
Package: tensorA (via r-universe)
September 9, 2024

Version 0.36.2.1

Date 2020-11-13

Title Advanced Tensor Arithmetic with Named Indices

Author K. Gerald van den Boogaart <boogaart@uni-greifswald.de>

Maintainer K. Gerald van den Boogaart <boogaart@math.tu-freiberg.de>

Depends R (>= 2.2.0), stats

Description Provides convenience functions for advanced linear algebra
with tensors and computation with data sets of tensors on a
higher level abstraction. It includes Einstein and Riemann
summing conventions, dragging, co- and contravariate indices,
parallel computations on sequences of tensors.

License GPL (>= 2)

URL http://www.stat.boogaart.de/tensorA/

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-12-13 17:28:05 UTC

Contents
tensorA-package . 2
add.tensor . 5
as.tensor . 6
bind.tensor . 7
chol.tensor . 8
delta.tensor . 10
diag.tensor . 11
diagmul.tensor . 12
drag.tensor . 13
einstein.tensor . 15
ftable.tensor . 16
inv.tensor . 17
is.tensor . 18

1

http://www.stat.boogaart.de/tensorA/

2 tensorA-package

level.tensor . 19
margin.tensor . 20
mark.tensor . 21
mean.tensor . 22
mul.tensor . 24
names.tensor . 25
norm.tensor . 26
one.tensor . 28
pos.tensor . 29
power.tensor . 30
reorder.tensor . 31
reptensor . 32
riemann.tensor . 33
sequencing . 35
slice.tensor . 36
solve.tensor . 37
svd.tensor . 39
to.matrix.tensor . 40
to.tensor . 41
toPos.tensor . 43
trace.tensor . 44
tripledelta.tensor . 45
undrop.tensor . 46
untensor . 46

Index 48

tensorA-package The tensorA package for tensor arithmetic

Description

tensorA stands for "tensor arithmetic". A tensor is a mathematical generalization of vector and
matrix with many applications in physics, geometry and in the statistics of vectors valued data.
However the package is also useful in any case, where computations on sequences of matrices,
vectors or even tensors is involved.

Details

Package: tensorA
Type: Package
Version: 0.1
Date: 2006-06-08
License: GPL Version 2 or newer

The tensorA package is made to allow programming for tensors in R on the same level of abstrac-
tion as we know from matrices. It provides many of the mathematical operations common in tensor

tensorA-package 3

arithmetics including the whole tensor calculus of covariate and contravariate indices, naming of
indices, sequence of indices, decompositions of tensors, Einstein and Riemann summing conven-
tions and vectorized computations on datasets of tensors just like the well vectorization of numbers
in R. It provides tools to write tensor formulae very close to there paper form and to handle tensors
of arbitrary level with simple programs.
The whole documentation of the package is best read in pdf or dvi format since it contains compli-
cated mathematical formulae with multi-indices.

Simply speaking a tensor (see to.tensor) is just a multidimensional array A[,,]. The number
of indices (i.e. length(dim(A)) is called the level of the tensor (see level.tensor). A tensor is
mathematically it is denoted by a core symbol (e.g. A) with multiple indices:e.g.

Aijk

The indices i, j, k can be seen as names for the dimensions and as integer numbers giving the
respective index into the array. However the tensor is an algebraical object with many algebraical
operations defined on it, which are also of relevancy for programming, e.g. in the parallel treatment
of multiple linear equation systems.

To understand the package we need to understand tensors including their mathematical origin, the
corresponding calculus, notation and basic operations.
One mathematical interpretation of a tensor, which is most relevant for physics, that of a multi-
linear form of level(A) vectors, i.e. a function of level(A) many vectors to the real or complex
numbers, which is linear with respect to each of its arguments. E.g. the two vectors "plane face
direction" and "force direction" are mapped to the actual force by the stress tensor.
Row vectors are a special case of that and likewise column vectors as linear forms for row vectors.
Matrices are bilinear forms of a row vector and a column vector. Thus Vectors and Matrices are
examples of tensors of level 1 and 2.

Another interpretation of a tensor is the that of a linear mapping, quite like a matrix, but from a
tensor space (e.g. the space of matrices or vectors seen as tensor) to another tensor space (e.g. again
a space of matrices). An example for that is the Hook elasticity tensor mapping the strain tensor
(i.e. a matrix describing the local deformation) to the stress tensor (i.e. a matrix describing the
local forces). The Hook tensor is a tensor of level 4. Statistically relevant tensors of level 4 are e.g.
covariances of matrices mapping two linear forms (i.e. 2 level 2 tensors) on observed matrices to
there covariance. The mapping is performed with the tensor product, which is not unlike a matrix
product, however more general. Let denote A a matrix and v a vector, we would write r = Ab for
the matrix product and r <- A%*%b in R, which is defined as:

ri =

jmax∑
j=1

Aijbj

We know that we have to use the \(j\)-dimension in the summing, since the matrix multiplication
rule says "row times column". Since a tensor can have more than two indices there is no row or
column specified and we need to specify the inner product differently. To do this in the Einstein-
Notation writing the tensor always with indices ri = Aijbj and according to the Einstein summing
rule the entries of \(r_i\) are given by an implicit sum over all indices which show up twice in this
notation:

ri =

jmax∑
j=1

Aijbj

4 tensorA-package

This notation allows for a multitude of other products: Aijbi = t(A)b, Aijbk = outer(A, b) ,
Aiibj = trace(A)b with equal simplicity and without any additional functions. More compli-
cated products involving more than tensors of level two can not even be formulated in pure matrix
algebra without re-dimensioning of arrays e.g. bibjbk, Aijkbj . The Einstein summing rule is im-
plemented in einstein.tensor and supported by the index sequencing functions $.tensor and
|.tensor. A general multiplication allowing to identify and sum over any two indices is imple-
mented in trace.tensor, when the indices are in the same tensor and in mul.tensor, when the
indices to sum over are in different tensors.
Tensors with the same level and dimensions (identified by name and dimension) can also be added
like matrices according to the rule that the values with the same combination of index values are
added (see add.tensor). The implementation takes care of the sequence of the indices and rear-
ranges them accordingly to match dimensions with the same name. E.g. the tensor addition

Eijk = Aijk +Bkji

has the effect, which is expressed by the same formula read in entries, which is also true for the
more surprising

Eijk = Aij +Bkj

Like a matrix a tensor can also be seen as a mapping from one tensor space to another:

Ai1...idj1...jexj1...je = bi1...id

In this reading all the standard matrix computations and decompositions get a tensorial interpreta-
tion and generalization. The package provides some of these (see svd.tensor).
Another interpretation of tensors is as a sequence of tensors of lower level. E.g. a data matrix is
seen as a sequence of vectors in multivariate dataset. The tensorA library provides means to do
computation on these in parallel on these sequences of tensors like we can do parallel computation
on sequences of numbers. This is typically done by the by= argument present in most functions and
giving the index enumerating the elements of the sequence.
E.g. If we have sequence Vijd of variance matrices Vij of some sequence vid of vectors and we
would like to transform the vectors with some Matrix Mi′i we would get the sequence of trans-
formed variances by VijdMi′iMj′j . However if the Mki are different for each of the elements
in sequence we would have stored them in a tensor Mkid and would have to replace Mkid with
Mkidd′ = Mkid if d = d′ and zero otherwise. We can than get our result by

VijdMi′id′dMj′jd′d′′

and we would have a by dimension of by="d". These operations are not strictly mathematical
tensor operation, but generalizations of the vectorization approach of R. This is also closely related
to diagmul.tensor or diag.tensor.
To complicate things the Einstein rule is only valid in case of tensors represented with respect to a
orthogonal basis. Otherwise tensors get lower and upper indices like

