
Package: tidysdm (via r-universe)
September 23, 2024

Title Species Distribution Models with Tidymodels

Version 0.9.5

Description Fit species distribution models (SDMs) using the
'tidymodels' framework, which provides a standardised interface
to define models and process their outputs. 'tidysdm' expands
'tidymodels' by providing methods for spatial objects, models
and metrics specific to SDMs, as well as a number of
specialised functions to process occurrences for contemporary
and palaeo datasets. The full functionalities of the package
are described in Leonardi et al. (2023)
<doi:10.1101/2023.07.24.550358>.

License AGPL (>= 3)

Encoding UTF-8

Language en-GB

URL https://github.com/EvolEcolGroup/tidysdm,

https://evolecolgroup.github.io/tidysdm/

BugReports https://github.com/EvolEcolGroup/tidysdm/issues

RoxygenNote 7.3.1

Depends tidymodels, spatialsample, R (>= 3.50)

Imports dials, DALEX, DALEXtra, dplyr, ggplot2, lubridate, magrittr,
maxnet, methods, parsnip, patchwork, recipes, rsample, rlang
(>= 1.0.0), stats, sf, terra, tibble, tune, workflows,
workflowsets, yardstick

Suggests blockCV, data.table, doParallel, earth, kernlab, knitr,
overlapping, pastclim (>= 2.0.0), ranger, rgbif, rmarkdown,
spelling, stacks, testthat (>= 3.0.0), tidyterra, vdiffr,
xgboost

VignetteBuilder knitr

Config/testthat/edition 3

LazyData true

1

https://doi.org/10.1101/2023.07.24.550358
https://github.com/EvolEcolGroup/tidysdm
https://evolecolgroup.github.io/tidysdm/
https://github.com/EvolEcolGroup/tidysdm/issues

2 Contents

NeedsCompilation no

Author Michela Leonardi [aut], Margherita Colucci [aut], Andrea Pozzi
[aut], Andrea Manica [aut, cre]

Maintainer Andrea Manica <am315@cam.ac.uk>

Repository CRAN

Date/Publication 2024-06-23 19:40:02 UTC

Contents
add_member . 3
add_repeat . 4
autoplot.simple_ensemble . 5
autoplot.spatial_initial_split . 6
blockcv2rsample . 7
boyce_cont . 8
calib_class_thresh . 10
check_sdm_presence . 10
check_splits_balance . 11
clamp_predictors . 12
collect_metrics.simple_ensemble . 12
control_ensemble_grid . 13
dist_pres_vs_bg . 14
explain_tidysdm . 15
extrapol_mess . 18
filter_collinear . 19
filter_high_cor . 22
gam_formula . 23
geom_split_violin . 23
grid_cellsize . 26
grid_offset . 26
horses . 27
kap_max . 27
km2m . 30
lacerta . 30
lacerta_ensemble . 31
lacerta_rep_ens . 31
lacertidae_background . 31
maxent . 32
maxent_params . 33
niche_overlap . 34
optim_thresh . 35
plot_pres_vs_bg . 35
predict.repeat_ensemble . 36
predict.simple_ensemble . 37
predict_raster . 38
prob_metrics_sf . 39

add_member 3

recipe.sf . 40
repeat_ensemble . 41
sample_background . 42
sample_background_time . 43
sample_pseudoabs . 44
sample_pseudoabs_time . 46
sdm_metric_set . 47
sdm_spec_boost_tree . 48
sdm_spec_gam . 49
sdm_spec_glm . 49
sdm_spec_maxent . 50
sdm_spec_rand_forest . 51
simple_ensemble . 52
spatial_initial_split . 53
thin_by_cell . 53
thin_by_cell_time . 54
thin_by_dist . 55
thin_by_dist_time . 56
tss . 57
tss_max . 59
y2d . 61

Index 62

add_member Add best member of workflow to a simple ensemble

Description

This function adds member(s) to a simple_ensemble() object, taking the best member from each
workflow provided. It is possible to pass individual tune_results objects from a tuned workflow,
or a workflowsets::workflow_set().

Usage

add_member(x, member, ...)

Default S3 method:
add_member(x, member, ...)

S3 method for class 'tune_results'
add_member(x, member, metric = NULL, id = NULL, ...)

S3 method for class 'workflow_set'
add_member(x, member, metric = NULL, ...)

4 add_repeat

Arguments

x a simple_ensemble to which member(s) will be added

member a tune_results, or a workflowsets::workflow_set

... not used at the moment.

metric A character string (or NULL) for which metric to optimize. If NULL, the first
metric is used.

id the name to be given to this workflow in the wflow_id column.

Value

a simple_ensemble with additional member(s)

add_repeat Add repeat(s) to a repeated ensemble

Description

This function adds repeat(s) to a repeat_ensemble object, where each repeat is a simple_ensemble.
All repeats must contain the same members, selected using the same metric.

Usage

add_repeat(x, rep, ...)

Default S3 method:
add_repeat(x, rep, ...)

S3 method for class 'simple_ensemble'
add_repeat(x, rep, ...)

S3 method for class 'list'
add_repeat(x, rep, ...)

Arguments

x a repeat_ensemble to which repeat(s) will be added

rep a repeat, as a single simple_ensemble, or a list of simple_ensemble objects

... not used at the moment.

Value

a repeat_ensemble with additional repeat(s)

autoplot.simple_ensemble 5

autoplot.simple_ensemble

Plot the results of a simple ensemble

Description

This autoplot() method plots performance metrics that have been ranked using a metric.

Usage

S3 method for class 'simple_ensemble'
autoplot(
object,
rank_metric = NULL,
metric = NULL,
std_errs = stats::qnorm(0.95),
...

)

Arguments

object A simple_ensemble whose elements have results.

rank_metric A character string for which metric should be used to rank the results. If none
is given, the first metric in the metric set is used (after filtering by the metric
option).

metric A character vector for which metrics (apart from rank_metric) to be included
in the visualization. If NULL (the default), all available metrics will be plotted

std_errs The number of standard errors to plot (if the standard error exists).

... Other options to pass to autoplot(). Currently unused.

Details

This function is intended to produce a default plot to visualize helpful information across all possible
applications of a simple_ensemble. More sophisticated plots can be produced using standard
ggplot2 code for plotting.

The x-axis is the workflow rank in the set (a value of one being the best) versus the performance
metric(s) on the y-axis. With multiple metrics, there will be facets for each metric, with the
rank_metric first (if any was provided; otherwise the metric used to create the simple_ensemble
will be used).

If multiple resamples are used, confidence bounds are shown for each result (95% confidence, by
default).

Value

A ggplot object.

6 autoplot.spatial_initial_split

Examples

#' # we use the two_class_example from `workflowsets`
two_class_ens <- simple_ensemble() %>%

add_member(two_class_res, metric = "roc_auc")
autoplot(two_class_ens)

autoplot.spatial_initial_split

Create a ggplot for a spatial initial rsplit.

Description

This method provides a good visualization method for a spatial initial rsplit.

Usage

S3 method for class 'spatial_initial_split'
autoplot(object, ..., alpha = 0.6)

Arguments

object A spatial_initial_rsplit object. Note that only resamples made from sf
objects create spatial_initial_rsplit objects; this function will not work
for resamples made with non-spatial tibbles or data.frames.

... Options passed to ggplot2::geom_sf().

alpha Opacity, passed to ggplot2::geom_sf(). Values of alpha range from 0 to 1,
with lower values corresponding to more transparent colors.

Details

This plot method is a wrapper around the standard spatial_rsplit method, but it re-labels the
folds as Testing and Training following the convention for a standard initial_split object

Value

A ggplot object with each fold assigned a color, made using ggplot2::geom_sf().

Examples

set.seed(123)
block_initial <- spatial_initial_split(boston_canopy,

prop = 1 / 5, spatial_block_cv
)
autoplot(block_initial)

blockcv2rsample 7

blockcv2rsample Convert an object created with blockCV to an rsample object

Description

This function creates objects created with blockCV to rsample objects that can be used by tidysdm.
BlockCV provides more sophisticated sampling options than the spatialsample library. For exam-
ple, it is possible to stratify the sampling to ensure that presences and absences are evenly distributed
among the folds (see the example below).

Usage

blockcv2rsample(x, data)

Arguments

x a object created with a blockCV function

data the sf object used to create x

Details

Note that currently only objects of type cv_spatial and cv_cluster are supported.

Value

an rsample object

Examples

library(blockCV)
points <- read.csv(system.file("extdata/", "species.csv", package = "blockCV"))
pa_data <- sf::st_as_sf(points, coords = c("x", "y"), crs = 7845)
sb1 <- cv_spatial(

x = pa_data,
column = "occ", # the response column to balance the folds
k = 5, # number of folds
size = 350000, # size of the blocks in metres
selection = "random", # random blocks-to-fold
iteration = 10

) # find evenly dispersed folds
sb1_rsample <- blockcv2rsample(sb1, pa_data)
class(sb1_rsample)
autoplot(sb1_rsample)

8 boyce_cont

boyce_cont Boyce continuous index (BCI)

Description

This function the Boyce Continuous Index, a measure of model accuracy appropriate for Species
Distribution Models with presence only data (i.e. using pseudoabsences or background). The algo-
rithm used here comes from the package enmSdm, and uses multiple overlapping windows.

Usage

boyce_cont(data, ...)

S3 method for class 'data.frame'
boyce_cont(
data,
truth,
...,
estimator = NULL,
na_rm = TRUE,
event_level = "first",
case_weights = NULL

)

S3 method for class 'sf'
boyce_cont(data, ...)

boyce_cont_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = "first",
case_weights = NULL,
...

)

Arguments

data Either a data.frame containing the columns specified by the truth and estimate
arguments, or a table/matrix where the true class results should be in the columns
of the table.

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. If truth is binary, only 1
column should be selected, and it should correspond to the value of event_level.
Otherwise, there should be as many columns as factor levels of truth and the
ordering of the columns should be the same as the factor levels of truth.

boyce_cont 9

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimator One of "binary", "hand_till", "macro", or "macro_weighted" to specify the type
of averaging to be done. "binary" is only relevant for the two class case. The oth-
ers are general methods for calculating multiclass metrics. The default will auto-
matically choose "binary" if truth is binary, "hand_till" if truth has >2 levels and
case_weights isn’t specified, or "macro" if truth has >2 levels and case_weights
is specified (in which case "hand_till" isn’t well-defined).

na_rm A logical value indicating whether NA values should be stripped before the com-
putation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth to
consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first"

case_weights The optional column identifier for case weights. This should be an unquoted
column name that evaluates to a numeric column in data. For _vec() functions,
a numeric vector.

estimate If truth is binary, a numeric vector of class probabilities corresponding to the
"relevant" class. Otherwise, a matrix with as many columns as factor levels of
truth. It is assumed that these are in the same order as the levels of truth.

