
Package: switchSelection (via r-universe)
September 27, 2024

Type Package

Title Endogenous Switching and Sample Selection Regression Models

Version 2.0.0

Date 2024-09-26

Description Estimate the parameters of multivariate endogenous
switching and sample selection models using methods described
in Newey (2009) <doi:10.1111/j.1368-423X.2008.00263.x>, E.
Kossova, B. Potanin (2018)
<https://ideas.repec.org/a/ris/apltrx/0346.html>, E. Kossova,
L. Kupriianova, B. Potanin (2020)
<https://ideas.repec.org/a/ris/apltrx/0391.html> and E.
Kossova, B. Potanin (2022)
<https://ideas.repec.org/a/ris/apltrx/0455.html>.

License GPL (>= 2)

Imports Rcpp (>= 1.0.10), hpa (>= 1.3.1), mnorm (>= 1.2.1), gena (>=
1.0.0), methods

LinkingTo Rcpp, RcppArmadillo, hpa, mnorm

Depends R (>= 3.5.0)

RoxygenNote 7.3.2

NeedsCompilation yes

Author Bogdan Potanin [aut, cre, ctb], Sofiia Dolgikh [ctb]

Maintainer Bogdan Potanin <bogdanpotanin@gmail.com>

Repository CRAN

Date/Publication 2024-09-26 15:50:09 UTC

Contents
boot . 2
bootstrap . 3
coef.msel . 6
cps . 8

1

https://doi.org/10.1111/j.1368-423X.2008.00263.x
https://ideas.repec.org/a/ris/apltrx/0346.html
https://ideas.repec.org/a/ris/apltrx/0391.html
https://ideas.repec.org/a/ris/apltrx/0455.html

2 boot

exogenous_fn . 10
fitted.msel . 11
formula.msel . 11
formula_merge . 12
formula_split . 13
grad_msel . 14
lnL_msel . 14
logLik.msel . 15
loocv . 16
lrtest_msel . 16
msel . 18
nobs.msel . 62
predict.msel . 62
print.lrtest_msel . 66
print.msel . 67
print.struct_msel . 67
print.summary.lrtest_msel . 68
print.summary.msel . 68
print.summary.test_msel . 69
sigma.msel . 69
starsVector . 70
struct_msel . 71
summary.lrtest_msel . 71
summary.msel . 72
summary.test_msel . 72
test_msel . 73
update_msel . 83
vcov.msel . 84

Index 86

boot Bootstrap covariance matrix for least squares estimates of linear re-
gression

Description

This function calculates bootstrapped covariance matrix for least squares estimates of linear regres-
sion. The estimates should be obtained via lm function.

Usage

boot(model, iter = 100)

Arguments

model object of class lm.

iter positive integer representing the number of bootstrap iterations.

bootstrap 3

Details

Calculations may take long time for high iter value.

Value

This function returns a bootstrapped covariance matrix of the least squares estimator.

Examples

set.seed(123)
Generate data according to linear regression
n <- 20
eps <- rnorm(n)
x <- runif(n)
y <- x + eps
Estimate the model
model <- lm(y ~ x)
Calculate bootstrap covariance matrix
boot(model, iter = 50)

bootstrap Bootstrap for msel function

Description

Function bootstrap_msel provides bootstrap estimates of the parameters of the model estimated
via the msel function. Function bootstrap_combine_msel allows to combine several objects of
class 'bootstrap_msel'.

Usage

bootstrap_msel(
object,
iter = 100,
opt_type = "optim",
opt_args = NULL,
is_ind = FALSE,
n_sim = 1000,
n_cores = 1

)

bootstrap_combine_msel(...)

4 bootstrap

Arguments

object an object of class ’msel’.

iter the number of bootstrap iterations.

opt_type the same as opt_type argument of the msel function.

opt_args the same as opt_args argument of the msel functions.

is_ind logical; if TRUE then the function also returns a numeric matrix of indexes of
observations used in the bootstrap samples.

n_sim the same as n_sim argument of the msel function.

n_cores the same as n_cores argument of the msel function.

... objects returned by function bootstrap_msel to be combined into a single ob-
ject.

Details

The function generates iter bootstrap samples and estimates the parameters θ of the model by
using each of these samples. Estimate θ̂(b) from the b-th of these samples is stored as the b-th row
of the numeric matrix par which is an element of the returned object.

Use update_msel function to transfer the bootstrap estimates to the object of class 'msel'.

Value

Function bootstrap_msel returns an object of class "bootstrap_msel". This object is a list which
may contain the following elements:

• par - a numeric matrix such that par[b,] is a vector of the estimates of the parameters of the
model estimated via msel function on the b-th bootstrap sample.

• iter - the number of the bootstrap iterations.

• cov - bootstrap estimate of the covariance matrix which equals to cov(par).

• ind - a numeric matrix such that ind[, b] stores the indexes of the observations from object$data
included into the b-th bootstrap sample.

Function bootstrap_combine_msel returns the object which combines several objects returned by
the bootstrap_msel function into a single object.

Examples

Bootstrap for the probit model

Step 1
Simulation of data

Load required package
library("mnorm")

bootstrap 5

Set seed for reproducibility
set.seed(123)

The number of observations
n <- 100

Regressors (covariates)
w1 <- runif(n = n, min = -1, max = 1)
w2 <- runif(n = n, min = -1, max = 1)

Random errors
u <- rnorm(n = n, mean = 0, sd = 1)

Coefficients
gamma <- c(-1, 2)

Linear index
li <- gamma[1] * w1 + gamma[2] * w2

Latent variable
z_star <- li + u

Cuts
cuts <- c(-1, 0.5, 2)

Observable ordered outcome
z <- rep(0, n)
z[(z_star > cuts[1]) & (z_star <= cuts[2])] <- 1
z[(z_star > cuts[2]) & (z_star <= cuts[3])] <- 2
z[z_star > cuts[3]] <- 3
table(z)

Data
data <- data.frame(w1 = w1, w2 = w2, z = z)

Step 2
Estimation of the parameters

Estimation
model <- msel(formula = z ~ w1 + w2, data = data)
summary(model)

Step 3
Bootstrap

Perform bootstrap
bootstrap <- bootstrap_msel(model)

6 coef.msel

Test the hypothesis that H0: gamma[2] = -2gamma[1]
by using the t-test and with bootstrap p-values
fn_test <- function(object)
{

gamma <- coef(object, eq = 1)
return(gamma[2] + 2 * gamma[1])

}
b <- test_msel(object = model,

fn = fn_test,
test = "t",
method = "bootstrap",
ci = "percentile",
se_type = "bootstrap",
bootstrap = bootstrap)

summary(b)

Replicate the analysis with the additional 20 bootstrap iterations
bootstrap2 <- bootstrap_msel(model, iter = 20)
bootstrap_new <- bootstrap_combine_msel(bootstrap, bootstrap2)
b2 <- test_msel(object = model,

fn = fn_test,
test = "t",
method = "bootstrap",
ci = "percentile",
se_type = "bootstrap",
bootstrap = bootstrap)

summary(b2)

coef.msel Coefficients extraction method for msel.

Description

Extract coefficients and other estimates from msel object.

Usage

S3 method for class 'msel'
coef(
object,
...,
eq = NULL,
eq2 = NULL,
eq3 = NULL,
regime = NULL,
type = "coef"

)

coef.msel 7

Arguments

object an object of class "msel".

... further arguments (currently ignored).

eq an integer representing the index of the ordered equation.

eq2 an integer representing the index of the continuous equation.

eq3 an integer representing the index of the alternative of the multinomial equation.

regime an integer representing a regime of the continuous equation.

type a character representing a type of the output. Possible options are "coef",
"coef2", coef_lambda, "coef_var", "coef3", "cuts", "cov", "cov1", "var",
"cov2", "cov3", and marginal. See ’Details’ for additional information.

Details

Consider the notations from the ’Details’ section of msel.

Mean coefficients of the ordinal equations

Suppose that type = "coef". Then estimates of the γj coefficients are returned for each j ∈
{1, ..., J}. If eq = j then only estimates of the γj coefficients are returned.

Variance coefficients of the ordinal equations

Suppose that type = "coef_var". Then estimates of the γ∗
j coefficients are returned for each j ∈

{1, ..., J}. If eq = j then only estimates of γ∗
j coefficients are returned.

Coefficients of the continuous equations

Suppose that type = "coef2". Then estimates of the βr coefficients are returned for each r ∈
{0, ..., R − 1}. If eq2 = k then only estimates for the k-th continuous equation are returned. If
regime = r then estimates of the βr coefficients are returned for the eq2-th continuous equation.
Herewith if regime is not NULL and eq2 is NULL it is assumed that eq2 = 1.

Selectivity terms

Suppose that type = "coef_lambda". Then estimates of the coefficients associated with the selec-
tivity terms are returned for each r ∈ {0, ..., R − 1}. If eq2 = k then only estimates for the k-th
continuous equation are returned. If regime = r then estimates of the coefficients of the selectivity
terms are returned for the eq2-th continuous equation.

Thresholds of the ordinal equations

Suppose that type = "cuts" or type = "thresholds". Then estimates of the cj cuts (thresholds)
are returned for each j ∈ {1, ..., J}. If eq = j then only estimates of the cj cuts are returned.

Covariances between the random errors of the ordinal equations

Suppose that type = "cov1". Then estimate of the covariance matrix of ui is returned. If eq = c(a,
b) then the function returns (a, b)-th element of this matrix i.e. an element from the a-th row and
the b-th column which represents an estimate of Cov(uai, ubi).

Covariances between the random errors of the ordinal and continuous equations

Suppose that type = "cov12". Then estimates of the covariances between random errors of the
ordinal ui and cotninuous εi equations are returned. If eq2 = k then covariances with random errors
of the k-th continuous equation are returned. If in addition eq = j and regime = r then the function

8 cps

returns an estimate of Cov(uji, εri) for the k-th continuous equation. If eq2 = NULL it is assumed
that eq2 = 1.

Variances of the random errors of the continuous equations

Suppose that type = "var". Then estimates of the variances of εi are returned. If eq2 = k then
estimates only for the k-th continuous equation are returned. If in addition regime = r then estimate
of the V ar(εri) is returned. Herewith if regime is not NULL and eq2 is NULL it is assumed that eq2
= 1.

Covariances between the random errors of the continuous equations

Suppose that type = "cov2". Then estimates of the covariances between random errors of different
continuous equations in different regimes are returned. If eq2 = c(a, b) and regime = c(c, d)
then function returns an estimate of the covariance of random errors of the a-th and b-th continuous
equations in the regimes c and d correspondingly. If this covariance is not identifiable then NA value
is returned.

Coefficients of the multinomial equation

Suppose that type = "coef3". Then estimates of the γ̃j coefficients are returned for each j ∈
{0, ..., J̃ − 1}. If eq3 = j then only estimates of the γ̃j coefficients are returned.

Covariances between the random errors of the multinomial equations

Suppose that type = "cov3". Then estimate of the covariance matrix of ũi is returned. If eq3 =
c(a, b) then the function returns (a, b)-th element of this matrix i.e. an element from the a-th row
and the b-th column which represents an estimate of Cov(ũ(a+1)i, ũ(b+1)i).

Parameters of the marginal distributions

Suppose that type = "marginal". Then a list is returned which j-th element is a numeric vector of
estimates of the parameters of the marginal distribution of uji.

Asymptotic covariance matrix

Suppose that type = "cov". Then estimate of the asymptotic covariance matrix of the estimator is
returned. Note that this estimate depends on the cov_type argument of msel.

Value

See ’Details’ section.

cps A subset of data from Current Population Survey (CPS).

Description

Labor market data on 18,253 middle age (25-54 years) married women in the year 2022.

Usage

data(cps)

cps 9

Format

A data frame with 18,253 rows and 23 columns. It contains information on wages and some socio-
demographic characteristics of the middle age (25-54 years) married women:

age the age measured in years.

sage the same as age but for a spouse.

work a binary variable for the employment status (0 - unemployed, 1 - employed).

swork the same as work but for a spouse.

nchild the number of children under age 5.

snchild the same as nchild but for a spouse.

health subjective health status (1 - poor, 2 - fair, 3 - good, 4 - very good, 5 - excellent).

shealth the same as health but for a spouse.

basic a binary variable which equals 1 for those who have graduated from high school or has at
least some college or has associated degree and does not have any higher level of education, 0
- otherwise.

bachelor a binary variable which equals 1 for those whose highest education level is a bachelor
degree.

master a binary variable which equals 1 for those whose highest education level is a master degree.

sbasic the same as basic but for a spouse.

sbachelor the same as bachelor but for a spouse.

smaster the same as master but for a spouse.

educ a categorical variable for the level of education such that educ = 0 if basic = 1, educ = 1 if
bachelor = 1 and educ = 2 if master = 1.

seduc the same as educ but for a spouse.

weeks a total number of weeks worked durning the year.

sweeks the same as weeks but for a spouse.

hours a usual number of working hours per week.

shours the same as hours but for a spouse.

wage the wage of the individual.

swage the same as wage but for a spouse.

lwage an inverse hyperbolic sine transformation of the hourly wage.

slwage the same as lwage but for a spouse.

state a state of residence. ...

Source

<https://www.census.gov/programs-surveys/cps.html>

References

Flood S, King M, Rodgers R, Ruggles S, Warren R, Westberry M (2022). Integrated Public Use
Microdata Series, Current Population Survey: Version 10.0 [dataset]. doi: 10.18128/D030.V10.0.

10 exogenous_fn

Examples

data(cps)
model <- msel(work ~ age + bachelor + master, data = cps)
summary(model)

exogenous_fn Modify exogenous variables in data frame

Description

Change some values of the exogenous variables in a data frame.

Usage

exogenous_fn(exogenous, newdata)

Arguments

exogenous list such that exogenous[[i]] represents the value (or a vector of values of the
same size as nrow(newdata)) which will be exogenously assigned to the vari-
able names(exogenous)[[i]] in newdata i.e., newdata[, names(exogenous)[i]]
<- exogenous[[i]]. If newdata is NULL and exogenous is not NULL then newdata
is set to object$data. This argument is especially useful for causal inference
when some endogenous (dependent) variables should be exogenously assigned
with some values i.e., in the right hand side of the formula and formula2. The
purpose of the exogeneous argument is just a convenience so equivalently it is
possible to exogenously provide the values to variables via newdata argument.

newdata data frame.

Details

This function changes exogenous variables in newdata.

Value

The function returns data frame which is similar to newdata but some values of this data frame are
set according to exogenous.

fitted.msel 11

fitted.msel Extract Model Fitted Values

Description

Extracts fitted values from ’msel’ object

Usage

S3 method for class 'msel'
fitted(object, ..., newdata = NULL)

Arguments

object object of class ’msel’.

... further arguments (currently ignored).

newdata an optional data frame in which to look for variables with which to predict. If
omitted, the original data frame used. This data frame should contain values of
dependent variables even if they are not actually needed for prediction (simply
assign them with 0 values).

Value

Returns a numeric matrix. Its columns which names coincide with the names of the ordinal and
multinomial equations provide the index of the most probable category for each observation. Columns
which names coincide with the names of the continuous equations provide conditional expectations
of the dependent variables in observable regimes for each observation.

formula.msel Formulas of msel model.

Description

Provides formulas associated with the object of class ’msel’.

Usage

S3 method for class 'msel'
formula(x, ..., type = "formula", eq = NULL)

12 formula_merge

Arguments

x object of class ’msel’.

... further arguments (currently ignored).

type character; if type = "formula" or type = 1 then function returns formulas of
the ordinal equations. If type = "formula2" or type = 2 then function returns
formulas of the continuous equations. If type = "formula3" or type = 3 then
function returns formula of the multinomial equation.

eq positive integer representing the index of the equation which formula should be
returned. If NULL (default) then formulas for each equation will be returned as a
list which i-th element associated with i-th equation.

Value

Returns a formula or a list of formulas depending on eq value.

formula_merge Merge formulas

Description

This function merges all variables of several formulas into a single formula.

Usage

formula_merge(..., type = "all")

Arguments

... formulas to be merged such that there is a single element on the left hand side
and various elements on the right hand side.

type string representing the type of merge to be used. If type = "all" then both right
hand side and left hand side elements of the formulas will be merged on the
right hand side. If type = "terms" then only right hand side elements of the
formulas will be merged on the right hand side. If type = "var-terms" then the
result is the same as in case when type = "terms" but there will be left hand
side element of the first formula on the left hand side of the merged formula.

Details

Merged formulas should have a single element on the left hand side and voluntary number of ele-
ments on the right hand side.

Value

This function returns a formula which form depends on type input argument value. See ’Details’
for additional information.

formula_split 13

Examples

Consider three formulas
f1 <- as.formula("y1 ~ x1 + x2")
f2 <- as.formula("y2 ~ x2 + x3")
f3 <- as.formula("y3 ~ y2 + x6")
Merge these formulas in a various ways
formula_merge(f1, f2, f3, type = "all")
formula_merge(f1, f2, f3, type = "terms")
formula_merge(f1, f2, f3, type = "var-terms")

formula_split Split formula by symbol

Description

This function splits one formula into two formulas by symbol.

Usage

formula_split(formula, symbol = "|")

Arguments

formula an object of class formula.

symbol a string that is used to split formula into two formulas.

Details

The symbol should be on the right hand side of the formula.

Value

This function returns a list of two formulas.

