
Package: textshaping (via r-universe)
October 21, 2024

Title Bindings to the 'HarfBuzz' and 'Fribidi' Libraries for Text
Shaping

Version 0.4.0

Description Provides access to the text shaping functionality in the
'HarfBuzz' library and the bidirectional algorithm in the
'Fribidi' library. 'textshaping' is a low-level utility
package mainly for graphic devices that expands upon the font
tool-set provided by the 'systemfonts' package.

License MIT + file LICENSE

URL https://github.com/r-lib/textshaping

BugReports https://github.com/r-lib/textshaping/issues

Depends R (>= 3.2.0)

Imports lifecycle, systemfonts (>= 1.1.0)

Suggests covr, knitr, rmarkdown

LinkingTo cpp11 (>= 0.2.1), systemfonts (>= 1.0.0)

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.1

SystemRequirements freetype2, harfbuzz, fribidi

NeedsCompilation yes

Author Thomas Lin Pedersen [cre, aut]
(<https://orcid.org/0000-0002-5147-4711>), Posit, PBC [cph,
fnd]

Maintainer Thomas Lin Pedersen <thomas.pedersen@posit.co>

Repository CRAN

Date/Publication 2024-05-24 09:00:03 UTC

1

https://github.com/r-lib/textshaping
https://github.com/r-lib/textshaping/issues
https://orcid.org/0000-0002-5147-4711

2 get_font_features

Contents
get_font_features . 2
shape_text . 3
text_width . 5

Index 7

get_font_features Get available OpenType features in a font

Description

This is a simply functions that returns the available OpenType feature tags for one or more fonts.
See font_feature() for more information on how to use the different feature with a font.

Usage

get_font_features(
family = "",
italic = FALSE,
bold = FALSE,
path = NULL,
index = 0

)

Arguments

family The name of the font families to match

italic logical indicating the font slant

bold logical indicating whether the font weight

path, index path an index of a font file to circumvent lookup based on family and style

Value

A list with an element for each of the input fonts containing the supported feature tags for that font.

Examples

Select a random font on the system
sys_fonts <- systemfonts::system_fonts()
random_font <- sys_fonts$family[sample(nrow(sys_fonts), 1)]

Get the features
get_font_features(random_font)

shape_text 3

shape_text Calculate glyph positions for strings

Description

[Experimental]

Do basic text shaping of strings. This function will use freetype to calculate advances, doing kerning
if possible. It will not perform any font substitution or ligature resolving and will thus be much in
line with how the standard graphic devices does text shaping. Inputs are recycled to the length of
strings.

Usage

shape_text(
strings,
id = NULL,
family = "",
italic = FALSE,
weight = "normal",
width = "normal",
features = font_feature(),
size = 12,
res = 72,
lineheight = 1,
align = "left",
hjust = 0,
vjust = 0,
max_width = NA,
tracking = 0,
indent = 0,
hanging = 0,
space_before = 0,
space_after = 0,
path = NULL,
index = 0,
bold = deprecated()

)

Arguments

strings A character vector of strings to shape

id A vector grouping the strings together. If strings share an id the shaping will
continue between strings

family The name of the font families to match

italic logical indicating the font slant

4 shape_text

weight The weight to query for, either in numbers (0, 100, 200, 300, 400, 500, 600,
700, 800, or 900) or strings ("undefined", "thin", "ultralight", "light",
"normal", "medium", "semibold", "bold", "ultrabold", or "heavy"). NA
will be interpreted as "undefined"/0

width The width to query for either in numbers (0, 1, 2, 3, 4, 5, 6, 7, 8, or 9) or strings
("undefined", "ultracondensed", "extracondensed", "condensed", "semicondensed",
"normal", "semiexpanded", "expanded", "extraexpanded", or "ultraexpanded").
NA will be interpreted as "undefined"/0

features A systemfonts::font_feature() object or a list of them, giving the Open-
Type font features to set

size The size in points to use for the font

res The resolution to use when doing the shaping. Should optimally match the res-
olution used when rendering the glyphs.

lineheight A multiplier for the lineheight

align Within text box alignment, either 'left', 'center', 'right', 'justified-left',
'justified-right', 'justified-center', or 'distributed'

hjust, vjust The justification of the textbox surrounding the text

max_width The requested with of the string in inches. Setting this to something other than
NA will turn on word wrapping.

tracking Tracking of the glyphs (space adjustment) measured in 1/1000 em.

indent The indent of the first line in a paragraph measured in inches.

hanging The indent of the remaining lines in a paragraph measured in inches.
space_before, space_after

The spacing above and below a paragraph, measured in points

path, index path an index of a font file to circumvent lookup based on family and style

bold logical indicating whether the font weight

Value

A list with two element: shape contains the position of each glyph, relative to the origin in the
enclosing textbox. metrics contain metrics about the full strings.

shape is a data.frame with the following columns:

glyph The glyph as a character

index The index of the glyph in the font file

metric_id The index of the string the glyph is part of (referencing a row in the metrics data.frame)

string_id The index of the string the glyph came from (referencing an element in the strings
input)

x_offset The x offset in pixels from the origin of the textbox

y_offset The y offset in pixels from the origin of the textbox

x_mid The x offset in pixels to the middle of the glyph, measured from the origin of the glyph

metrics is a data.frame with the following columns:

text_width 5

string The text the string consist of

width The width of the string

height The height of the string

left_bearing The distance from the left edge of the textbox and the leftmost glyph

right_bearing The distance from the right edge of the textbox and the rightmost glyph

top_bearing The distance from the top edge of the textbox and the topmost glyph

bottom_bearing The distance from the bottom edge of the textbox and the bottommost glyph

left_border The position of the leftmost edge of the textbox related to the origin

top_border The position of the topmost edge of the textbox related to the origin

pen_x The horizontal position of the next glyph after the string

pen_y The vertical position of the next glyph after the string

Examples

string <- "This is a long string\nLook; It spans multiple lines\nand all"

Shape with default settings
shape_text(string)

Mix styles within the same string
string <- c(

"This string will have\na ",
"very large",
" text style\nin the middle"

)

shape_text(string, id = c(1, 1, 1), size = c(12, 24, 12))

text_width Calculate the width of a string, ignoring new-lines

Description

This is a very simple alternative to shape_string() that simply calculates the width of strings
without taking any newline into account. As such it is suitable to calculate the width of words or
lines that has already been splitted by \n. Input is recycled to the length of strings.

Usage

text_width(
strings,
family = "",
italic = FALSE,
bold = FALSE,

6 text_width

size = 12,
res = 72,
include_bearing = TRUE,
path = NULL,
index = 0

)

Arguments

strings A character vector of strings

family The name of the font families to match

italic logical indicating the font slant

bold logical indicating whether the font weight

size The pointsize of the font to use for size related measures

res The ppi of the size related mesures
include_bearing

Logical, should left and right bearing be included in the string width?

path, index path an index of a font file to circumvent lookup based on family and style

Value

A numeric vector giving the width of the strings in pixels. Use the provided res value to convert it
into absolute values.

Examples

strings <- c('A short string', 'A very very looong string')
text_width(strings)

Index

font_feature(), 2

get_font_features, 2

shape_string(), 5
shape_text, 3
systemfonts::font_feature(), 4

text_width, 5

7

	get_font_features
	shape_text
	text_width
	Index