A·j·
i·k

for representation in the covariate and contravariate form of the basis. In this case the Riemann
summing rule applies which only sums over pairs of the same index, where one is in the lower and
one is in the upper position. The contravariate form is represented with indices prefixed by ^.
The state of being covariate or contravariate can be changed by the dragging rule, which allows to
switch between both state through the multiplication with the geometry tensors g j

i . This can be
done through drag.tensor.

add.tensor 5

Author(s)

K.Gerald van den Boogaart <boogaart@uni-greifswald.de

See Also

to.tensor, mul.tensor , einstein.tensor, add.tensor, [[.tensor, |.tensor

Examples

A <- to.tensor(1:20, c(a=2,b=2,c=5))
A
ftable(A)
B <- to.tensor(c(0,1,1,0) , c(a=2,"a'"=2))
A %e% B
drag.tensor(A , B, c("a","b"))
A %e% one.tensor(c(c=5))/5 # a mean of matrices
reorder.tensor(A,c("c","b","a"))
A - reorder.tensor(A,c("c","b","a")) # =0 since sequence is irrelevant
inv.tensor(A,"a",by="c")

add.tensor Element-wise arithmetic operations +,-,*,/ with tensors

Description

Adds/subs/multiplies/devides tensors element by element . The luxury difference to a simple + is
that we do not need to consider the correct permutation of indices or rules on implicit replication,
since all of this is handled automatically.

Usage

add.tensor(X,Y,op="+",only=NULL)
Methods for class tensor
x + y
x - y
x * y
x - y

Arguments

X a tensor

Y a tensor

op a binary function used to perform the "addition"

only a list of dimnames that may be considered as equal. This parameter is here to
allow parallelization of tensors with only partially known structure.

6 as.tensor

Details

The tensors are properly reordered such that dimensions of the same name are identified. If dimen-
sions are missing in one of the tensors it is correspondingly repeated.

Value

A tensor giving the element-wise operation X,Y. If some of the indices are missing in one of the
tensors they are added by repetition.

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor

Examples

A <- to.tensor(1:20,c(U=2,V=2,W=5))
add.tensor(A,A)/2 -A
(A+A)/2
A/A
A * 1/A
norm.tensor(reorder.tensor(A,c(2,3,1)) - A)

as.tensor Coercion to a tensor

Description

Coerces a array to a tensor keeping dimension and names.

Usage

as.tensor(X,...)
Default S3 method:
as.tensor(X,...,dims=NULL)
S3 method for class 'tensor'
as.tensor(X,...)

Arguments

X a multidimensional array

... further generic arguments

dims the new dim attribute to be used

bind.tensor 7

Details

The main idea is that a multiway array like a vector or a matrix is nothing else than a tensor for R, but
it still needs the tensor class be used with the tensorA library. However this is more a convenience
function for migraters than a proper way construct a tensor, which is done by to.tensor.

Value

a tensor containing the same data as X

Note

You should typically use the to.tensor to generate a tensor, when you want to write vectorizable
functions for tensors.

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor

Examples

A <- diag(5)
as.tensor(A)

bind.tensor A cbind/rbind for tensors

Description

Tensors can be put side by side in one dimension if they are of equal size in all other dimensions.

Usage

bind.tensor(A,dA=NULL,B,dB=dA)

Arguments

A the first tensor

dA the dimension of A to be used for binding the tensors

B the second tensor

dB the dimension of B to be used for binding the tensors

Details

This function works like a cbind or rbind function for tensors.

8 chol.tensor

Value

a tensor with the tensors combined to one

Note

binding does not preserve the sequence of the dimensions.

Author(s)

K.Gerald van den Boogaart

See Also

base{cbind}

Examples

A <- to.tensor(1:6,c(a=2,b=3))
bind.tensor(A,"a",A)
bind.tensor(A,"b",A)

chol.tensor Cholesky decomposition of a tensor

Description

A tensor can be seen as a linear mapping of a tensor to a tensor. This function computes its Cholesky
decomposition.

Usage

chol.tensor(X,i,j,...,name="lambda")

Arguments

X The tensor to be decomposed

i The image dimensions of the linear mapping

j The coimage dimensions of the linear mapping

name The name of the eigenspace dimension. This is the dimension created by the
decompositions, in which the eigenvectors are ei

... for generic use only

chol.tensor 9

Details

A tensor can be seen as a linear mapping of a tensor to a tensor. Let denote Ri the space of real
tensors with dimensions i1...id.

chol.tensor Computes for a tensor ai1...idj1...jd representing a positive definit mapping form Rj to
Ri with equal dimension structure in i and j its "Cholesky" decomposition Li1...idλ such that

ai1...idj1...jd =
∑
λ

Li1...idλLj1...jdλ

Value

a tensor

Note

A by argument is not necessary, since both processing dimensions have to be given.

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor, svd.tensor

Examples

A <- to.tensor(rnorm(15),c(a=3,b=5))
AAt <- einstein.tensor(A,mark(A,i="a"))
ch <- chol.tensor(AAt,"a","a'",name="lambda")
#names(ch)[1]<-"lambda"
einstein.tensor(ch,mark(ch,i="a")) # AAt

A <- to.tensor(rnorm(30),c(a=3,b=5,c=2))
AAt <- einstein.tensor(A,mark(A,i="a"),by="c")
ch <- chol.tensor(AAt,"a","a'",name="lambda")
einstein.tensor(ch,mark(ch,i="a"),by="c") #AAt

10 delta.tensor

delta.tensor Creates a Kronecker delta tensor

Description

The delta tensor is the tensor equivalent of the identity.

Usage

delta.tensor(d,mark="'",dn=NULL,by=NULL)

Arguments

d the row dimensions

mark a character to be concatenated to the names of the row dimensions to get the
column dimension names

dn dimnames for the result

by the dimensions which should not be duplicated

Details

Ei1...inj1...jn = δi1j1 . . . δinjn

Value

a tensor with dimension c(d,mark(d,mark))

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor

Examples

delta.tensor(c(a=2,b=3))

diag.tensor 11

diag.tensor Creates a "diagonal" tensor

Description

The diagonal tensor is the tensor equivalent of the diagonal matrix.

Usage

diag.tensor(X,mark="'",dn=NULL,by=NULL)

Arguments

X a tensor containing the diagonal entries.

mark a character to be concatenated to the names of the row dimensions to get the
column dimension names

dn dimnames which are used twice

by The diagonal tensor is created for each level of the indices in by.

Details

Ei1...inj1...jn = δi1j1 . . . δinjn

Value

a tensor with dimension c(dim(X),mark(dim(X),mark))

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor

Examples

A <- to.tensor(1:4,c(a=2,b=2))
diag.tensor(A)
diag.tensor(A,by="b")

12 diagmul.tensor

diagmul.tensor Multiplication of a tensor with a tensor given by its diagonal

Description

This is a convenience function for scaling elements of a tensor with different numbers based on
their position in the tensor.

Usage

diagmul.tensor(X,i=names(D),D,j=i,by=NULL)

Arguments

X The tensor to be scaled

D A tensor containing scaling constants

i numeric of character vector giving the dimensions of X to be used for the prod-
uct.

j numeric of character vector giving the dimensions of D to be used for the prod-
uct.

by Every operation is parallel for all levels of by in X and/or D.

Details

Let
Xi1...idk1...kd

and
Dj1...jd

than the result is:
Ei1...idk1...kd

= Xi1...idk1...kd
Dj1...jd

Value

A tensor with the shape and dimensions as X with entries Xik scaled by Dim, where i and k can
represent multi-indices.