Details

There is no multiclass version of this function, it only operates on binary predictions (e.g. presences
and absences in SDMs).

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data
frames, the number of rows returned will be the same as the number of groups.

References

Boyce, M.S., P.R. Vernier, S.E. Nielsen and F.K.A. Schmiegelow. 2002. Evaluating resource selec-
tion functions. Ecol. Model., 157, 281-300.

Hirzel, A.H., G. Le Lay, V. Helfer, C. Randin and A. Guisan. 2006. Evaluating the ability of habitat
suitability models to predict species presences. Ecol. Model., 199, 142-152.

See Also

Other class probability metrics: kap_max(), tss_max()

Examples

boyce_cont(two_class_example, truth, Class1)

10 check_sdm_presence

calib_class_thresh Calibrate class thresholds

Description

Predict for a new dataset by using a simple ensemble. Predictions from individual models are
combined according to fun

Usage

calib_class_thresh(object, class_thresh, metric_thresh = NULL)

Arguments

object an simple_ensemble object

class_thresh probability threshold used to convert probabilities into classes. It can be a num-
ber (between 0 and 1), or a character metric (currently "tss_max", "kap_max"
or "sensitivity"). For sensitivity, an additional target value is passed along as a
second element of a vector, e.g. c("sensitivity",0.8).

metric_thresh a vector of length 2 giving a metric and its threshold, which will be used to prune
which models in the ensemble will be used for the prediction. The ’metrics’ need
to have been computed when the workflow was tuned. The metric’s threshold
needs to match the value used during prediction. Examples are c("accuracy",0.8)
or c("boyce_cont",0.7).

Value

a simple_ensemble object

Examples

test_ens <- simple_ensemble() %>%
add_member(two_class_res[1:3,], metric = "roc_auc")

test_ens <- calib_class_thresh(test_ens, class_thresh = "tss_max")
test_ens <- calib_class_thresh(test_ens, class_thresh = "kap_max")
test_ens <- calib_class_thresh(test_ens, class_thresh = c("sens", 0.9))

check_sdm_presence Check that the column with presences is correctly formatted

Description

In tidysdm, the string defining presences should be the first level of the response factor. This
function checks that the column is correctly formatted.

check_splits_balance 11

Usage

check_sdm_presence(.data, .col, presence_level = "presence")

Arguments

.data a data.frame or tibble, or a derived object such as an sf data.frame

.col the column containing the presences

presence_level the string used to define the presence level of .col

Value

TRUE if correctly formatted

check_splits_balance Check the balance of presences vs pseudoabsences among splits

Description

Check the balance of presences vs pseudoabsences among splits

Usage

check_splits_balance(splits, .col)

Arguments

splits the data splits (an rset or split object), generated by a function such as spatialsample::spatial_block_cv()

.col the column containing the presences

Value

a tibble of the number of presences and pseudoabsences in the assessment and analysis set of each
split (or training and testing in an initial split)

Examples

lacerta_thin <- readRDS(system.file("extdata/lacerta_climate_sf.RDS",
package = "tidysdm"

))
lacerta_cv <- spatial_block_cv(lacerta_thin, v = 5)
check_splits_balance(lacerta_cv, class)

12 collect_metrics.simple_ensemble

clamp_predictors Clamp the predictors to match values in training set

Description

This function clamps the environmental variables in a terra::SpatRaster or terra::SpatRasterDataset
so that their minimum and maximum values do not exceed the range in the training dataset.

Usage

clamp_predictors(x, training, .col, use_na)

Default S3 method:
clamp_predictors(x, training, .col, use_na)

S3 method for class 'SpatRaster'
clamp_predictors(x, training, .col, use_na = FALSE)

S3 method for class 'SpatRasterDataset'
clamp_predictors(x, training, .col, use_na = FALSE)

Arguments

x a terra::SpatRaster or terra::SpatRasterDataset to clamp.

training the training dataset (a data.frame or a sf::sf object.

.col the column containing the presences (optional). If specified, it is excluded from
the clamping.

use_na a boolean determining whether values outside the range of the training dataset
are removed (set to NA). If FALSE (the default), values outside the training
range are replaced with the extremes of the training range.

Value

a terra::SpatRaster or terra::SpatRasterDataset clamped to the ranges in training

collect_metrics.simple_ensemble

Obtain and format results produced by tuning functions for ensemble
objects

Description

Return a tibble of performance metrics for all models.

control_ensemble_grid 13

Usage

S3 method for class 'simple_ensemble'
collect_metrics(x, ...)

S3 method for class 'repeat_ensemble'
collect_metrics(x, ...)

Arguments

x A simple_ensemble or repeat_ensemble object

... Not currently used.

Details

When applied to a ensemble, the metrics that are returned do not contain the actual tuning parameter
columns and values (unlike when these collect functions are run on other objects). The reason is
that ensembles contain different types of models or models with different tuning parameters.

Value

A tibble.

See Also

tune::collect_metrics()

Examples

collect_metrics(lacerta_ensemble)
collect_metrics(lacerta_rep_ens)

control_ensemble_grid Control wrappers

Description

Supply these light wrappers as the control argument in a tune::tune_grid(), tune::tune_bayes(),
or tune::fit_resamples() call to return the needed elements for use in an ensemble. These func-
tions will return the appropriate control grid to ensure that assessment set predictions and informa-
tion on model specifications and preprocessors, is supplied in the resampling results object!

To integrate ensemble settings with your existing control settings, note that these functions just call
the appropriate tune::control_* function with the arguments save_pred = TRUE, save_workflow = TRUE.

These wrappers are equivalent to the ones used in the stacks package.

14 dist_pres_vs_bg

Usage

control_ensemble_grid()

control_ensemble_resamples()

control_ensemble_bayes()

Value

A tune::control_grid, tune::control_bayes, or tune::control_resamples object.

See Also

See the vignettes for examples of these functions used in context.

dist_pres_vs_bg Distance between the distribution of climate values for presences vs
background

Description

For each environmental variable, this function computes the density functions of presences and
absences and returns (1-overlap), which is a measure of the distance between the two distributions.
Variables with a high distance are good candidates for SDMs, as species occurrences are confined
to a subset of the available background.

Usage

dist_pres_vs_bg(.data, .col)

Arguments

.data a data.frame (or derived object, such as tibble, or sf) with values for the
bioclimate variables for presences and background

.col the column containing the presences; it assumes presences to be the first level of
this factor

Value

a name vector of distances

explain_tidysdm 15

Examples

This should be updated to use a dataset from tidysdm
data("bradypus", package = "maxnet")
bradypus_tb <- tibble::as_tibble(bradypus) %>%

dplyr::mutate(presence = relevel(
factor(

dplyr::case_match(presence, 1 ~ "presence", 0 ~ "absence")
),
ref = "presence"

)) %>%
select(-ecoreg)

bradypus_tb %>% dist_pres_vs_bg(presence)

explain_tidysdm Create explainer from your tidysdm ensembles.

Description

DALEX is designed to explore and explain the behaviour of Machine Learning methods. This func-
tion creates a DALEX explainer (see DALEX::explain()), which can then be queried by multiple
function to create explanations of the model.

Usage

explain_tidysdm(
model,
data,
y,
predict_function,
predict_function_target_column,
residual_function,
...,
label,
verbose,
precalculate,
colorize,
model_info,
type,
by_workflow

)

Default S3 method:
explain_tidysdm(
model,
data = NULL,

16 explain_tidysdm

y = NULL,
predict_function = NULL,
predict_function_target_column = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = !isTRUE(getOption("knitr.in.progress")),
model_info = NULL,
type = "classification",
by_workflow = FALSE

)

S3 method for class 'simple_ensemble'
explain_tidysdm(
model,
data = NULL,
y = NULL,
predict_function = NULL,
predict_function_target_column = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = !isTRUE(getOption("knitr.in.progress")),
model_info = NULL,
type = "classification",
by_workflow = FALSE

)

S3 method for class 'repeat_ensemble'
explain_tidysdm(
model,
data = NULL,
y = NULL,
predict_function = NULL,
predict_function_target_column = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = !isTRUE(getOption("knitr.in.progress")),
model_info = NULL,
type = "classification",
by_workflow = FALSE

explain_tidysdm 17

)

Arguments

model object - a model to be explained
data data.frame or matrix - data which will be used to calculate the explanations. If

not provided, then it will be extracted from the model. Data should be passed
without a target column (this shall be provided as the y argument). NOTE: If the
target variable is present in the data, some of the functionalities may not work
properly.

y numeric vector with outputs/scores. If provided, then it shall have the same size
as data

predict_function

function that takes two arguments: model and new data and returns a numeric
vector with predictions. By default it is yhat.

predict_function_target_column

Character or numeric containing either column name or column number in the
model prediction object of the class that should be considered as positive (i.e.
the class that is associated with probability 1). If NULL, the second column of
the output will be taken for binary classification. For a multiclass classification
setting, that parameter cause switch to binary classification mode with one vs
others probabilities.

residual_function

function that takes four arguments: model, data, target vector y and predict func-
tion (optionally). It should return a numeric vector with model residuals for
given data. If not provided, response residuals (y− ŷ) are calculated. By default
it is residual_function_default.

... other parameters
label character - the name of the model. By default it’s extracted from the ’class’

attribute of the model
verbose logical. If TRUE (default) then diagnostic messages will be printed
precalculate logical. If TRUE (default) then predicted_values and residual are calcu-

lated when explainer is created. This will happen also if verbose is TRUE. Set
both verbose and precalculate to FALSE to omit calculations.

colorize logical. If TRUE (default) then WARNINGS, ERRORS and NOTES are colorized.
Will work only in the R console. Now by default it is FALSE while knitting and
TRUE otherwise.

model_info a named list (package, version, type) containing information about model. If
NULL, DALEX will seek for information on it’s own.

type type of a model, either classification or regression. If not specified then
type will be extracted from model_info.

by_workflow boolean determining whether a list of explainer, one per model, should be re-
turned instead of a single explainer for the ensemble

Value

explainer object DALEX::explain ready to work with DALEX

18 extrapol_mess

Examples

using the whole ensemble
lacerta_explainer <- explain_tidysdm(tidysdm::lacerta_ensemble)
by workflow
explainer_list <- explain_tidysdm(tidysdm::lacerta_ensemble,

by_workflow = TRUE
)

extrapol_mess Multivariate environmental similarity surfaces (MESS)

Description

Compute multivariate environmental similarity surfaces (MESS), as described by Elith et al., 2010.