Examples

formula_split("y ~ x1 + x2 | x2 + x3")
formula_split("y ~ x1 + x2 : x2 + x3", symbol = ":")

14 lnL_msel

grad_msel Gradient of the Log-likelihood Function of Multivariate Ordered Pro-
bit Model

Description

Calculates gradient of the log-likelihood function of multivariate ordered probit model.

Usage

grad_msel(
par,
control_lnL,
out_type = "grad",
n_sim = 1000L,
n_cores = 1L,
regularization = NULL

)

Arguments

par vector of parameters.

control_lnL list with some additional parameters.

out_type string representing the output type of the function.

n_sim the number of random draws for multivariate normal probabilities.

n_cores the number of cores to be used.

regularization list of regularization parameters.

lnL_msel Log-likelihood Function of Multivariate Ordered Probit Model

Description

Calculates log-likelihood function of multivariate ordered probit model.

Usage

lnL_msel(
par,
control_lnL,
out_type = "val",
n_sim = 1000L,
n_cores = 1L,
regularization = NULL

)

logLik.msel 15

Arguments

par vector of parameters.

control_lnL list with some additional parameters.

out_type string represeint the output type of the function.

n_sim the number of random draws for multivariate normal probabilities.

n_cores the number of cores to be used.

regularization list of regularization parameters.

logLik.msel Extract Log-Likelihood from a Fit of the msel Function.

Description

Extract Log-Likelihood from a model fit of the msel function.

Usage

S3 method for class 'msel'
logLik(object, ...)

Arguments

object object of class "msel"

... further arguments (currently ignored)

Details

If estimator == "2step" in msel then function may return NA value since two-step estimator of
covariance matrix may be not positively defined.

Value

Returns an object of class ’logLik’.

16 lrtest_msel

loocv Leave-one-out cross-validation

Description

This function calculates root mean squared error (RMSE) for leave-one-out cross-validation of lin-
ear regression estimated via least squares method.

Usage

loocv(fit)

Arguments

fit object of class lm.

Details

Fast analytical formula is used.

Value

This function returns a numeric value representing root mean squared error (RMSE) of leave-one-
out cross-validation (LOOCV).

Examples

set.seed(123)
Generate data according to linear regression
n <- 100
eps <- rnorm(n)
x <- runif(n)
y <- x + eps
Estimate the model
model <- lm(y ~ x)
Perform cross-validation
loocv(model)

lrtest_msel Likelihood ratio test

Description

This function performs chi-squared test for nested models.

Usage

lrtest_msel(model1, model2)

lrtest_msel 17

Arguments

model1 the first model.

model2 the second model.

Details

Arguments model1 and model2 should be objects of class that has implementations of logLik and
nobs methods. It is assumed that either model1 is nested into model2 or vice versa. More precisely
it is assumed that the model with smaller log-likelihood value is nested into the model with greater
log-likelihood value.

Arguments model1 and model2 may be the lists of models. If model1 is a list of models then it is
assumed that the number of degrees of freedom and log-likelihood of the first model are just a sum
of degrees of freedom and log-likelihoods of the models in this list. Similarly for model2.

If model1 or model2 is a list then the number of observations of the associated models are calcu-
lated as the sum of the numbers of observations of the models in corresponding lists. However
sometimes it may be misleading. For example, when bivariate probit model (full) is tested against
two independent probit models (restricted). Then it will be assumed that the number of observations
in the restricted model is twice the number of observations in the full model that is not the case.
Fortunately it will not affect the results of the likelihood ratio test.

Value

The function returns an object of class 'lrtest_msel' that is a list with the following elements:

• n1 - the number of observations in the first model.

• n2 - the number of observations in the second model.

• ll1 - log-likelihood value of the first model.

• ll2 - log-likelihood value of the second model.

• df1 - the number of parameters in the first model.

• df2 - the number of parameters in the second model.

• restrictions - the number of restrictions in the nested model.

• value - chi-squared (likelihood ratio) test statistic value.

• p_value - p-value of the chi-squared (likelihood ratio) test.

Examples

set.seed(123)
Generate data according to linear regression
n <- 100
eps <- rnorm(n)
x1 <- runif(n)
x2 <- runif(n)
y <- x1 + 0.2 * x2 + eps
Estimate full model
model1 <- lm(y ~ x1 + x2)
Estimate restricted (nested) model

18 msel

model2 <- lm(y ~ x1)
Likelihood ratio test results
lrtest_msel(model1, model2)

msel Multivariate and multinomial sample selection and endogenous
switching models with multiple outcomes.

Description

This function allows to estimate parameters of the multivariate and multinomial sample selection
and endogenous switching models with multiple outcomes. Both maximum-likelihood and two-step
estimators are implemented.

Usage

msel(
formula = NA,
formula2 = NA,
formula3 = NA,
data = NULL,
groups = NA,
groups2 = NA,
groups3 = NA,
marginal = list(),
opt_type = "optim",
opt_args = NA,
start = NULL,
estimator = "ml",
cov_type = "mm",
degrees = NA,
degrees3 = NA,
n_sim = 1000,
n_cores = 1,
control = list(),
regularization = list(),
type3 = "logit"

)

Arguments

formula a list which i-th element is an object of class "formula" describing the form
of the linear predictor (index) of the i-th ordinal equation. Mean and variance
equations should be separated by the ’|’ symbol.

formula2 a list which i-th element is an object of class "formula" describing the form of
the linear predictor (index) of the i-th continuous equation.

msel 19

formula3 an object of class "formula" describing the form of the linear predictor (index)
of the multinomial equation.

data a data frame containing the variables in the model.

groups a matrix which (i, j)-th element is the j-th ordinal category (value starting from
0) of the i-th dependent ordinal variable. Each row of this matrix describes
observable (in data) combination of categories - values of the ordinal dependent
variables i.e., from the left hand side of formula. Special category '-1' means
that variable in the j-th column is unobservable when other dependent variables
have particular values i.e., given in the same row. See ’Details’ for additional
information.

groups2 the same as groups argument but for the continuous dependent variables from
formula2. See ’Details’ for additional information.

groups3 the same as groups argument but for the multinomial dependent variable from
formula3. See ’Details’ for additional information.

marginal a list such that marginal[[i]] represents parameters of the marginal distribu-
tion of the random error of the i-th ordered equation and names(marginal)[i]
is a name of this distribution. Marginal distributions are the same as in pmnorm.

opt_type a character representing the optimization function to be used. If opt_type =
"optim" then optim will be used. If opt_type = "gena" then gena will be
applied i.e., a genetic algorithm. If opt_type = "pso" then pso will be used
i.e., a particle swarm optimization.

opt_args a list of input arguments for the optimization function selected via the opt_type
argument. See ’Details’ for additional information.

start a numeric vector of initial parameters’ values. It will be used as a starting point
for the optimization purposes. It is also possible to provide an object of class
'msel' then its 'par' element will be used as a starting point.

estimator a character determining estimation method. If estimator = "ml" then maximum-
likelihood method will be used. If estimator = "2step" then two-step estima-
tion procedure similar to Heckman’s method will be applied. See ’Details’ for
additional information.

cov_type a character determining the type of the covariance matrix estimate to be re-
turned. First, suppose that estimator = "ml" then the following estimators are
available. If cov_type = "hessian" then negative inverse of Hessian matrix
will be applied. If cov_type = "gop" then inverse of Jacobian outer products
will be used. If cov_type = "sandwich" then sandwich covariance matrix esti-
mator will be applied. if cov_type = "no" then an identity matrix will be used.
If cov_type = "mm" (default) then sandwich estimator is used along with the pe-
nalized log-likelihood function. Therefore if there is no regularization then "mm"
and "sandwhich" estimators are the same. Second, suppose that estimator =
"2step" then available estimators of the asymptotic covariance matrix are iden-
tity matrix cov_type = "no" and the method of moments cov_type = "mm".

degrees a vector of non-negative integers such that degrees[i] represents the degree
of the polynomial which elements are selectivity terms associated with the i-th
ordered equation. See ’Details’ for additional information.

20 msel

degrees3 a vector of non-negative integers such that degrees3[i] represents the degree
of the polynomial which elements are selectivity terms associated with the i-th
multinomial equation. See ’Details’ for additional information.

n_sim an integer representing the number of GHK draws when there are more than 3
ordered equations. Otherwise alternative (much more efficient) algorithms will
be used to calculate multivariate normal probabilities.

n_cores a positive integer representing the number of CPU cores used for the parallel
computing. If possible it is highly recommend to set it equal to the number of
available physical cores.

control a list of control parameters. See ’Details’ for additional information.

regularization a list of control parameters for regularization. Element ridge_ind is a vec-
tor of indexes of parameters subject to regularization according to quadratic
(ridge) penalty function. These indexes correspond to parameters from par out-
put element. Set show_ind argument of summary.msel to TRUE to see these
indexes. Element ridge_scale is a numeric vector of weights of the ridge
penalty function. Element ridge_location is a numeric vector of values to
be subtracted from the parameters before they pass into the penalty function.
Elements lasso_ind, lasso_scale and lasso_location are the same but for
the lasso penalty term.

type3 a character determining the type of the multinomial model to be considered.
If type3 = "logit" then multinomial logit model will be used. If type3 =
"probit" then multinomial probit model will be applied. See ’Details’ for ad-
ditional information.

Details

This function allows to estimate multivariate and multinomial sample selection and endogenous
switching models with multiple outcomes. These models are the systems of ordinal, continuous
and multinomial equations described by formula, formula2 and formula3 respectively.

Ordinal equations

Argument formula determines the regressors of the multivariate ordered probit model with the
heteroscedastic random errors:

z∗ji = wjiγj + σ∗
jiuji,

σ∗
ji = exp(w∗

jiγ
∗
j), ui ∼ N

0...
0

 ,Σ

 , i.i.d.,

zji =

0, if z∗ji ≤ cj1

1, if cj1 < z∗ji ≤ cj2

2, if cj2 < z∗ji ≤ cj3
...
mJ−1, if z∗(J−1)i > c(J−1)mj−1

,

zi = (z1i, ..., zJi)
T , ui = (u1i, u2i, ..., uJi)

T ,

msel 21

i ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., J},

where:

• n - the number of observations. If there are no omitted observations then n equals to nrow(data).

• J - the number of ordinal equations which equals to length(formula).

• z∗ji - an unobservable (latent) value of the j-th dependent ordinal variable.

• zji - an observable (ordinal) value of the j-th dependent ordinal variable.

• mj - the number of categories of zji ∈ {0, 1, ...,mj}.

• cjk - the k-th cut (threshold) of the j-th dependent ordinal variable.

• wji - the regressors of the j-th mean equation which should be described in formula[[j]].

• γj - the regression coefficients of the j-th mean equation.

• wjiγj - the linear predictor (index) of the j-th mean equation.

• ui - a multivariate normal random vector which elements are standard normal random vari-
ables.

• Σ - a correlation matrix of ui so Σt1t2 = corr (uit1 , uit2).

• σ∗
ji - a heteroscedastic standard deviation.

• σ∗
jiuji - the heteroscedastic random errors.

• w∗
ji - the regressors of the j-th variance equation which should be described in formula[[j]]

after ’|’ symbol.

• γ∗
j - the regression coefficients of the j-th variance equation.

• w∗
jiγ

∗
j - the linear predictor (index) of the j-th variance equation.

Constant terms (intercepts) are excluded from the model for identification purposes. If zji is a
binary variable then −cj1 may be interpreted as a constant term of the j-th ordinal equation. If all
zji are binary variables then the model becomes a multivariate probit.

By default the joint distribution of ui is multivariate normal. However by using marginal argu-
ment it is possible to consider the joint distribution that is determined by the Gaussian copula and
possibly non-normal marginal distributions. Specifically, names(marginal)[i] is the name of the
marginal distribution of uji and marginal[[i]] is the number of parameters of this distribution.
The marginal distributions are the same as in pmnorm.

Multinomial equation
Argument formula3 determines the regressors of the multinomial equation:

z̃∗ji = w̃iγ̃j + ũji, j ∈ {0, 1, ..., J̃ − 1},

z̃i = argmax
t∈{0,...,J̃−1}

z̃∗ti, ũi = (ũ0i, ũ1i, ..., ũ(J̃−1)i)
T ,

where:

• J̃ - the number of the alternatives i.e., possible values of the dependent variable of the multi-
nomial equation.

• z̃∗ji - an unobservable (latent) value of the j-th alternative. Usually z̃∗ji is interpreted as a utility
of the j-th alternative.

22 msel

• z̃i - a selected alternative i.e., one which provides the greatest utility z̃∗ji.

• w̃i - the regressors of the multinomial equation which should be described in formula3 and
assumed to be the same for all the alternatives.

• γ̃j - the regression coefficients of the j-th alternative’s equation.

• w̃iγ̃j - the linear predictor (index) of the j-th alternative’s equation.

• ũi - a vector of random errors.

For the identification purposes it is assumed that the regression coefficients of the last alternative
are zero γ̃J̃−1 = (0, ..., 0)T .

Joint distribution of ũi depends on the value of type3 argument. If type3 = "logit" then multino-
mial logit model is considered. It assumes that ũji are independent and their marginal distribution
is Gumbel (error value distribution). If type3 = "probit" then multinomial probit model is used so
it is assumed that joint distribution of ũi is multivariate normal with zero mean and the covariance
matrix Σ̃. For identification purposes it is also assumed that Σ̃11 = 1 so V ar(ũ0i) = 1. In addition
ũ(J̃−1)i = 0 which implies Σ̃t(J̃) = Σ̃(J̃)t = 0 for all t ∈ {0, ..., J̃ − 1}.

Continuous equations
Argument formula3 determines the regressors of the continuous equations:

y
(v)

r(v)i
= x

(v)
i β

(v)

r(v) + ε
(v)

r(v)i
,

r(v) ∈ {0, 1, ..., R(v) − 1}, v ∈ {1, ..., V },

where:

• V - the number of continuous equations.

• r(v) - the regime of the v-th continuous equation.

• y
(v)

r(v)i
- the r(v)-th potential outcome (in a sense of the Neyman-Rubin framework) of the v-th

continuous equation.

• R(v) - the number of the potential outcomes of the v-th continuous equation.

• x
(v)
i - the regressors of the v-th continuous equation. They are provided via formula2[[v]].

• β
(v)

r(v) - regression coefficients of the v-th continuous equation in the regime r(v).

• ε
(v)

r(v)i
- a random error of the v-th continuous equation in the regime r(v).

Estimation of the model with multivariate ordinal and multinomial equations
If formula2 is not provided then maximum-likelihood estimator is used estimator = "ml" to esti-
mate the parameters of the multivariate ordinal and multinomial equations.

If both formula and formula3 are provided then parameters of the multivariate ordered and multi-
nomial equations are estimated under the assumption that ui is independent of ũi. Therefore the
estimates are identical to those obtained by separate estimation of these models. We may relax the
independence assumption during future updates.

Estimation of the model with continuous equations
If formula and formula3 are not provided then it is assumed that each continuous equation has
only one regime so R(v) = 1 for each v ∈ {1, ..., V }.

msel 23

If estimator = "ml" then maximum-likelihood estimator is used under the assumption that the
distribution of random errors is multivariate normal. If estimator = "2step" then V -stage least
squares estimator is used. In the latter case v-th equation is estimated by the least squares estimator
and for every v0 such that v0 < v if y

(v0)
0i is included in x

(v)
i then y

(v0)
0i is substituted with its

estimate ŷ
(v0)
0i obtained on the v0-th step. Therefore if v0 < v then if some endogenous variable

appears on the left hand side of formula2[[v]] it should not appear on the right hand side of
formula2[[v0]].

Estimation of the model with ordinal outcomes and multivariate ordered selection

Suppose that zi represents the ordinal potential outcomes while the observable values are z
(o)
i =

g(1)(zi), where function g(1)(zi) converts unobservable values of zi to −1. Therefore z
(o)
ji instead

of zi appears on the left hand side of the formula[[j]].

For example, consider a binary variable for the employment status (0 - unemployed, 1 - employed)
and an ordinal variable z2i (ranging from 0 to 2) for job satisfaction (0 - unsatisfied, 1- satisfied, 2
- highly satisfied). Then z2i is observable only when z1i equals 1 since job satisfaction observable
only for working individuals. Consequently z

(o)
2i should be equal to -1 (minus one) whenever z1i

equals to 0:

z
(o)
i = g(1)(zi) =

(1, 2), if zi = (1, 2)

(1, 1), if zi = (1, 1)

(1, 0), if zi = (1, 0)

(0,−1), otherwise

Rows of the matrix groups determine all possible values of the function g(1)(zi). In this particular
example matrix groups should have the following form:

groups =

1 2
1 1
1 0
0 −1

 .

Notice that in this particular example it is necessary to ensure that in data if z(o)1i equals 0 then z
(o)
2i

equals to -1. Also in this case matrix groups will be created automatically so there is no need to
provide it manually.

By using groups argument it is straightforward to consider various other models with ordinal out-
comes and multivariate ordered selection mechanisms.

If some values of the ordinal variables zji are missing (by random) i.e., take NA value then the
contribution of other ordinal dependent variables (for the i-th observation) still may be included
into the likelihood function by manually substituting NA with -1 in the data. However, ensure that
this particular (missing) zji is not a regressor for other dependent variable that may happen in the
hierarchical systems.

