimum x-value of the observed data points in the bin
xmid
: Value halfway between 'xmin' and 'xmax'.
x-value of the observed data points in the bin
xleft
: Value halfway between the minimum x-value of the
current bin and the maximum x-value of the previous bin to the left (for
the left-most bin, it is the minimum x-value).
xright
: Value halfway between the maximum x-value of the
current bin and the minimum x-value of the next bin to the right (for the
right-most bin, it is the maximum x-value).
xcenter
: Value halfway between 'xleft' and 'xright'.
In addition, if stratification was performed, the stratification columns will be included as well.
bininfo(tidyvpcobj)
: Method for tidyvpcobj
.
Use this function in place of traditional binning methods to derive VPC. For continuous
VPC, this is obtained using additive quantile regression (quantreg::rqss()
) and LOESS for pcVPC. While for categorical
VPC, this is obtained using a generalized additive model (gam(family = "binomial")
).
binless(o, ...) ## S3 method for class 'tidyvpcobj' binless( o, optimize = TRUE, optimization.interval = c(0, 7), loess.ypc = NULL, lambda = NULL, span = NULL, sp = NULL, ... )
binless(o, ...) ## S3 method for class 'tidyvpcobj' binless( o, optimize = TRUE, optimization.interval = c(0, 7), loess.ypc = NULL, lambda = NULL, span = NULL, sp = NULL, ... )
o |
A |
... |
Other arguments to include will be ignored. |
optimize |
Logical indicating whether smoothing parameters should be optimized using AIC. |
optimization.interval |
Numeric vector of length 2 specifying the min/max range of smoothing parameter for optimization. Only applicable if |
loess.ypc |
(Deprecated) Argument is ignored. For a LOESS pcVPC using the 'binless' method, usage of |
lambda |
Numeric vector of length 3 specifying lambda values for each quantile. If stratified, specify a |
span |
Numeric between 0,1 specifying smoothing parameter for LOESS prediction correction. Only applicable for continuous VPC with |
sp |
List of smoothing parameters applied to |
For continuous VPC, updates tidyvpcobj
with additive quantile regression fits for observed and simulated data for quantiles specified in the qpred
argument of vpcstats()
.
If the optimize = TRUE
argument is specified, the resulting tidyvpcobj
will contain optimized lambda values according to AIC. For prediction
corrected VPC (pcVPC), specifying loess.ypc = TRUE
will return optimized span value for LOESS smoothing. For categorical VPC,
updates tidyvpcobj
with fits obtained by gam(family="binomial")
for observed and simulated data for each category of DV (in each stratum if stratify
defined).
If optimize = TRUE
argument is specified, the resulting tidyvpcobj
wil contain optimized sp
values according to AIC.
observed
simulated
censoring
predcorrect
stratify
binning
vpcstats
require(magrittr) require(data.table) obs_data <- obs_data[MDV == 0] sim_data <- sim_data[MDV == 0] vpc <- observed(obs_data, y = DV, x = TIME) %>% simulated(sim_data, y = DV) %>% binless() %>% vpcstats() # Binless example with LOESS prediction correction obs_data$PRED <- sim_data[REP == 1, PRED] vpc <- observed(obs_data, y = DV, x = TIME) %>% simulated(sim_data, y = DV) %>% binless(optimize = TRUE) %>% predcorrect(pred = PRED) %>% vpcstats() # Binless example with user specified lambda values stratified on # "GENDER" with 2 levels ("M", "F"), 10%, 50%, 90% quantiles. lambda_strat <- data.table( GENDER_M = c(3,5,2), GENDER_F = c(1,3,4) ) vpc <- observed(obs_data, y = DV, x = TIME) %>% simulated(sim_data, y = DV) %>% stratify(~ GENDER) %>% binless(optimize = FALSE, lambda = lambda_strat) %>% vpcstats(qpred = c(0.1, 0.5, 0.9)) # Binless example for categorical DV with optimized smoothing vpc <- observed(obs_cat_data, x = agemonths, yobs = zlencat) %>% simulated(sim_cat_data, ysim = DV) %>% stratify(~ Country_ID_code) %>% binless() %>% vpcstats(vpc.type = "cat", quantile.type = 6) # Binless example for categorical DV with user specified sp values user_sp <- list( Country1_prob0 = 100, Country1_prob1 = 3, Country1_prob2 = 4, Country2_prob0 = 90, Country2_prob1 = 3, Country2_prob2 = 4, Country3_prob0 = 55, Country3_prob1 = 3, Country3_prob2 = 200) vpc <- observed(obs_cat_data, x = agemonths, yobs = zlencat) %>% simulated(sim_cat_data, ysim = DV) %>% stratify(~ Country_ID_code) %>% binless(optimize = FALSE, sp = user_sp) %>% vpcstats(vpc.type = "categorical", conf.level = 0.9, quantile.type = 6)
require(magrittr) require(data.table) obs_data <- obs_data[MDV == 0] sim_data <- sim_data[MDV == 0] vpc <- observed(obs_data, y = DV, x = TIME) %>% simulated(sim_data, y = DV) %>% binless() %>% vpcstats() # Binless example with LOESS prediction correction obs_data$PRED <- sim_data[REP == 1, PRED] vpc <- observed(obs_data, y = DV, x = TIME) %>% simulated(sim_data, y = DV) %>% binless(optimize = TRUE) %>% predcorrect(pred = PRED) %>% vpcstats() # Binless example with user specified lambda values stratified on # "GENDER" with 2 levels ("M", "F"), 10%, 50%, 90% quantiles. lambda_strat <- data.table( GENDER_M = c(3,5,2), GENDER_F = c(1,3,4) ) vpc <- observed(obs_data, y = DV, x = TIME) %>% simulated(sim_data, y = DV) %>% stratify(~ GENDER) %>% binless(optimize = FALSE, lambda = lambda_strat) %>% vpcstats(qpred = c(0.1, 0.5, 0.9)) # Binless example for categorical DV with optimized smoothing vpc <- observed(obs_cat_data, x = agemonths, yobs = zlencat) %>% simulated(sim_cat_data, ysim = DV) %>% stratify(~ Country_ID_code) %>% binless() %>% vpcstats(vpc.type = "cat", quantile.type = 6) # Binless example for categorical DV with user specified sp values user_sp <- list( Country1_prob0 = 100, Country1_prob1 = 3, Country1_prob2 = 4, Country2_prob0 = 90, Country2_prob1 = 3, Country2_prob2 = 4, Country3_prob0 = 55, Country3_prob1 = 3, Country3_prob2 = 200) vpc <- observed(obs_cat_data, x = agemonths, yobs = zlencat) %>% simulated(sim_cat_data, ysim = DV) %>% stratify(~ Country_ID_code) %>% binless(optimize = FALSE, sp = user_sp) %>% vpcstats(vpc.type = "categorical", conf.level = 0.9, quantile.type = 6)
This function executes binning methods available in classInt i.e. "jenks", "kmeans", "sd", "pretty", "pam", "kmeans", "hclust", "bclust", "fisher", "dpih", "box", "headtails", and "maximum".
You may also bin directly on x-variable or alternatively specify "centers" or "breaks". For explanation of binning methods see classIntervals
.
binning(o, ...) ## S3 method for class 'tidyvpcobj' binning( o, bin, data = o$data, xbin = "xmedian", centers, breaks, nbins, altx, stratum = NULL, by.strata = TRUE, ... )
binning(o, ...) ## S3 method for class 'tidyvpcobj' binning( o, bin, data = o$data, xbin = "xmedian", centers, breaks, nbins, altx, stratum = NULL, by.strata = TRUE, ... )
o |
A |
... |
Other arguments to include for |
bin |
Character string indicating binning method or unquoted variable name if binning on x-variable. |
data |
Observed data supplied in |
xbin |
Character string indicating midpoint type for binning. |
centers |
Numeric vector of centers for binning. Use |
breaks |
Numeric vector of breaks for binning. Use |
nbins |
Numeric number indicating the number of bins to use. |
altx |
Unquoted variable name in observed data for alternative x-variable binning. |
stratum |
List indicating the name of stratification variable and level, if using different binning methods by strata. |
by.strata |
Logical indicating whether binning should be performed by strata. |
Updates tidyvpcobj
with data.frame
containing bin information including left/right boundaries and midpoint, as specified in xbin
argument.