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor

drag.tensor 13

Examples

(A <- matrix(rep(1:3,each=3),nrow=3))
(b <- to.tensor(c(1,1/2,1/3)))
diagmul.tensor(as.tensor(A),2,as.tensor(c(1,1/2,1/3)),1)
diagmul.tensor(as.tensor(A),1,as.tensor(c(1,1/2,1/3)),1)
A %*% diag(b)
diag(b) %*% A

drag.tensor Managing covariate and contravariate indices

Description

Each index of a tensor can be covariate or contravariate. The is.* routines check the state of the
individual indices based on the tensor, its dimension or its index names. drag.tensor can change
the state for the tensor and contraname for the names of the tensor.

Usage

drag.tensor(x,g,d)
contraname(x)
is.covariate(x,...)
S3 method for class 'tensor'
is.covariate(x,...)
S3 method for class 'numeric'
is.covariate(x,...)
S3 method for class 'character'
is.covariate(x,...)
as.covariate(x,...)
S3 method for class 'character'
as.covariate(x,...)
is.contravariate(x,...)
S3 method for class 'numeric'
is.contravariate(x,...)
S3 method for class 'character'
is.contravariate(x,...)
as.contravariate(x,...)
S3 method for class 'character'
as.contravariate(x,...)

Arguments

x the tensor, its dimension (for *.numeric) or its index-names (for *.character
and contraname)

g The geometry tensor gij giving the transformation between covariate and con-
travariate. It needs to have either covariate and or contravariate indices.

14 drag.tensor

d a vector (or list) of indices that should be dragged, i.e. multiplied with g j
i in the

right way such that it changes from covariate to contravariate or vice versa. The
name of the index is kept, only its state changes. The index is thus dragged from
one state to the other. Indices can given in covariate or contravariate form.

... only for generic use

Details

The covariate and contravariate state of a dimension corresponds to column and row vectors. The
transformation between these type is done by a linear mapping give by the geometry tensor g,
which is the identity matrix if the enclosing the geometry is represented by the orthonormal basis
and ordinary scalar product.

Value

drag.tensor returns a tensor like x but with the dimension

is.covariate returns a boolean vector giving true for every covariate index

is.contravariate

returns a boolean vector giving true for every contravariate index

as.* changes the state of the indices

contraname returns the names with opposite the opposite covariate and contravariate state

Author(s)

K. Gerald van den Boogaart

See Also

riemann.tensor, to.tensor, Tensor

Examples

g <- to.tensor(c(1,2,0,1),c(i=2,j=2))
A <- to.tensor(rnorm(8),c(a=2,b=2,c=2))
A2 <- drag.tensor(A,g,c("b","c"))
A2
names(A2)
as.covariate(names(A2))
as.contravariate(names(A2))
is.covariate(A2)
is.contravariate(A2)
riemann.tensor(A2,g)

einstein.tensor 15

einstein.tensor Tensor multiplication with Einstein’s convention, by summing over all
equally named indices.

Description

Multiplies tensors by multiplying over all duplicate names according to Einsteins summing conven-
tion by doing an implicit inner product over all dimensions with the same name.

Usage

einstein.tensor(...,only=NULL,by=NULL)
Methods for class tensor
x %e% y
Default method
x %e% y

Arguments

... some tensors, or a renaming code

only optional list, if given only names in this list are automatically processed

x a tensor

y a tensor

by the parallel dimensions

Details

see mul.tensor on details on tensor multiplication. In einstein.tensor complex operations can
be performed by command and renaming code: The arguments are processed from left to right and
multiplied. Unnamed attributes are regarded as tensors or scalars and multiplied with the current
result by the Einstein summing convention, which means an inner product over all dimensions with
the same name. Named attributes can either have the name diag, which performs a diagmul ac-
cording to the same-name convention or be of the form A="B" or "A"="B", for which we have two
cases. If both names are present in the current result, an inner multiplication (trace) of on these two
dimensions is performed. If only the first is a name up to this point, the specific dimension is re-
named to the second name. This renaming might be visible in the result or inducing a multiplication
according to the Einstein convention later.

Value

the tensor product of all the tensors along all duplicate dimensions.

Author(s)

K. Gerald van den Boogaart

16 ftable.tensor

See Also

mul.tensor, to.tensor, riemann.tensor

Examples

A <- to.tensor(1:20,c(U=2,V=2,W=5))
B <- to.tensor(1:30,list(U=c("a","b","c"),V=c("B1","B2"),W=1:5))
einstein.tensor(A,U="U'",B)
einstein.tensor(A,U="U'",mark(B,"k"))
einstein.tensor(A,U="U'",mark(B,"k"),V="Vk",W="Wk")
einstein.tensor(A,U="U'",mark(B,"k"),V="Vk",W="Wk",1/10)
einstein.tensor(A,U="U'",mark(B,"k"),V="Vk",W="Wk",diag=to.tensor(c(1,1/10,1/100),c(Uk=3)))

ftable(einstein.tensor(A,U="U'",B))
ftable(einstein.tensor(A,U="U'",mark(B,"k")))
ftable(einstein.tensor(A,U="U'",mark(B,"k"),V="Vk",W="Wk"))
ftable(einstein.tensor(A,U="U'",mark(B,"k"),V="Vk",W="Wk",1/10))
ftable(einstein.tensor(A,U="U'",mark(B,"k"),V="Vk",W="Wk",diag=to.tensor(c(1,1/10,1/100),c(Uk=3))))

dim(A[[U=~M]])
A[[U=~M]]
A[[U=~M,V=~"L"]]

ftable.tensor Pretty printing of tensors

Description

Returns the tensor as (flat) ftable, providing a pretty output.

Usage

S3 method for class 'tensor'
ftable(x,...)

Arguments

x the tensor

... additional arguments to ftable

Details

This function is called for a pretty output of a tensor, just try it.

Value

an ftable containing the same data as the tensor

inv.tensor 17

Author(s)

K. Gerald van den Boogaart

See Also

ftable

Examples

A <- to.tensor(1:20,c(U=2,V=2,W=5))
A
dim(A)
names(A)
dimnames(A)

ftable(to.tensor(A))
ftable(to.tensor(c(A),dim(A)))

inv.tensor Inversion of a tensor as linear mapping from tensors to tensors

Description

A tensor can be seen as a linear mapping of a tensor to a tensor. This function computes its
(generalized-Moore-Penrose) inverse.

Usage

inv.tensor(X,i,...,allowSingular=FALSE,eps=1E-10,by=NULL)

Arguments

X The tensor to be decomposed

i The image dimensions of the linear mapping

allowSingular A boolean, indicating that a Moore-Penrose-Inverse should be computed rather
than an error generated in case of a numerically singular mapping.

... further arguments for generic use

eps The limit for condition-number, to select an generalized inverse.

by the operation is done in parallel for these dimensions

Details

A tensor can be seen as a linear mapping of a tensor to a tensor.

inv.tensor Computes the inverse of the mapping

18 is.tensor

Value

a tensor containing the inverse mapping. If allowSingular is given and the condition number of the
matrix is bellow eps a generalized inverse is returned.

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor, solve.tensor, svd.tensor

Examples

SVD
inv.tensor
R1 <- matrix(rnorm(9),nrow=3)
R1i <- solve(R1)
R2 <- to.tensor(R1,c(a=3,b=3),what=1:2)
R2i <- to.tensor(R1i,c(b=3,a=3),what=1:2)

inv.tensor(R2,"a","b") - R2i
inv.tensor(R2,"a","b",allowSingular=TRUE) - R2i

inv.tensor(rep(R2,4,1,"K"),"a","b",by="K") - rep(R2i,4,1,"K")
inv.tensor(rep(R2,4,1,"K"),"a","b",by="K",allowSingular=TRUE) - rep(R2i,4,3,"K")

is.tensor Checking for being a tensor

Description

Checks whether the object has a tensor attribute.