It is useful to use groups argument to consider causal inference models. For example, suppose
that z1i represents a binary treatment variable for the university diploma (0 - no diploma, 1 - has
diploma). Also, z2i is a binary potential outcome for the employment status (0 - unemployed, 1 -
employed) of the individual if she has university diploma. Finally, z3i is a binary potential outcome
for the employment status (0 - unemployed, 1 - employed) if individual does not have university

24 msel

diploma. Since z2i is observable only if z1i = 1 and z3i is observable only when z2i = 0 we get:

z
(o)
i =

(1, 1,−1), if z1i = 1 and z2i = 1

(1, 0,−1), if z1i = 1 and z2i = 0

(0,−1, 1), if z1i = 0 and z3i = 1

(0,−1, 0), if z1i = 0 and z3i = 0

.

Therefore to estimate this model it is necessary to ensure that in data we have z
(o)
2i = −1 when

z
(o)
1i = 0 and z

(o)
3i = −1 if z(o)1i = 1. Also the groups argument should include all possible values

of z(o)i :

groups =

1 1 −1
1 0 −1
0 −1 1
0 −1 0

 .

Estimation of the model with continuous outcomes and multivariate ordered selection
To simplify the notations suppose that there is only one continuous equation with multiple regimes:

yri = xiβr + εri,

yi =

unobservable, if g(2)
(
z
(o)
i

)
= −1

y0i, if g(2)
(
z
(o)
i

)
= 0

y1i, if g(2)
(
z
(o)
i

)
= 1

...

y(R∗−1)i, if g(2)
(
z
(o)
i

)
= R∗ − 1

,

εi = (ε0i, ε1i, ..., ε(R∗−1)i), r ∈ {0, 1, ..., R∗ − 1},

where:

• yi - an observable continuous outcome.

• r - the index of the potential outcome.

• R∗ - the number of the regimes.

• yri - a continuous potential outcome i.e., the value of yi in the regime r.

• xi - the vector of regressors provided in formula2.

• βr - the regression coefficients in the r-th regime.

• g(2)(z
(o)
i) - a function determining which potential outcome is observable depending on the

observable values of the ordinal variables z(o)i .

• εi - a vector of random errors.

The value of groups2[i] argument specifies the value of g(2)(z(o)i) when z
(o)
i equals to groups[i,

]. The values of yi in data such that g(2)(z(o)i) = −1 should be set to NA.

For example, consider a system of equations for wage yi, employment status z1i (0 - unemployed,
1 - employed) and job satisfaction z2i (0 - unsatisfied, 1- satisfied, 2 - highly satisfied). Notice that

msel 25

wage and job satisfaction are observable only for working individuals. Also suppose that wage is
unobservable for unsatisfied workers and observable in different regimes for other workers. Namely,
for satisfied workers z2i = 1 we observe y0i and for highly satisfied workers z2i = 2 we observe
y1i.

To estimate this model it is necessary to manually specify the structure of the equations via groups
and groups2 arguments by providing all possible combinations of the ordinal variables and the
regimes of the continuous equation:

groups =

1 2
1 1
1 0
0 −1

 , groups2 =

1
0
−1
−1

 .

Notice that groups2[1] = 1 indicates that when groups[1,] = c(1, 2) i.e. z1i = 1 and z2i = 2
we observe yi in regime 1 corresponding to the wage of highly satisfied workers y1i. Similarly
groups2[2] = 0 indicates that when groups[2,] = c(1, 1) i.e., z1i = 1 and z2i = 1 we observe
yi in the regime 0 corresponding to the wage of the satisfied workers y0i. Also, groups3[3] = -1
means that when groups[3,] = c(1, 0) i.e., z1i = 1 and z2i = 0 we do not observe the wage
of the worker yi since he is unsatisfied. Finally, groups3[4] = -1 means that when groups[4,]

= c(0, -1) i.e., z1i = 0 and z
(o)
2i = −1 we do not observe the wage of the worker yi since he is

unemployed.

If the joint distribution of εi and ui is multivariate normal then according to Kossova and Potanin
(2018):

yri = xiβr +

J∑
j=1

Σ
(12)
j(r+1)λji + ε∗ri,

where:

ε∗ri = εri − E(εi|z1i, ...zJi) = εri −
J∑

j=1

Σ
(12)
j(r+1)λji,

λji = λ
(1)
ji + λ

(2)
ji , Σ

(12)
j(r+1) = cov(uji, εr+1),

λ
(1)
ji =

{
0, if zji = 0

−∂ lnP∗
i

∂aji
, otherwise

, λ
(2)
ji =

{
0, if zji = mj − 1

−∂ lnP∗
i

∂bji
, otherwise

,

P ∗
i (a1i, ..., aJi; b1i, ..., bJi) = P (a1i ≤ u1i ≤ b1i,, aJi ≤ uJi ≤ bJi),

aji =

{
−∞, if zji = 0
cjzji−wjiγj

σ∗
ji

, otherwise
, bji =

{
∞, if zji = mj − 1
cj(zji+1)−wjiγj

σ∗
ji

, otherwise
.

Notice that the regression equation has selectivity terms λji which may be correlated with xi.
Therefore until random errors ui and εi are correlated the least squares estimator of xi on yri is
inconsistent. To get consistent estimates of βr it is possible to use maximum-likelihood estimator
= "ml" or two-step (method of moments) estimator = "2step" estimator.

If the two-step estimator is used then on the first step λji are estimated as the functions of the
estimates of the multinomial heteroscedastic ordered probit model. On the second step least squares
regression of yri on xi and the first step estimates λ̂ji is used to estimate βr and Σ

(12)
j(r+1).

26 msel

If the joint distribution of random errors εi, ui is not multivariate normal then λji terms may enter
continuous equation non-linearly. Following Newey (2009) and E. Kossova, L. Kupriianova, and
B. Potanin (2020) it is assumed that:

yri = xiβr + ζiτr + ε∗i ,

where τr is a nλ-dimensional column vector and:

ζi = (ζ1(λi), ..., ζnλ
(λi)), λi = (λ1i, ..., λJi).

Functions ζt(λi) are specified manually by the user in the formula2 inside I(). For example, to
specify ζt(λi) = λ1i×λ2i it is sufficient to have a term I(lambda1 * lambda2) in formula2. Notice
that to avoid the confusions no variables in data should have the names containing "lambda".
Otherwise these variables will be dropped.

It is possible to specify ζt(λi) functions as the polynomial without interaction terms by using
degrees argument. Specifically, if degrees[j] = t then lambdaj, I(lambdaj ^ 2),...,I(lambdaj
^ t) terms are added to formula2. However, if degrees argument is used then no functions of
lambdaj should be provided manually in formula2. Otherwise it will be assumed that degrees
is a vector of zeros. Also if estimator = "2step", there is not lambdaj terms in formula2 and
degrees is NA then degrees will be converted in a vector of ones.

If there are multiple continuous equations then formula2 should be a list of formulas. Further, if
estimator = "2step" then the second step is a V -stage least squares estimator with lambda terms.
If they are provided via degrees argument then it should be a matrix which v-th row corresponds
to the v-th continuous equation.

For example, consider previous example with additional continuous equation for working hours
y
(2)
i which does not vary with the satisfaction of the workers z2i but observable only for the em-

ployed individuals z1i = 1. To estimate the system with this additional continuous equation simply
substitute all y(2)i (such that z1i = 0) in data with NA and specify:

groups =

1 2
1 1
1 0
0 −1

 , groups2 =

1 0
0 0
−1 0
−1 −1

 .

Notice that groups2[, 1] describes the regimes of the wage equation y
(1)
i while groups[, 2]

contains the regimes of the hours equation y
(2)
i . Note that formula of the first equation (wage)

should be specified in formula2[[1]] and formula of the second equation should be provided via
formula2[[2]] i.e., as the first and the second elements in a formula2 list correspondingly.

If marginal argument is used then aforementioned formula of λji is slightly modified to address
for the non-normal marginal distribution of uji.

Estimation of the model with continuous outcomes and multinomial selection
The only difference with the previous model is that the observable value of the continuous equation
depends on the value of the multinomial equation described in formula3. Therefore g(2)(z

(o)
i) is

substituted with g(3)(z̃i). Also groups3 argument instead of groups is used. Since there is only
a single multinomial equation argument groups3 is a vector. If groups3[k] = q and groups2[k,

v] = r then z̃i = q implies y
(v)
i = y

(v)
ri . Remind that a special value r = -1 implies that y(v)i is

unobservable.

msel 27

Only two-step estimator = "2step" estimator of this model is available that is similar to the one
described above. The only difference is the formula used to estimate selectivity terms. If type
= "logit" then two-step estimator of Dubin-McFadden (1984) is used so selectivity terms are as
follows:

λji =

{
− lnP (z̃i = j), if z̃i = j
P (z̃i=j) lnP (z̃i=j)

1−P (z̃i=j) , otherwise
,

where j ∈ {0, ..., J̃ − 1} and:

P (z̃i = j) =

e(w̃iγ̃j)

1+
J̃−2∑
q=0

e(w̃iγ̃q)

, if j ̸= J̃ − 1

1

1+
J̃−2∑
q=0

e(w̃iγ̃q)

, otherwise
.

If type = "probit" then two-step estimator of Kossova and Potanin (2022) is used with the selec-
tivity terms of the form:

λji =
(
A(z̃i)λ∗

i

)
j
,

where j ∈ {0, ..., J̃ − 2} and:

A
(j)
t1t2 =

1, if t1 = j + 1

−1, if t1 < j + 1 and t1 = t2

−1, if t1 > j + 1 and t1 = t2 + 1

0, otherwise

,

t1, t2 ∈ {1, ..., J̃ − 1},

λ∗
i = ∇ lnP (z̃i) = ∇ lnFũ(ji)

(
z̃
(ji)
1 , ..., z̃

(ji)

J̃−1

)
=

(
λ∗
1i, ..., λ

∗
(J̃−1)i

)T

,

ũ(ji) =
(
ũ0i − ũji, ũ1i − ũji, ..., ũ(j−1)i − ũji, ũ(j+1)i − ũji, ..., ũ(J̃−1)i − ũji

)
,

z̃(ji) = w̃i

(
(γ̃j − γ̃0) , (γ̃j − γ̃1) , ..., (γ̃j − γ̃j−1) , (γ̃j − γ̃j+1) , ...,

(
γ̃j − γ̃J̃−1

))
.

Probabilities P (zi) are calculated by using a cumulative distribution function of the multivariate
normal distribution with zero mean and the covariance matrix of ũ(ji).

In formula2 selectivity terms associated with the multinomial equation should be named lambdaj_mn
instead of lambdaj. Argument degrees3 is similar to degrees.

Consider a simple example of this model. Suppose that z̃i is a multinomial variable for the em-
ployment status (0 - unemployed, 1 - working in IT sector, 2 - working in other sector). Wage yi is
unobservable for unemployed z̃i = 0, equals to y0i in IT sector z̃i = 1 and equals to y1i in other
sectors z̃i = 2. To estimate this model set groups3 = (0, 1, 2) and groups2 = (-1, 0, 1). Then
substitute all yi such that z̃i = 0 with NA.

Estimation of the model with continuous outcomes and mixed selection

28 msel

It is possible to consider the model with continuous outcomes and both multinomial and ordinal
selection equations. Remind that it is assumed that random errors of the ordered and multinomial
equations are independent. Therefore if formula and formula3 are provided then both lambdaj and
lambdaj_mn are included in formula2. Only two-step estimator estimator = "2step" is available
for this model.

Missing values
If any of the left hand side variables (regressors) of formula[[j]] is missing then the right hand
side variable of formula[[j]] will be set to NA in data. Similar is true for formula2 and formula3.

Additional information
Functions pmnorm and dmnorm are used internally for calculation of multivariate normal probabili-
ties, densities and their derivatives.

Currently control has no input arguments intended for the users. This argument is used for some
internal purposes of the package.

Optimization always starts with optim. If opt_type = "gena" or opt_type = "pso" then gena
or pso is used to proceed optimization starting from initial point provided by optim. Manual ar-
guments to optim should be provided in a form of a list through opt_args$optim. Similarly
opt_args$gena and opt_args$pso provide manual arguments to gena and pso. For example to
provide Nelder-Mead optimizer to optim and restrict the number of genetic algorithm iterations
to 10 make opt_args = list(optim = list(method = "Nelder-Mead"),gena = list(maxiter =
10)).

If estimator = "2step" then it is possible to precalculate the first step model with msel function
and pass it through the formula argument. It allows to experiment with various formula2 and
degrees specifications without extra computational burden associated with the first step estimation.

If estimator = "2step" then the method of moments estimator of the asymptotic covariance matrix
is used as described in Meijer and Wansbeek (2007).

Value

This function returns an object of class "msel". It is a list which may contain the following ele-
ments:

• par - a vector of the estimates of the parameters.

• estimator - the same as the estimator input argument.

• type3 - the same as the type3 input argument.

• formula - the same as formula input argument but all elements are coerced to "formula"
type.

• formula2 - the same as formula2 input argument but all elements are coerced to "formula"
type.

• formula3 - the same as formula3 input argument but all elements are coerced to "formula"
type.

• model1 - an object of class "msel" with the first step estimation results.

• data - the same as data input argument but without missing (by random) values.

• W_mean - a list such that W_mean[[j]] is a matrix of the regressors wji of the mean equation
of z∗ji.

msel 29

• W_var - a list such that W_var[[j]] is a matrix of the regressors w∗
ji of the variance equation

of z∗ji.

• X - a list such that X[[v]] is a numeric matrix of regressors x(v)
i of the v-th continuous equation

y
(v)
i .

• W_mn - a matrix of the regressors w̃i of the multinomial equation of z̃∗ji.

• dependent - a numeric matrix which j-th column dependent[, j] is a vector of the ordinal
dependent variable z

(o)
ji values.

• dependent2 - a numeric matrix which v-th column dependent2[, v] is a vector of the con-
tinuous dependent variable y

(v)
i values.

• dependent3 - a numeric vector of values of the multinomial dependent variable z̃j .

• groups - the same as groups input argument or automatically generated matrix representing
the structure of the system of equations. Please, see ’Details’ section above for more informa-
tion.

• groups2 - the same as groups2 input argument or automatically generated matrix represent-
ing the structure of the system of equations. Please, see ’Details’ section above for more
information.

• groups3 - the same as groups3 input argument or automatically generated matrix represent-
ing the structure of the system of equations. Please, see ’Details’ section above for more
information.

• marginal - the same as marginal input argument.

• ind - a list containing some indexes partition of the model (not intended for the users).

• start - the same as the start input argument.

• twostep - a list such that twostep[[v]][[r + 1]] is an object of class "lm" associated with
the second step estimates of the v-th equation in the regime r.

• y_pred - a numeric matrix such that y_pred[, v] is a second step prediction of the y
(v)
i .

• coef - a list which j-th element coef[[j]] is a numeric vector representing γ̂j .

• coef_var - a list which j-th element coef_var[[j]] is a numeric vector representing γ̂∗
j .

• cuts - a list which j-th element cuts[[j]] is a numeric vector representing ĉj .

• coef2 - a list of numeric matrices such that coef2[[v]][, r + 1] is a numeric vector repre-
senting β̂

(v)

r(v) .

• sigma - a numeric matrix such that sigma[j, t] is a numeric value representing Ĉov(uji, uti).

• var2 - a list of numeric vectors such that var2[[v]][r + 1] represents V̂ ar(ε
(v)
ri).

• cov2 - a list of numeric matrices which element sigma2[[v]][j, r + 1] represents Ĉov(uji, ε
(v)
ri)).

• sigma2 - a list of numeric matrices representing the estimates of the covariances between
random errors of the continuous equations in different regimes Ĉov(ε

(v)

r(v)i
, ε

(t)

r(t)i
).

• marginal_par - a list such that marginal_par[[j]] is a numeric vector of estimates of the
parameters of the marginal distribution of uji.

• coef3 - a numeric matrix such that coef3[j + 1,] is a numerc vector representing ˆ̃γj .

• sigma3 - a numeric matrix such that sigma3[j + 1, t + 1] is a numeric value representing
Ĉov(ũji, ũti).

30 msel

• lambda - a numeric matrix such that lambda[i, j] corresponds to λ̂ji of the ordinal equations.

• lambda_mn - a numeric matrix such that lambda_mn[i, j] corresponds to λ̂ji of the multino-
mial equation.

• H - if estimator = "ml" then H is a Hessian matrix of the log-likelihood function. If estimator
= "2step" then H is a numeric matrix of the derivatives of mean sample scores respect to the
estimated parameters.

• J - if estimator = "ml" then J is a Jacobian matrix of the log-likelihood function. If estimator
= "2step" then J is a numeric matrix such that J[, s] is a vector of sample scores associated
with the parameter par[s].

• cov_type - the same as cov_type input argument.

• cov - an estimate of the asymptotic covariance matrix of the parameters’ estimator.

• tbl - a list of special tables used to create a summary (not intended for the users).

• se - a numeric vector of standard errors of the estimates.

• p_value - a numeric vectors of the p-values of the tests on the significance of the estimated
parameters where the null hypothesis is that corresponding parameter is zero.

• logLik - the value of log-likelihood function at par.

• other - a list of additional variables not intended for the users.

It is highly recommended to get the estimates of the parameters via coef.msel function.

References

W. K. Newey (2009). Two-step series estimation of sample selection models. The Econometrics
Journal, vol. 12(1), pages 217-229.

E. Kossova, B. Potanin (2018). Heckman method and switching regression model multivariate
generalization. Applied Econometrics, vol. 50, pages 114-143.

E. Kossova, L. Kupriianova, B. Potanin (2020). Parametric and semiparametric multivariate sample
selection models estimators’ accuracy: Comparative analysis on simulated data. Applied Econo-
metrics, vol. 57, pages 119-139.