Usage

extrapol_mess(x, training, .col, ...)

Default S3 method:
extrapol_mess(x, training, ...)

S3 method for class 'SpatRaster'
extrapol_mess(x, training, .col, filename = "", ...)

S3 method for class 'data.frame'
extrapol_mess(x, training, .col, ...)

S3 method for class 'SpatRasterDataset'
extrapol_mess(x, training, .col, ...)

Arguments

x terra::SpatRaster, terra::SpatRasterDataset or data.frame

training matrix or data.frame or sf object containing the reference values; each column
should correspond to one layer of the terra::SpatRaster object, with the ex-
ception of the presences column defined in .col (optional).

.col the column containing the presences (optional). If specified, it is excluded when
computing the MESS scores.

... additional arguments as for terra::writeRaster()

filename character. Output filename (optional)

filter_collinear 19

Details

This function is a modified version of mess in package predicts, with a method added to work
on terra::SpatRasterDataset. Note that the method for terra::SpatRasterDataset assumes
that each variables is stored as a terra::SpatRaster with time information within x. Time is
also assumed to be in years. If these conditions are not met, it is possible to manually extract a
terra::SpatRaster for each time step, and use extrapol_mess on those terra::SpatRasters

Value

a terra::SpatRaster (data.frame) with the MESS values.

Author(s)

Jean-Pierre Rossi, Robert Hijmans, Paulo van Breugel, Andrea Manica

References

Elith J., M. Kearney M., and S. Phillips, 2010. The art of modelling range-shifting species. Methods
in Ecology and Evolution 1:330-342.

filter_collinear Filter to retain only variables that have low collinearity

Description

This method finds a subset of variables that have low collinearity. It provides three methods:
cor_caret, a stepwise approach to remove variables with a pairwise correlation above a given cut-
off, choosing the variable with the greatest mean correlation (based on the algorithm in caret::findCorrelation);
vif_step, a stepwise approach to remove variables with an variance inflation factor above a given
cutoff (based on the algorithm in usdm::vifstep), and vif_cor, a stepwise approach that, at each
step, find the pair of variables with the highest correlation above the cutoff and removes the one
with the largest vif. such that all have a correlation below a certain cutoff. There are methods for
terra::SpatRaster, data.frame and matrix. For terra::SpatRaster and data.frame, only
numeric variables will be considered.

Usage

filter_collinear(
x,
cutoff = NULL,
verbose = FALSE,
names = TRUE,
to_keep = NULL,
method = "cor_caret",
cor_type = "pearson",
max_cells = Inf,
...

20 filter_collinear

)

Default S3 method:
filter_collinear(
x,
cutoff = NULL,
verbose = FALSE,
names = TRUE,
to_keep = NULL,
method = "cor_caret",
cor_type = "pearson",
max_cells = Inf,
...

)

S3 method for class 'SpatRaster'
filter_collinear(
x,
cutoff = NULL,
verbose = FALSE,
names = TRUE,
to_keep = NULL,
method = "cor_caret",
cor_type = "pearson",
max_cells = Inf,
exhaustive = FALSE,
...

)

S3 method for class 'data.frame'
filter_collinear(
x,
cutoff = NULL,
verbose = FALSE,
names = TRUE,
to_keep = NULL,
method = "cor_caret",
cor_type = "pearson",
max_cells = Inf,
...

)

S3 method for class 'matrix'
filter_collinear(
x,
cutoff = NULL,
verbose = FALSE,
names = TRUE,

filter_collinear 21

to_keep = NULL,
method = "cor_caret",
cor_type = "pearson",
max_cells = Inf,
...

)

Arguments

x A terra::SpatRaster object, a data.frame (with only numeric variables)

cutoff A numeric value used as a threshold to remove variables. For, "cor_caret" and
"vif_cor", it is the pair-wise absolute correlation cutoff, which defaults to 0.7.
For "vif_step", it is the variable inflation factor, which defaults to 10

verbose A boolean whether additional information should be provided on the screen

names a logical; should the column names be returned TRUE or the column index FALSE)?

to_keep A vector of variable names that we want to force in the set (note that the function
will return an error if the correlation among any of those variables is higher than
the cutoff).

method character. One of "cor_caret", "vif_cor" or "vif_step".

cor_type character. For methods that use correlation, which type of correlation: "pear-
son", "kendall", or "spearman". Defaults to "pearson"

max_cells positive integer. The maximum number of cells to be used. If this is smaller
than ncell(x), a regular sample of x is used

... additional arguments specific to a given object type

exhaustive boolean. Used only for terra::SpatRaster when downsampling to max_cells,
if we require the exhaustive approach in terra::spatSample(). This is only
needed for rasters that are very sparse and not too large, see the help page of
terra::spatSample() for details.

Value

A vector of names of columns that are below the correlation threshold (when names = TRUE), oth-
erwise a vector of indices. Note that the indices are only for numeric variables (i.e. if factors are
present, the indices do not take them into account).

Author(s)

for cor_caret: Original R code by Dong Li, modified by Max Kuhn and Andrea Manica; for
vif_step and vif_cor, original algorithm by Babak Naimi, rewritten by Andrea Manica for
tidysdm

References

Naimi, B., Hamm, N.A.S., Groen, T.A., Skidmore, A.K., and Toxopeus, A.G. 2014. Where is
positional uncertainty a problem for species distribution modelling?, Ecography 37 (2): 191-203.

22 filter_high_cor

filter_high_cor Deprecated: Filter to retain only variables below a given correlation
threshold

Description

THIS FUNCTION IS DEPRECATED. USE filter_collinear with method=cor_caret instead

Usage

filter_high_cor(x, cutoff = 0.7, verbose = FALSE, names = TRUE, to_keep = NULL)

Default S3 method:
filter_high_cor(x, cutoff = 0.7, verbose = FALSE, names = TRUE, to_keep = NULL)

S3 method for class 'SpatRaster'
filter_high_cor(x, cutoff = 0.7, verbose = FALSE, names = TRUE, to_keep = NULL)

S3 method for class 'data.frame'
filter_high_cor(x, cutoff = 0.7, verbose = FALSE, names = TRUE, to_keep = NULL)

S3 method for class 'matrix'
filter_high_cor(x, cutoff = 0.7, verbose = FALSE, names = TRUE, to_keep = NULL)

Arguments

x A terra::SpatRaster object, a data.frame (with only numeric variables), or a
correlation matrix

cutoff A numeric value for the pair-wise absolute correlation cutoff

verbose A boolean for printing the details

names a logical; should the column names be returned TRUE or the column index FALSE)?

to_keep A vector of variable names that we want to force in the set (note that the function
will return an error if the correlation among any of those variables is higher than
the cutoff).

Details

This method finds a subset of variable such that all have a correlation below a certain cutoff. There
are methods for terra::SpatRaster, data.frame, and to work directly on a correlation matrix
that was previously estimated. For data.frame, only numeric variables will be considered. The
algorithm is based on caret::findCorrelation, using the exact option. The absolute values of
pair-wise correlations are considered. If two variables have a high correlation, the function looks
at the mean absolute correlation of each variable and removes the variable with the largest mean
absolute correlation.

There are several function in the package subselect that can also be used to accomplish the same
goal but tend to retain more predictors.

gam_formula 23

Value

A vector of names of columns that are below the correlation threshold (when names = TRUE), oth-
erwise a vector of indices. Note that the indices are only for numeric variables (i.e. if factors are
present, the indices do not take them into account).

gam_formula Create a formula for gam

Description

This function takes the formula from a recipe, and turns numeric predictors into smooths with a
given k. This formula can be passed to a workflow or workflow set when fitting a gam.

Usage

gam_formula(object, k = 10)

Arguments

object a recipes::recipe, already trained

k the k value for the smooth

Value

a formula

geom_split_violin Split violin geometry for ggplots

Description

This geometry displays the density distribution of two groups side by side, as two halves of a violin.
Note that an emptyx aesthetic has to be provided even if you want to plot a single variable (see
example below).

Usage

geom_split_violin(
mapping = NULL,
data = NULL,
stat = "ydensity",
position = "identity",
nudge = 0,
...,
draw_quantiles = NULL,

24 geom_split_violin

trim = TRUE,
scale = "area",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat Use to override the default connection between ggplot2::geom_violin() and
ggplot2::stat_ydensity().

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

nudge Add space between the half-violin and the middle of the space allotted to a given
factor on the x-axis.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

geom_split_violin 25

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

draw_quantiles If not(NULL) (default), draw horizontal lines at the given quantiles of the density
estimate.

trim If TRUE (default), trim the tails of the violins to the range of the data. If FALSE,
don’t trim the tails.

scale if "area" (default), all violins have the same area (before trimming the tails).
If "count", areas are scaled proportionally to the number of observations. If
"width", all violins have the same maximum width.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

The implementation is based on https://stackoverflow.com/questions/35717353/split-violin-plot-with-
ggplot2. Credit goes to @jan-jlx for providing a complete implementation on StackOverflow, and
to Trang Q. Nguyen for adding the nudge parameter.

Value

a ggplot2::layer object

Examples

data("bradypus", package = "maxnet")
bradypus_tb <- tibble::as_tibble(bradypus) %>% dplyr::mutate(presence = relevel(

factor(
dplyr::case_match(presence, 1 ~ "presence", 0 ~ "absence")

),
ref = "presence"

))

ggplot(bradypus_tb, aes(

26 grid_offset

x = "",
y = cld6190_ann,
fill = presence

)) +
geom_split_violin(nudge = 0.01)

grid_cellsize Get default grid cellsize for a given dataset

Description

This function facilitates using spatialsample::spatial_block_cv multiple times in an analysis. spa-
tialsample::spatial_block_cv creates a grid based on the object in data. However, if spatial blocks
are generated multiple times in an analysis (e.g. for a spatial_initial_split(), and then subse-
quently for cross-validation on the training dataset), it might be desirable to keep the same grid). By
applying this function to the largest dataset, usually the full dataset before spatial_initial_split().
The resulting cellsize can be used as an option in spatialsample::spatial_block_cv.