observed
simulated
censoring
predcorrect
stratify
binless
vpcstats
require(magrittr) # Binning on x-variable NTIME vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV) %>% binning(bin = NTIME) %>% vpcstats() # Binning using ntile and xmean for midpoint vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV) %>% binning(bin = "ntile", nbins = 8, xbin = "xmean") %>% vpcstats() # Binning using centers vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV) %>% binning(bin = "centers", centers = c(1,3,5,7)) %>% vpcstats() # Different Binning for each level of Strata vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV) %>% stratify(~ GENDER) %>% binning(stratum = list(GENDER = "M"), bin = "jenks", nbins = 5, by.strata = TRUE) %>% binning(stratum = list(GENDER = "F"), bin = "kmeans", nbins = 4, by.strata = TRUE) %>% vpcstats() # Binning Categorical DV using rounded time variable vpc <- observed(obs_cat_data, x = agemonths, y = zlencat ) %>% simulated(sim_cat_data, y = DV) %>% binning(bin = round(agemonths, 0)) %>% vpcstats(vpc.type = "categorical")
require(magrittr) # Binning on x-variable NTIME vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV) %>% binning(bin = NTIME) %>% vpcstats() # Binning using ntile and xmean for midpoint vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV) %>% binning(bin = "ntile", nbins = 8, xbin = "xmean") %>% vpcstats() # Binning using centers vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV) %>% binning(bin = "centers", centers = c(1,3,5,7)) %>% vpcstats() # Different Binning for each level of Strata vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV) %>% stratify(~ GENDER) %>% binning(stratum = list(GENDER = "M"), bin = "jenks", nbins = 5, by.strata = TRUE) %>% binning(stratum = list(GENDER = "F"), bin = "kmeans", nbins = 4, by.strata = TRUE) %>% vpcstats() # Binning Categorical DV using rounded time variable vpc <- observed(obs_cat_data, x = agemonths, y = zlencat ) %>% simulated(sim_cat_data, y = DV) %>% binning(bin = round(agemonths, 0)) %>% vpcstats(vpc.type = "categorical")
Different functions that perform binning.
cut_at(breaks) nearest(centers) bin_by_ntile(nbins) bin_by_eqcut(nbins) bin_by_pam(nbins) bin_by_classInt(style, nbins = NULL)
cut_at(breaks) nearest(centers) bin_by_ntile(nbins) bin_by_eqcut(nbins) bin_by_pam(nbins) bin_by_classInt(style, nbins = NULL)
breaks |
A numeric vector of values that designate cut points between bins. |
centers |
A numeric vector of values that designate the center of each bin. |
nbins |
The number of bins to split the data into. |
style |
a binning style (see classIntervals for details). |
Each of these functions returns a function of a single numeric vector 'x' that assigns each value of 'x' to a bin.
x <- c(rnorm(10, 1, 1), rnorm(10, 3, 2), rnorm(20, 5, 3)) centers <- c(1, 3, 5) nearest(centers)(x) breaks <- c(2, 4) cut_at(breaks)(x) bin_by_eqcut(nbins=4)(x) bin_by_ntile(nbins=4)(x) bin_by_pam(nbins=4)(x) bin_by_classInt("pretty", nbins=4)(x)
x <- c(rnorm(10, 1, 1), rnorm(10, 3, 2), rnorm(20, 5, 3)) centers <- c(1, 3, 5) nearest(centers)(x) breaks <- c(2, 4) cut_at(breaks)(x) bin_by_eqcut(nbins=4)(x) bin_by_ntile(nbins=4)(x) bin_by_pam(nbins=4)(x) bin_by_classInt("pretty", nbins=4)(x)
Specify censoring variable or censoring value for VPC.
censoring(o, ...) ## S3 method for class 'tidyvpcobj' censoring(o, blq, lloq, alq, uloq, data = o$data, ...)
censoring(o, ...) ## S3 method for class 'tidyvpcobj' censoring(o, blq, lloq, alq, uloq, data = o$data, ...)
o |
A |
... |
Other arguments to include. |
blq |
blq variable if present in observed data. |
lloq |
Numeric value or numeric variable in data indicating the upper limit of quantification. |
alq |
Logical variable indicating above limit of quantification. |
uloq |
Numeric value or numeric variable in data indicating the upper limit of quantification. |
data |
Observed data supplied in |
Updates obs
data.frame
in tidypcobj
with censored values for observed data which includes lloq
and uloq
specified
values for lower/upper limit of quantification. Logicals for blq
and alq
are returned that indicate whether the DV value lies below/above limit
of quantification.