E. Kossova, B. Potanin (2022). Estimation of Gaussian multinomial endogenous switching model.
Applied Econometrics, vol. 67, pages 121-143.

E. Meijer, T. Wansbeek (2007). The sample selection model from a method of moments perspecrive.
Econometric Reviews, vol. 26(1), pages 25-51.

Examples

CPS data example

Set seed for reproducibility
set.seed(123)

Upload data
data(cps)

msel 31

Prepare the variable for education
cps$educ <- NA
cps$educ[cps$basic == 1] <- 0
cps$educ[cps$bachelor == 1] <- 1
cps$educ[cps$master == 1] <- 2

Labor supply (probit) model
f_work <- work ~ age + I(age ^ 2) + bachelor + master + health +

slwage + nchild
model1 <- msel(f_work, data = cps)
summary(model1)

Education choice (ordered probit) model
f_educ <- educ ~ age + I(age ^ 2) + sbachelor + smaster
model2 <- msel(f_educ, data = cps)
summary(model2)

Education choice (multinomial logit) model
model3 <- msel(formula3 = f_educ, data = cps, type3 = "logit")
summary(model3)

Education choice (multinomial probit) model
model4 <- msel(formula3 = f_educ, data = cps, type3 = "probit")
summary(model4)

Labor supply with endogenous ordinal education
treatment (recursive or hierarchical ordered probit) model
model5 <- msel(list(f_work, f_educ), data = cps)
summary(model5)

Sample selection (on employment) Heckman's model
f_lwage <- lwage ~ age + I(age ^ 2) +

bachelor + master + health
model6 <- msel(f_work, f_lwage, data = cps)
summary(model6)

Ordinal endogenous education treatment with non-random
sample selection into employment
model7 <- msel(list(f_work, f_educ), f_lwage, data = cps)
summary(model7)

Ordinal endogenous switching on education model with
non-random selection into employment
groups <- cbind(c(1, 1, 1, 0, 0, 0),

c(0, 1, 2, 0, 1, 2))
groups2 <- matrix(c(0, 1, 2, -1, -1, -1), ncol = 1)
f_lwage2 <- lwage ~ age + I(age ^ 2) + health
model8 <- msel(list(f_work, f_educ), f_lwage2,

groups = groups, groups2 = groups2,
data = cps)

summary(model8)

Multinomial endogenous switching on education model with

32 msel

non-random selection into employment
groups <- matrix(c(1, 1, 1, 0, 0, 0), ncol = 1)
groups2 <- matrix(c(0, 1, 2, -1, -1, -1), ncol = 1)
groups3 <- c(0, 1, 2, 0, 1, 2)
model9 <- msel(f_work, f_lwage2, f_educ,

groups = groups, groups2 = groups2,
groups3 = groups3, data = cps,
estimator = "2step")

summary(model9)

Simulated data example 1
Ordered probit and other univariate
ordered choice models

Step 1
Simulation of the data

Load required package
library("mnorm")

Set seed for reproducibility
set.seed(123)

The number of observations
n <- 1000

Regressors (covariates)
w1 <- runif(n = n, min = -1, max = 1)
w2 <- runif(n = n, min = -1, max = 1)

Random errors
u <- rnorm(n = n, mean = 0, sd = 1)

Coefficients
gamma <- c(-1, 2)

Linear predictor (index)
li <- gamma[1] * w1 + gamma[2] * w2

Latent variable
z_star <- li + u

Cuts
cuts <- c(-1, 0.5, 2)

Observable ordinal outcome
z <- rep(0, n)
z[(z_star > cuts[1]) & (z_star <= cuts[2])] <- 1

msel 33

z[(z_star > cuts[2]) & (z_star <= cuts[3])] <- 2
z[z_star > cuts[3]] <- 3
table(z)

Data
data <- data.frame(w1 = w1, w2 = w2, z = z)

Step 2
Estimation of the parameters

Estimation
model <- msel(z ~ w1 + w2, data = data)
summary(model)

Compare the estimates and true values of the parameters
regression coefficients

gamma_est <- coef(model, type = "coef", eq = 1)
cbind(true = gamma, estimate = gamma_est)

cuts
cuts_est <- coef(model, type = "cuts", eq = 1)
cbind(true = cuts, estimate = cuts_est)

Step 3
Estimation of the probabilities and marginal effects

Predict conditional probability of the dependent variable
equals to 2 for every observation in a sample.
P(z = 2 | w)
prob <- predict(model, group = 2, type = "prob")
head(prob)

Calculate mean marginal effect of w2 on P(z = 1 | w)
mean(predict(model, group = 1, type = "prob", me = "w2"))

Calculate probabilities and marginal effects
for manually provided observations.

new data
newdata <- data.frame(z = c(1, 1),

w1 = c(0.5, 0.2),
w2 = c(-0.3, 0.8))

probability P(z = 2 | w)
predict(model, group = 2, type = "prob", newdata = newdata)

linear predictor (index)
predict(model, type = "li", newdata = newdata)

marginal effect of w1 on P(z = 2 | w)
predict(model, group = 2, type = "prob", newdata = newdata, me = "w1")

marginal effect of w1 and w2 on P(z = 3 | w)
predict(model, group = 3, type = "prob",

newdata = newdata, me = c("w1", "w2"))

34 msel

marginal effect of w2 on the linear predictor (index)
predict(model, group = 2, type = "li", newdata = newdata, me = "w2")

discrete marginal effect:
P(z = 2 | w1 = 0.5, w2) - P(z = 2 | w1 = 0.2, w2)

predict(model, group = 2, type = "prob", newdata = newdata,
me = "w2", eps = c(0.2, 0.5))

Step 4
Ordered logit model

Estimate ordered logit model with a unit variance
that is just a matter of reparametrization i.e.,
do not affect signs and significance of the coefficients
and dot not affect at all the marginal effects
logit <- msel(z ~ w1 + w2, data = data, marginal = list("logistic" = 0))
summary(logit)

Compare ordered probit and ordered logit models
using Akaike and Bayesian information criteria

AIC
c(probit = AIC(model), logit = AIC(logit))

BIC
c(probit = BIC(model), logit = BIC(logit))

Estimate some probabilities and marginal effects
probability P(z = 1 | w)

predict(logit, group = 1, type = "prob", newdata = newdata)
marginal effect of w2 on P(z = 1 | w)

predict(logit, group = 1, type = "prob", newdata = newdata, me = "w2")

Step 5
Semiparametric ordered choice model with
Gallant and Nychka distribution

Estimate semiparametric model
pgn <- msel(z ~ w1 + w2, data = data, marginal = list("PGN" = 2))
summary(pgn)

Estimate some probabilities and marginal effects
probability P(z = 3 | w)

predict(pgn, group = 3, type = "prob", newdata = newdata)
marginal effect of w2 on P(z = 3 | w)

predict(pgn, group = 3, type = "prob", newdata = newdata, me = "w2")

Test the normality assumption via the likelihood ratio test
summary(lrtest_msel(model, pgn))

Test the normality assumption via the Wald test
test_fn <- function(object)

msel 35

{
marginal_par <- coef(object, type = "marginal", eq = 1)
return(marginal_par)

}
test_result <- test_msel(object = pgn, test = "wald", fn = test_fn)
summary(test_result)

Simulated data example 2
Heteroscedastic ordered probit model

Load required package
library("mnorm")

Step 1
Simulation of the data

Set seed for reproducibility
set.seed(123)

The number of observations
n <- 1000

Regressors (covariates)
w1 <- runif(n = n, min = -1, max = 1)
w2 <- runif(n = n, min = -1, max = 1)
w3 <- runif(n = n, min = -1, max = 1)

Random errors
u <- rnorm(n, mean = 0, sd = 1)

Coefficients of the mean equation
gamma <- c(-1, 2)

Coefficients of the variance equation
gamma_het <- c(0.5, -1)

Linear predictor (index) of the mean equation
li <- gamma[1] * w1 + gamma[2] * w2

Linear predictor (index) of the variance equation
li_het <- gamma_het[1] * w2 + gamma_het[2] * w3

Heteroscedastic stdandard deviation
i.e., value of the variance equation
sd_het <- exp(li_het)

Latent variable

36 msel

z_star <- li + u * sd_het

Cuts
cuts <- c(-1, 0.5, 2)

Observable ordinal outcome
z <- rep(0, n)
z[(z_star > cuts[1]) & (z_star <= cuts[2])] <- 1
z[(z_star > cuts[2]) & (z_star <= cuts[3])] <- 2
z[z_star > cuts[3]] <- 3
table(z)

Data
data <- data.frame(w1 = w1, w2 = w2, w3 = w3, z = z)

Step 2
Estimation of the parameters

Estimation
model <- msel(z ~ w1 + w2 | w2 + w3,

data = data)
summary(model)

Compare the estimates and true values of the parameters
regression coefficients of the mean equation

gamma_est <- coef(model, type = "coef", eq = 1)
cbind(true = gamma, estimate = gamma_est)

regression coefficients of the variance equation
gamma_het_est <- coef(model, type = "coef_var", eq = 1)
cbind(true = gamma_het, estimate = gamma_het_est)

cuts
cuts_est <- coef(model, type = "cuts", eq = 1)
cbind(true = cuts, estimate = cuts_est)

Likelihood-ratio test for the homoscedasticity
model0 <- msel(z ~ w1 + w2, data = data)
summary(lrtest_msel(model, model0))

Wald test for the homoscedasticity
test_fn <- function(object)
{

val <- coef(object, type = "coef_var", eq = 1)
return(val)

}
test_result <- test_msel(model, test = "wald", fn = test_fn)
summary(test_result)

Step 3
Estimation of the probabilities and marginal effects

msel 37

Predict probability of the dependent variable
equals to 2 for every observation in a sample
P(z = 2 | w)
prob <- predict(model, group = 2, type = "prob")
head(prob)

Calculate mean marginal effect of w2 on P(z = 1 | w)
mean(predict(model, group = 1, type = "prob", me = "w2"))

Estimate conditional probabilities, linear predictors (indexes) and
heteroscedastic standard deviations for manually
provided observations.

new data
newdata <- data.frame(z = c(1, 1),

w1 = c(0.5, 0.2),
w2 = c(-0.3, 0.8),
w3 = c(0.6, 0.1))

probability P(z = 2 | w)
predict(model, group = 2, type = "prob", newdata = newdata)

linear predictor (index)
predict(model, type = "li", newdata = newdata)

standard deviation
predict(model, type = "sd", newdata = newdata)

marginal effect of w3 on P(z = 3 | w)
predict(model, group = 3, type = "prob", newdata = newdata, me = "w3")

marginal effect of w2 on the standard error
predict(model, group = 2, type = "sd", newdata = newdata, me = "w2")

discrete marginal effect:
P(Z = 2 | w1 = 0.5, w2) - P(Z = 2 | w1 = 0.2, w2)

predict(model, group = 2, type = "prob", newdata = newdata,
me = "w2", eps = c(0.2, 0.5))

Simulated data example 3
Bivariate ordered probit model with
heteroscedastic second equation

Load required package
library("mnorm")

Step 1
Simulation of the data

Set seed for reproducibility
set.seed(123)

The number of observations

38 msel

n <- 1000

Regressors (covariates)
w1 <- runif(n = n, min = -1, max = 1)
w2 <- runif(n = n, min = -1, max = 1)
w3 <- runif(n = n, min = -1, max = 1)
w4 <- runif(n = n, min = -1, max = 1)

Covariance matrix of random errors
rho <- 0.5
sigma <- matrix(c(1, rho,

rho, 1),
nrow = 2)

Random errors
u <- mnorm::rmnorm(n = n, mean = c(0, 0), sigma = sigma)

Coefficients
gamma1 <- c(-1, 2)
gamma2 <- c(1, 1.5)

Coefficients of the variance equation
gamma2_het <- c(0.5, -1)

Linear predictors (indexes)
li1 <- gamma1[1] * w1 + gamma1[2] * w2
li2 <- gamma2[1] * w2 + gamma2[2] * w3

Linear predictor (index) of the variance equation
li2_het <- gamma2_het[1] * w2 + gamma2_het[2] * w4

Heteroscedastic stdandard deviation
i.e. value of variance equation
sd2_het <- exp(li2_het)

Latent variables
z1_star <- li1 + u[, 1]
z2_star <- li2 + u[, 2] * sd2_het

Cuts
cuts1 <- c(-1, 0.5, 2)
cuts2 <- c(-2, 0)

Observable ordinal outcome
first outcome

z1 <- rep(0, n)
z1[(z1_star > cuts1[1]) & (z1_star <= cuts1[2])] <- 1
z1[(z1_star > cuts1[2]) & (z1_star <= cuts1[3])] <- 2
z1[z1_star > cuts1[3]] <- 3

second outcome
z2 <- rep(0, n)
z2[(z2_star > cuts2[1]) & (z2_star <= cuts2[2])] <- 1
z2[z2_star > cuts2[2]] <- 2

msel 39

distribution
table(z1, z2)

Data
data <- data.frame(w1 = w1, w2 = w2, w3 = w3,

w4 = w4, z1 = z1, z2 = z2)

Step 2
Estimation of the parameters

Estimation
model <- msel(list(z1 ~ w1 + w2,

z2 ~ w2 + w3 | w2 + w4),
data = data)

summary(model)

Compare the estimates and true values of parameters
regression coefficients of the first equation

gamma1_est <- coef(model, type = "coef", eq = 1)
cbind(true = gamma1, estimate = gamma1_est)

regression coefficients of the second equation
gamma2_est <- coef(model, type = "coef", eq = 2)
cbind(true = gamma2, estimate = gamma2_est)

cuts of the first equation
cuts1_est <- coef(model, type = "cuts", eq = 1)
cbind(true = cuts1, estimate = cuts1_est)

cuts of the second equation
cuts2_est <- coef(model, type = "cuts", eq = 2)
cbind(true = cuts2, estimate = cuts2_est)

correlation coefficients
rho_est <- coef(model, type = "cov1", eq = c(1, 2))
cbind(true = rho, estimate = rho_est)

regression coefficients of the variance equation
gamma2_het_est <- coef(model, type = "coef_var", eq = 2)
cbind(true = gamma2_het, estimate = gamma2_het_est)

Step 3
Estimation of the probabilities and linear predictors (indexes)

Predict probability P(z1 = 2, z2 = 0 | w)
prob <- predict(model, group = c(2, 0), type = "prob")
head(prob)

Calculate mean marginal effect of w2 on:
P(z1 = 1 | w)

mean(predict(model, group = c(1, -1), type = "prob", me = "w2"))
P(z1 = 1, z2 = 0 | w)

mean(predict(model, group = c(1, 0), type = "prob", me = "w2"))

40 msel

Calculate conditional probabilities and linear predictors (indexes)
for the manually provided observations.

new data
newdata <- data.frame(z1 = c(1, 1),

z2 = c(1, 1),
w1 = c(0.5, 0.2),
w2 = c(-0.3, 0.8),
w3 = c(0.6, 0.1),
w4 = c(0.3, -0.5))

probability P(z1 = 2, z2 = 0 | w)
predict(model, group = c(2, 0), type = "prob", newdata = newdata)

linear predictor (index)
predict(model, type = "li", newdata = newdata)

marginal probability P(z2 = 1 | w)
predict(model, group = c(-1, 1), type = "prob", newdata = newdata)

marginal probability P(z1 = 3 | w)
predict(model, group = c(3, -1), type = "prob", newdata = newdata)

conditional probability P(z1 = 2 | z2 = 0, w)
predict(model, group = c(2, 0), given_ind = 2,

type = "prob", newdata = newdata)
conditional probability P(z2 = 1 | z1 = 3, w)

predict(model, group = c(3, 1), given_ind = 1,
type = "prob", newdata = newdata)

marginal effect of w4 on P(Z2 = 2 | w)
predict(model, group = c(-1, 2),

type = "prob", newdata = newdata, me = "w4")
marginal effect of w4 on P(z1 = 3, Z2 = 2 | w)

predict(model, group = c(3, 2),
type = "prob", newdata = newdata, me = "w4")

marginal effect of w4 on P(z1 = 3 | z2 = 2, w)
predict(model, group = c(3, 2), given_ind = 2,

type = "prob", newdata = newdata, me = "w4")

Step 4
Replication under the non-random sample selection

Suppose that z2 is unobservable when z1 = 1 or z1 = 3
z2[(z1 == 1) | (z1 == 3)] <- -1
data$z2 <- z2

Replicate the estimation procedure
model <- msel(list(z1 ~ w1 + w2,

z2 ~ w2 + w3 | w2 + w4),
cov_type = "gop", data = data)

summary(model)

Compare estimates and true values of the parameters
regression coefficients of the first equation

gamma1_est <- coef(model, type = "coef", eq = 1)
cbind(true = gamma1, estimate = gamma1_est)

regression coefficients of the second equation

msel 41

gamma2_est <- coef(model, type = "coef", eq = 2)
cbind(true = gamma2, estimate = gamma2_est)

cuts of the first equation
cuts1_est <- coef(model, type = "cuts", eq = 1)
cbind(true = cuts1, estimate = cuts1_est)

cuts of the second equation
cuts2_est <- coef(model, type = "cuts", eq = 2)
cbind(true = cuts2, estimate = cuts2_est)

correlation coefficient
rho_est <- coef(model, type = "cov1", eq = c(1, 2))
cbind(true = rho, estimate = rho_est)

regression coefficients of the variance equation
gamma2_het_est <- coef(model, type = "coef_var", eq = 2)
cbind(true = gamma2_het, estimate = gamma2_het_est)

