The tci
package provides closed-form solutions for 1-,
2-, 3-, and 3-compartment with effect-site PK models based on solutions
described and code provided in Abuhelwa, Foster,
and Upton (2015). It does not, however, include an ordinary
differential equation (ODE) solver as many other R packages do,
including mrgsolve, PKPDsim, and RxODE.
tci
package functions can nonetheless be applied to models
from these packages through the creation of user-defined PK
functions.
Custom PK models based on ODEs or analytical solutions can be passed
to pkmod
objects through the pkfn
argument. To
illustrate this functionality, we consider the PK of the analgesic
remifentanil. Remifentanil is an opioid derivative that is often
administered intravenously to induce analgesia alongside propofol. Here,
we consider the three-compartment PK model proposed by . Remifentanil is
infused into a central compartment, representing the blood supply, and
then circulated to two peripheral compartments, representing
highly-perfused and scarcely-perfused organs and tissues. Remifentanil
is then removed from all three-compartments with separate clearance
rates. A diagram of the three-compartment model, reproduced from , is
displayed in figure . The differential equations describing the
remifentanyl model are given in equations .
To implement the ODE system in mrgsolve
we initialize a
model using mrgsolve::mcode
with default parameter
values.
library(tci)
library(mrgsolve) # implement ODE equation
library(xtable) # printing tables
library(ggplot2) # plotting results
library(reshape2) # melt function
form <- '
$PARAM V1 = 7.88, V2=23.9, V3=13.8, CL1=5, CL2=0.828, CL3=0.0784,
k10 = 0.172, k12=0.373, k21=0.103, k13=0.0367, k31=0.0124
$CMT A1 A2 A3
$ODE
dxdt_A1 = k21*A2 + k31*A3 - (k12+k13+k10)*A1 - CL1/V1*A1;
dxdt_A2 = k12*A1 - k21*A2 - CL2/V2*A2;
dxdt_A3 = k13*A1 - k31*A3 - CL3/V3*A3;
'
mrg_mod_remif <- mcode("remifentanil", form)
For a custom model to be compatible with PK, it must take as
arguments 1) a vector of time points, tm
, 2) an numeric
value describing a constant infusion rate, kR
, 3) a vector
of PK parameter values, pars
, and 4) initial starting
concentrations, init
. Notably, init
should be
created with default values, as pkmod
will use the initial
values to determine the number of compartments in the model.
pk_remif <- function(tm, kR, pars, init = c(0,0,0)){
# allow lowercase names
names(pars) <- toupper(names(pars))
# store volume
vols <- pars[c("V1","V2","V3")]
A0 <- init*vols # initial amounts
names(A0) <- c("A1","A2","A3") # names required by mrgsolve
# pass parameters as list
pars <- sapply(pars, as.list)
# update parameters and initial values (as amounts)
mrg_mod_remif <- update(mrg_mod_remif, param = pars, init = A0)
# dosing regimen - mrgsolve function in terms of amount infused
event <- ev(amt = kR*max(tm), time = 0, tinf = max(tm))
# simulate responses (skip tm=0 unless specified)
dat <- mrgsim_q(x = mrg_mod_remif, # pk model
data = event, # dosing event
stime = tm) # evaluation times
# skip tm=0 unless specified in tm
dat <- dat@data[-1,]
# return concentrations with compartments in rows and times in columns
cons <- t(dat[,c("A1","A2","A3")]) / vols
rownames(cons) <- colnames(cons) <- NULL
return(cons)
}
We can now evaluate the remifentanil PK model as we would any of the internal PK functions. The optimized parameter values identified by , which we will use as an example, are reproduced in Table .
% latex table generated in R 4.4.2 by xtable 1.8-4 packagedose_remi <- inf_manual(inf_tms = 0, inf_rate = 60, duration = 20)
pars_remif <- c(V1 = 7.88, V2=23.9, V3=13.8, CL1=5, CL2=0.828, CL3=0.0784,
k10 = 0.172, k12=0.373, k21=0.103, k13=0.0367, k31=0.0124)
mod_remif <- pkmod(pkfn = pk_remif, pars_pk = pars_remif)
p1 <- predict(mod_remif, inf = dose_remi, tms = 0:80)
ggplot(melt(data.frame(time = 0:80, p1), id = "time"),
aes(x = time, y = value, color = variable)) +
geom_line()
The tci
package implements the Jacobs and Shafer
algorithms plasma- and effect-site targeting algorithms, respectively
(Jacobs 1990; Shafer and Gregg 1992).
These algorithms aim to reach the target concentrations as quickly as
possible without overshooting the target. There may, however, be
situations in which the speed of target attainment is not the only goal.
In these cases, a user may wish to specify a different TCI
algorithm.
An example of this is the algorithm proposed by Van Poucke, Bravo, and Shafer (2004) that limits the maximum percentage overshoot of the target in the central compartment. The motivation for this is that there may exist cases in which excessive plasma concentrations are associated with toxicity to the patient. Here, we construct a similar algorithm that limits the absolute, rather than the percentage, overshoot in the central compartment.
In this example algorithm the user specifies a permissible amount of overshoot in the central compartment, , beyond the nominal target. At each step, the example TCI algorithm defines a maximum plasma concentration to equal the target effect-site concentration plus the permissible overshoot: . It then calculates the infusion required to reach or maintain over the subsequent ten seconds, . It then calculates the maximum effect-site concentration if is given, . If is less than the target concentration, can be administered without overshoot. If is greater than the target concentration, then targeting the effect-site directly will result in a maximum plasma concentration less than and the effect-site targeting algorithm is applied.