Usage

grid_cellsize(data, n = c(10, 10))

Arguments

data a sf::sf dataset used to size the grid

n the number of cells in the grid, defaults to c(10,10), which is also the default for
sf::st_make_grid()

Value

the cell size

grid_offset Get default grid cellsize for a given dataset

Description

This function facilitates using spatialsample::spatial_block_cv multiple times in an analysis. spa-
tialsample::spatial_block_cv creates a grid based on the object in data. However, if spatial blocks
are generated multiple times in an analysis (e.g. for a spatial_initial_split(), and then subse-
quently for cross-validation on the training dataset), it might be desirable to keep the same grid). By
applying this function to the largest dataset, usually the full dataset before spatial_initial_split().
The resulting cellsize can be used as an option in spatialsample::spatial_block_cv.

horses 27

Usage

grid_offset(data)

Arguments

data a sf::sf dataset used to size the grid

Value

the grid offset

horses Coordinates of radiocarbon dates for horses

Description

Coordinates for presences of horses from 22k to 8k YBP.

Usage

horses

Format

An tibble with 1,297 rows and 3 variables:

latitude latitudes in degrees

longitude longitudes in degrees

time_bp time in years before present

kap_max Maximum Cohen’s Kappa

Description

Cohen’s Kappa (yardstick::kap()) is a measure similar to yardstick::accuracy(), but it nor-
malises the observed accuracy by the value that would be expected by chance (this helps for unbal-
anced cases when one class is predominant).

28 kap_max

Usage

kap_max(data, ...)

S3 method for class 'data.frame'
kap_max(
data,
truth,
...,
estimator = NULL,
na_rm = TRUE,
event_level = "first",
case_weights = NULL

)

S3 method for class 'sf'
kap_max(data, ...)

kap_max_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = "first",
case_weights = NULL,
...

)

Arguments

data Either a data.frame containing the columns specified by the truth and estimate
arguments, or a table/matrix where the true class results should be in the columns
of the table.

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. If truth is binary, only 1
column should be selected, and it should correspond to the value of event_level.
Otherwise, there should be as many columns as factor levels of truth and the
ordering of the columns should be the same as the factor levels of truth.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimator One of "binary", "hand_till", "macro", or "macro_weighted" to specify the type
of averaging to be done. "binary" is only relevant for the two class case. The oth-
ers are general methods for calculating multiclass metrics. The default will auto-
matically choose "binary" if truth is binary, "hand_till" if truth has >2 levels and
case_weights isn’t specified, or "macro" if truth has >2 levels and case_weights
is specified (in which case "hand_till" isn’t well-defined).

kap_max 29

na_rm A logical value indicating whether NA values should be stripped before the com-
putation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth to
consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first"

case_weights The optional column identifier for case weights. This should be an unquoted
column name that evaluates to a numeric column in data. For _vec() functions,
a numeric vector.

estimate If truth is binary, a numeric vector of class probabilities corresponding to the
"relevant" class. Otherwise, a matrix with as many columns as factor levels of
truth. It is assumed that these are in the same order as the levels of truth.

Details

This function calibrates the probability threshold to classify presences to maximises kappa.

There is no multiclass version of this function, it only operates on binary predictions (e.g. presences
and absences in SDMs).

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data
frames, the number of rows returned will be the same as the number of groups.

References

Cohen, J. (1960). "A coefficient of agreement for nominal scales". Educational and Psychological
Measurement. 20 (1): 37-46.

Cohen, J. (1968). "Weighted kappa: Nominal scale agreement provision for scaled disagreement or
partial credit". Psychological Bulletin. 70 (4): 213-220.

See Also

Other class probability metrics: boyce_cont(), tss_max()

Examples

kap_max(two_class_example, truth, Class1)

30 lacerta

km2m Convert a geographic distance from km to m

Description

This function takes distance in km and converts it into meters, the units generally used by geographic
operations in R. This is a trivial conversion, but this functions ensures that no zeroes are lost along
the way!

Usage

km2m(x)

Arguments

x the number of km

Value

the number of meters

Examples

km2m(10000)
km2m(1)

lacerta Coordinates of presences for Iberian emerald lizard

Description

Coordinates for presences of Lacerta schreiberi. The variables are as follows:

Usage

lacerta

Format

An tibble with 1,297 rows and 3 variables:

ID ids from GBIF

latitude latitudes in degrees

longitude longitudes in degrees

lacerta_ensemble 31

lacerta_ensemble A simple ensemble for the lacerta data

Description

Ensemble SDM for Lacerta schreiberi, as generated in the vignette.

Usage

lacerta_ensemble

Format

A simple_ensemble object

lacerta_rep_ens A repeat ensemble for the lacerta data

Description

Ensemble SDM for Lacerta schreiberi, as generated in the vignette.

Usage

lacerta_rep_ens

Format

A repeat_ensemble object

lacertidae_background Coordinates of presences for lacertidae in the Iberian peninsula

Description

Coordinates for presences of lacertidae, used as background for the lacerta dataset.. The variables
are as follows:

Usage

lacertidae_background

32 maxent

Format

An tibble with 1,297 rows and 3 variables:

ID ids from GBIF

latitude latitudes in degrees

longitude longitudes in degrees

maxent MaxEnt model

Description

maxent defines the MaxEnt model as used in Species Distribution Models. A good guide to how op-
tions of a MaxEnt model work can be found in https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-
0587.2013.07872.x

Usage

maxent(
mode = "classification",
engine = "maxnet",
feature_classes = NULL,
regularization_multiplier = NULL

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "classification".

engine A single character string specifying what computational engine to use for fitting.
Currently only "maxnet" is available.

feature_classes

character, continuous feature classes desired, either "default" or any subset of
"lqpht" (for example, "lh")

regularization_multiplier

numeric, a constant to adjust regularization

Value

a parsnip::model_spec for a maxent model

maxent_params 33

Examples

format the data
data("bradypus", package = "maxnet")
bradypus_tb <- tibble::as_tibble(bradypus) %>%

dplyr::mutate(presence = relevel(
factor(

dplyr::case_match(presence, 1 ~ "presence", 0 ~ "absence")
),
ref = "presence"

)) %>%
select(-ecoreg)

fit the model, and make some predictions
maxent_spec <- maxent(feature_classes = "lq")
maxent_fitted <- maxent_spec %>%

fit(presence ~ ., data = bradypus_tb)
pred_prob <- predict(maxent_fitted, new_data = bradypus[, -1], type = "prob")
pred_class <- predict(maxent_fitted, new_data = bradypus[, -1], type = "class")

Now with tuning
maxent_spec <- maxent(

regularization_multiplier = tune(),
feature_classes = tune()

)
set.seed(452)
cv <- vfold_cv(bradypus_tb, v = 2)
maxent_tune_res <- maxent_spec %>%

tune_grid(presence ~ ., cv, grid = 3)
show_best(maxent_tune_res, metric = "roc_auc")

maxent_params Parameters for maxent models

Description

These parameters are auxiliary to MaxEnt models using the "maxnet" engine. These functions are
used by the tuning functions, and the user will rarely access them directly.

Usage

regularization_multiplier(range = c(0.5, 3), trans = NULL)

feature_classes(values = c("l", "lq", "lqp", "lqph", "lqpht"))

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively. If a transformation is specified, these values should be in
the transformed units.

34 niche_overlap

trans A trans object from the scales package, such as scales::log10_trans() or scales::reciprocal_trans().
If not provided, the default is used which matches the units used in range. If no
transformation, NULL.

values For feature_classes(), a character string of any subset of "lqpht" (for exam-
ple, "lh")

Value

a param object that can be used for tuning.

Examples

regularization_multiplier()
feature_classes()

niche_overlap Compute overlap metrics of the two niches

Description

This function computes overlap metrics between two rasters. It currently implements Schoener’s D
and the inverse I of Hellinger’s distance.

Usage

niche_overlap(x, y, method = c("Schoener", "Hellinger"))

Arguments

x a terra::SpatRaster with a single layer

y a terra::SpatRaster with a single layer

method a string (or vector of strings) taking values "Schoener" and "Hellinger"

Details

Note that Hellinger’s distance is normalised by dividing by square root of 2 (which is the correct
asymptote for Hellinger’s D), rather than the incorrect 2 used originally in Warren et al (2008),
based on the Erratum for that paper.

Value

a list of overlap metrics, with slots D and I (depending on method)

References

Warren, D.L., Glor, R.E. & Turelli M. (2008) Environmental niche equivalency versus conserva-
tivism: quantitative approaches to niche evolution. Evolution 62: 2868-2883

optim_thresh 35

optim_thresh Find threshold that optimises a given metric

Description

This function returns the threshold to turn probabilities into binary classes whilst optimising a given
metric. Currently available for tss_max, kap_max and sensitivity (for which a target sensitivity
is required).

Usage

optim_thresh(truth, estimate, metric, event_level = "first")

Arguments

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate the predicted probability for the event

metric character of metric to be optimised. Currently only "tss_max", "kap_max", and
"sensitivity" with a given target (e.g. c("sensitivity",0.8))

event_level A single string. Either "first" or "second" to specify which level of truth to
consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first"

Value

the probability threshold for the event

Examples

optim_thresh(two_class_example$truth, two_class_example$Class1, metric = c("tss_max"))
optim_thresh(two_class_example$truth, two_class_example$Class1, metric = c("sens", 0.9))

plot_pres_vs_bg Plot presences vs background

Description

Create a composite plots contrasting the distribution of multiple variables for presences vs the back-
ground.

Usage

plot_pres_vs_bg(.data, .col)

36 predict.repeat_ensemble

Arguments

.data a data.frame (or derived object, such as tibble::tibble, or sf::st_sf) with
values for the bioclimate variables for presences and background

.col the column containing the presences; it assumes presences to be the first level of
this factor

Value

a patchwork composite plot

Examples

data("bradypus", package = "maxnet")
bradypus_tb <- tibble::as_tibble(bradypus) %>%

dplyr::mutate(presence = relevel(
factor(

dplyr::case_match(presence, 1 ~ "presence", 0 ~ "absence")
),
ref = "presence"

)) %>%
select(-ecoreg)

bradypus_tb %>% plot_pres_vs_bg(presence)

predict.repeat_ensemble

Predict for a repeat ensemble set

Description

Predict for a new dataset by using a repeat ensemble. Predictions from individual models are com-
bined according to fun

Usage

S3 method for class 'repeat_ensemble'
predict(
object,
new_data,
type = "prob",
fun = "mean",
metric_thresh = NULL,
class_thresh = NULL,
members = FALSE,
...