Step 5
Semiparametric model with marginal logistic and PGN distributions

Estimate the model
model <- msel(list(z1 ~ w1 + w2,

z2 ~ w2 + w3 | w2 + w4),
data = data, marginal = list(PGN = 3, logistic = NULL))

summary(model)

Simulated data example 4
Heckman model with ordinal
selection mechanism

Load required package
library("mnorm")

Step 1
Simulation of the data

Set seed for reproducibility
set.seed(123)

The number of observations
n <- 1000

Regressors (covariates)
w1 <- runif(n = n, min = -1, max = 1)
w2 <- runif(n = n, min = -1, max = 1)
w3 <- runif(n = n, min = -1, max = 1)

42 msel

Random errors
rho <- 0.5
var.y <- 0.3
sd.y <- sqrt(var.y)
sigma <- matrix(c(1, rho * sd.y,

rho * sd.y, var.y),
nrow = 2)

errors <- mnorm::rmnorm(n = n, mean = c(0, 0), sigma = sigma)
u <- errors[, 1]
eps <- errors[, 2]

Coefficients
gamma <- c(-1, 2)
beta <- c(1, -1, 1)

Linear predictor (index)
li <- gamma[1] * w1 + gamma[2] * w2
li.y <- beta[1] + beta[2] * w1 + beta[3] * w3

Latent variable
z_star <- li + u
y_star <- li.y + eps

Cuts
cuts <- c(-1, 0.5, 2)

Observable ordered outcome
z <- rep(0, n)
z[(z_star > cuts[1]) & (z_star <= cuts[2])] <- 1
z[(z_star > cuts[2]) & (z_star <= cuts[3])] <- 2
z[z_star > cuts[3]] <- 3
table(z)

Observable continuous outcome such
that outcome 'y' is observable only
when 'z > 1' and unobservable otherwise
i.e. when 'z <= 1' we code 'y' as 'NA'
y <- y_star
y[z <= 1] <- NA

Data
data <- data.frame(w1 = w1, w2 = w2, w3 = w3,

z = z, y = y)

Step 2
Estimation of parameters

Estimation
model <- msel(z ~ w1 + w2, y ~ w1 + w3, data = data)
summary(model)

msel 43

Compare estimates and true values of the parameters
regression coefficients of the ordinal equation

gamma_est <- coef(model, type = "coef", eq = 1)
cbind(true = gamma, estimate = gamma_est)

cuts
cuts_est <- coef(model, type = "cuts", eq = 1)
cbind(true = cuts, estimate = cuts_est)

regression coefficients of the continuous equation
beta_est <- coef(model, type = "coef2", eq2 = 1, regime = 0)
cbind(true = beta, estimate = beta_est)

variance
var.y_est <- coef(model, type = "var", eq2 = 1, regime = 0)
cbind(true = var.y, estimate = var.y_est)

covariance
cov_est <- coef(model, type = "cov12", eq = 1, eq2 = 1)
cbind(true = rho * sd.y, estimate = cov_est)

Step 3
Estimation of the expectations and marginal effects

New data
newdata <- data.frame(z = 1,

y = 1,
w1 = 0.1,
w2 = 0.2,
w3 = 0.3)

Predict the unconditional expectation of the continuous outcome
E(y | w)
predict(model, group = -1, group2 = 0, newdata = newdata)

Predict the conditional expectations of the continuous outcome
E(y | z = 2, w)

predict(model, group = 2, group2 = 0, newdata = newdata)
E(y | z = 0, w)

predict(model, group = 0, group2 = 0, newdata = newdata)

Step 4
Classic Heckman's two-step estimation procedure

Estimate the model by using the two-step estimator
model_ts <- msel(z ~ w1 + w2, y ~ w1 + w3,

data = data, estimator = "2step")
summary(model_ts)

Check the estimates accuracy
tbl <- cbind(true = beta,

ml = model$coef2[[1]][1,],
twostep = model_ts$coef2[[1]][1, -4])

44 msel

print(tbl)

Step 5
Semiparametric estimation procedure

Estimate the model using Lee's method
assuming logistic distribution of the
random errors of the selection equation
model_Lee <- msel(z ~ w1 + w2,

y ~ w1 + w3,
data = data, estimator = "2step",
marginal = list(logistic = NULL))

summary(model_Lee)

One step estimation is also available as well
as more complex marginal distributions.
Consider random errors in selection equation
following PGN distribution with three parameters.
model_sp <- msel(z ~ w1 + w2,

y ~ w1 + w3,
data = data, marginal = list(PGN = 3))

summary(model_sp)

To additionally relax normality assumption of
random error of continuous equation it is possible
to use Newey's two-step procedure.
model_Newey <- msel(z ~ w1 + w2,

y ~ w1 + w3,
data = data, marginal = list(logistic = 0),
estimator = "2step", degrees = 2)

summary(model_Newey)

Simulated data example 5
Endogenous switching model with
heteroscedastic ordered selection
mechanism

Load required package
library("mnorm")

Step 1
Simulation of the data

Set seed for reproducibility
set.seed(123)

msel 45

The number of observations
n <- 1000

Regressors (covariates)
w1 <- runif(n = n, min = -1, max = 1)
w2 <- runif(n = n, min = -1, max = 1)
w3 <- runif(n = n, min = -1, max = 1)

Random errors
rho_0 <- -0.8
rho_1 <- -0.7
var2_0 <- 0.9
var2_1 <- 1
sd_y_0 <- sqrt(var2_0)
sd_y_1 <- sqrt(var2_1)
cor_y_01 <- 0.7
cov2_01 <- sd_y_0 * sd_y_1 * cor_y_01
cov2_z_0 <- rho_0 * sd_y_0
cov2_z_1 <- rho_1 * sd_y_1
sigma <- matrix(c(1, cov2_z_0, cov2_z_1,

cov2_z_0, var2_0, cov2_01,
cov2_z_1, cov2_01, var2_1),

nrow = 3)
errors <- mnorm::rmnorm(n = n, mean = c(0, 0, 0), sigma = sigma)
u <- errors[, 1]
eps_0 <- errors[, 2]
eps_1 <- errors[, 3]

Coefficients
gamma <- c(-1, 2)
gamma_het <- c(0.5, -1)
beta_0 <- c(1, -1, 1)
beta_1 <- c(2, -1.5, 0.5)

Linear predictor (index) of the ordinal equation
mean

li <- gamma[1] * w1 + gamma[2] * w2
variance

li_het <- gamma_het[1] * w2 + gamma_het[2] * w3

Linear predictor (index) of the continuous equation
regime 0

li_y_0 <- beta_0[1] + beta_0[2] * w1 + beta_0[3] * w3
regime 1

li_y_1 <- beta_1[1] + beta_1[2] * w1 + beta_1[3] * w3

Latent variable
z_star <- li + u * exp(li_het)
y_0_star <- li_y_0 + eps_0
y_1_star <- li_y_1 + eps_1

Cuts

46 msel

cuts <- c(-1, 0.5, 2)

Observable ordinal outcome
z <- rep(0, n)
z[(z_star > cuts[1]) & (z_star <= cuts[2])] <- 1
z[(z_star > cuts[2]) & (z_star <= cuts[3])] <- 2
z[z_star > cuts[3]] <- 3
table(z)

Observable continuous outcome such that y' is
observable in regime 1 when 'z = 1',
observable in regime 0 when 'z <= 1',
unobservable when 'z = 0'
y <- rep(NA, n)
y[z == 0] <- NA
y[z == 1] <- y_0_star[z == 1]
y[z > 1] <- y_1_star[z > 1]

Data
data <- data.frame(w1 = w1, w2 = w2, w3 = w3,

z = z, y = y)

Step 2
Estimation of the parameters

Assign groups
groups <- matrix(0:3, ncol = 1)
groups2 <- matrix(c(-1, 0, 1, 1), ncol = 1)

Estimation
model <- msel(list(z ~ w1 + w2 | w2 + w3),

list(y ~ w1 + w3),
groups = groups, groups2 = groups2,
data = data)

summary(model)

Compare estimates and true values of parameters
regression coefficients of the ordinal equation

gamma_est <- coef(model, type = "coef", eq = 1)
gamma_het_est <- coef(model, type = "coef_var", eq = 1)
cbind(true = gamma, estimate = gamma_est)
cbind(true = gamma_het, estimate = gamma_het_est)

cuts
cuts_est <- coef(model, type = "cuts", eq = 1)
cbind(true = cuts, estimate = cuts_est)

regression coefficients of the continuous equation
beta_0_test <- coef(model, type = "coef2", eq2 = 1, regime = 0)
beta_1_test <- coef(model, type = "coef2", eq2 = 1, regime = 1)
cbind(true = beta_0, estimate = beta_0_test)
cbind(true = beta_1, estimate = beta_1_test)

variances

msel 47

var2_0_est <- coef(model, type = "var", eq2 = 1, regime = 0)
var2_1_est <- coef(model, type = "var", eq2 = 1, regime = 1)
cbind(true = c(var2_0, var2_1), estimate = c(var2_0_est, var2_1_est))

covariances between the random errors
cov2_z_0_est <- coef(model, type = "cov12", eq = 1, eq2 = 1, regime = 0)
cov2_z_1_est <- coef(model, type = "cov12", eq = 1, eq2 = 1, regime = 1)
cbind(true = c(cov2_z_0, cov2_z_1),

estimate = c(cov2_z_0_est, cov2_z_1_est))

Step 3
Estimation of the expectations and marginal effects

New data
newdata <- data.frame(z = 1, y = 1,

w1 = 0.1, w2 = 0.2, w3 = 0.3)

Predict the unconditional expectation of the
continuous outcome E(yr | w)

regime 0
predict(model, group = -1, group2 = 0, newdata = newdata)

regime 1
predict(model, group = -1, group2 = 1, newdata = newdata)

Predict the conditional expectations of the continuous outcome
given condition 'z == 0' for regime 1 i.e., E(y1 | z = 0, w)
predict(model, group = 0, group2 = 1, newdata = newdata)

Simulated data example 6
Endogenous switching model with
multivariate heteroscedastic ordered
selection mechanism

Load required package
library("mnorm")

Step 1
Simulation of the data

Set seed for reproducibility
set.seed(123)

The number of observations
n <- 1000

Regressors (covariates)

48 msel

w1 <- runif(n = n, min = -1, max = 1)
w2 <- runif(n = n, min = -1, max = 1)
w3 <- runif(n = n, min = -1, max = 1)
w4 <- runif(n = n, min = -1, max = 1)

Random errors
rho_z1_z2 <- 0.5
rho_y0_z1 <- 0.6
rho_y0_z2 <- 0.7
rho_y1_z1 <- 0.65
rho_y1_z2 <- 0.75
var20 <- 0.9
var21 <- 1
sd_y0 <- sqrt(var20)
sd_y1 <- sqrt(var21)
cor_y01 <- 0.7
cov201 <- sd_y0 * sd_y1 * cor_y01
cov20_z1 <- rho_y0_z1 * sd_y0
cov21_z1 <- rho_y1_z1 * sd_y1
cov20_z2 <- rho_y0_z2 * sd_y0
cov21_z2 <- rho_y1_z2 * sd_y1
sigma <- matrix(c(1, rho_z1_z2, cov20_z1, cov21_z1,

rho_z1_z2, 1, cov20_z2, cov21_z2,
cov20_z1, cov20_z2, var20, cov201,
cov21_z1, cov21_z2, cov201, var21),

nrow = 4)
errors <- mnorm::rmnorm(n = n, mean = c(0, 0, 0, 0), sigma = sigma)
u1 <- errors[, 1]
u2 <- errors[, 2]
eps0 <- errors[, 3]
eps1 <- errors[, 4]

Coefficients
gamma1 <- c(-1, 2)
gamma1_het <- c(0.5, -1)
gamma2 <- c(1, 1)
beta0 <- c(1, -1, 1, -1.2)
beta1 <- c(2, -1.5, 0.5, 1.2)

Linear index (predictor) of the ordinal equation
mean

li1 <- gamma1[1] * w1 + gamma1[2] * w2
li2 <- gamma2[1] * w1 + gamma2[2] * w3

variance
li1_het <- gamma1_het[1] * w2 + gamma1_het[2] * w3

Linear predictor (index) of the continuous equation
regime 0

li_y0 <- beta0[1] + beta0[2] * w1 + beta0[3] * w3 + beta0[4] * w4
regime 1

li_y1 <- beta1[1] + beta1[2] * w1 + beta1[3] * w3 + beta1[4] * w4

Latent variables

msel 49

z1_star <- li1 + u1 * exp(li1_het)
z2_star <- li2 + u2
y0_star <- li_y0 + eps0
y1_star <- li_y1 + eps1

Cuts
cuts1 <- c(-1, 1)
cuts2 <- c(0)

Observable ordered outcome
first

z1 <- rep(0, n)
z1[(z1_star > cuts1[1]) & (z1_star <= cuts1[2])] <- 1
z1[z1_star > cuts1[2]] <- 2

second
z2 <- rep(0, n)
z2[z2_star > cuts2[1]] <- 1
table(z1, z2)

Observable continuous outcome such
that outcome 'y' is
in regime 0 when 'z1 == 1',
in regime 1 when 'z1 == 0' or 'z1 == 2',
unobservable when 'z2 == 0'
y <- rep(NA, n)
y[z1 == 1] <- y0_star[z1 == 1]
y[z1 != 1] <- y1_star[z1 != 1]
y[z2 == 0] <- NA

Data
data <- data.frame(w1 = w1, w2 = w2, w3 = w3, w4 = w4,

z1 = z1, z2 = z2, y = y)

Step 2
Estimation of the parameters

Assign groups
groups <- matrix(c(0, 0,

0, 1,
1, 0,
1, 1,
2, 0,
2, 1),

byrow = TRUE, ncol = 2)
groups2 <- matrix(c(-1, 1, -1, 0, -1, 1), ncol = 1)

Estimation
model <- msel(list(z1 ~ w1 + w2 | w2 + w3,

z2 ~ w1 + w3),
y ~ w1 + w3 + w4,
groups = groups, groups2 = groups2,

50 msel

data = data)
summary(model)

Compare estimates and true values of the parameters
regression coefficients of the first ordered equation

gamma1_est <- coef(model, type = "coef", eq = 1)
gamma1__het_est <- coef(model, type = "coef_var", eq = 1)
cbind(true = gamma1, estimate = gamma1_est)
cbind(true = gamma1_het, estimate = gamma1__het_est)

regression coefficients of the second ordered equation
gamma2_est <- coef(model, type = "coef", eq = 2)
cbind(true = gamma2, estimate = gamma2_est)

cuts
cuts1_est <- coef(model, type = "cuts", eq = 1)
cuts2_est <- coef(model, type = "cuts", eq = 2)
cbind(true = cuts1, estimate = cuts1_est)
cbind(true = cuts2, estimate = cuts2_est)

regression coefficients of the continuous equation
beta0_est <- coef(model, type = "coef2", eq2 = 1, regime = 0)
beta1_est <- coef(model, type = "coef2", eq2 = 1, regime = 1)
cbind(true = beta0, estimate = beta0_est)
cbind(true = beta1, estimate = beta1_est)

variances
var20_est <- coef(model, type = "var", eq2 = 1, regime = 0)
var21_est <- coef(model, type = "var", eq2 = 1, regime = 1)
cbind(true = c(var20, var21), estimate = c(var20_est, var21_est))

covariances
cov_y0_z1_est <- coef(model, type = "cov12", eq = 1, eq2 = 1, regime = 0)
cov_y0_z2_est <- coef(model, type = "cov12", eq = 2, eq2 = 1, regime = 0)
cov_y1_z1_est <- coef(model, type = "cov12", eq = 1, eq2 = 1, regime = 1)
cov_y1_z2_est <- coef(model, type = "cov12", eq = 2, eq2 = 1, regime = 1)
cbind(true = c(cov20_z1, cov20_z2),

estimate = c(cov_y0_z1_est, cov_y0_z2_est))
cbind(true = c(cov21_z1, cov21_z2),

estimate = c(cov_y1_z1_est, cov_y1_z2_est))

Step 3
Estimation of the expectations and marginal effects

New data
newdata <- data.frame(z1 = 1, z2 = 1, y = 1,

w1 = 0.1, w2 = 0.2, w3 = 0.3, w4 = 0.4)

Predict the unconditional expectation of the continuous outcome
regime 0

predict(model, group = c(-1, -1), group2 = 0, newdata = newdata)
regime 1

predict(model, group = c(-1, -1), group2 = 1, newdata = newdata)

Predict the conditional expectations of the continuous outcome
E(y1 | z1 = 2, z2 = 1, w)

msel 51

predict(model, group = c(2, 1), group2 = 1, newdata = newdata)

Marginal effect of w3 on E(y1 | z1 = 2, z2 = 1, w)
predict(model, group = c(2, 1), group2 = 1, newdata = newdata, me = "w3")

Step 4
Two-step estimation procedure

For a comparison reasons let's estimate the model
via the least squares
model.ls.0 <- lm(y ~ w1 + w3 + w4,

data = data[!is.na(data$y) & (data$z1 == 1),])
model.ls.1 <- lm(y ~ w1 + w3 + w4,

data = data[!is.na(data$y) & (data$z1 != 1),])