The required arguments for a custom algorithm are 1) a single numeric
value specifying the target concentration, Ct
, 2) a
pkmod
object created by pkmod()
, 3) a single
numeric value specifying the infusion duration, dtm
, and 4)
additional arguments that are passed to update.pkmod
at the
beginning of the algorithm. Argument (4) is used to update starting
concentrations when the algorithm is iteratively applied in
inf_tci
.
tci_plasma_lim <- function(Ct, pkmod, dtm = 1/6, maxrt = 1200,
lim_amt = 0.5, ecmpt = NULL, tmax_search = 20,
cetol = 0.05, cptol = 0.1, ...){
pkmod <- update(pkmod,...)
# if effect-site concentration is close to target,
# switch to plasma targeting
if(with(pkmod,(Ct - init[ecmpt]) / Ct < cetol &
(Ct - init[pcmpt])/Ct <= cptol))
return(tci_plasma(Ct, pkmod = pkmod, dtm = dtm, maxrt = maxrt))
# maximum tolerable plasma concentration
Cp_max <- Ct + lim_amt
# infusion required to reach Cp_max
pinf <- tci_plasma(Ct = Cp_max, pkmod = pkmod, dtm = dtm, maxrt = maxrt)
# Administer dtm-minute infusion
unit_inf <- inf_manual(inf_tms = 0, inf_rate = pinf, duration = dtm)
# Calculate maximum effect-site concentration
CeP <- function(tm) predict(pkmod, inf = unit_inf, tms = tm)[,pkmod$ecmpt]
Ce_max <- optimize(CeP, c(0,20), maximum = TRUE)$objective
# if max Ce < Ct administer infusion to reach maximum target
if(Ce_max <= Ct + cetol*Ct)
infrt <- pinf
else
infrt <- tci_effect_only(Ct, pkmod, dtm, maxrt = maxrt)
return(infrt)
}
We can now apply the algorithm directly to a pkmod
object to calculate a single infusion rate.
mod3ecpt <- pkmod(pars_pk = c(cl = 10, q2 = 2, q3 =20, v = 15, v2 = 30, v3 = 50, ke0 = 1.2))
tci_plasma_lim(Ct = 2, pkmod = mod3ecpt, lim_amt = 0.25)
#> [1] 240.0374
More usefully, however, we can pass the algorithm to
inf_tci
through the custom_alg
argument and
use it to calculate infusion rates required to reach a series of
targets.
# tci target concentrations
tci_targets <- cbind(value = c(1,2,2.5,2.5), time = c(0,3,7,10))
# calculate infusion schedule using plasma-limiting algorithm
plim_inf <- inf_tci(target_vals = c(1,2,2.5,2.5),
target_tms = c(0,3,7,10),
pkmod = mod3ecpt,
custom_alg = tci_plasma_lim,
lim_amt = 0.25)
head(plim_inf)
#> begin end inf_rate Ct c1_start c2_start c3_start c4_start
#> [1,] 0.00000 0.16667 133.35413 1 0.00 0.000000000 0.00000000 0.0000000
#> [2,] 0.16667 0.33333 38.27734 1 1.25 0.007317989 0.04308491 0.1236035
#> [3,] 0.33333 0.50000 36.74880 1 1.25 0.021033000 0.12082833 0.3275202
#> [4,] 0.50000 0.66667 35.31726 1 1.25 0.034597490 0.19356382 0.4944899
#> [5,] 0.66667 0.83333 33.97649 1 1.25 0.048013056 0.26161398 0.6312089
#> [6,] 0.83333 1.00000 32.72067 1 1.25 0.061281283 0.32528061 0.7431596
#> c1_end c2_end c3_end c4_end
#> [1,] 1.25 0.007317989 0.04308491 0.1236035
#> [2,] 1.25 0.021033000 0.12082833 0.3275202
#> [3,] 1.25 0.034597490 0.19356382 0.4944899
#> [4,] 1.25 0.048013056 0.26161398 0.6312089
#> [5,] 1.25 0.061281283 0.32528061 0.7431596
#> [6,] 1.25 0.074403741 0.38484609 0.8348308
For comparison, we calculate the infusion schedule associated with direct effect-site targeting.
# effect-site targeting
eff_inf <- inf_tci(target_vals = c(1,2,2.5,2.5),
target_tms = c(0,3,7,10),
pkmod = mod3ecpt,
type = "effect")
We now can use the infusion schedule in predict.pkmod
or
plot.pkmod
methods
# predict responses
tms_pred <- seq(0,10,0.1)
plim_pred <- predict(mod3ecpt, plim_inf, tms_pred)
eff_pred <- predict(mod3ecpt, eff_inf, tms_pred)
# plot results
dat <- data.frame(time = tms_pred,
`plasma (custom)` = plim_pred[,"c1"],
`effect (custom)` = plim_pred[,"c4"],
`plasma (effect)` = eff_pred[,"c1"],
`effect (effect)` = eff_pred[,"c4"],
check.names = FALSE)
datm <- melt(dat, id = "time")
datm$algorithm <- ifelse(datm$variable %in% c("plasma (custom)","effect (custom)"),
"Plasma-limiting", "Effect-site")
ggplot(datm, aes(x = time, y = value, color = variable, linetype = algorithm)) +
geom_line() +
xlab("Minutes") +
ylab("Concentration (mg/L)") +
ggtitle(label = "Plasma-limiting effect-site TCI algorithm")