)

predict.simple_ensemble 37

Arguments

object an repeat_ensemble object

new_data a data frame in which to look for variables with which to predict.

type the type of prediction, "prob" or "class".

fun string defining the aggregating function. It can take values mean, median, weighted_mean,
weighted_median and none. It is possible to combine multiple functions, ex-
cept for "none". If it is set to "none", only the individual member predictions are
returned (this automatically sets member to TRUE)

metric_thresh a vector of length 2 giving a metric and its threshold, which will be used to
prune which models in the ensemble will be used for the prediction. The ’met-
rics’ need to have been computed when the workflow was tuned. Examples are
c("accuracy",0.8) or c("boyce_cont",0.7)

class_thresh probability threshold used to convert probabilities into classes. It can be a num-
ber (between 0 and 1), or a character metric (currently "tss_max" or "sensi-
tivity"). For sensitivity, an additional target value is passed along as a second
element of a vector, e.g. c("sensitivity",0.8).

members boolean defining whether individual predictions for each member should be
added to the ensemble prediction. The columns for individual members have
the name of the workflow a a prefix, separated by "." from the usual column
names of the predictions.

... not used in this method.

Value

a tibble of predictions

predict.simple_ensemble

Predict for a simple ensemble set

Description

Predict for a new dataset by using a simple ensemble. Predictions from individual models (i.e.
workflows) are combined according to fun

Usage

S3 method for class 'simple_ensemble'
predict(
object,
new_data,
type = "prob",
fun = "mean",
metric_thresh = NULL,

38 predict_raster

class_thresh = NULL,
members = FALSE,
...

)

Arguments

object an simple_ensemble object

new_data a data frame in which to look for variables with which to predict.

type the type of prediction, "prob" or "class".

fun string defining the aggregating function. It can take values mean, median, weighted_mean,
weighted_median and none. It is possible to combine multiple functions, ex-
cept for "none". If it is set to "none", only the individual member predictions are
returned (this automatically sets member to TRUE)

metric_thresh a vector of length 2 giving a metric and its threshold, which will be used to
prune which models in the ensemble will be used for the prediction. The ’met-
rics’ need to have been computed when the workflow was tuned. Examples are
c("accuracy",0.8) or c("boyce_cont",0.7)

class_thresh probability threshold used to convert probabilities into classes. It can be a num-
ber (between 0 and 1), or a character metric (currently "tss_max" or "sensi-
tivity"). For sensitivity, an additional target value is passed along as a second
element of a vector, e.g. c("sensitivity",0.8).

members boolean defining whether individual predictions for each member should be
added to the ensemble prediction. The columns for individual members have
the name of the workflow a a prefix, separated by "." from the usual column
names of the predictions.

... not used in this method.

Value

a tibble of predictions

predict_raster Make predictions for a whole raster

Description

This function allows to use a raster as data to make predictions from a variety of tidymodels
objects, such as simple_ensemble or stacks::stacks

Usage

predict_raster(object, raster, ...)

Default S3 method:
predict_raster(object, raster, ...)

prob_metrics_sf 39

Arguments

object the tidymodels object of interest

raster the terra::SpatRaster with the input data. It has to include levels with the
same names as the variables used in object

... parameters to be passed to the standard predict() function for the appropriate
object type (e.g. metric_thresh or class_thresh).

Value

a terra::SpatRaster with the predictions

prob_metrics_sf Probability metrics for sf objects

Description

tidysdm provides specialised metrics for SDMs, which have their own help pages(boyce_cont(),
kap_max(), and tss_max()). Additionally, it also provides methods to handle sf::sf objects for the
following standard yardstick metrics:

yardstick::average_precision()

yardstick::brier_class()

yardstick::classification_cost()

yardstick::gain_capture()

yardstick::mn_log_loss()

yardstick::pr_auc()

yardstick::roc_auc()

yardstick::roc_aunp()

yardstick::roc_aunu()

Usage

S3 method for class 'sf'
average_precision(data, ...)

S3 method for class 'sf'
brier_class(data, ...)

S3 method for class 'sf'
classification_cost(data, ...)

S3 method for class 'sf'
gain_capture(data, ...)

40 recipe.sf

S3 method for class 'sf'
mn_log_loss(data, ...)

S3 method for class 'sf'
pr_auc(data, ...)

S3 method for class 'sf'
roc_auc(data, ...)

S3 method for class 'sf'
roc_aunp(data, ...)

S3 method for class 'sf'
roc_aunu(data, ...)

Arguments

data an sf::sf object

... any other parameters to pass to the data.frame version of the metric. See the
specific man page for the metric of interest.

Details

Note that roc_aunp and roc_aunu are multiclass metrics, and as such are are not relevant for SDMs
(which work on a binary response). They are included for completeness, so that all class probability
metrics from yardstick have an sf method, for applications other than SDMs.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

recipe.sf Recipe for sf objects

Description

This method for recipes::recipe() handles the case when x is an sf::sf object, as commonly used
in Species Distribution Model, and generates a spatial_recipe.

Usage

S3 method for class 'sf'
recipe(x, ...)

spatial_recipe(x, ...)

repeat_ensemble 41

Arguments

x An sf::sf data frame.

... parameters to be passed to recipes::recipe()

Details

recipes::recipe() are not natively compatible with sf::sf objects. The problem is that the geometry
column of sf::sf objects is a list, which is incompatible with the translation of formulae in recipes::recipe().
This method strips the geometry column from the data.frame and replaces it with a simple X and Y
columns before any further operations, thus allowing the usual processing by recipes::recipe()
to succeed (X and Y are give the role of coords in a spatial recipe). When prepping and baking a
spatial_recipe, if a data.frame or tibble without coordinates is used as training or new_data,
dummy X and Y columns are generated and filled with NAs. NOTE that order matters! You need
to use the syntax recipe(x=sf_obj, formula=class~.) for the method to successfully detect the
sf::sf object. Starting with formula will fail.

Value

An object of class spatial_recipe, which is a derived version of recipes::recipe() , see the
manpage for recipes::recipe() for details.

repeat_ensemble Repeat ensemble

Description

An ensemble based multiple sets of pseudoabsences/background. This object is a collection (list) of
simple_ensemble objects for which predictions will be combined in a simple way (e.g. by taking
either the mean or median). Each simple_ensemble contains the best version of a each given model
type following turning; all simple ensembles will need to have the same metric estimated during the
cv process.

Usage

repeat_ensemble(...)

Arguments

... not used, this function just creates an empty repeat_ensemble object. Members
are added with add_best_candidates()

Value

an empty repeat_ensemble

42 sample_background

sample_background Sample background points for SDM analysis

Description

This function samples background points from a raster given a set of presences. The locations
returned as the center points of the sampled cells, which can overlap with the presences (in contrast
to pseudo-absences, see sample_pseudoabs). The following methods are implemented:

• ’random’: background randomly sampled from the region covered by the raster (i.e. not NAs).
• ’dist_max’: background randomly sampled from the unioned buffers of ’dist_max’ from pres-

ences (distances in ’m’ for lonlat rasters, and in map units for projected rasters). Using the
union of buffers means that areas that are in multiple buffers are not oversampled. This is also
referred to as "thickening".

• ’bias’: background points are sampled according to a surface representing the biased sampling
effort.

Usage

sample_background(
data,
raster,
n,
coords = NULL,
method = "random",
class_label = "background",
return_pres = TRUE

)

Arguments

data An sf::sf data frame, or a data frame with coordinate variables. These can be
defined in coords, unless they have standard names (see details below).

raster the terra::SpatRaster from which cells will be sampled (the first layer will be
used to determine which cells are NAs, and thus can not be sampled). If sam-
pling is "biased", then the sampling probability will be proportional to the values
on the first layer (i.e. band) of the raster.

n number of background points to sample.
coords a vector of length two giving the names of the "x" and "y" coordinates, as found

in data. If left to NULL, the function will try to guess the columns based on
standard names c("x", "y"), c("X","Y"), c("longitude", "latitude"), or
c("lon", "lat").

method sampling method. One of ’random’, ’dist_max’, and ’targeted’. For dist_max,
the maximum distance is set as an additional element of a vector, e.g c(’dist_max’,70000).

class_label the label given to the sampled points. Defaults to background

return_pres return presences together with background in a single tibble.

sample_background_time 43

Details

Note that the units of distance depend on the projection of the raster.

Value

An object of class tibble::tibble. If presences are returned, the presence level is set as the reference
(to match the expectations in the yardstick package that considers the first level to be the event).

sample_background_time

Sample background points for SDM analysis for points with a time
point.

Description

This function samples background points from a raster given a set of presences. The locations
returned as the center points of the sampled cells„ which can overlap with the presences (in contrast
to pseudo-absences, see sample_pseudoabs_time). The following methods are implemented:

• ’random’: background points randomly sampled from the region covered by the raster (i.e.
not NAs).

• ’dist_max’: background points randomly sampled from the unioned buffers of ’dist_max’ from
presences (distances in ’m’ for lonlat rasters, and in map units for projected rasters). Using
the union of buffers means that areas that are in multiple buffers are not oversampled. This is
also referred to as "thickening".

• ’bias’: background points are sampled according to a surface representing the biased sampling
effort. Note that the surface for each time step is normalised to sum to 1;use n_per_time_step
to affect sampling effort within each time step.