observed
simulated
stratify
predcorrect
binning
binless
vpcstats
require(magrittr) vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV) %>% censoring(blq=(DV < 50), lloq=50) %>% binning(bin = "pam", nbins = 5) %>% vpcstats() #Using LLOQ variable in data with different values of LLOQ by Study: obs_data$LLOQ <- obs_data[, ifelse(STUDY == "Study A", 50, 25)] vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV) %>% censoring(blq=(DV < LLOQ), lloq=LLOQ) %>% stratify(~ STUDY) %>% binning(bin = "kmeans", nbins = 4) %>% vpcstats()
require(magrittr) vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV) %>% censoring(blq=(DV < 50), lloq=50) %>% binning(bin = "pam", nbins = 5) %>% vpcstats() #Using LLOQ variable in data with different values of LLOQ by Study: obs_data$LLOQ <- obs_data[, ifelse(STUDY == "Study A", 50, 25)] vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV) %>% censoring(blq=(DV < LLOQ), lloq=LLOQ) %>% stratify(~ STUDY) %>% binning(bin = "kmeans", nbins = 4) %>% vpcstats()
This function performs a simple consistency check on an observed and simulated dataset to make sure they are consistent with respect to ordering as required by the other functions used in the VPC calculation.
check_order(obs, sim, tol = 1e-05)
check_order(obs, sim, tol = 1e-05)
obs , sim
|
A 'data.frame' with 2 columns (see Details). |
tol |
A tolerance for comparing time values. |
The consistency check is performed by comparing a combination of unique
subject identifier (ID) and time. Both data.frame
objects must be given with
those in positions 1 and 2, respectively.
The number of replicates contained in 'sim'.
require(data.table) check_order(obs_data[, .(ID, TIME)], sim_data[, .(ID, TIME)])
require(data.table) check_order(obs_data[, .(ID, TIME)], sim_data[, .(ID, TIME)])
These functions work together to calculate the statistics that are plotted in a VPC. They would typically be chained together using the "pipe" operator (see Examples).
o |
A |
... |
Additional arguments. |
Optional function to use indicating no pred correction for VPC.
nopredcorrect(o, ...) ## S3 method for class 'tidyvpcobj' nopredcorrect(o, ...)
nopredcorrect(o, ...) ## S3 method for class 'tidyvpcobj' nopredcorrect(o, ...)
o |
A |
... |
Other arguments to include. |
Normalized Prediction Distribution Errors
npde(o, ...) ## S3 method for class 'tidyvpcobj' npde(o, id, data = o$data, smooth = FALSE, ...)
npde(o, ...) ## S3 method for class 'tidyvpcobj' npde(o, id, data = o$data, smooth = FALSE, ...)
o |
A |
... |
Additional arguments. |
id |
A vector of IDs. Used to associate observations ( |
data |
A |
smooth |
Should a uniform random perturbation be used to smooth the pd/pde values? |
Brendel, K., Comets, E., Laffont, C., Laveille, C. & Mentrée, F. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharm. Res. (2006) 23(9), 2036–2049.
Nguyen, T.H.T., et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacometrics Syst. Pharmacol. (2017) 6(2), 87–109; doi:10.1002/psp4.12161.
require(magrittr) require(ggplot2) obs <- obs_data[MDV==0] sim <- sim_data[MDV==0] npde <- observed(obs, x=NULL, y=DV) %>% simulated(sim, y=DV) %>% npde(id=ID) vpc <- observed(npde$npdeobs, x=epred, y=npde) %>% simulated(npde$npdesim, y=npde) %>% binning("eqcut", nbins=10) %>% vpcstats() plot(vpc) + labs(x="Simulation-based Population Prediction", y="Normalized Prediction Distribution Error")
require(magrittr) require(ggplot2) obs <- obs_data[MDV==0] sim <- sim_data[MDV==0] npde <- observed(obs, x=NULL, y=DV) %>% simulated(sim, y=DV) %>% npde(id=ID) vpc <- observed(npde$npdeobs, x=epred, y=npde) %>% simulated(npde$npdesim, y=npde) %>% binning("eqcut", nbins=10) %>% vpcstats() plot(vpc) + labs(x="Simulation-based Population Prediction", y="Normalized Prediction Distribution Error")
An observed dataset with 3 levels of categorical DV.
