Let Y be a binary response, A a binary exposure, and V a vector of covariates.
In a common setting, the main interest lies in quantifying the treatment effect, ν, of A on Y adjusting for the set of covariates, and often a standard approach is to use a Generalized Linear Model (GLM):
$$g\{ E(Y\mid A,V) \} = A\nu^tW + \underset{\mathrm{nuisance}}{\mu^tZ}$$
with link function g, and W = w(V), Z = v(V) known vector functions of V.
The canonical link (logit) leads to nice computational properties (logistic regression) and parameters with an odds-ratio interpretation. But ORs are not collapsible even under randomization. For example
E(Y ∣ X) = E[E(Y ∣ X, Z) ∣ X] = E[expit (μ + αX + βZ) ∣ X] ≠ expit [μ + αX + βE(Z ∣ X)],
When marginalizing we leave the class of logistic regression. This non-collapsibility makes it hard to interpret odds-ratios and to compare results from different studies
Relative risks (and risk differences) are collapsible and generally considered easier to interpret than odds-ratios. Richardson et al (JASA, 2017) proposed a regression model for a binary exposures which solves the computational problems and need for parameter contraints that are associated with using for example binomial regression with a log-link function (or identify link for the risk difference) to obtain such parameter estimates. In the following we consider the relative risk as the target parameter
$$ \mathrm{RR}(v) = \frac{P(Y=1\mid A=1, V=v)}{P(Y=1\mid A=0, V=v)}. $$
Let pa(V) = P(Y ∣ A = a, V), a ∈ {0, 1}, the idea is then to posit a linear model for θ(v) = log (RR(v)), i.e., log (RR(v)) = αTv,
and a nuisance model for the odds-product $$ \phi(v) = \log\left(\frac{p_{0}(v)p_{1}(v)}{(1-p_{0}(v))(1-p_{1}(v))}\right) $$
noting that these two parameters are variation independent as illustrated by the below L’Abbé plot.
p0 <- seq(0,1,length.out=100)
p1 <- function(p0,op) 1/(1+(op*(1-p0)/p0)^-1)
plot(0, type="n", xlim=c(0,1), ylim=c(0,1),
xlab="P(Y=1|A=0)", ylab="P(Y=1|A=1)", main="Constant odds product")
for (op in exp(seq(-6,6,by=.25))) lines(p0,p1(p0,op), col="lightblue")
p0 <- seq(0,1,length.out=100)
p1 <- function(p0,rr) rr*p0
plot(0, type="n", xlim=c(0,1), ylim=c(0,1),
xlab="P(Y=1|A=0)", ylab="P(Y=1|A=1)", main="Constant relative risk")
for (rr in exp(seq(-3,3,by=.25))) lines(p0,p1(p0,rr), col="lightblue")
Similarly, a model can be constructed for the risk-difference on the following scale
θ(v) = arctanh (RD(v)).
First the targeted
package is loaded
This automatically imports lava (CRAN) which we can use to simulate from the Relative-Risk Odds-Product (RR-OP) model.
m <- lvm(a ~ x,
lp.target ~ 1,
lp.nuisance ~ x+z)
m <- binomial.rr(m, response="y", exposure="a", target.model="lp.target", nuisance.model="lp.nuisance")
The lvm
call first defines the linear predictor for the
exposure to be of the form
LPA := μA + αX
and the linear predictors for the /target parameter/ (relative risk) and the /nuisance parameter/ (odds product) to be of the form
LPRR := μRR,
LPOP := μOP + βxX + βzZ.
The covariates are by default assumed to be independent and standard
normal X, Z ∼ 𝒩(0, 1), but their
distribution can easily be altered using the
lava::distribution
method.
The binomial.rr
function
args(binomial.rr)
#> function (x, response, exposure, target.model, nuisance.model,
#> exposure.model = binomial.lvm(), ...)
#> NULL
then defines the link functions, i.e.,
logit (E[A ∣ X, Z]) = μA + αX,
log (E[Y ∣ X, Z, A = 1]/E[Y ∣ X, A = 0]) = μRR,
log {p1(X, Z)p0(X, Z)/[(1 − p1(X, Z))(1 − p0(X, Z))]} = μOP + βxX + βzZ
with pa(X, Z) = E(Y ∣ A = a, X, Z).
The risk-difference model with the RD parameter modeled on the arctanh scale can be defined similarly using
the binomial.rd
method
args(binomial.rd)
#> function (x, response, exposure, target.model, nuisance.model,
#> exposure.model = binomial.lvm(), ...)
#> NULL
We can inspect the parameter names of the modeled
coef(m)
#> m1 m2 m3 p1 p2
#> "a" "lp.target" "lp.nuisance" "a~x" "lp.nuisance~x"
#> p3 p4
#> "lp.nuisance~z" "a~~a"
Here the intercepts of the model are simply given the same name as
the variables, such that μA becomes
a
, and the other regression coefficients are labeled using
the “~”-formula notation, e.g., α becomes a~x
.
Intercepts are by default set to zero and regression parameters set
to one in the simulation. Hence to simulate from the model with (muA, μRR, μOP, α, βx, βz)T = (−1, 1, −2, 2, 1, 1)T,
we define the parameter vector p
given by
and then simulate from the model using the sim
method
d <- sim(m, 1e4, p=p, seed=1)
head(d)
#> a x lp.target lp.nuisance z y
#> 1 0 -0.6264538 1 -2.4307854 -0.8043316 0
#> 2 0 0.1836433 1 -1.8728823 -1.0565257 0
#> 3 0 -0.8356286 1 -2.8710244 -1.0353958 0
#> 4 1 1.5952808 1 -0.5902796 -1.1855604 1
#> 5 0 0.3295078 1 -1.1709317 -0.5004395 1
#> 6 0 -0.8204684 1 -2.3454571 -0.5249887 0
Notice, that in this simulated data the target
parameter μRR has
been set to lp.target =
1.