Usage

sample_background_time(
data,
raster,
n_per_time_step,
coords = NULL,
time_col = "time",
lubridate_fun = c,
method = "random",
class_label = "background",
return_pres = TRUE,
time_buffer = 0

)

44 sample_pseudoabs

Arguments

data An sf::sf data frame, or a data frame with coordinate variables. These can be
defined in coords, unless they have standard names (see details below).

raster the terra::SpatRaster or terra::SpatRasterDataset from which cells will be sam-
pled. If a terra::SpatRasterDataset, the first dataset will be used to define which
cells are valid, and which are NAs.

n_per_time_step

number of background points to sample for each time step (i.e. a vector of length
equal to the number of time steps in raster)

coords a vector of length two giving the names of the "x" and "y" coordinates, as found
in data. If left to NULL, the function will try to guess the columns based on
standard names c("x", "y"), c("X","Y"), c("longitude", "latitude"), or
c("lon", "lat")

time_col The name of the column with time; if time is not a lubridate object, use lubridate_fun
to provide a function that can be used to convert appropriately

lubridate_fun function to convert the time column into a lubridate object

method sampling method. One of ’random’, ’dist_min’, ’dist_max’, or ’dist_disc’.

class_label the label given to the sampled points. Defaults to background

return_pres return presences together with background in a single tibble

time_buffer the buffer on the time axis around presences that defines their effect when sam-
pling background with method ’max_dist’. If set to zero, presences have an
effect only on the time step to which they are assigned in raster; if a posi-
tive value, it defines the number of days before and after the date provided in
the time column for which the presence should be considered (e.g. 20 days
means that a presence is considered in all time steps equivalent to plus and mi-
nus twenty days from its date).

Value

An object of class tibble::tibble. If presences are returned, the presence level is set as the reference
(to match the expectations in the yardstick package that considers the first level to be the event)

sample_pseudoabs Sample pseudo-absence points for SDM analysis

Description

This function samples pseudo-absence points from a raster given a set of presences. The locations
returned as the center points of the sampled cells, which can not overlap with the presences (in
contrast to background points, see sample_background). The following methods are implemented:

• ’random’: pseudo-absences randomly sampled from the region covered by the raster (i.e. not
NAs).

sample_pseudoabs 45

• ’dist_min’: pseudo-absences randomly sampled from the region excluding a buffer of ’dist_min’
from presences (distances in ’m’ for lonlat rasters, and in map units for projected rasters).

• ’dist_max’: pseudo-absences randomly sampled from the unioned buffers of ’dist_max’ from
presences (distances in ’m’ for lonlat rasters, and in map units for projected rasters). Using
the union of buffers means that areas that are in multiple buffers are not oversampled. This is
also referred to as "thickening".

• ’dist_disc’: pseudo-absences randomly sampled from the unioned discs around presences with
the two values of ’dist_disc’ defining the minimum and maximum distance from presences.

Usage

sample_pseudoabs(
data,
raster,
n,
coords = NULL,
method = "random",
class_label = "pseudoabs",
return_pres = TRUE

)

Arguments

data An sf::sf data frame, or a data frame with coordinate variables. These can be
defined in coords, unless they have standard names (see details below).

raster the terra::SpatRaster from which cells will be sampled

n number of pseudoabsence points to sample

coords a vector of length two giving the names of the "x" and "y" coordinates, as found
in data. If left to NULL, the function will try to guess the columns based on
standard names c("x", "y"), c("X","Y"), c("longitude", "latitude"), or
c("lon", "lat")

method sampling method. One of ’random’, ’dist_min’, ’dist_max’, or ’dist_disc’. Thresh-
old distances are set as additional elements of a vector, e.g c(’dist_min’,70000)
or c(’dist_disc’,50000,200000).

class_label the label given to the sampled points. Defaults to pseudoabs

return_pres return presences together with pseudoabsences in a single tibble

Value

An object of class tibble::tibble. If presences are returned, the presence level is set as the reference
(to match the expectations in the yardstick package that considers the first level to be the event)

46 sample_pseudoabs_time

sample_pseudoabs_time Sample pseudo-absence points for SDM analysis for points with a time
point.

Description

This function samples pseudo-absence points from a raster given a set of presences. The locations
returned as the center points of the sampled cells, which can not overlap with the presences (in
contrast to background points, see sample_background_time). The following methods are imple-
mented:

• ’random’: pseudo-absences randomly sampled from the region covered by the raster (i.e. not
NAs).

• ’dist_min’: pseudo-absences randomly sampled from the region excluding a buffer of ’dist_min’
from presences (distances in ’m’ for lonlat rasters, and in map units for projected rasters).

• ’dist_max’: pseudo-absences randomly sampled from the unioned buffers of ’dist_max’ from
presences (distances in ’m’ for lonlat rasters, and in map units for projected rasters). Using
the union of buffers means that areas that are in multiple buffers are not oversampled. This is
also referred to as "thickening".

• ’dist_disc’: pseudo-absences randomly sampled from the unioned discs around presences with
the two values of ’dist_disc’ defining the minimum and maximum distance from presences.

Usage

sample_pseudoabs_time(
data,
raster,
n_per_presence,
coords = NULL,
time_col = "time",
lubridate_fun = c,
method = "random",
class_label = "pseudoabs",
return_pres = TRUE,
time_buffer = 0

)

Arguments

data An sf::sf data frame, or a data frame with coordinate variables. These can be
defined in coords, unless they have standard names (see details below).

raster the terra::SpatRaster or terra::SpatRasterDataset from which cells will be sam-
pled. If a terra::SpatRasterDataset, the first dataset will be used to define which
cells are valid, and which are NAs.

n_per_presence number of pseudoabsence points to sample for each presence

sdm_metric_set 47

coords a vector of length two giving the names of the "x" and "y" coordinates, as found
in data. If left to NULL, the function will try to guess the columns based on
standard names c("x", "y"), c("X","Y"), c("longitude", "latitude"), or
c("lon", "lat")

time_col The name of the column with time; if time is not a lubridate object, use lubridate_fun
to provide a function that can be used to convert appropriately

lubridate_fun function to convert the time column into a lubridate object
method sampling method. One of ’random’, ’dist_min’, ’dist_max’, or ’dist_disc’.
class_label the label given to the sampled points. Defaults to pseudoabs

return_pres return presences together with pseudoabsences in a single tibble
time_buffer the buffer on the time axis around presences that defines their effect when sam-

pling pseudoabsences. If set to zero, presences have an effect only on the time
step to which they are assigned in raster; if a positive value, it defines the num-
ber of days before and after the date provided in the time column for which the
presence should be considered (e.g. 20 days means that a presence is considered
in all time steps equivalent to plus and minus twenty days from its date).

Value

An object of class tibble::tibble. If presences are returned, the presence level is set as the reference
(to match the expectations in the yardstick package that considers the first level to be the event)

sdm_metric_set Metric set for SDM

Description

This function returns a yardstick::metric_set that includes boyce_cont(), yardstick::roc_auc()
and tss_max(), the most commonly used metrics for SDM.

Usage

sdm_metric_set(...)

Arguments

... additional metrics to be added to the yardstick::metric_set. See the help to
yardstick::metric_set() for constraints on the type of metrics that can be
mixed.

Value

a yardstick::metric_set object.

Examples

sdm_metric_set()
sdm_metric_set(accuracy)

48 sdm_spec_boost_tree

sdm_spec_boost_tree Model specification for a Boosted Trees model for SDM

Description

This function returns a parsnip::model_spec for a Boosted Trees model to be used as a classifier of
presences and absences in Species Distribution Model. It uses the library xgboost to fit boosted
trees; to use another library, simply build the parsnip::model_spec directly.

Usage

sdm_spec_boost_tree(..., tune = c("sdm", "all", "custom", "none"))

Arguments

... parameters to be passed to parsnip::boost_tree() to customise the model.
See the help of that function for details.

tune character defining the tuning strategy. Valid strategies are:

• "sdm" chooses hyperparameters that are most important to tune for an sdm
(for boost_tree: ’mtry’, ’trees’, ’tree_depth’, ’learn_rate’, ’loss_reduction’,
and ’stop_iter’)

• "all" tunes all hyperparameters (for boost_tree: ’mtry’, ’trees’, ’tree_depth’,
’learn_rate’, ’loss_reduction’, ’stop_iter’,’min_n’ and ’sample_size’)

• "custom" passes the options from ’...’

• "none" does not tune any hyperparameter

Value

a parsnip::model_spec of the model.

See Also

Other "sdm model specifications": sdm_spec_gam(), sdm_spec_glm(), sdm_spec_maxent(), sdm_spec_rand_forest()

Examples

standard_bt_spec <- sdm_spec_boost_tree()
full_bt_spec <- sdm_spec_boost_tree(tune = "all")
custom_bt_spec <- sdm_spec_boost_tree(tune = "custom", mtry = tune())

sdm_spec_gam 49

sdm_spec_gam Model specification for a GAM for SDM

Description

This function returns a parsnip::model_spec for a General Additive Model to be used as a classifier
of presences and absences in Species Distribution Model.

Usage

sdm_spec_gam(..., tune = "none")

Arguments

... parameters to be passed to parsnip::gen_additive_mod() to customise the
model. See the help of that function for details.

tune character defining the tuning strategy. As there are no hyperparameters to tune in
a gam, the only valid option is "none". This parameter is present for consistency
with other sdm_spec_* functions, but it does nothing in this case.

Value

a parsnip::model_spec of the model.

See Also

Other "sdm model specifications": sdm_spec_boost_tree(), sdm_spec_glm(), sdm_spec_maxent(),
sdm_spec_rand_forest()

Examples

my_gam_spec <- sdm_spec_gam()

sdm_spec_glm Model specification for a GLM for SDM

Description

This function returns a parsnip::model_spec for a Generalised Linear Model to be used as a classifier
of presences and absences in Species Distribution Model.

Usage

sdm_spec_glm(..., tune = "none")

50 sdm_spec_maxent

Arguments

... parameters to be passed to parsnip::logistic_reg() to customise the model.
See the help of that function for details.

tune character defining the tuning strategy. As there are no hyperparameters to tune in
a glm, the only valid option is "none". This parameter is present for consistency
with other sdm_spec_* functions, but it does nothing in this case.

Value

a parsnip::model_spec of the model.

See Also

Other "sdm model specifications": sdm_spec_boost_tree(), sdm_spec_gam(), sdm_spec_maxent(),
sdm_spec_rand_forest()

Examples

my_spec_glm <- sdm_spec_glm()

sdm_spec_maxent Model specification for a MaxEnt for SDM

Description

This function returns a parsnip::model_spec for a MaxEnt model to be used in Species Distribution
Models.