Apply the two-step procedure
model_ts <- msel(list(z1 ~ w1 + w2 | w2 + w3,

z2 ~ w1 + w3),
y ~ w1 + w3 + w4,
groups = groups, groups2 = groups2,
estimator = "2step", data = data)

summary(model_ts)

Use the two-step procedure with logistic marginal distributions
that is multivariate generalization of the Lee's method
model_Lee <- msel(list(z1 ~ w1 + w2 | w2 + w3,

z2 ~ w1 + w3),
y ~ w1 + w3 + w4,
marginal = list(logistic = NULL, logistic = NULL),
groups = groups, groups2 = groups2,
estimator = "2step", data = data)

Apply the Newey's method
model_Newey <- msel(list(z1 ~ w1 + w2 | w2 + w3,

z2 ~ w1 + w3),
y ~ w1 + w3 + w4,
marginal = list(logistic = NULL, logistic = NULL),
degrees = c(2, 3), groups = groups, groups2 = groups2,
estimator = "2step", data = data)

Compare accuracy of the methods
beta0

tbl0 <- cbind(true = beta0,
ls = coef(model.ls.0),
ml = model$coef2[[1]][1, 1:length(beta0)],
twostep = model_ts$coef2[[1]][1, 1:length(beta0)],
Lee = model_Lee$coef2[[1]][1, 1:length(beta0)],
Newey = model_Newey$coef2[[1]][1, 1:length(beta0)])

print(tbl0)
beta1

52 msel

tbl1 <- cbind(true = beta1,
ls = coef(model.ls.1),
ml = model$coef2[[1]][2, 1:length(beta1)],
twostep = model_ts$coef2[[1]][2, 1:length(beta1)],
Lee = model_Lee$coef2[[1]][2, 1:length(beta1)],
Newey = model_Newey$coef2[[1]][2, 1:length(beta1)])

print(tbl1)

Simulated data example 7
Endogenous multivariate switching model
with multivariate heteroscedastic
ordered selection mechanism

Load required package
library("mnorm")

Step 1
Simulation of the data

Set seed for reproducibility
set.seed(123)

The number of observations
n <- 1000

Regressors (covariates)
w1 <- runif(n = n, min = -1, max = 1)
w2 <- runif(n = n, min = -1, max = 1)
w3 <- runif(n = n, min = -1, max = 1)
w4 <- runif(n = n, min = -1, max = 1)
w5 <- runif(n = n, min = -1, max = 1)

Random errors
var_y0 <- 0.9
var_y1 <- 1
var_g0 <- 1.1
var_g1 <- 1.2
var_g2 <- 1.3
A <- rWishart(1, 7, diag(7))[, , 1]
B <- diag(sqrt(c(1, 1, var_y0, var_y1,

var_g0, var_g1, var_g2)))
sigma <- B %*% cov2cor(A) %*% B
errors <- mnorm::rmnorm(n = n, mean = rep(0, nrow(sigma)), sigma = sigma)
u1 <- errors[, 1]
u2 <- errors[, 2]
eps0_y <- errors[, 3]
eps1_y <- errors[, 4]

msel 53

eps0_g <- errors[, 5]
eps1_g <- errors[, 6]
eps2_g <- errors[, 7]

Coefficients
gamma1 <- c(-1, 2)
gamma1_het <- c(0.5, -1)
gamma2 <- c(1, 1)
beta0_y <- c(1, -1, 1, -1.2)
beta1_y <- c(2, -1.5, 0.5, 1.2)
beta0_g <- c(-1, 1, 1, 1)
beta1_g <- c(1, -1, 1, 1)
beta2_g <- c(1, 1, -1, 1)

Linear predictor (index) of the ordinal equation
mean

li1 <- gamma1[1] * w1 + gamma1[2] * w2
li2 <- gamma2[1] * w1 + gamma2[2] * w3

variance
li1_het <- gamma1_het[1] * w2 + gamma1_het[2] * w3

Linear predictor (index) of the first continuous equation
regime 0

li_y0 <- beta0_y[1] + beta0_y[2] * w1 + beta0_y[3] * w3 + beta0_y[4] * w4
regime 1

li_y1 <- beta1_y[1] + beta1_y[2] * w1 + beta1_y[3] * w3 + beta1_y[4] * w4

Linear predictor (index) of the second continuous equation
regime 0

li_g0 <- beta0_g[1] + beta0_g[2] * w2 + beta0_g[3] * w3 + beta0_g[4] * w5
regime 1

li_g1 <- beta1_g[1] + beta1_g[2] * w2 + beta1_g[3] * w3 + beta1_g[4] * w5
regime 2

li_g2 <- beta2_g[1] + beta2_g[2] * w2 + beta2_g[3] * w3 + beta2_g[4] * w5

Latent variables
z1_star <- li1 + u1 * exp(li1_het)
z2_star <- li2 + u2
y0_star <- li_y0 + eps0_y
y1_star <- li_y1 + eps1_y
g0_star <- li_g0 + eps0_g
g1_star <- li_g1 + eps1_g
g2_star <- li_g2 + eps2_g

Cuts
cuts1 <- c(-1, 1)
cuts2 <- c(0)

Observable ordered outcome
first

z1 <- rep(0, n)
z1[(z1_star > cuts1[1]) & (z1_star <= cuts1[2])] <- 1
z1[z1_star > cuts1[2]] <- 2

54 msel

second
z2 <- rep(0, n)
z2[z2_star > cuts2[1]] <- 1
table(z1, z2)

Observable continuous outcome such that outcome 'y' is
in regime 0 when 'z1 == 1',
in regime 1 when 'z1 == 0' or 'z1 == 2',
unobservable when 'z2 == 0'
y <- rep(NA, n)
y[z1 == 1] <- y0_star[z1 == 1]
y[z1 != 1] <- y1_star[z1 != 1]
y[z2 == 0] <- NA

#' # Observable continuous outcome such
that outcome 'g' is
in regime 0 when 'z1 == z2',
in regime 1 when 'z1 > z2',
in regime 2 when 'z1 < z2',
g <- rep(NA, n)
g[z1 == z2] <- g0_star[z1 == z2]
g[z1 > z2] <- g1_star[z1 > z2]
g[z1 < z2] <- g2_star[z1 < z2]

Data
data <- data.frame(w1 = w1, w2 = w2, w3 = w3, w4 = w4, w5 = w5,

z1 = z1, z2 = z2, y = y, g = g)

Step 2
Estimation of the parameters

Assign groups
groups <- matrix(c(0, 0,

0, 1,
1, 0,
1, 1,
2, 0,
2, 1),

byrow = TRUE, ncol = 2)

Assign groups 2
prepare the matrix

groups2 <- matrix(NA, nrow = nrow(groups), ncol = 2)
fill the matrix

groups2[groups[, 1] == 1, 1] <- 0
groups2[(groups[, 1] == 0) | (groups[, 1] == 2), 1] <- 1
groups2[groups[, 2] == 0, 1] <- -1
groups2[groups[, 1] == groups[, 2], 2] <- 0
groups2[groups[, 1] > groups[, 2], 2] <- 1
groups2[groups[, 1] < groups[, 2], 2] <- 2

msel 55

The structure of the model
cbind(groups, groups2)

Estimation
model <- msel(list(z1 ~ w1 + w2 | w2 + w3, z2 ~ w1 + w3),

list(y ~ w1 + w3 + w4, g ~ w2 + w3 + w5),
groups = groups, groups2 = groups2, data = data)

summary(model)

Compare estimates and true values of the parameters
regression coefficients of the first ordered equation

gamma1_est <- coef(model, type = "coef", eq = 1)
gamma1_het_est <- coef(model, type = "coef_var", eq = 1)
cbind(true = gamma1, estimate = gamma1_est)
cbind(true = gamma1_het, estimate = gamma1_het_est)

regression coefficients of the second ordered equation
gamma2_est <- coef(model, type = "coef", eq = 2)
cbind(true = gamma2, estimate = gamma2_est)

cuts
cuts1_est <- coef(model, type = "cuts", eq = 1)
cuts2_est <- coef(model, type = "cuts", eq = 2)
cbind(true = cuts1, estimate = cuts1_est)
cbind(true = cuts2, estimate = cuts2_est)

regression coefficients of the first continuous equation
beta0_y_est <- coef(model, type = "coef2", eq2 = 1, regime = 0)
beta1_y_est <- coef(model, type = "coef2", eq2 = 1, regime = 1)
cbind(true = beta0_y, estimate = beta0_y_est)
cbind(true = beta1_y, estimate = beta1_y_est)

regression coefficients of the second continuous equation
beta0_g_est <- coef(model, type = "coef2", eq2 = 2, regime = 0)
beta1_g_est <- coef(model, type = "coef2", eq2 = 2, regime = 1)
beta2_g_est <- coef(model, type = "coef2", eq2 = 2, regime = 2)
cbind(true = beta0_g, estimate = beta0_g_est)
cbind(true = beta1_g, estimate = beta1_g_est)
cbind(true = beta2_g, estimate = beta2_g_est)

variances of the first continuous equation
var_y0_est <- coef(model, type = "var", eq2 = 1, regime = 0)
var_y1_est <- coef(model, type = "var", eq2 = 1, regime = 1)
cbind(true = c(var_y0, var_y1), estimate = c(var_y0_est, var_y1_est))

variances of the second continuous equation
var_g0_est <- coef(model, type = "var", eq2 = 2, regime = 0)
var_g1_est <- coef(model, type = "var", eq2 = 2, regime = 1)
var_g2_est <- coef(model, type = "var", eq2 = 2, regime = 2)
cbind(true = c(var_g0, var_g1, var_g2),

estimate = c(var_g0_est, var_g1_est, var_g2_est))
correlation between the ordinal equations

sigma12_est <- coef(model, type = "cov1", eq = c(1, 2))
cbind(true = c(sigma[1, 2]), estimate = sigma12_est)

covariances between the continuous and ordinal equations
cbind(true = sigma[1:2, 3], estimate = model$cov2[[1]][1,])
cbind(true = sigma[1:2, 4], estimate = model$cov2[[1]][2,])
cbind(true = sigma[1:2, 5], estimate = model$cov2[[2]][1,])
cbind(true = sigma[1:2, 6], estimate = model$cov2[[2]][2,])

56 msel

cbind(true = sigma[1:2, 7], estimate = model$cov2[[2]][3,])
covariances between the continuous equations

sigma2_est <- coef(model, type = "cov2")[[1]]
cbind(true = c(sigma[4, 7], sigma[3, 5], sigma[4, 6]),

estimate = sigma2_est)

Step 3
Estimation of the expectations and marginal effects

New data
newdata <- data.frame(z1 = 1, z2 = 1, y = 1, g = 1,

w1 = 0.1, w2 = 0.2, w3 = 0.3, w4 = 0.4, w5 = 0.5)

Predict unconditional expectation of the dependent variable
regime 0 for 'y' and regime 1 for 'g' i.e. E(y0 | w), E(g1 | w)

predict(model, group = c(-1, -1), group2 = c(0, 1), newdata = newdata)

Predict conditional expectations of the dependent variable
E(y0 | z1 = 2, z2 = 1, w), E(g1 | z1 = 2, z2 = 1, w)
predict(model, group = c(2, 1), group2 = c(0, 1), newdata = newdata)

Marginal effect of w3 on
E(y1 | z1 = 2, z2 = 1, w) and E(g1 | z1 = 2, z2 = 1, w)
predict(model, group = c(2, 1), group2 = c(0, 1),

newdata = newdata, me = "w3")

Step 4
Two-step estimation procedure

Provide manually selectivity terms
model2 <- msel(list(z1 ~ w1 + w2 | w2 + w3, z2 ~ w1 + w3),

list(y ~ w1 + w3 + w4 +
lambda1 + lambda2 + I(lambda1 * lambda2),

g ~ w2 + w3 + w5 + lambda1 + lambda2),
groups = groups, groups2 = groups2,
data = data, estimator = "2step")

summary(model2)

Simulated data example 8
Multinomial endogenous switching and
selection model (probit)

Load required package
library("mnorm")

msel 57

Step 1
Simulation of the data

Set seed for reproducibility
set.seed(123)

The number of observations
n <- 10000

Random errors
variances and correlations

sd.z2 <- sqrt(0.9)
cor.z <- 0.3
sd.y0 <- sqrt(2)
cor.z1y0 <- 0.4
cor.z2y0 <- 0.7
sd.y1 <- sqrt(1.8)
cor.z1y1 <- 0.3
cor.z2y1 <- 0.6
cor.y <- 0.8

the covariance matrix
sigma <- matrix(c(
1, cor.z * sd.z2, cor.z1y0 * sd.y0, cor.z1y1 * sd.y1,
cor.z * sd.z2, sd.z2 ^ 2, cor.z2y0 * sd.z2 * sd.y0, cor.z2y1 * sd.z2 * sd.y1,
cor.z1y0 * sd.y0, cor.z2y0 * sd.z2 * sd.y0, sd.y0 ^ 2, cor.y * sd.y0 * sd.y1,
cor.z1y1 * sd.y1, cor.z2y1 * sd.z2 * sd.y1, cor.y * sd.y0 * sd.y1, sd.y1 ^ 2),

ncol = 4, byrow = TRUE)
colnames(sigma) <- c("z1", "z2", "y0", "y1")
rownames(sigma) <- colnames(sigma)

Simulate the random errors
errors <- rmnorm(n, c(0, 0, 0, 0), sigma)
u <- errors[, 1:2]
eps <- errors[, 3:4]

Regressors (covariates)
x1 <- runif(n, -1, 1)
x2 <- runif(n, -1, 1)
x3 <- (x2 + runif(n, -1, 1)) / 2
W <- cbind(1, x1, x2)
X <- cbind(1, x1, x3)

Coefficients
gamma0 <- c(0.1, 1, 1)
gamma1 <- c(0.2, -1.2, 0.8)
beta0 <- c(1, -3, 4)
beta1 <- c(1, 4, -3)

Linear predictors (indexes)
z1.li <- W %*% gamma0
z2.li <- W %*% gamma1

58 msel

y0.li <- X %*% beta0
y1.li <- X %*% beta1

Latent variables
z1.star <- z1.li + u[, 1]
z2.star <- z2.li + u[, 2]
y0.star <- y0.li + eps[, 1]
y1.star <- y1.li + eps[, 2]

Obvservable variable as a dummy
z1 <- (z1.star > z2.star) & (z1.star > 0)
z2 <- (z2.star > z1.star) & (z2.star > 0)
z3 <- (z1 != 1) & (z2 != 1)

Observable multinomial variable
z <- rep(0, n)
z[z1] <- 0
z[z2] <- 1
z[z3] <- 2
table(z)

Make unobservable values of the continuous outcome
y <- rep(NA, n)
y[z == 1] <- y0.star[z == 1]
y[z == 2] <- y1.star[z == 2]

Data
data <- data.frame(z = z, y = y, x1 = x1, x2 = x2, x3 = x3)

Step 2
Estimation of the parameters

Define the groups
groups3 <- c(0, 1, 2)
groups2 <- matrix(c(-1, 0, 1), ncol = 1)

Two-step method
model <- msel(formula3 = z ~ x1 + x2, formula2 = y ~ x1 + x3,

groups3 = groups3, groups2 = groups2,
data = data, estimator = "2step",
type3 = "probit")

summary(model)

Compare estimates and true values of parameters
regression coefficients of the continuous equation

beta0_est <- coef(model, type = "coef2", eq2 = 1, regime = 0)
beta1_est <- coef(model, type = "coef2", eq2 = 1, regime = 1)
cbind(true = beta0, est = beta0_est[1:length(beta0)])
cbind(true = beta1, est = beta1_est[1:length(beta1)])

regression coefficients of the multinomial equations
gamma0_est <- coef(model, type = "coef3", eq3 = 0)

msel 59

gamma1_est <- coef(model, type = "coef3", eq3 = 1)
cbind(true = gamma0, est = gamma0_est)
cbind(true = gamma1, est = gamma1_est)

compare the covariances between
z1 and z2

cbind(true = cor.z * sd.z2,
est = coef(model, type = "cov3", eq3 = c(0, 1)))

z1 and y0
cbind(true = cor.z1y0 * sd.y0,

est = beta0_est["lambda1_mn"])
z2 and y0

cbind(true = cor.z2y0 * sd.y0,
est = beta0_est["lambda2_mn"])

z1 and y1
cbind(true = cor.z1y1 * sd.y1,

est = beta1_est["lambda1_mn"])
z2 and y1

cbind(true = cor.z2y1 * sd.y1,
est = beta1_est["lambda2_mn"])

Step 3
Predictions and marginal effects

Unconditional expectation E(y1 | w) for every observation in a sample
predict(model, type = "val", group2 = 1, group3 = -1)

Marginal effect of x1 on conditional expectation E(y0 | z = 1, w)
for every observation in a sample
predict(model, type = "val", group2 = 0, group3 = 1, me = "x1")

Calculate predictions and marginal effects
for manually provided observations
using aforementioned models.
newdata <- data.frame(z = c(1, 1),

y = c(1, 1),
x1 = c(0.5, 0.2),
x2 = c(-0.3, 0.8),
x3 = c(0.6, -0.7))

Unconditional expectation E(y0 | w)
predict(model, type = "val", group2 = 0, group3 = -1, newdata = newdata)

Conditional expectation E(y1 | z=2, w)
predict(model, type = "val", group2 = 1, group3 = 2, newdata = newdata)

Marginal effect of x2 on E(y0 | z = 1, w)
predict(model, type = "val", group2 = 0, group3 = 1,

me = "x2", newdata = newdata)