obs_cat_data
obs_cat_data
A data frame with 4014 rows and 4 variables:
Subject identifier
Time
Categorical DV with the 3 levels
Country code for stratification
Certara University
An observed dataset from a hypothetical PK model, altered to include NTIME, GROUP, GENDER.
obs_data
obs_data
A data.table with 600 rows and 7 variables:
Subject identifier
Time
Concentration of drug
Amount of dosage initially administered at DV = 0, TIME = 0
Dosage amount
Dummy indicating missing dependent variable value
Nominal Time
Character variable indicating subject's gender ("M", "F")
Character variable indicating study type ("Study A", "Study B")
The observed function is the first function in the vpc piping chain and is
used for specifying observed data and variables for VPC. Note: Observed data
must not contain missing DV and may require filtering MDV == 0
before
generating VPC. Also observed data must be ordered by: Subject (ID), IVAR
(Time)
observed(o, ...) ## S3 method for class 'data.frame' observed( o, x, yobs, pred = NULL, blq = NULL, lloq = -Inf, alq = NULL, uloq = Inf, ... )
observed(o, ...) ## S3 method for class 'data.frame' observed( o, x, yobs, pred = NULL, blq = NULL, lloq = -Inf, alq = NULL, uloq = Inf, ... )
o |
A |
... |
Other arguments. |
x |
Numeric x-variable, typically named TIME. |
yobs |
Numeric y-variable, typically named DV. |
pred |
Population prediction variable, typically named PRED. |
blq |
Logical variable indicating below limit of quantification. |
lloq |
Number or numeric variable in data indicating the lower limit of quantification. |
alq |
Logical variable indicating above limit of quantification . |
uloq |
Number or numeric variable in data indicating the upper limit of quantification. |
A tidyvpcobj
containing both original data and observed data
formatted with x
and y
variables as specified in function.
Resulting data is of class data.frame
and data.table
.
simulated
censoring
stratify
predcorrect
binning
binless
vpcstats
obs_data <- obs_data[MDV == 0] sim_data <- sim_data[MDV == 0] vpc <- observed(obs_data, x=TIME, y=DV)
obs_data <- obs_data[MDV == 0] sim_data <- sim_data[MDV == 0] vpc <- observed(obs_data, x=TIME, y=DV)
tidyvpcobj
Use ggplot2 graphics to plot and customize the appearance of VPC.
## S3 method for class 'tidyvpcobj' plot( x, facet = FALSE, show.points = TRUE, show.boundaries = TRUE, show.stats = !is.null(x$stats), show.binning = isFALSE(show.stats), xlab = NULL, ylab = NULL, color = c("red", "blue", "red"), linetype = c("dotted", "solid", "dashed"), point.alpha = 0.4, point.size = 1, point.shape = "circle-fill", point.stroke = 1, ribbon.alpha = 0.1, legend.position = "top", facet.scales = "free", custom.theme = NULL, censoring.type = c("none", "both", "blq", "alq"), censoring.output = c("grid", "list"), ... )
## S3 method for class 'tidyvpcobj' plot( x, facet = FALSE, show.points = TRUE, show.boundaries = TRUE, show.stats = !is.null(x$stats), show.binning = isFALSE(show.stats), xlab = NULL, ylab = NULL, color = c("red", "blue", "red"), linetype = c("dotted", "solid", "dashed"), point.alpha = 0.4, point.size = 1, point.shape = "circle-fill", point.stroke = 1, ribbon.alpha = 0.1, legend.position = "top", facet.scales = "free", custom.theme = NULL, censoring.type = c("none", "both", "blq", "alq"), censoring.output = c("grid", "list"), ... )
x |
A |
facet |
Set to |
show.points |
Should the observed data points be plotted? |
show.boundaries |
Should the bin boundary be displayed? |
show.stats |
Should the VPC stats be displayed? |
show.binning |
Should the binning be displayed by coloring the observed data points by bin? |
xlab |
A character label for the x-axis. |
ylab |
A character label for the y-axis. |
color |
A character vector of colors for the percentiles, from low to high. |
linetype |
A character vector of line type for the percentiles, from low to high. |
point.alpha |
Numeric value specifying transparency of points. |
point.size |
Numeric value specifying size of point. |
point.shape |
Character one of |
point.stroke |
Numeric value specifying size of point stroke. |
ribbon.alpha |
Numeric value specifying transparency of ribbon. |
legend.position |
A character string specifying the position of the legend. Options are
|
facet.scales |
A character string specifying the |
custom.theme |
A custom ggplot2 theme supplied either as a character string, function, or object of class |
censoring.type |
A character string specifying additional blq/alq plots to include. Only applicable if
|
censoring.output |
A character string specifying whether to return percentage of blq/alq plots as an
arranged |
... |
Additional arguments for |
A ggplot
object.