We start by fitting the model using the maximum likelihood estimator.
args(riskreg_mle)
#> function (y, a, x1, x2 = x1, weights = rep(1, length(y)), std.err = TRUE,
#> type = "rr", start = NULL, control = list(), ...)
#> NULL
The riskreg_mle
function takes vectors/matrices as input
arguments with the response y
, exposure a
,
target parameter design matrix x1
(i.e., the matrix W at the start of this text), and
the nuisance model design matrix x2
(odds product).
We first consider the case of a correctly specified model, hence we
do not consider any interactions with the exposure for the odds product
and simply let x1
be a vector of ones, whereas the design
matrix for the log-odds-product depends on both X and Z
x1 <- model.matrix(~1, d)
x2 <- model.matrix(~x+z, d)
fit1 <- with(d, riskreg_mle(y, a, x1, x2, type="rr"))
fit1
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) 0.9512 0.03319 0.8862 1.0163 1.204e-180
#> odds-product:(Intercept) -1.0610 0.05199 -1.1629 -0.9591 1.377e-92
#> odds-product:x 1.0330 0.05944 0.9165 1.1495 1.230e-67
#> odds-product:z 1.0421 0.05285 0.9386 1.1457 1.523e-86
The parameters are presented in the same order as the columns of
x1
and x2
, hence the target parameter estimate
is in the first row
We next fit the model using a double robust estimator (DRE) which introduces a model for the exposure E(A = 1 ∣ V) (propensity model). The double-robustness stems from the fact that the this estimator remains consistent in the union model where either the odds-product model or the propensity model is correctly specified. With both models correctly specified the estimator is efficient.
with(d, riskreg_fit(y, a, target=x1, nuisance=x2, propensity=x2, type="rr"))
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) 0.9372 0.0339 0.8708 1.004 3.004e-168
The usual /formula/-syntax can be applied using the
riskreg
function. Here we illustrate the double-robustness
by using a wrong propensity model but a correct nuisance
paramter (odds-product) model:
riskreg(y~a, nuisance=~x+z, propensity=~z, data=d, type="rr")
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) 0.9511 0.03333 0.8857 1.016 4.547e-179
Or vice-versa
riskreg(y~a, nuisance=~z, propensity=~x+z, data=d, type="rr")
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) 0.9404 0.03727 0.8673 1.013 1.736e-140
whereas the MLE in this case yields a biased estimate of the relative risk:
The more general model where log RR(V) = AαTV
for a subset V of the
covariates can be estimated using the target
argument:
fit <- riskreg(y~a, target=~x, nuisance=~x+z, data=d)
fit
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) 0.95267 0.03365 0.88673 1.01862 2.361e-176
#> x -0.01078 0.03804 -0.08534 0.06378 7.769e-01
As expected we do not see any evidence of an effect of X on the relative risk with the 95% confidence limits clearly overlapping zero.
Note, that when the propensity
argument is omitted as
above, the same design matrix is used for both the odds-product model
and the propensity model.
The syntax for fitting the risk-difference model is similar. To illustrate this we simulate some new data from this model
m2 <- binomial.rd(m, response="y", exposure="a", target.model="lp.target", nuisance.model="lp.nuisance")
d2 <- sim(m2, 1e4, p=p)
And we can then fit the DRE with the syntax
The DRE is a regular and asymptotic linear (RAL) estimator, hence $$\sqrt{n}(\widehat{\alpha}_{\mathrm{DRE}} - \alpha) = \frac{1}{\sqrt{n}}\sum_{i=1}^{n} \phi_{\mathrm{eff}}(Z_{i}) + o_{p}(1)$$ where Zi = (Yi, Ai, Vi), i = 1, …, n are the i.i.d. observations and ϕeff is the influence function.
The influence function can be extracted using the IC
method
sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: Etc/UTC
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] targeted_0.5 lava_1.8.0 knitr_1.49
#>
#> loaded via a namespace (and not attached):
#> [1] Matrix_1.7-1 future.apply_1.11.3 jsonlite_1.8.9
#> [4] futile.logger_1.4.3 compiler_4.4.2 Rcpp_1.0.13-1
#> [7] parallel_4.4.2 jquerylib_0.1.4 globals_0.16.3
#> [10] splines_4.4.2 yaml_2.3.10 fastmap_1.2.0
#> [13] lattice_0.22-6 R6_2.5.1 future_1.34.0
#> [16] nloptr_2.1.1 maketools_1.3.1 bslib_0.8.0
#> [19] rlang_1.1.4 cachem_1.1.0 xfun_0.49
#> [22] sass_0.4.9 sys_3.4.3 viridisLite_0.4.2
#> [25] cli_3.6.3 formatR_1.14 futile.options_1.0.1
#> [28] digest_0.6.37 grid_4.4.2 mvtnorm_1.3-2
#> [31] lifecycle_1.0.4 RcppArmadillo_14.2.2-1 timereg_2.0.6
#> [34] scatterplot3d_0.3-44 pracma_2.4.4 evaluate_1.0.1
#> [37] data.table_1.16.4 lambda.r_1.2.4 numDeriv_2016.8-1.1
#> [40] listenv_0.9.1 codetools_0.2-20 buildtools_1.0.0
#> [43] survival_3.8-3 optimx_2024-12.2 parallelly_1.41.0
#> [46] rmarkdown_2.29 mets_1.3.4 tools_4.4.2
#> [49] htmltools_0.5.8.1