Usage

sdm_spec_maxent(..., tune = c("sdm", "all", "custom", "none"))

Arguments

... parameters to be passed to maxent() to customise the model. See the help of
that function for details.

tune character defining the tuning strategy. Valid strategies are:

• "sdm" chooses hyper-parameters that are most important to tune for an sdm
(for maxent, ’mtry’)

• "all" tunes all hyperparameters (for maxent, ’mtry’, ’trees’ and ’min’)
• "custom" passes the options from ’...’
• "none" does not tune any hyperparameter

Value

a parsnip::model_spec of the model.

sdm_spec_rand_forest 51

See Also

Other "sdm model specifications": sdm_spec_boost_tree(), sdm_spec_gam(), sdm_spec_glm(),
sdm_spec_rand_forest()

Examples

test_maxent_spec <- sdm_spec_maxent(tune = "sdm")
test_maxent_spec
setting specific values
sdm_spec_maxent(tune = "custom", feature_classes = "lq")

sdm_spec_rand_forest Model specification for a Random Forest for SDM

Description

This function returns a parsnip::model_spec for a Random Forest to be used as a classifier of pres-
ences and absences in Species Distribution Models. It uses the library ranger to fit boosted trees;
to use another library, simply build the parsnip::model_spec directly.

Usage

sdm_spec_rand_forest(..., tune = c("sdm", "all", "custom", "none"))

sdm_spec_rf(..., tune = c("sdm", "all", "custom", "none"))

Arguments

... parameters to be passed to parsnip::rand_forest() to customise the model.
See the help of that function for details.

tune character defining the tuning strategy. Valid strategies are:

• "sdm" chooses hyperparameters that are most important to tune for an sdm
(for rf, ’mtry’)

• "all" tunes all hyperparameters (for rf, ’mtry’, ’trees’ and ’min’)
• "custom" passes the options from ’...’
• "none" does not tune any hyperparameter

Details

sdm_spec_rf() is simply a short form for sm_spec_rand_forest().

Value

a parsnip::model_spec of the model.

52 simple_ensemble

See Also

Other "sdm model specifications": sdm_spec_boost_tree(), sdm_spec_gam(), sdm_spec_glm(),
sdm_spec_maxent()

Examples

test_rf_spec <- sdm_spec_rf(tune = "sdm")
test_rf_spec
combining tuning with specific values for other hyperparameters
sdm_spec_rf(tune = "sdm", trees = 100)

simple_ensemble Simple ensemble

Description

A simple ensemble is a collection of workflows for which predictions will be combined in a simple
way (e.g. by taking either the mean or median). Usually these workflows will consists each of
the best version of a given model algorithm following tuning. The workflows are fitted to the full
training dataset before making predictions.

Usage

simple_ensemble(...)

Arguments

... not used, this function just creates an empty simple_ensemble object. Members
are added with add_best_candidates()

Value

an empty simple_ensemble. This is a tibble with columns:

• wflow_id: the name of the workflows for which the best model was chosen

• workflow: the trained workflow objects

• metrics: metrics based on the crossvalidation resampling used to tune the models

spatial_initial_split 53

spatial_initial_split Simple Training/Test Set Splitting for spatial data

Description

spatial_initial_split creates a single binary split of the data into a training set and testing set.
All strategies from the package spatialsample are available; a random split from that strategy will
be used to generate the initial split.

Usage

spatial_initial_split(data, prop, strategy, ...)

Arguments

data A dataset (data.frame or tibble)

prop The proportion of data to be retained for modelling/analysis.

strategy A sampling strategy from spatialsample

... parameters to be passed to the strategy

Value

An rsplit object that can be used with the rsample::training and rsample::testing functions to
extract the data in each split.

Examples

set.seed(123)
block_initial <- spatial_initial_split(boston_canopy, prop = 1 / 5, spatial_block_cv)
testing(block_initial)
training(block_initial)

thin_by_cell Thin point dataset to have 1 observation per raster cell

Description

This function thins a dataset so that only one observation per cell is retained.

Usage

thin_by_cell(data, raster, coords = NULL, drop_na = TRUE, agg_fact = NULL)

54 thin_by_cell_time

Arguments

data An sf::sf data frame, or a data frame with coordinate variables. These can be
defined in coords, unless they have standard names (see details below).

raster A terra::SpatRaster object that defined the grid

coords a vector of length two giving the names of the "x" and "y" coordinates, as found
in data. If left to NULL, the function will try to guess the columns based on
standard names c("x", "y"), c("X","Y"), c("longitude", "latitude"), or
c("lon", "lat")

drop_na boolean on whether locations that are NA in the raster should be dropped.

agg_fact positive integer. Aggregation factor expressed as number of cells in each di-
rection (horizontally and vertically). Or two integers (horizontal and vertical
aggregation factor) or three integers (when also aggregating over layers). De-
faults to NULL, which implies no aggregation (i.e. thinning is done on the grid
of raster)

Details

Further thinning can be achieved by aggregating cells in the raster before thinning, as achieved by
setting agg_fact > 1 (aggregation works in a manner equivalent to terra::aggregate()).

Value

An object of class sf::sf or data.frame, the same as "data".

thin_by_cell_time Thin point dataset to have 1 observation per raster cell per time slice

Description

This function thins a dataset so that only one observation per cell per time slice is retained. We use
a raster with layers as time slices to define the data cube on which thinning is enforced (see details
below on how time should be formatted).

Usage

thin_by_cell_time(
data,
raster,
coords = NULL,
time_col = "time",
lubridate_fun = c,
drop_na = TRUE,
agg_fact = NULL

)

thin_by_dist 55

Arguments

data An sf::sf data frame, or a data frame with coordinate variables. These can be
defined in coords, unless they have standard names (see details below).

raster A terra::SpatRaster object that defined the grid with layers correspond-
ing to the time slices (times should be set as either POSIXlt or "years", see
terra::time() for details), or a terra::SpatRasterDataset where the first
dataset will be used (again, times for that dataset should be set as either POSIXlt
or "years") terra::time()

coords a vector of length two giving the names of the "x" and "y" coordinates, as found
in data. If left to NULL, the function will try to guess the columns based on
standard names c("x", "y"), c("X","Y"), c("longitude", "latitude"), or
c("lon", "lat")

time_col The name of the column with time; if time is not a lubridate object, use lubridate_fun
to provide a function that can be used to convert appropriately

lubridate_fun function to convert the time column into a lubridate object

drop_na boolean on whether locations that are NA in the raster should be dropped.

agg_fact positive integer. Aggregation factor expressed as number of cells in each di-
rection (horizontally and vertically). Or two integers (horizontal and vertical
aggregation factor) or three integers (when also aggregating over layers). De-
faults to NULL, which implies no aggregation (i.e. thinning is done on the grid
of raster)

Details

Further spatial thinning can be achieved by aggregating cells in the raster before thinning, as
achieved by setting agg_fact > 1 (aggregation works in a manner equivalent to terra::aggregate()).

Value

An object of class sf::sf or data.frame, the same as "data".

thin_by_dist Thin points dataset based on geographic distance

Description

This function thins a dataset so that only observations that have a distance from each other greater
than "dist_min" are retained.

Usage

thin_by_dist(data, dist_min, coords = NULL)

56 thin_by_dist_time

Arguments

data An sf::sf data frame, or a data frame with coordinate variables. These can be
defined in coords, unless they have standard names (see details below).

dist_min Minimum distance between points (in units appropriate for the projection, or
meters for lonlat data).

coords A vector of length two giving the names of the "x" and "y" coordinates, as found
in data. If left to NULL, the function will try to guess the columns based on
standard names c("x", "y"), c("X","Y"), c("longitude", "latitude"), or
c("lon", "lat")

Details

Distances are measured in the appropriate units for the projection used. In case of raw latitude and
longitude (e.g. as provided in a data.frame), the crs is set to WGS84, and units are set to meters.

This function is a modified version of the algorithm in spThin, adapted to work on sf objects.

Value

An object of class sf::sf or data.frame, the same as "data".

thin_by_dist_time Thin points dataset based on geographic and temporal distance

Description

This function thins a dataset so that only observations that have a distance from each other greater
than "dist_min" in space and "interval_min" in time are retained.

Usage

thin_by_dist_time(
data,
dist_min,
interval_min,
coords = NULL,
time_col = "time",
lubridate_fun = c

)

Arguments

data An sf::sf data frame, or a data frame with coordinate variables. These can be
defined in coords, unless they have standard names (see details below).

dist_min Minimum distance between points (in units appropriate for the projection, or
meters for lonlat data).

tss 57

interval_min Minimum time interval between points, in days.

coords A vector of length two giving the names of the "x" and "y" coordinates, as found
in data. If left to NULL, the function will try to guess the columns based on
standard names c("x", "y"), c("X","Y"), c("longitude", "latitude"), or
c("lon", "lat")

time_col The name of the column with time; if time is not a lubridate object, use lubridate_fun
to provide a function that can be used to convert appropriately

lubridate_fun function to convert the time column into a lubridate object

Details

Geographic distances are measured in the appropriate units for the projection used. In case of raw
latitude and longitude (e.g. as provided in a data.frame), the crs is set to WGS84, and units are
set to meters. Time interval are estimated in days. Note that for very long time period, the simple
conversion x years = 365 * x days might lead to slightly shorter intervals than expected, as it ignores
leap years. The function y2d() provides a closer approximation.

This function an algorithm analogous to spThin, with the exception that neighbours are defined in
terms of both space and time.

Value

An object of class sf::sf or data.frame, the same as "data".

tss TSS - True Skill Statistics

Description

The True Skills Statistic, which is defined as

Usage

tss(data, ...)

S3 method for class 'data.frame'
tss(
data,
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = "first",
...

)

58 tss

Arguments

data Either a data.frame containing the columns specified by the truth and estimate
arguments, or a table/matrix where the true class results should be in the columns
of the table.

... Not currently used.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As with
truth this can be specified different ways but the primary method is to use an
unquoted variable name. For _vec() functions, a factor vector.

estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the type of
averaging to be done. "binary" is only relevant for the two class case. The other
three are general methods for calculating multiclass metrics. The default will
automatically choose "binary" or "macro" based on estimate.

na_rm A logical value indicating whether NA values should be stripped before the com-
putation proceeds.

case_weights The optional column identifier for case weights. This should be an unquoted
column name that evaluates to a numeric column in data. For _vec() functions,
a numeric vector.

event_level A single string. Either "first" or "second" to specify which level of truth to
consider as the "event". This argument is only applicable when estimator =
"binary". The default is "first".

Details

sensitivity+specificity +1

This function is a wrapper around yardstick::j_index(), another name for the same quantity.
Note that this function takes the classes as predicted by the model without any calibration (i.e.
making a split at 0.5 probability). This is usually not the metric used for Species Distribution
Models, where the threshold is recalibrated to maximise TSS; for that purpose, use tss_max().