Step 4

60 msel

Multinomial logit selection

Two-step method
model2 <- msel(formula3 = z ~ x1 + x2, formula2 = y ~ x1 + x3,

groups3 = groups3, groups2 = groups2,
data = data, estimator = "2step",
type3 = "logit")

summary(model2)

Compare the estimates
beta0_est2 <- coef(model2, type = "coef2", eq2 = 1, regime = 0)[]
beta1_est2 <- coef(model2, type = "coef2", eq2 = 1, regime = 1)

beta0 coefficients
cbind(true = beta0, probit = beta0_est[1:3], logit = beta0_est2[1:3])

beta1 coefficients
cbind(true = beta1, probit = beta1_est[1:3], logit = beta1_est2[1:3])

Simulated data example 9
Multinomial endogenous switching and
selection model (logit)

Step 1
Simulation of the data

Set seed for reproducibility
set.seed(123)

The number of observations
n <- 10000

Random errors
u <- matrix(-log(-log(runif(n * 3))), nrow = n, ncol = 3)
tau0 <- matrix(c(0.6, -0.4, 0.3), ncol = 1)
tau1 <- matrix(c(-0.3, 0.5, 0.2), ncol = 1)
eps0 <- (u - 0.57721656649) %*% tau0 + rnorm(n)
eps1 <- (u - 0.57721656649) %*% tau1 + rnorm(n)

Regressors (covariates)
x1 <- runif(n = n, min = -1, max = 1)
x2 <- runif(n = n, min = -1, max = 1)
x3 <- runif(n = n, min = -1, max = 1)

Coefficients
gamma.0 <- c(0.2, -2, 2)

msel 61

gamma.1 <- c(0.1, 2, -2)
beta.0 <- c(2, 2, 2)
beta.1 <- c(1, -2, 2)

Linear predictors (indexes)
z0.li <- gamma.0[1] + gamma.0[2] * x1 + gamma.0[3] * x2
z1.li <- gamma.1[1] + gamma.1[2] * x1 + gamma.1[3] * x2

Latent variables
z0.star <- z0.li + u[, 1]
z1.star <- z1.li + u[, 2]
z2.star <- u[, 3]
y0.star <- beta.0[1] + beta.0[2] * x1 + beta.0[3] * x3 + eps0
y1.star <- beta.1[1] + beta.1[2] * x1 + beta.1[3] * x3 + eps1

Observable multinomial variable
z <- rep(2, n)
z[(z0.star > z1.star) & (z0.star > z2.star)] <- 0
z[(z1.star > z0.star) & (z1.star > z2.star)] <- 1
table(z)

Unobservable values of the continuous outcome
y <- rep(NA, n)
y[z == 0] <- y0.star[z == 0]
y[z == 1] <- y1.star[z == 1]

Data
data <- data.frame(x1 = x1, x2 = x2, x3 = x3, z = z, y = y)

Step 2
Estimation of the parameters

Define the groups
groups3 <- c(0, 1, 2)
groups2 <- c(0, 1, -1)

Two-step estimator of Dubin-McFadden
model <- msel(formula3 = z ~ x1 + x2, formula2 = y ~ x1 + x3,

groups3 = groups3, groups2 = groups2,
data = data, estimator = "2step",
type3 = "logit")

summary(model)

Least squaes estimates (benchmark)
lm0 <- lm(y ~ x1 + x3, data = data[data$z == 0,])
lm1 <- lm(y ~ x1 + x3, data = data[data$z == 1,])

Compare the estimates of beta0
cbind(true = beta.0,

DMF = coef(model, type = "coef2", eq2 = 1, regime = 0),

62 predict.msel

LS = coef(lm0))

Compare the estimates of beta1
cbind(true = beta.1,

DMF = coef(model, type = "coef2", eq2 = 1, regime = 1),
LS = coef(lm1))

nobs.msel Extract the Number of Observations from a Fit of the msel Function.

Description

Extract the number of observations from a model fit of the msel function.

Usage

S3 method for class 'msel'
nobs(object, ...)

Arguments

object object of class "msel"

... further arguments (currently ignored)

Details

Unobservable values of continuous equations are included into the number of observations.

Value

A single positive integer number.

predict.msel Predict method for msel function

Description

Predicted values based on the object of class ’msel’.

predict.msel 63

Usage

S3 method for class 'msel'
predict(
object,
...,
newdata = NULL,
given_ind = numeric(),
group = NA,
group2 = NA,
group3 = NA,
type = ifelse(any(is.na(group2)), "prob", "val"),
me = NULL,
eps = NULL,
control = list(),
test = FALSE,
exogenous = NULL

)

Arguments

object an object of class "msel".
... further arguments (currently ignored)
newdata an optional data frame in which to look for variables with which to predict. If

omitted, the original data frame used. This data frame should contain values of
dependent variables even if they are not actually needed for prediction (simply
assign them with 0 values).

given_ind a numeric vector of indexes of conditioned components.
group a numeric vector which i-th element represents a value of the i-th dependent

variable. If this value equals -1 then this component will be ignored (useful for
estimation of marginal probabilities).

group2 a numeric vector which i-th element represents a value of the i-th dependent
variable of the continuous equation. If this value equals -1 then this component
will be ignored.

group3 an integer representing the index of the alternative of the multinomial equation.
If this value equals -1 then this component will be ignored.

type a string representing a type of the prediction. See ’Details’ for more information.
me a string representing the name of the variable for which marginal effect should

be estimated. See ’Details’ for more information.
eps a numeric vector of length 1 or 2 used for calculation of the marginal effects.

See ’Details’ for more information.
control a list of additional arguments. Currently is not intended for the users.
test a logical, function or integer. If test = TRUE then the output of the function is

supplied to test_msel before return to perform a t-test. If test is a function it
will be applied to the output of the predict before test_msel is called. If test
is an integer then test_msel will be applied only to the test-th column of the
output.

64 predict.msel

exogenous a list such that exogenous[[i]] represents the value (or a vector of values of the
same size as nrow(newdata)) which will be exogenously assigned to the vari-
able names(exogenous)[[i]] in newdata i.e., newdata[, names(exogenous)[i]]
<- exogenous[[i]]. If newdata is NULL and exogenous is not NULL then newdata
is set to object$data. This argument is especially useful for the casual infer-
ence when some endogenous (dependent) variables should be exogenously as-
signed with some values i.e., in the right hand side of the formula, formula2
and formula3. The purpose of exogeneous argument is just a convenience so
equivalently it is possible to exogenously provide the values to variables via the
newdata argument.

Details

See ’Examples’ section of msel for the examples of this function application.

Probabilities of the multivariate ordinal equations

If type = "prob" then the function returns a joint probability that the ordinal outcomes will have
values assigned in group. To calculate marginal probabilities set unnecessary group values to -1.

To estimate conditional probabilities provide indexes of the conditioned outcomes through the
given_ind argument.

For example, if z1i, z2i and z3i are the ordinal outcomes then to estimate P (z1i = 2|z3i =
0, w1i, w2i, w3i) set given_ind = 3 and groups = c(2, -1, 0).

Linear predictors (indexes) of the multivariate ordinal equations

If type = "li" or type = "lp" then the function returns a matrix which columns are linear predic-
tors (indexes) of the corresponding equations. If group[j] = -1 then linear predictors (indexes)
associated with the j-th ordinal equation will be omitted from the output.

For example, if group = c(0, -1, 1) then the function returns a matrix which first column is w1iγ̂1
and the second column is w3iγ̂3.

Standard deviations of the multivariate ordinal equations

If type = "sd" then the function returns a matrix which columns are the estimates of the standard
deviations of the random errors for the corresponding equations. If group[j] = -1 then the standard
deviations associated with the j-th ordinal equation will be omitted from the output.

For example, if group = c(0, -1, 1) then the function returns a matrix which first column is σ̂∗
1i

and the second column is σ̂∗
3i.

Predictions of the continuous outcomes

If type = "val" then the function returns the predictions of the conditional (on group) expecta-
tion of the continuous outcomes in the regimes determined by the group2 argument. To predict
unconditional expectations set group to a vector of -1 values.

For example, suppose that there is a single continuous equation yi and two ordinal equations z1i
and z2i. To estimate E(y2i|xi) set group = c(-1, -1) and group2 = 2. To estimate E(y1i|xi, z1i =
2, z2i = 0) set group = c(2, 0) and group2 = 1. To estimate E(y0i|xi, z2i = 1) set group = c(-1,
1) and group2 = 0.

Suppose that there are two continuous y
(1)
i , y(2)i and two ordinal z1i, z2i equations. If group2 =

c(1, 3) and group = c(3, 0) then the function returns a matrix which first column are the estimates

predict.msel 65

of E(y
(1)
1i |z1i = 3, z2i = 0, x

(1)
i) and the second column are the estimates of E(y

(2)
3i |z1i = 3, z2i =

0, x
(2)
i).

Selectivity terms
If type = "lambda" then the function returns a matrix which j-th column is a numeric vector of
estimates of the selectivity terms λji associated with the ordinal equations. Similarly if type =
"lambda_mn" then the function returns a numeric matrix with the selectivity terms of the multino-
mial equations.

Probabilities of the multinomial equation
If type = "prob_mn" and group3 = j then the function returns a vector of the estimates of the
probabilities P (z̃i = j|w̃i).

Linear indexes (predictors) of the multinomial equation
If type = "li_mn" or type = "lp_mn" then the function returns a numeric matrix which j-th col-
umn is a numeric vector of estimates of the linear predictor (index) associated with the (j-1)-th
alternative w̃iγ̃(j−1).

Estimation of the marginal effects
If me is provided then the function returns marginal effect of variable me respect to the statistic
determined by the type argument.

For example, if me = "x1" and type = "prob" then the function returns a marginal effect of x1 on
the corresponding probability i.e., one that would be estimated if me is NULL.

If length(eps) = 1 then eps is an increment in numeric differentiation procedure. If eps is NULL
then this increment will be selected automatically taking into account scaling of variables. If
length(eps) = 2 then marginal effects will be estimated as the difference of predicted value when
variable me equals eps[2] and eps[1] correspondingly.

For example, suppose that type = "prob", me = "x1", given_ind = 3 and groups = c(2, -1, 0).
Then if eps is a NULL or a small number (something like eps = 0.0001) then the following marginal
effect will be estimated (via the numeric differentiation):

∂P (z1i = 2|z3i = 0)

∂x1i
.

If eps = c(1, 3) then the function estimates the following difference (useful for estimation of
marginal effects of ordered covariates):

P (z1i = 2|z3i = 0, x1i = 3)− P (z1i = 2|z3i = 0, x1i = 1).

Notice that the conditioning on wji has been omitted for brevity.

Causal inference
Argument exogenous is useful for the causal inference. For example, suppose that there are two
binary outcomes z1i and z2i. Also z1i is the endogenous regressor for z2i. That is z1i appears both
on the left hand side of formula[[1]] and on the right hand side of formula[[2]]. Consider the
estimation of the average treatment effect:

ATE = P (z2i = 1|do(z1i) = 1)− P (z2i = 1|do(z1i) = 0),

where do is a do-calculus operator. The estimate of the average treatment effect is as follows:

ÂTE =
1

n

n∑
i=1

p1i − p0i,

66 print.lrtest_msel

where:

p1i = P̂ (z2i = 1|do(z1i) = 1, w1i, w
(∗)
2i),

p0i = P̂ (z2i = 1|do(z1i) = 0, w1i, w
(∗)
2i).

Vector w(∗)
2i denotes all the regressors w2i except the endogenous one z1i.

To get ÂTE it is sufficient to make the following steps. First, calculate p1i by setting type =
"prob", group = c(-1, 1) and providing the value 1 to z1i through the exogenous argument. Sec-
ond, calculate p0i by setting type = "prob", group = c(-1, 0) and providing the value 0 to z1i
through the exogenous argument. Third, take the average value of p1i − p0i.

Value

This function returns predictions for each row of newdata or for each observation in the model if
newdata is NULL. Structure of the output depends on the type argument (see ’Details’ section).

print.lrtest_msel Print Method for Likelihood Ratio Test

Description

Prints summary for an object of class ’lrtest_msel’.

Usage

S3 method for class 'lrtest_msel'
print(x, ...)

Arguments

x object of class "lrtest_msel".

... further arguments (currently ignored).

Value

The function returns the input argument x.

print.msel 67

print.msel Print for an Object of Class msel

Description

Prints information on the object of class ’msel’.

Usage

S3 method for class 'msel'
print(x, ...)

Arguments

x object of class ’msel’

... further arguments (currently ignored)

Value

The function returns NULL.

print.struct_msel Print for an Object of Class struct_msel

Description

Prints information on the object of class ’struct_msel’.

Usage

S3 method for class 'struct_msel'
print(x, ...)

Arguments

x object of class ’struct_msel’

... further arguments (currently ignored)

Value

The function returns NULL.

68 print.summary.msel

print.summary.lrtest_msel

Print Summary Method for Likelihood Ratio Test

Description

Prints summary for an object of class ’lrtest_msel’.

Usage

S3 method for class 'summary.lrtest_msel'
print(x, ...)

Arguments

x object of class "lrtest_msel"

... further arguments (currently ignored)

Value

The function returns input argument x changing it’s class to lrtest_msel.

print.summary.msel Print summary for an Object of Class msel

Description

Prints summary for an object of class ’msel’.

Usage

S3 method for class 'summary.msel'
print(x, ...)

Arguments

x object of class ’msel’

... further arguments (currently ignored)

Value

The function returns x.

print.summary.test_msel 69

print.summary.test_msel

Print summary for an Object of Class test_msel

Description

Prints summary for an object of class ’test_msel’.

Usage

S3 method for class 'summary.test_msel'
print(x, ..., is_legend = TRUE)

Arguments

x object of class ’test_msel’

... further arguments (currently ignored)

is_legend a logical; if TRUE then additional information is shown.

Value

The function returns input argument x.

sigma.msel Extract Residual Standard Deviation ’Sigma’

Description

Extract standard deviations of random errors of continuous equations of msel function.

Usage

S3 method for class 'msel'
sigma(object, use.fallback = TRUE, ..., regime = NULL, eq2 = NULL)

Arguments

object object of class "msel".

use.fallback logical, passed to nobs (currently ignored).

... further arguments (currently ignored).

regime regime of continuous equation

eq2 index of continuous equation

70 starsVector

Details

Available only if estimator = "ml" or all degrees values are equal to 1.

Value

Returns estimates of the standard deviations of εi. If eq2 = k then estimates only for k-th continuous
equation are returned. If in addition regime = r then estimate of

√
V ar(εri) is returned. Herewith

if regime is not NULL and eq2 is NULL it is assumed that eq2 = 1.

starsVector Stars for p-values

Description

This function assigns stars (associated with different significance levels) to p-values.

Usage

starsVector(p_value)

Arguments

p_value vector of values between 0 and 1 representing p-values.

Details

Three stars are assigned to p-values not greater than 0.01. Two stars are assigned to p-values greater
than 0.01 and not greater than 0.05. One star is assigned to p-values greater than 0.05 and not
greater than 0.1.

Value

The function returns a string vector of stars assigned according to the rules described in ’Details’
section.

Examples

p_value <- c(0.002, 0.2, 0.03, 0.08)
starsVector(p_value)

struct_msel 71

struct_msel Structure of the Object of Class msel

Description

Prints information on the structure of the model.

Usage

struct_msel(x)

Arguments

x object of class ’msel’

Value

The function returns a numeric matrix which columns are groups, groups2, groups3 correspond-
ingly. It also has additional (last) column with the number of observations associated with the
corresponding combinations of the groups.

summary.lrtest_msel Summary Method for Likelihood Ratio Test

Description

Provides summary for an object of class ’lrtest_msel’.

Usage

S3 method for class 'lrtest_msel'
summary(object, ...)

Arguments

object object of class "lrtest_msel"

... further arguments (currently ignored)

Details

This function just changes the class of the ’lrtest_msel’ object to ’summary.lrtest_msel’.

Value

Returns an object of class ’summary.lrtest_msel’.

72 summary.test_msel

summary.msel Summary for an Object of Class msel

Description

Provides summary for an object of class ’msel’.

Usage

S3 method for class 'msel'
summary(object, ..., vcov = NULL, show_ind = FALSE)

Arguments

object object of class ’msel’

... further arguments (currently ignored)

vcov positively defined numeric matrix representing asymptotic variance-covariance
matrix of the estimator to be used for calculation of standard errors and p-values.
It may also be a character. Then vcov.msel function will be used which input
argument type will be set to vcov. If estimator = "2step" then vcov should
be an estimate of the asymptotic covariance matrix of the first step estimator.

show_ind logical; if TRUE then indexes of parameters will be shown. Particularly, these
indexes may be used in ind element of regularization parameter of msel.

Details

If vcov is NULL then this function just changes the class of the ’msel’ object to ’summary.msel’. Oth-
erwise it additionally changes object$cov to vcov and use it to recalculate object$se, object$p_value
and object$tbl values. It also adds the value of ind argument to the object.

Value

Returns an object of class ’summary.msel’.

summary.test_msel Summary for an Object of Class delta_method

Description

Provides summary for an object of class ’delta_method’.

Usage

S3 method for class 'test_msel'
summary(object, ..., is_legend = TRUE)

test_msel 73

Arguments

object object of class ’delta_method’

... further arguments (currently ignored)

is_legend a logical; if TRUE then additional information is shown.