ggplot
Specify prediction variable for pcVPC.
predcorrect(o, ...) ## S3 method for class 'tidyvpcobj' predcorrect(o, pred, data = o$data, ..., log = FALSE, varcorr = FALSE)
predcorrect(o, ...) ## S3 method for class 'tidyvpcobj' predcorrect(o, pred, data = o$data, ..., log = FALSE, varcorr = FALSE)
o |
A 'tidyvpcobj'. |
... |
Other arguments to include. |
pred |
Prediction variable in observed data. |
data |
Observed data supplied in 'observed()' function. |
log |
Logical indicating whether DV was modeled in logarithmic scale. |
varcorr |
Logical indicating whether variability correction should be applied for prediction corrected dependent variable |
Updates 'tidyvpcobj' with required information to perform prediction correction, which includes the 'predcor' logical indicating whether prediction corrected VPC is to be performed, the 'predcor.log' logical indicating whether the DV is on a log-scale, the 'varcorr' logical indicating whether variability correction for prediction corrected dependent variable is applied and the 'pred' prediction column from the original data. Both 'obs' and 'sim' data tables in the returned 'tidyvpcobj' object have additional 'ypc' column with the results of prediction correction and 'ypcvc' column if variability correction is requested.
observed
simulated
censoring
stratify
binning
binless
vpcstats
require(magrittr) obs_data <- obs_data[MDV == 0] sim_data <- sim_data[MDV == 0] # Add PRED variable to observed data from first replicate of # simulated data obs_data$PRED <- sim_data[REP == 1, PRED] vpc <- observed(obs_data, x=TIME, yobs=DV) %>% simulated(sim_data, ysim=DV) %>% binning(bin = NTIME) %>% predcorrect(pred=PRED, varcorr = TRUE) %>% vpcstats() # For binless loess prediction corrected, use predcorrect() before # binless() and set loess.ypc = TRUE vpc <- observed(obs_data, x=TIME, yobs=DV) %>% simulated(sim_data, ysim=DV) %>% predcorrect(pred=PRED) %>% binless() %>% vpcstats()
require(magrittr) obs_data <- obs_data[MDV == 0] sim_data <- sim_data[MDV == 0] # Add PRED variable to observed data from first replicate of # simulated data obs_data$PRED <- sim_data[REP == 1, PRED] vpc <- observed(obs_data, x=TIME, yobs=DV) %>% simulated(sim_data, ysim=DV) %>% binning(bin = NTIME) %>% predcorrect(pred=PRED, varcorr = TRUE) %>% vpcstats() # For binless loess prediction corrected, use predcorrect() before # binless() and set loess.ypc = TRUE vpc <- observed(obs_data, x=TIME, yobs=DV) %>% simulated(sim_data, ysim=DV) %>% predcorrect(pred=PRED) %>% binless() %>% vpcstats()
tidyvpcobj
Print generic used to return information about VPC.
## S3 method for class 'tidyvpcobj' print(x, ...)
## S3 method for class 'tidyvpcobj' print(x, ...)
x |
An |
... |
Further arguments can be specified but are ignored. |
Returns x
invisibly.