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data
frames, the number of rows returned will be the same as the number of groups.

Examples

Two class
data("two_class_example")
tss(two_class_example, truth, predicted)
Multiclass
library(dplyr)
data(hpc_cv)
Groups are respected

tss_max 59

hpc_cv %>%
group_by(Resample) %>%
tss(obs, pred)

tss_max Maximum TSS - True Skill Statistics

Description

The True Skills Statistic, which is defined as

Usage

tss_max(data, ...)

S3 method for class 'data.frame'
tss_max(
data,
truth,
...,
estimator = NULL,
na_rm = TRUE,
event_level = "first",
case_weights = NULL

)

S3 method for class 'sf'
tss_max(data, ...)

tss_max_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = "first",
case_weights = NULL,
...

)

Arguments

data Either a data.frame containing the columns specified by the truth and estimate
arguments, or a table/matrix where the true class results should be in the columns
of the table.

... A set of unquoted column names or one or more dplyr selector functions to
choose which variables contain the class probabilities. If truth is binary, only 1
column should be selected, and it should correspond to the value of event_level.

60 tss_max

Otherwise, there should be as many columns as factor levels of truth and the
ordering of the columns should be the same as the factor levels of truth.

truth The column identifier for the true class results (that is a factor). This should be
an unquoted column name although this argument is passed by expression and
supports quasiquotation (you can unquote column names). For _vec() functions,
a factor vector.

estimator One of "binary", "hand_till", "macro", or "macro_weighted" to specify the type
of averaging to be done. "binary" is only relevant for the two class case. The oth-
ers are general methods for calculating multiclass metrics. The default will auto-
matically choose "binary" if truth is binary, "hand_till" if truth has >2 levels and
case_weights isn’t specified, or "macro" if truth has >2 levels and case_weights
is specified (in which case "hand_till" isn’t well-defined).

na_rm A logical value indicating whether NA values should be stripped before the com-
putation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth to
consider as the "event". This argument is only applicable when estimator =
"binary". The default uses an internal helper that generally defaults to "first"

case_weights The optional column identifier for case weights. This should be an unquoted
column name that evaluates to a numeric column in data. For _vec() functions,
a numeric vector.

estimate If truth is binary, a numeric vector of class probabilities corresponding to the
"relevant" class. Otherwise, a matrix with as many columns as factor levels of
truth. It is assumed that these are in the same order as the levels of truth.

Details

sensitivity+specificity +1

This function calibrates the probability threshold to classify presences to maximise the TSS.

There is no multiclass version of this function, it only operates on binary predictions (e.g. presences
and absences in SDMs).

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data
frames, the number of rows returned will be the same as the number of groups.

See Also

Other class probability metrics: boyce_cont(), kap_max()

Examples

tss_max(two_class_example, truth, Class1)

y2d 61

y2d Convert a time interval from years to days

Description

This function takes takes a time interval in years and converts into days, the unit commonly used in
time operations in R. The simple conversion x * 365 does not work for large number of years, due
to the presence of leap years.

Usage

y2d(x)

Arguments

x the number of years of the interval

Value

a difftime object (in days)

Examples

y2d(1)
y2d(1000)

Index

∗ class probability metrics
boyce_cont, 8
kap_max, 27
tss_max, 59

∗ datasets
horses, 27
lacerta, 30
lacerta_ensemble, 31
lacerta_rep_ens, 31
lacertidae_background, 31

∗ ensemble
add_member, 3
add_repeat, 4
autoplot.simple_ensemble, 5

∗ extrapolation
clamp_predictors, 12
extrapol_mess, 18

∗ predict
calib_class_thresh, 10
predict.repeat_ensemble, 36
predict.simple_ensemble, 37
predict_raster, 38

add_member, 3
add_repeat, 4
aes(), 24
autoplot.simple_ensemble, 5
autoplot.spatial_initial_split, 6
average_precision.sf (prob_metrics_sf),

39

blockcv2rsample, 7
borders(), 25
boyce_cont, 8, 29, 60
boyce_cont(), 39, 47
boyce_cont_vec (boyce_cont), 8
brier_class.sf (prob_metrics_sf), 39

calib_class_thresh, 10
check_sdm_presence, 10

check_splits_balance, 11
clamp_predictors, 12
classification_cost.sf

(prob_metrics_sf), 39
collect_metrics.repeat_ensemble

(collect_metrics.simple_ensemble),
12

collect_metrics.simple_ensemble, 12
control_ensemble_bayes

(control_ensemble_grid), 13
control_ensemble_grid, 13
control_ensemble_resamples

(control_ensemble_grid), 13

DALEX::explain, 17
DALEX::explain(), 15
data.frame, 12, 18, 19, 22, 36, 41, 54–57
dist_pres_vs_bg, 14

explain_tidysdm, 15
extrapol_mess, 18

feature_classes (maxent_params), 33
filter_collinear, 19
filter_high_cor, 22
fortify(), 24

gain_capture.sf (prob_metrics_sf), 39
gam_formula, 23
geom_split_violin, 23
ggplot(), 24
ggplot2::geom_sf(), 6
ggplot2::geom_violin(), 24
ggplot2::layer, 25
ggplot2::stat_ydensity(), 24
grid_cellsize, 26
grid_offset, 26

horses, 27

kap_max, 9, 27, 35, 60

62

INDEX 63

kap_max(), 39
kap_max_vec (kap_max), 27
key glyphs, 25
km2m, 30

lacerta, 30, 31
lacerta_ensemble, 31
lacerta_rep_ens, 31
lacertidae_background, 31
layer position, 24
layer(), 24, 25

matrix, 19
maxent, 32
maxent(), 50
maxent_params, 33
mn_log_loss.sf (prob_metrics_sf), 39

niche_overlap, 34

optim_thresh, 35

parsnip::boost_tree(), 48
parsnip::gen_additive_mod(), 49
parsnip::logistic_reg(), 50
parsnip::model_spec, 32, 48–51
parsnip::rand_forest(), 51
plot_pres_vs_bg, 35
pr_auc.sf (prob_metrics_sf), 39
predict.repeat_ensemble, 36
predict.simple_ensemble, 37
predict_raster, 38
prob_metrics_sf, 39

recipe.sf, 40
recipes::recipe, 23
recipes::recipe(), 40, 41
regularization_multiplier

(maxent_params), 33
repeat_ensemble, 4, 13, 31, 41
roc_auc.sf (prob_metrics_sf), 39
roc_aunp.sf (prob_metrics_sf), 39
roc_aunu.sf (prob_metrics_sf), 39
rsample::testing, 53
rsample::training, 53

sample_background, 42, 44
sample_background_time, 43, 46
sample_pseudoabs, 42, 44
sample_pseudoabs_time, 43, 46

sdm_metric_set, 47
sdm_spec_boost_tree, 48, 49–52
sdm_spec_gam, 48, 49, 50–52
sdm_spec_glm, 48, 49, 49, 51, 52
sdm_spec_maxent, 48–50, 50, 52
sdm_spec_rand_forest, 48–51, 51
sdm_spec_rf (sdm_spec_rand_forest), 51
sf::sf, 12, 26, 27, 39–42, 44–46, 54–57
sf::st_make_grid(), 26
sf::st_sf, 36
simple_ensemble, 4, 5, 10, 13, 31, 38, 41, 52
simple_ensemble(), 3
spatial_initial_split, 53
spatial_initial_split(), 26
spatial_recipe (recipe.sf), 40
spatialsample::spatial_block_cv, 26
spatialsample::spatial_block_cv(), 11
stacks::stacks, 38

terra::aggregate(), 54, 55
terra::SpatRaster, 12, 18, 19, 21, 22, 34,

39, 42, 44–46, 54, 55
terra::SpatRasterDataset, 12, 18, 19, 44,

46, 55
terra::spatSample(), 21
terra::time(), 55
terra::writeRaster(), 18
thin_by_cell, 53
thin_by_cell_time, 54
thin_by_dist, 55
thin_by_dist_time, 56
tibble::tibble, 36, 43–45, 47
tss, 57
tss_max, 9, 29, 35, 59
tss_max(), 39, 47, 58
tss_max_vec (tss_max), 59
tune::collect_metrics(), 13
tune::control_bayes, 14
tune::control_grid, 14
tune::control_resamples, 14
tune::fit_resamples(), 13
tune::tune_bayes(), 13
tune::tune_grid(), 13

workflowsets::workflow_set, 4
workflowsets::workflow_set(), 3

y2d, 61
y2d(), 57

64 INDEX

yardstick::accuracy(), 27
yardstick::average_precision(), 39
yardstick::brier_class(), 39
yardstick::classification_cost(), 39
yardstick::gain_capture(), 39
yardstick::j_index(), 58
yardstick::kap(), 27
yardstick::metric_set, 47
yardstick::metric_set(), 47
yardstick::mn_log_loss(), 39
yardstick::pr_auc(), 39
yardstick::roc_auc(), 39, 47
yardstick::roc_aunp(), 39
yardstick::roc_aunu(), 39

	add_member
	add_repeat
	autoplot.simple_ensemble
	autoplot.spatial_initial_split
	blockcv2rsample
	boyce_cont
	calib_class_thresh
	check_sdm_presence
	check_splits_balance
	clamp_predictors
	collect_metrics.simple_ensemble
	control_ensemble_grid
	dist_pres_vs_bg
	explain_tidysdm
	extrapol_mess
	filter_collinear
	filter_high_cor
	gam_formula
	geom_split_violin
	grid_cellsize
	grid_offset
	horses
	kap_max
	km2m
	lacerta
	lacerta_ensemble
	lacerta_rep_ens
	lacertidae_background
	maxent
	maxent_params
	niche_overlap
	optim_thresh
	plot_pres_vs_bg
	predict.repeat_ensemble
	predict.simple_ensemble
	predict_raster
	prob_metrics_sf
	recipe.sf
	repeat_ensemble
	sample_background
	sample_background_time
	sample_pseudoabs
	sample_pseudoabs_time
	sdm_metric_set
	sdm_spec_boost_tree
	sdm_spec_gam
	sdm_spec_glm
	sdm_spec_maxent
	sdm_spec_rand_forest
	simple_ensemble
	spatial_initial_split
	thin_by_cell
	thin_by_cell_time
	thin_by_dist
	thin_by_dist_time
	tss
	tss_max
	y2d
	Index