Usage

is.tensor(X)

Arguments

X the objected to be checked

Details

This is a simple convenience function to check for the property of being a tensor.

level.tensor 19

Value

boolean

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor

Examples

A <- matrix(1:9,nrow=3)
is.tensor(A) # no
A <- to.tensor(A)
is.tensor(A) # yes

level.tensor The level (number of indices) of a tensor

Description

The level of a tensor is the number of dimensions or subscripts used.

Usage

level.tensor(X,...)

Arguments

X the tensor to be used

... not used

Details

The level of the tensor is the length of its dim attribute. Objects without a dim attribute get level 1
if they are of length > 1 and are marked as scalars by 0 level otherwise.

Value

the number of levels

Author(s)

K. Gerald van den Boogaart

20 margin.tensor

See Also

to.tensor

Examples

A <- to.tensor(1:24,c(a=1,b=2,c=3,d=4))
level.tensor(A)
level.tensor(matrix(1))
level.tensor(1:10)
level.tensor(1)

margin.tensor Marginalization of tensors

Description

The function removes dimensions from a tensor by summing all entries which only differ in these
dimensions.

Usage

margin.tensor(X,i=NULL,by=NULL)

Arguments

X the tensor

i the dimensions to be removed

by instead of i the dimensions to be kept

Details

This is a tensor multiplication with the 1i tensor.

Value

The tensor with all elements only differing only in the dimensions specified added up and only the
other dimensions left over.

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor

mark.tensor 21

Examples

A <- diag(1:5)
A
margin.tensor(A,1)

A <- to.tensor(1:30,dim=c(i=3,j=5,k=2))
ftable(A)
margin.tensor(A,"j")

mark.tensor Marks the names of a tensor with a mark

Description

This modifies the names of the dimensions in a simple and reversible way by adding a mark.

Usage

mark(X,mark,...)
S3 method for class 'tensor'
mark(X,mark="'",i=1:level.tensor(X),...,by=NULL)
S3 method for class 'numeric'
mark(X,mark="'",i=1:length(X),...,by=NULL)
S3 method for class 'character'
mark(X,mark="'",i=1:length(X),...,by=NULL)

Arguments

X A tensor or dimension to be marked

mark a character giving the mark

i the dimensions to be marked

... generic arguments

by Dimensions not to be marked. Wins in case of conflicts.

Details

The concept is very important in tensor algebra since it allows to keep dimensions connected without
but still distinguishable. Eventually later a function for the Riemann summing rule will make use
of marks to distinguish covariate and contravariate dimensions.

Value

A object similar to X but with marked dimensions.

22 mean.tensor

Author(s)

K. Gerald van den Boogaart

See Also

delta.tensor, diag.tensor

Examples

The outer product
A <- to.tensor(1:4,c(a=2,b=2))
A

mean.tensor Mean and variance of tensors

Description

Mean and variance of tensors again tensors.

Usage

S3 method for class 'tensor'
mean(x,along,...,na.rm=FALSE)
S3 method for class 'tensor'

var(x,y=NULL,...,along,by=NULL,na.rm=FALSE,mark="'")

Arguments

x (set of) dataset(s) of tensors represented by a tensor

y a second dataset of connected tensors represented by a tensor

along the indices indexing the datasets

... here for generic compatibility with the compositions package

by the indices indexing the set of datasets

na.rm a boolean, if FALSE and missings are in the dataset a error is given. If TRUE
pairwise exclusion is used.

mark the to mark the second instance of indices in var(x,...)

mean.tensor 23

Details

Let denote a the along dimension, i1, . . . , ik and j1, . . . , jl the data dimension, and b the by dimen-
sion, then the mean is given by:

Mx
bi1,...,ik

=
1

n

∑
a

xabi1,...,ik

the covariance by

Cabi1,...,ikj1,...,jl =
1

n− 1

∑
a

(xabi1,...,ik −Mx
bi1,...,ik

)(yabj1,...,jl −My
bj1,...,jl

)

and the variance by

Vabi1,...,iki′1,...,i
′
l
=

1

n− 1

∑
a

(xabi1,...,ik −Mx
bi1,...,ik

)(xabi′1,...,i
′
k
−Mx

bi′1,...,i
′
l
)

Value

mean gives a tensor like x without the along dimensions representing the a mean over
all tensors in the dataset. It is not necessary to have a by dimension since every-
thing not in along is automatically treated parallel

var(x, ...) Gives the covariate tensor representing the covariance of x and y. The data tensor
indices of x any y should be different, since otherwise duplicated names exist in
the result.

var(x, ...) Gives the covariate representation of the variance of x. All data indices (i.e. all
indices neither in by nor in along are duplicated. One with and one without the
given mark.

Author(s)

K.Gerald van den Boogaart

See Also

tensorA

Examples

d1 <- c(a=2,b=2)
d2 <- c("a'"=2,"b'"=2)
a mean tensor:
m <- to.tensor(1:4,d1)
a positive definite variance tensor:
V <- delta.tensor(d1)+one.tensor(c(d1,d2))
V
Simulate Normally distributed tensors with these moments:
X <- (power.tensor(V,c("a","b"),c("a'","b'"),p=1/2) %e%

to.tensor(rnorm(1000*2*2),c(i=1000,d2))) + m
The mean

24 mul.tensor

mean.tensor(X,along="i")
Full tensorial covariance:
var.tensor(X,along="i")
Variance of the slices X[[b=1]] and X[[b=2]] :
var.tensor(X,along="i",by="b")
Covariance of the slices X[[b=1]] and X[[b=2]] :
var.tensor(X[[b=1]],X[[a=~"a'",b=2]],along="i")

mul.tensor Tensor multiplication for the tensor class

Description

Performs a tensor multiplication like tensor(), but with named indices, keeping dimnames, and
vectorized.

Usage

mul.tensor(X,i=c(),Y,j=i,by=NULL)

Arguments

X a tensor to be multiplied

i numeric or character vector specifying the dimension to be used in the multipli-
cation for X

Y a tensor to be multiplied

j numeric or character vector specifying the dimension to be used in the multipli-
cation for Y

by the by dimensions if present and not mentioned in i or j are used as sequence
dimensions. tensors in these dimensions are processed in parallel. So in this
dimension the product is neither inner nor outer but parallel like a*b, rather than
a%*%b or a%o%b. Unmentioned dimensions get an outer product. Mentioned
dimensions an inner.

Details

Say
Xi1...inh1...hl

and
Yj1...jnk1...km

the the result is:
Eh1...hlk1...km =

∑
i1,...,in

Xi1...inh1...hl
Yj1...jnk1...km

This is an full outer product with i,j not given and a full inner product product of i=dim(X)

names.tensor 25

Value

The tensor product of X and Y with respect to the regarding dimensions.

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor, %e%, %r%, diagmul.tensor, einstein.tensor, riemann.tensor, solve.tensor

Examples

A <- to.tensor(1:20,c(A=2,B=2,C=5))
B <- to.tensor(1:20,c(D=2,B=2,E=5))
mul.tensor(A,"A",A,"B")

names.tensor Getting and setting index and dimensionnames of a tensor

Description

The names of a tensor are the names of its dimension

Usage

S3 method for class 'tensor'
names(x)
S3 replacement method for class 'tensor'
names(x) <- value
S3 method for class 'tensor'
dimnames(x)
S3 replacement method for class 'tensor'
dimnames(x) <- value
S3 replacement method for class 'tensor'
dim(x) <- value

Arguments

x a tensor object

value The new value. If this is a named list it replaces the names of the dimensions. If
its an unnamed list it gets the names of the dimensions.

26 norm.tensor

Details

The names of the dimensions of the tensor are very relevant in any tensor arithmetic since they are
the principle way to specify the dimensions to be involved in an operation. The dimnames function
is here only for convenice to guarantee that the names of the dimnames are always the same as the
names of the dimensions and to ensure that always at least a list with the right length and names.