A simulated dataset with the 3 levels of categorical DV across 100 replicates.
sim_cat_data
sim_cat_data
A data frame with 401400 rows and 4 variables:
Subject identifier
Time
Categorical DV with 3 levels
Replicate num for simulation
Certara University
A simulated dataset from a hypothetical PK model with 100 replicates.
sim_data
sim_data
A data.table with 60000 rows and 10 variables:
Subject identifier
Replicate num for simulation
Time
Concentration of drug
Individual prediction variable
Population prediction variable
Amount of dosage initially administered at DV = 0, TIME = 0
Dosage amount
Dummy indicating missing dependent variable value
Nominal Time
The simulated function is used for specifying simulated input data and
variables for VPC. Note: Simulated data must not contain missing DV and may
require filtering MDV == 0
before generating VPC. Simulated data must
be ordered by: Replicate, Subject (ID), IVAR (Time).
simulated(o, ...) ## S3 method for class 'tidyvpcobj' simulated(o, data, ysim, ..., xsim)
simulated(o, ...) ## S3 method for class 'tidyvpcobj' simulated(o, data, ysim, ..., xsim)
o |
A |
... |
Other arguments. |
data |
A |
ysim |
Numeric y-variable, typically named DV. |
xsim |
Numeric x-variable, typically named TIME. |
A tidyvpcobj
containing simulated dataset sim
formatted with columns x
, y
, and repl
, which indicates the replicate number.
The column x
is used from the observed()
function. Resulting dataset is of class data.frame
and data.table
.
observed
censoring
stratify
predcorrect
binning
binless
vpcstats
require(magrittr) vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV)
require(magrittr) vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV)
Use to specify stratification variables for VPC.
stratify(o, ...) ## S3 method for class 'tidyvpcobj' stratify(o, formula, data = o$data, ...)
stratify(o, ...) ## S3 method for class 'tidyvpcobj' stratify(o, formula, data = o$data, ...)
o |
A |
... |
Other arguments to include. |
formula |
Formula for stratification. |
data |
Observed data supplied in |
Returns updated tidyvpcobj
with stratification formula, stratification column(s), and strat.split datasets, which
is obs
split by unique levels of stratification variable(s). Resulting datasets are of class object data.frame
and data.table
.
observed
simulated
censoring
predcorrect
binning
binless
vpcstats
require(magrittr) vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV) %>% stratify(~ GENDER) %>% binning(NTIME) %>% vpcstats() # Example with 2-way stratification by GENDER and STUDY. vpc <- vpc %>% stratify(~ GENDER + STUDY) %>% binning(bin = "centers", centers = c(1,3,5,7,10)) %>% vpcstats()
require(magrittr) vpc <- observed(obs_data, x=TIME, y=DV) %>% simulated(sim_data, y=DV) %>% stratify(~ GENDER) %>% binning(NTIME) %>% vpcstats() # Example with 2-way stratification by GENDER and STUDY. vpc <- vpc %>% stratify(~ GENDER + STUDY) %>% binning(bin = "centers", centers = c(1,3,5,7,10)) %>% vpcstats()
Compute prediction interval statistics for VPC.
vpcstats(o, ...) ## S3 method for class 'tidyvpcobj' vpcstats( o, vpc.type = c("continuous", "categorical"), qpred = c(0.05, 0.5, 0.95), ..., conf.level = 0.95, quantile.type = 7 )
vpcstats(o, ...) ## S3 method for class 'tidyvpcobj' vpcstats( o, vpc.type = c("continuous", "categorical"), qpred = c(0.05, 0.5, 0.95), ..., conf.level = 0.95, quantile.type = 7 )
o |
A |
... |
Other arguments to include. |
vpc.type |
Character specifying type of VPC (e.g., |
qpred |
Numeric vector of length 3 specifying quantile prediction interval. Only applicable for |
conf.level |
Numeric specifying confidence level. |
quantile.type |
Numeric indicating quantile type. See |
Updates tidyvpcobj
with stats
data.table
object, which contains the following columns:
bin
: Resulting bin value as specified in binning()
function
xbin
: Midpoint x-value of the observed data points in the bin as specified in xbin
argument of binning()
function
qname
: Quantiles specified in qpred
. Only returned if vpc.type = "continuous"
pname
: Categorical probability names. Only returned if vpc.type = "categorical"
y
: Observed y value for the specified quantile
lo
: Lower bound of specified confidence interval for y value in simulated data
md
: Median y value in simulated data
hi
: Upper bound of specified confidence interval for y value in simulated data
observed
simulated
censoring
stratify
binning
binless
predcorrect