Value

the names of the dimensions the tensor

Author(s)

K. Gerald van den Boogaart

See Also

mul.tensor

Examples

A <- to.tensor(1:20,c(U=2,V=2,W=5))
A
dim(A)
names(A)
names(A) <- c("A","B","C")
A
dim(A)
names(A)

norm.tensor Calculate the Euclidean norm or Euclidean operator norm of a tensor
or its subtensors

Description

Calculates the Euclidean norm of a tensor or its subtensors.

Usage

norm(X,...)
S3 method for class 'tensor'
norm(X,i=NULL,...,by=NULL)
opnorm(X,...)
S3 method for class 'tensor'
opnorm(X,i=NULL,...,by=NULL)

norm.tensor 27

Arguments

X The tensor

i For norm the dimensions to of the subtensors to be used. If missing the norm of
the whole tensor is computed. For opnorm the dimensions of the image.

... unused

by the list dimension, if i is not specified the norm is calculated for each of these in
parallel.

Details

norm The function computes the Euclidean norm, which is the square root over the sum of all
entries and not the operator norm.

opnorm The function computes the Euclidean operator norm, which is largest factor in changing
the Euclidean norm, when mapped with the linear mapping corresponding to the tensor.

Value

norm either a single number giving the norm of the tensor or a tensors with the dimen-
sions i removed containing the individual norms in each entry.

opnorm a tensor of dimension dim(X)[by] giving the Euclidean operator norm of the
tensor (i.e. its largest singular value)

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor

Examples

C <- to.tensor(1:20,c(A=4,B=5))
norm(C,"A")
norm(C,2)
norm(C,c("A","B"))
opnorm(C,"A")

28 one.tensor

one.tensor Creates a tensor with all entries 1

Description

Creates a tensor with all entries one.

Usage

one.tensor(d=NULL,dn=NULL)

Arguments

d the dimensions of the new tensor

dn the dimnames of the new tensor

Details

Ei1...in = 1

Value

A tensor with dim d and all elements one

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor

Examples

one.tensor(c(a=3,b=3,c=3))

pos.tensor 29

pos.tensor enumeration of index combinations

Description

This gives all combinations of indices of a tensor with dimension d in the order of the numbers in
the memory.

Usage

pos.tensor(d)

Arguments

d a dim attribute of a tensor

Details

tensors are stored according to the R-convention that the leftmost index varies fastest.

Value

a matrix with the same number of rows as the tensor has entries an the same number of columns
as the tensor has dimensions. Each row represents the index combination of a the corresponding
element.

Author(s)

K.Gerald van den Boogaart

See Also

reorder.tensor

Examples

(A <- to.tensor(1:20,dim=c(A=2,B=2,C=5)))
pos.tensor(dim(A))

30 power.tensor

power.tensor Compute the power of a symmetric tensor

Description

A tensor can be seen as a linear mapping of a tensor to a tensor. If domain and image are the same
and the tensor is definite, we can define powers.

Usage

power.tensor(X,i,j,p=0.5,by=NULL)

Arguments

X The tensor to be decomposed

i The image dimensions of the linear mapping

j The domain dimensions of the linear mapping

p the power of the tensor to be computed

by the operation is done in parallel for these dimensions

Details

A tensor can be seen as a linear mapping of a tensor to a tensor. Let denote Ri the space of real
tensors with dimensions i1...id.
To compute a power dim(X)[i] and dim(X)[j] need to be equal and the tensor symmetric between
these dimension. Some exponents are only valid with positive definite mappings. None of these
conditions is checked.

Value

a tensor

Note

symmetry of the matrix is assumed but not checked.

Author(s)

K. Gerald van den Boogaart

See Also

svd.tensor,

reorder.tensor 31

Examples

A <- to.tensor(rnorm(120),c(a=2,b=2,c=5,d=3,e=2))
AAt <- A %e% mark(A,"'",c("a","b"))
AAt

power.tensor(AAt,c("a","b"),c("a'","b'"),-1)

inv.tensor(AAt,c("a","b"))

power.tensor(AAt,c("a","b"),c("a'","b'"),2)
mul.tensor(AAt,c("a","b"),AAt,c("a'","b'"))

power.tensor(power.tensor(AAt,c("a","b"),c("a'","b'"),1/pi),
c("a","b"),c("a'","b'"),pi)

AAt <- einstein.tensor(A , mark(A,"'",c("a","b")),by="e")

power.tensor(AAt,c("a","b"),c("a'","b'"),-1,by="e")

inv.tensor(AAt,c("a","b"),by="e")

power.tensor(AAt,c("a","b"),c("a'","b'"),2,by="e")
mul.tensor(AAt,c("a","b"),AAt,c("a'","b'"),by="e")

power.tensor(power.tensor(AAt,c("a","b"),c("a'","b'"),1/pi,by="e"),
c("a","b"),c("a'","b'"),pi,by="e")

reorder.tensor Permutation of indices and storage sequence of a tensor

Description

This permutes tensor dimensions like aperm. However the interface is more flexible since not all
dimensions have to given and names can be used instead of numbers.

Usage

S3 method for class 'tensor'
reorder(x,i=NULL,...,by=NULL)

Arguments

x the tensor

i numeric or character giving dimensions intended to come first

... further arguments to other instances of the generic function

by the complement of i, if i is not given

32 reptensor

Details

the remaining dimensions keep their relative sequence and follow at the end of the dimension at-
tribute.

Value

reorder.tensor returns a tensor equal to x but stored with a different sequence of dimensions.

Author(s)

K.Gerald v.d. Boogaart

See Also

to.tensor

Examples

A <- to.tensor(1:20,c(A=2,B=2,C=5))
A
reorder(A,"C")
reorder(A,"B")

reptensor Repeats a tensor

Description

The tensor is repeated like a number is repeated by rep and an additional dimension is added to
select the different tensors.

Usage

S3 method for class 'tensor'
rep(x,times,pos=1,name="i",...)

Arguments

x the tensor to be repeated

times the number of copies that should be created. If times is a vector, x is seen
as a sequence of tensors in dimension pos and each of the tensors is repeated
according to the corresponding entry of times.

name the name of the additional dimension. if NA no additional dimension is used.

pos the position where the extra dimension should be added

... not used, only here for generic consistency

riemann.tensor 33

Details

This function is modeled as much as possible to mimic rep, by repeating tensors rather than num-
bers. The each argument is not necessary, since sequence of the dimensions can more precisely
be controlled by pos. Another problem is the a ambiguity between rep(x,3) and rep(x,c(3))
as a special case of rep(x,c(3,2)). If the second is wanted it can be forced by rep(x,c(3),NA)
through setting the name argument to NA.

Value

A tensor with one additional dimensions of length times.

Author(s)

K. Gerald van den Boogaart

See Also

rep

Examples

A <- to.tensor(1:4,c(A=2,B=2))
rep(A,3)
rep(A,3,3,"u")
rep(A,c(2,3))
A <- to.tensor(1:4,c(A=1,B=4))
rep(A,5,pos="A",name=NA)

riemann.tensor Tensor multiplication with Riemann’s convention

Description

Multiplies tensors by multiplying over all pairs with one covariate and one contravariate variable
with the same name according to Riemann’s summing convention.

Usage

riemann.tensor(...,only=NULL,by=NULL)
Methods for class tensor
x %r% y
Default method
x %r% y

34 riemann.tensor

Arguments

... some tensors, or a renaming code

only an optional list of the dimension names to be recognized for duplication to allow
parallel processing on lists of tensors

x a tensor

y a tensor

by Riemannian summing is done in parallel in these dimensions.

Details

see mul.tensor on details on tensor multiplication. In einstein.tensor complex operations can
be performed by command and renaming code: The arguments are processed from left to right and
multiplied. Unnamed attributes are regarded as tensors or scalars and multiplied with the current
result by the Riemann summing convention, which means an inner product over all pairs of covariate
and contravariate indices with the same name. Named attributes can either have the name diag,
which performs a diagmul according to the same-name convention or be of the form A="B" or
"A"="B", for which we have two cases. Typically both are given covariate. The first specifies the
covariate to be used in the multiplication and the second the contravariate. If both names are present
in the current result, an inner multiplication (trace) of on these two dimensions is performed. If only
the covariate or the contravariate is present up to this point, the specific dimension is renamed to
the second name, but keeps its type. This renaming might be visible in the result or inducing a
multiplication according to the Riemann convention later if the other shows up.

Value

the tensor product of all the tensors along all duplicate dimensions.

Author(s)

K. Gerald van den Boogaart

See Also

mul.tensor, to.tensor, riemann.tensor

Examples

A <- to.tensor(1:20,c(U=2,"^V"=2,W=5))
B <- to.tensor(1:20,c("^U"=2,V=2,Q=5))
riemann.tensor(A,B)
A %r% B

sequencing 35

sequencing Working with index sequences

Description

In typical tensor notation the indices are not identified by names but by positions. The operators
allow to identify names and positions transparently during calculation.

Usage

Methods for class tensor
x $ y
x ^ y
x | y
renamefirst.tensor(x,y)

Arguments

x A tensor

y Typically a character vector specifying a sequence of names for the tensor. The
names can be specified in various ways:
The following specifications are equal and specify a sequence of the names i,j
and k:
xijk, xi.j.k, i.j.k., x"$ijk", x^"i.j.k", x^c("i","j","k"),x^c("i.j","k"),
x^c("$i.j","k"),x^c("$ij","k"), x^c("$","ijk")
In general names are separated by dots. All notations with \$ either as operator
or as the first character of the first string allow to omit the dots assuming that all
names are single character. If any dot is present all dots must be given. The dif-
ference of \$ and \^ is that the first accepts a name and the second an character
valued expression.
Multi letter indices like "alpha","beta","gamma" can only be given in the dot-
free version of the notation making the following specifications equal: x$alpha.beta.gamma,
alpha.beta.gamma., x^"$alpha.beta.gamma", x^"alpha.beta.gamma", x^c("alpha","beta","gamma"),
x^c("alpha.beta","gamma"), x^c("$alpha.beta","k"), x^c("$","alpha.beta.gammak")
The specification for | is equal to that for ^.

Details

These functions are used to mimic the mathematical notation in tensor analysis. Formulae of the
form (with Einstein convention):

Eijk = AihlChjClk

with defined tensors Aijk and Cij can be given the simple form
E <- A$ihl %e% C$hj %e% C$lk |"$ijk"
or alternatively for multi letter names:
E <- A$i.h.l %e% C$h.j %e% C$l.k |"i.j.k"
or more flexible in computation with arguments I,J,K:

36 slice.tensor

E <- A^c(I,"h.l") %e% C^c("h",J) %e% C^c("l",K) | c(I,J,K)
The $ or ^ binds to the tensors with high precedence and renames the first elements. The | binds
with very low precedence and reorders the tensor according to the assumed index sequence of the
result afterwards.

Value

A tensor of the same shape as x but with reordered dimensions (for |) or renamed dimensions (for
the others)

Author(s)

K. Gerald van den Boogaart

See Also

reorder.tensor, names<-.tensor, [[.tensor

Examples

A <- to.tensor(1:20,c(i=5,j=2,k=2))
C <- to.tensor(1:4,c(i=2,j=2))
E <- A$ihl %e% C$hj %e% C$lk |"$ijk"
E
Same as:
E2 <- reorder.tensor(A[[j=~h,k=~l]] %e% C[[i=~h]] %e% C[[i=~l,j=~k]],c("i","j","k"))
E-E2
E <- A$i.h.l %e% C$h.j %e% C$l.k |"i.j.k"
E
E-E2
E <- A^"i.h.l" %e% C^"h.j" %e% C^"l.k" |"i.j.k"
E
E-E2

slice.tensor Working with the indices of a tensor (accessing, slicing, renaming, ...)

Description

Indexing of tensors allows beside the ordinary selection of ranges of indices the renaming of indices.
The functions are mainly here to keep the the tensor property of the results.

Usage

slice.tensor(X,i,what,drop=FALSE)
Methods for class tensor
X[...,drop=TRUE]
X[...,drop=TRUE] <- value
X[[...,drop=TRUE]]
X[[...,drop=TRUE]] <- value

solve.tensor 37

Arguments

X A tensor

i an index given as number or character

what levels of the index, a number or a character from dimnames

drop a boolean, if true, indices with only a single level are removed

... arguments of the form name=indices, and for the [[]] functions it also allowed
to give names from the corresponding dimnames name=c("a","b") to select
indices by names or name=~newname to rename dimensions, the first use makes
a usual array access in the given dimension, where [[]] only supports a single
index, while [] allows vectors. The other type changes the names.

Details

The functions allow to rename dimensions and to take select a part of the tensor.

Value

a new tensor with dimensions renamed or individual levels selected

Author(s)

K. Gerald van den Boogaart

See Also

einstein.tensor

Examples

A <- to.tensor(1:20,c(A=2,B=2,C=5))
A[C=1]
A[C=1:3]
A[[B=~b]] # renaming dimensions
A[[B=~b,A=~aaa]]
A[[B=~b,A=~aaa,aaa=1]]
A[[A=1,B=~gamma]][C=1:2]
A

solve.tensor Solving linear equations with tensors

Description

We can formulate linear equation systems with tensors. This functions solves these systems or gives
a least squares fit of minimal norm.

38 solve.tensor

Usage

S3 method for class 'tensor'
solve(a,b,i,j=i,...,allowSingular=FALSE,eps=1E-10,by=NULL)

Arguments

a The a of ax=b

b The a of ax=b

i The dimensions of the equation in a

j The dimensions of the equation in b

allowSingular A boolean, indicating the that a least squares fit should be generated with singu-
lar equations systems.

... further arguments for generic use

eps The limit for the smallest singular value in inversion

by the operation is done in parallel for these dimensions

Details

A tensor can be seen as a linear mapping of a tensor to a tensor. Let denote Ri the space of real
tensors with dimensions i1...id.

solve.tensor Solves the equation for ai1...idk1...kp , bj1...jdl1...lq and xk1...kpl1...lq the equation∑
k1,...,kp

ai1...idk1...kp
xk1...kpl1...lq = bj1...jdl1...lq

.

Value

a tensor such that ax=b as good as possible for each combination of by values.

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor, svd.tensor, inv.tensor, chol.tensor, power.tensor

Examples

R1 <- matrix(rnorm(9),nrow=3)
R1i <- solve(R1)
R2 <- to.tensor(R1,c(a=3,b=3),what=1:2)
R2i <- to.tensor(R1i,c(b=3,a=3),what=1:2)

inv.tensor(R2,"a","b") - R2i
inv.tensor(R2,"a","b",allowSingular=TRUE) - R2i

svd.tensor 39

inv.tensor(rep(R2,4,1,"K"),"a","b",by="K") - rep(R2i,4,1,"K")
inv.tensor(rep(R2,4,1,"K"),"a","b",by="K",allowSingular=TRUE) - rep(R2i,4,3,"K")

R3 <- to.tensor(rnorm(15),c(a=3,z=5))

mul.tensor(R2i,"b",mul.tensor(R2,"a",R3)) # R3

solve.tensor(R2i,R3[[z=1]],"a")
mul.tensor(R2,"a",R3[[z=1]])

solve.tensor(R2i,R3,"a")
mul.tensor(R2,"a",R3)

solve.tensor(R2i,R3[[z=1]],"a",allowSingular=TRUE)
mul.tensor(R2,"a",R3[[z=1]])

solve.tensor(R2i,R3,"a",allowSingular=TRUE)
mul.tensor(R2,"a",R3)

solve.tensor(rep(R2i,4,1,"K"),R3[[z=1]],"a",by="K")
rep(mul.tensor(R2,"a",R3[[z=1]]),4,1,"K")

solve.tensor(rep(R2i,4,1,"K"),rep(R3[[z=1]],4,1,"K"),"a",by="K")
rep(mul.tensor(R2,"a",R3[[z=1]]),4,1,"K")

svd.tensor Singular value decomposition of tensors

Description

A tensor can be seen as a linear mapping of a tensor to a tensor. This function computes the singular
value decomposition of this mapping

Usage

svd.tensor(X,i,j=NULL,...,name="lambda",by=NULL)

Arguments

X The tensor to be decomposed

i The image dimensions of the linear mapping

j The coimage dimensions of the linear mapping

name The name of the eigenspace dimension. This is the dimension created by the
decompositions, in which the eigenvectors are ei

... further arguments for generic use

by the operation is done in parallel for these dimensions

40 to.matrix.tensor

Details

A tensor can be seen as a linear mapping of a tensor to a tensor. Let denote Ri the space of real
tensors with dimensions i1...id.

svd.tensor Computes a singular value decomposition ui1...idλ,dλ, vj1...jlλ such that u and v corre-
spond to orthogonal mappings from Rλ to Ri or Rj respectively.

Value

a tensor or in case of svd a list u,d,v, of tensors like in svd.

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor, to.matrix.tensor, inv.tensor, solve.tensor

Examples

SVD
A <- to.tensor(rnorm(120),c(a=2,b=2,c=5,d=3,e=2))

SVD <- svd.tensor(A,c("a","d"),c("b","c"),by="e")
dim(SVD$v)
Property of decomposition
einstein.tensor(SVD$v,diag=SVD$d,SVD$u,by="e") # A
Property of orthogonality
SVD$v %e% SVD$v[[lambda=~"lambda'"]] # 2*delta.tensor(c(lambda=6))
SVD$u %e% SVD$u[[lambda=~"lambda'"]] # 2*delta.tensor(c(lambda=6)))
SVD$u %e% mark(SVD$u,"'",c("a","d")) # 2*delta.tensor(c(a=2,d=3)))

to.matrix.tensor The matrix corresponding to a tensor seen as a linear mapping of
tensors.

Description

A tensor can be seen as a linear mapping of a tensor to a tensor. This function gives the correspond-
ing matrix of the mapping.

Usage

to.matrix.tensor(X,i,j,by=NULL)

to.tensor 41

Arguments

X The tensor

i The image indices of the linear mapping

j The domain indices of the linear mapping

by the operation is done in parallel for these dimensions

Details

A tensor can be seen as a linear mapping of a tensor to a tensor. This function computes the
corresponding matrix, mapping the entries of the domain tensor to the entries of the image tensor.

Value

if no by is given a matrix. Otherwise a tensor of level 2+length(dim(X))[by] giving matrices for
each specification of the by dimensions.

Author(s)

K. Gerald van den Boogaart

See Also

to.tensor, solve.tensor, inv.tensor, svd.tensor

Examples

A <- reorder.tensor(to.tensor(1:30,c(a=2,b=3,c=5)),c("c","a","b"))

to.matrix.tensor(A,"a",c("b","c")) # matrix(1:30,nrow=2)

to.matrix.tensor(A,c("a","b"),c("c")) # matrix(1:30,nrow=6)

to.matrix.tensor(A,c("a","b"),by=c("c")) # structure(1:30,dim=c(6,1,5)))
to.matrix.tensor(A,c("a"),by=c("c")) # structure(1:30,dim=c(2,3,5)))

to.tensor Creates a tensor object

Description

Constructs a "tensor". A tensor is the generalization of vectors and matrices to multi-index arrays.

Usage

to.tensor(X,...)
Default S3 method:
to.tensor(X,dims=NULL,ndimnames=NULL,what=1,addIndex=FALSE,...)

42 to.tensor

Arguments

X the numeric data with the entries of the tensor. If the object is already a tensor
only the subtensors given by the dimension what are converted

dims These dimensions to be added for the new tensor. If the object is to big or
addIndex an extra dimension is added.

ndimnames The new dimnames to be used
what a numeric or character vector specifying the dimensions to be removed.
addIndex boolean or character, FALSE says no additional dimension, or string to give the

name of the dimension
... further arguments to other instances of the generic function

Details

This package provides a class "tensor" allowing easy computation regarding tensorial computation
in the Einstein convention and allows an easier control of the computation than aperm and tensor.
The package is made to work with things like matrices of matrices and linear mapping of matrices
to matrices, etc.

A tensor is a multidimensional array, with specific mathematical meaning, generalizing vectors and
matrices. Tensors can be added, subtracted and multiplied and used in linear equations. While
two matrices A,B are commonly only multiplied in two ways A%*%B or B%*%A and have some more
t(A)%*%B, B%*%t(A), sum(A*B), sum(A*t(B)),kronecker(A,B) the tensor calculus brings all of
them into a organized system.
An important aspect for that is the name of its dimensions. Thus we are not bound to work with
rows and columns, but can name the dimensions to be multiplied. This leads to much more orga-
nized computation of linear mappings of matrices or datasets of matrices or other genuine tensor
arithmetic gets involved.
The package provides a full linear algebra support of tensors including tensor addition, tensor mul-
tiplication, norms, deltatensors, binding, inversion, normalization, Einstein summing convention,
trace, , dimension renaming, smart display of tensors, renaming and reshaping, solving equation
system and giving decompositions and parallelized data processing ,

Value

a tensor of the specified shape

Note

This constructor is not called tensor() according to the general convention of constructors to avoid
conflicts with the tensor multiplication routine in the tensor package

Author(s)

K. Gerald van den Boogaart

See Also

tensorA, level.tensor, diag.tensor, norm.tensor drag.tensor, one.tensor, mul.tensor,
%e%, %r%, , drag.tensor, , trace.tensor, solve.tensor, svd.tensor, mean.tensor

toPos.tensor 43

Examples

A <- to.tensor(1:20,c(U=2,V=2,W=5))
B <- to.tensor(1:20,c(U=2,VV=2,WW=5))
A %e% B

toPos.tensor get the position of an index of tensor

Description

Calculates the position of a tensor index, which specified in any possible way.

Usage

toPos.tensor(M,l=NULL,mnames=names(dim(M)),by=NULL,...,both=FALSE,missing.ok=FALSE)

Arguments

M a tensor

l a vector specifying the indices as positions or names

mnames The names of the indices of the tensor. This can be specified instead of M.

both Matches the index in its covariate and contravariate form.

by the list dimension, all operations are done in parallel for all levels of these di-
mensions. Thus in the case of toPos all other dimensions are returned if they are
not specified.

... not used

missing.ok If TRUE does give an error on missing dimension. Rather returns NA in that
place.

Details

The function is only here to provide a consistent interface which provides the same functionality
for positions and characters.

Value

a numeric vector giving the positions of the dimensions selected.

Author(s)

K. Gerald van den Boogaart

44 trace.tensor

Examples

A <- to.tensor(1:30,c(a=2,b=3,c=5))
toPos.tensor(A,c("b","c"))
toPos.tensor(A,c(2,1)) # only returns the values
toPos.tensor(A,c("^a"),both=TRUE)

trace.tensor Collapse a tensor

Description

Collapses the tensor over dimensions i and j. This is like a trace for matrices or like an inner product
of the dimensions i and j.

Usage

trace.tensor(X,i,j)

Arguments

X the tensor

i a numeric or character vector of dimensions of X, used for the inner product.

j a numeric or character vector of dimensions of X with the same length but other
elements than i.

Details

Let be
Xi1...inj1...jnk1...kd

the tensor. Then the result is given by

Ek1...kd
= sumi1...inXi1...ini1...ink1...kd

With the Einstein summing convention we would write:

Ek1...kd
= Xi1...inj1...jnk1...kd

δi1j1 . . . δinjnEk1...kd
= Xi1...inj1...jnk1...kd

δi1j1 ...δinjn

Value

A tensor like X with the i and j dimensions removed.

Author(s)

K. Gerald van den Boogaart

See Also

mul.tensor, to.tensor

tripledelta.tensor 45

Examples

A <- to.tensor(1:20,c(i=2,j=2,k=5))
A
trace.tensor(A,"i","j")

tripledelta.tensor A tensor with entry 1 if and only if three indices are equal

Description

The tensor mapping a tensor of dimension d to its corresponding diagonal tensor of dimension
c(d’,d*)

Usage

tripledelta.tensor(d,mark1="'",mark2="*",dn=NULL)

Arguments

d the first of three dimension vectors

mark1 the mark for the second dimension vectors

mark2 the mark for the third dimension vectors

dn list of character vectors, optional dimnames

Details

The tripledelta is the tensor mapping a tensor to a corresponding diagonal tensor.

Value

The tensor given by:
Ei1...inj1...jnk1...kn = δi1j1δi1k1 . . . δinjnδink1

Author(s)

K. Gerald van den Boogaart

See Also

delta.tensor, diag.tensor

Examples

tripledelta.tensor(3)

46 untensor

undrop.tensor Adds a spurious dimension to a tensor

Description

A dimension of length 1 is added a given position to a tensor

Usage

undrop.tensor(A,name,pos=1)

Arguments

A the tensor

name the name of the dimension to be added

pos the position, where to insert the new dimension

Details

The function is a pure convenience function.

Value

A tensor with one extra dimension of length 1 with name name at position pos.

Author(s)

K. Gerald van den Boogaart

Examples

A <- to.tensor(1:4,c(a=2,b=2))
undrop.tensor(A,"i")

untensor Removes indices/dimensions from a tensor

Description

untensor is more or less the inverse of to.tensor. It flattens tensorial dimensions. However the result
is still a tensor.

Usage

untensor(X,i=NULL,name=NULL,pos=1,by=NULL)

untensor 47

Arguments

X the tensor

i the names of the dimensions to be removed and combined to a single new one
as a character vector or a named list of character vectors if the remove should be
done in multiple chunks. pos and name is in this case ignored.

name the name of the new dimension to replace the others

pos where to insert the the new dimension

by if i not given the dimensions to be kept

Details

The dimensions to be removed are gathered and

Value

a tensor with the dimensions i removed.

Author(s)

K.Gerald van den Boogaart

See Also

to.tensor

Examples

A <- to.tensor(1:64,c(a=2,b=2,c=2,d=2,e=2,f=2))
untensor(A,list(c(1,5),c(2,4)),name=c("i","j"))
untensor(A,by=c("c","f"))
untensor(A,c("a","d"))

Index

∗ algebra
names.tensor, 25
norm.tensor, 26
to.tensor, 41

∗ arith
add.tensor, 5
as.tensor, 6
bind.tensor, 7
chol.tensor, 8
delta.tensor, 10
diag.tensor, 11
diagmul.tensor, 12
drag.tensor, 13
einstein.tensor, 15
inv.tensor, 17
is.tensor, 18
level.tensor, 19
margin.tensor, 20
mark.tensor, 21
mul.tensor, 24
one.tensor, 28
power.tensor, 30
reptensor, 32
riemann.tensor, 33
sequencing, 35
slice.tensor, 36
solve.tensor, 37
svd.tensor, 39
to.matrix.tensor, 40
toPos.tensor, 43
trace.tensor, 44
tripledelta.tensor, 45
undrop.tensor, 46
untensor, 46

∗ array
pos.tensor, 29
reorder.tensor, 31

∗ math
ftable.tensor, 16

∗ multivariate
mean.tensor, 22

∗ package
tensorA-package, 2

*.tensor (add.tensor), 5
+.tensor (add.tensor), 5
-.tensor (add.tensor), 5
/.tensor (add.tensor), 5
[.tensor (slice.tensor), 36
[<-.tensor (slice.tensor), 36
[[.tensor, 5, 36
[[.tensor (slice.tensor), 36
[[<-.tensor (slice.tensor), 36
$.tensor, 4
$.tensor (sequencing), 35
%e% (einstein.tensor), 15
%r% (riemann.tensor), 33
%e%, 25, 42
%r%, 25, 42
^.tensor (sequencing), 35

add.tensor, 4, 5, 5
as.contravariate (drag.tensor), 13
as.covariate (drag.tensor), 13
as.tensor, 6

base, 8
bind.tensor, 7

chol.tensor, 8, 38
contraname (drag.tensor), 13

delta.tensor, 10, 22, 45
diag.tensor, 4, 11, 22, 42, 45
diagmul.tensor, 4, 12, 25
dim<-.tensor (names.tensor), 25
dimnames.tensor (names.tensor), 25
dimnames<-.tensor (names.tensor), 25
drag.tensor, 4, 13, 42

einstein.tensor, 4, 5, 15, 25, 37

48

INDEX 49

ftable, 17
ftable.tensor, 16

inv.tensor, 17, 38, 40, 41
is.contravariate (drag.tensor), 13
is.covariate (drag.tensor), 13
is.tensor, 18

level.tensor, 3, 19, 42

margin.tensor, 20
mark (mark.tensor), 21
mark.tensor, 21
mean.tensor, 22, 42
mul.tensor, 4, 5, 15, 16, 24, 26, 34, 42, 44

names.tensor, 25
names<-.tensor (names.tensor), 25
norm (norm.tensor), 26
norm.tensor, 26, 42

one.tensor, 28, 42
opnorm (norm.tensor), 26

pos.tensor, 29
power.tensor, 30, 38

renamefirst.tensor (sequencing), 35
reorder.tensor, 29, 31, 36
rep, 33
rep.tensor (reptensor), 32
reptensor, 32
riemann.tensor, 14, 16, 25, 33, 34

sequencing, 35
slice.tensor, 36
solve.tensor, 18, 25, 37, 40–42
svd, 40
svd.tensor, 4, 9, 18, 30, 38, 39, 41, 42

Tensor, 14
Tensor (tensorA-package), 2
tensor (tensorA-package), 2
tensorA, 23, 42
tensorA (tensorA-package), 2
tensorA-package, 2
to.matrix.tensor, 40, 40
to.tensor, 3, 5–7, 9–12, 14, 16, 18–20, 25,

27, 28, 32, 34, 38, 40, 41, 41, 44, 47
toPos.tensor, 43

trace.tensor, 4, 42, 44
tripledelta.tensor, 45

undrop.tensor, 46
untensor, 46

var.tensor (mean.tensor), 22

	tensorA-package
	add.tensor
	as.tensor
	bind.tensor
	chol.tensor
	delta.tensor
	diag.tensor
	diagmul.tensor
	drag.tensor
	einstein.tensor
	ftable.tensor
	inv.tensor
	is.tensor
	level.tensor
	margin.tensor
	mark.tensor
	mean.tensor
	mul.tensor
	names.tensor
	norm.tensor
	one.tensor
	pos.tensor
	power.tensor
	reorder.tensor
	reptensor
	riemann.tensor
	sequencing
	slice.tensor
	solve.tensor
	svd.tensor
	to.matrix.tensor
	to.tensor
	toPos.tensor
	trace.tensor
	tripledelta.tensor
	undrop.tensor
	untensor
	Index