Value

Returns an object of class ’summary.delta_method’.

test_msel Tests and confidence intervals for the parameters estimated by the msel
function

Description

This function conducts various statistical tests and calculates confidence intervals for the parameters
of the model estimated via the msel function.

Usage

test_msel(
object,
fn,
fn_args = list(),
test = "t",
method = "classic",
ci = "classic",
cl = 0.95,
se_type = "dm",
trim = 0,
vcov = object$cov,
iter = 100,
generator = rnorm,
bootstrap = NULL,
par_ind = 1:object$control_lnL$n_par,
eps = max(1e-04, sqrt(.Machine$double.eps) * 10),
n_sim = 1000,
n_cores = 1

)

Arguments

object an object of class ’msel’. It also may be a list of two objects. Then object[[1]]
and object[[2]] are supplied to the arguments model1 and model2 of the
lrtest_msel function.

74 test_msel

fn a function which returns a numeric vector and should depend on the elements of
object. These elements should be accessed via coef.msel or predict.msel
functions. The first argument of fn should be an object. Therefore coef and
predict functions in fn should also depend on object.

fn_args a list of additional arguments of fn.
test a character representing the test to be used. If test = "t" then t-test is used. If

test = "wald" then Wald test is applied.
method a character representing a method used to conduct a test. If test = "t" or test

= "wald" and method = "classic" then p-values are calculated by using the
quantiles of the standard normal distribution. If test = "t" or test = "wald"
and method = "bootstrap" then p-values are calculated by using the bootstrap
as described in Hansen (2022). If test = "wald" and method = "score" then
score bootstrap Wald test of P. Kline and A. Santos (2012) is used.

ci a character representing the type of the confidence interval used. Available only
if test = "t". If ci = "classic" then quantiles of the standard normal distribu-
tion are used to build an asymptotic confidence interval. If ci = "percentile"
then percentile bootstrap interval is applied. If ci = "bc" then the function con-
structs a bias-corrected percentile bootstrap confidence interval of Efron (1982)
as described in Hansen (2022).

cl a numeric value between 0 and 1 representing a confidence level of the confi-
dence interval.

se_type a character representing a method used to estimate the standard errors of the
outputs of fn. If se_type = "dm" then delta method is used. If se_type =
"bootstrap" then bootstrap is applied.

trim a numeric value between 0 and 1 representing the share of bootstrap estimates
to be nullified when standard errors are estimated for se_type = "bootstrap".

vcov an estimate of the asymptotic covariance matrix of the parameters of the model.
iter the number of iterations used by the score bootstrap Wald test.
generator function which is used by the score bootstrap to generate random weights. It

should have an argument n representing the number of random weights to gen-
erate. Other arguments are ignored.

bootstrap an object of class 'bootstrap_msel' which is an output of the bootstrap_msel
function. This object is used to retrieve the estimates of the bootstrap samples.

par_ind a vector of indexes of the model parameters used in the calculation of fn. If
only necessary indexes are included then in some cases estimation time may
greatly decrease. Set ind = TRUE in summary.msel to see the indexes of the
model parameters. If eps is a vector then eps[i] determines the increment used
to differentiate fn respect to the parameter with par_ind[i]-th index.

eps a positive numeric value representing the increment used for the numeric differ-
entiation of fn. It may also be a numeric vector such that eps[i] is an increment
used to differentiate the fn respect to the par_ind[i]-th parameter of the model.
Set ind = TRUE in summary.msel, to see the indexes of the model parameters. If
eps[i] = 0 then derivative of fn respect to par_ind[i]-th parameter is assumed
to be zero.

n_sim the value passed to the n_sim argument of the msel function.
n_cores the value passed to the n_cores argument of the msel function.

test_msel 75

Details

Suppose that θ is a vector of parameters of the model estimated via the msel function and g(θ) is a
differentiable function representing fn which returns a m-dimensional vector of real values:

g(θ) = (g1(θ), ..., gm(θ))T .

Classic and bootstrap t-test
If test = "t" then for each j ∈ {1, ...,m} the following hypotheses is tested:

H0 : gj(θ) = 0, H1 : gj(θ) ̸= 0.

The test statistic is:
T = gj(θ̂)/σ̂j ,

where σ̂ is a standard error of gj(θ̂).

If se_type = "dm" then delta method is used to estimate this standard error:

σ̂j =

√
∇gj(θ̂)T Âs.Cov(θ̂)∇gj(θ̂),

where ∇gj(θ̂) is a gradient as a column vector and the estimate of the asymptotic covariance matrix
of the estimates Âs.Cov(θ̂) is provided via the vcov argument. Numeric differentiation is used to
calculate ∇gj(θ̂).

If se_type = "bootstrap" then bootstrap is applied to estimate the standard error:

σ̂j =

√√√√ 1

B − 1

B∑
b=1

(gj(θ̂(b))− gj(θ̂(b)))2,

where B is the number of the bootstrap iterations bootstrap$iter, θ̂(b) is the estimate associ-
ated with the b-th of these iterations bootstrap$par[b,], and gj(θ̂(b)) is a sample mean of the
bootstrap estimates:

gj(θ̂(b)) =
1

B

B∑
b=1

gj(θ̂
(b)).

If method = "classic" it is assumed that if the null hypothesis is true then the asymptotic distri-
bution of the test statistic is standard normal. This distribution is used for the calculation of the
p-value:

p− value = 2min(Φ(T), 1− Φ(T)),

where Φ() is a cumulative distribution function of the standard normal distribution.

If method = "bootstrap" then p-value is calculated via the bootstrap as suggested by Hansen
(2022):

p− value =
1

B

B∑
b=1

I(|Tb − T | > |T |),

76 test_msel

where Tb = gj(θ̂
(b))/σ̂j is the value of the test statistic estimated on the b-th bootstrap sample and

I(q) is an indicator function which equals 1 when q is a true statement and 0 - otherwise.

Classic and bootstrap Wald test
Suppose that method = "classic" or method = "bootstrap". If test = "wald" then the null hy-
pothesis is:

H0 :

g1(θ) = 0

g2(θ) = 0
...
gm(θ) = 0

.

The alternative hypothesis is that there is such j ∈ {1, ...,m} that:

H1 : gj(θ) ̸= 0.

The test statistic is:
T = g(θ̂)T Âs.Cov(g(θ̂))−1g(θ̂),

where Âs.Cov(g(θ̂)) is the estimate of the asymptotic covariance matrix of g(θ̂).

If se_type = "dm" then delta method is used to estimate this matrix:

Âs.Cov(g(θ̂)) = g′(θ̂)Âs.Cov(θ̂)g′(θ̂)T ,

where g′(θ̂) is a Jacobian matrix. A numeric differentiation is used to calculate its elements:

g′(θ̂)ij =
∂gi(θ)

∂θj
|θ=θ̂.

If se_type = "bootstrap" then bootstrap is used to estimate this matrix:

Âs.Cov(g(θ̂)) =
1

B − 1

B∑
i=1

qbq
T
b ,

where:
qb = (g(θ̂(b))− g(θ̂(b))),

g(θ̂(b)) =
1

B

B∑
i=1

g(θ̂(b)).

If method = "classic" then it is assumed that if the null hypothesis is true then the asymptotic
distribution of the test statistic is chi-squared with m degrees of freedom. This distribution is used
for the calculation of the p-value:

p− value = 1− Fm(T),

where Fm is a cumulative distribution function of the chi-squared distribution with m degrees of
freedom.

test_msel 77

If method = "bootstrap" then p-value is calculated via the bootstrap as suggested by Hansen
(2022):

p− value =
1

B

B∑
b=1

I(Tb > T),

where:
Tb = sTb Âs.Cov(g(θ̂))−1sb,

sb = g(θ̂(b))− g(θ̂).

Score bootstrap Wald test
If method = "score" and test = "Wald" then score bootstrap Wald test of Kline and Santos (2012)
is used.

Consider B independent samples of n independent identically distributed random weights with zero
mean and unit variance. Let wib denote the i-th weight of the b-th sample. Argument generator is
used to supply a function which generates these weights wib and iter argument represents B. Also
n is the number of observations in the model object$other$n_obs.

Let J denote a matrix of sample scores object$J. Further, denote by Jb a matrix such that its b-th
row is a product of the wib and the b-th row of J . Also, denote by H a matrix of mean values of the
derivatives of sample scores respect to the estimated parameters object$H.

In addition consider the following notations:

A = g′(θ)H−1, Sb = AJ
(c)
b ,

where J
(c)
b is a vector of the column sums of Jb.

The test statistic is as follows:

T = g(θ̂)T (AĈov(J)AT)−1g(θ̂)/n,

where Ĉov(J) is a sample covariance matrix of the sample scores of the model cov(object$J).

The test statistic on the b-th bootstrap sample is similar:

Tb = ST (AĈov(Jb)A
T)−1S/n.

The p-value is estimated as follows:

p− value =
1

B

B∑
b=1

I(Tb ≥ T).

Confidence intervals
If test = "t" then the function also returns the realizations of the lower and upper bounds of the
100×cl percent symmetric asymptotic confidence interval of gj(θ).

If ci = "classic" then classic confidence interval is used which assumes asymptotic normality of
gj(θ̂):

(gj(θ̂) + z(1−cl)/2σ̂j , gj(θ̂) + z1−(1−cl)/2σ̂j),

where zq is a q-th quantile of the standard normal distribution and cl is a confidence level cl. The
method used to estimate σ̂j depends on the se_type argument as described above.

78 test_msel

If ci = "percentile" then percentile bootstrap confidence interval is used. Therefore the sample
quantiles of gj(θ̂(b)) are used as the realizations of the lower and upper bounds of the confidence
interval.

If ci = "bc" then bias corrected percentile bootstrap confidence interval of Efron (1982) is used
as described in Hansen (2022). The default percentile bootstrap confidence interval uses sample
quantiles of levels (1− cl)/2 and 1− (1− cl)/2. Bias corrected version uses the sample quantiles
of the following levels:

(1− cl)/2 + Φ(Φ−1((1− cl)/2) + s),

1− (1− cl)/2 + Φ(Φ−1(1− (1− cl)/2) + s),

where:

s = 2Φ−1(
1

B

B∑
b=1

I(gj(θ̂
(b)) ≤ gj(θ̂))).

Trimming
If se_type = "bootstrap" and trim > 0 then trimming is used as described in Hansen (2022) to
estimate σ̂j and Âs.Cov(g(θ̂)). The algorithm is as follows. First, nullify 100trim percent of
g(θ̂(b)) with the greatest values of the L2-norm of qb (defined above). Then use this ’trimmed’
sample to estimate the standard error and the asymptotic covariance matrix.

Value

This function returns an object of class 'test_msel' which is a list. It may have the following
elements:

• tbl - a list with the elements described below.

• is_bootstrap - a logical value which equals TRUE if bootstrap has been used.

• is_ci - a logical value which equals TRUE if confidence intervals were used.

• test - the same as the input argument test.

• method - the same as the input argument method.

• se_type - the same as the input argument method.

• ci - the same as the input argument ci.

• cl - the same as the input argument cl.

• iter - the same as the input argument iter.

• n_bootstrap - an integer representing the number of the bootstrap iterations used.

• n_val - the length of the vector returned by fn.

A list tbl may have the following elements:

• val - an output of the fn function.

• se - a numeric vector such that se[i] represents a standard error associated with val[i].

• p_value - a numeric vector of p-values.

• lwr - a numeric vector such that lwr[i] is the realization of the lower (left) bound of the
confidence interval for the true value of val[i].

test_msel 79

• upr - a numeric vector such that upr[i] is the realization of the upper (right) bound of the
confidence interval for the true value of val[i].

• stat - a numeric vector of values of the test statistics.

An object of class 'test_msel' has an implementation of the summary method summary.test_msel.

In a special case when object is a list of length 2 the function returns an object of class 'lrtest_msel'
since the function lrtest_msel is called internally.

References

B. Efron (1982). The Jackknife, the Bootstrap, and Other Resampling Plans. Society for Industrial
and Applied Mathematics.

B. Hansen (2022). Econometrics. Princeton University Press.

P. Kline, A. Santos (2012). A Score Based Approach to Wild Bootstrap Inference. Journal of
Econometric Methods, vol. 67, no. 1, pages 23-41.

Examples

CPS data example

Set seed for reproducibility
set.seed(123)

Upload the data
data(cps)

Estimate the employment model
model <- msel(work ~ age + I(age ^ 2) + bachelor + master, data = cps)
summary(model)

Use Wald test to test the hypothesis that age has no
effect on the conditional probability of employment:
H0: coef age = 0
coef age ^ 2 = 0
age_fn <- function(object)
{

lwage_coef <- coef(object, type = "coef")[[1]]
val <- c(lwage_coef["age"], lwage_coef["I(age^2)"])
return(val)

}
age_test <- test_msel(object = model, fn = age_fn, test = "wald")
summary(age_test)

Use t-test to test for each individual the hypothesis:
P(work = 1 | x) = 0.8
prob_fn <- function(object)
{

prob <- predict(object, group = 1, type = "prob")

80 test_msel

val <- prob - 0.8
return(val)

}
prob_test <- test_msel(object = model, fn = prob_fn, test = "t")
summary(prob_test)

Simulated data example
Model with continuous outcome
and ordinal selection

Step 1
Simulation of the data

Set seed for reproducibility
set.seed(123)

Load required package
library("mnorm")

The number of observations
n <- 10000

Regressors (covariates)
s1 <- runif(n = n, min = -1, max = 1)
s2 <- runif(n = n, min = -1, max = 1)
s3 <- runif(n = n, min = -1, max = 1)
s4 <- runif(n = n, min = -1, max = 1)

Random errors
sigma <- matrix(c(1, 0.4, 0.45, 0.7,

0.4, 1, 0.54, 0.8,
0.45, 0.54, 0.81, 0.81,
0.7, 0.8, 0.81, 1), nrow = 4)

errors <- mnorm::rmnorm(n = n, mean = c(0, 0, 0, 0), sigma = sigma)
u1 <- errors[, 1]
u2 <- errors[, 2]
eps0 <- errors[, 3]
eps1 <- errors[, 4]

Coefficients
gamma1 <- c(-1, 2)
gamma2 <- c(1, 1)
gamma1_het <- c(0.5, -1)
beta0 <- c(1, -1, 1, -1.2)
beta1 <- c(2, -1.5, 0.5, 1.2)
Linear index of the ordinal equations
mean part
li1 <- gamma1[1] * s1 + gamma1[2] * s2
li2 <- gamma2[1] * s1 + gamma2[2] * s3

test_msel 81

variance part
li1_het <- gamma1_het[1] * s2 + gamma1_het[2] * s3

Linear index of the continuous equation
regime 0
li_y0 <- beta0[1] + beta0[2] * s1 + beta0[3] * s3 + beta0[4] * s4
regime 1
li_y1 <- beta1[1] + beta1[2] * s1 + beta1[3] * s3 + beta1[4] * s4

Latent variables
z1_star <- li1 + u1 * exp(li1_het)
z2_star <- li2 + u2
y0_star <- li_y0 + eps0
y1_star <- li_y1 + eps1

Cuts
cuts1 <- c(-1)
cuts2 <- c(0, 1)

Observable ordinal outcome
first
z1 <- rep(0, n)
z1[z1_star > cuts1[1]] <- 1
second
z2 <- rep(0, n)
z2[(z2_star > cuts2[1]) & (z2_star <= cuts2[2])] <- 1
z2[z2_star > cuts2[2]] <- 2
z2[z1 == 0] <- NA

Observable continuous outcome
y <- rep(NA, n)
y[which(z2 == 0)] <- y0_star[which(z2 == 0)]
y[which(z2 != 0)] <- y1_star[which(z2 != 0)]
y[which(z1 == 0)] <- NA

Data
data <- data.frame(s1 = s1, s2 = s2, s3 = s3, s4 = s4,

z1 = z1, z2 = z2, y = y)

Step 2
Estimation of the parameters

Assign the groups
groups <- matrix(c(1, 2,

1, 1,
1, 0,
0, -1),

byrow = TRUE, ncol = 2)
groups2 <- matrix(c(1, 1, 0, -1), ncol = 1)

Estimate the model

82 test_msel

model <- msel(list(z1 ~ s1 + s2 | s2 + s3,
z2 ~ s1 + s3),

list(y ~ s1 + s3 + s4),
groups = groups, groups2 = groups2,
data = data)

Step 3
Hypotheses testing

Use t-test to test for each observation the hypothesis
H0: P(z1 = 0, z2 = 2 | Xi) = 0
prob02_fn <- function(object)
{

val <- predict(object, group = c(1, 0))

return(val)
}
prob02_test <- test_msel(object = model, fn = prob02_fn, test = "t")
summary(prob02_test)

Use t-test to test the hypothesis
H0: E(y1|z1=0, z2=2) - E(y0|z1=0, z2=2)
ATE_fn <- function(object)
{

val1 <- predict(object, group = c(0, 2), group2 = 1)
val0 <- predict(object, group = c(0, 2), group2 = 0)
val <- mean(val1 - val0)

return(val)
}
ATE_test <- test_msel(object = model, fn = ATE_fn)
summary(ATE_test)

Use Wald to test the hypothesis
H0: beta1 = beta0
coef_fn <- function(object)
{

coef1 <- coef(object, regime = 1, type = "coef2")
coef0 <- coef(object, regime = 0, type = "coef2")
coef_difference <- coef1 - coef0

return(coef_difference)
}
coef_test <- test_msel(object = model, fn = coef_fn, test = "wald")
summary(coef_test)

Use t-test to test for each 'k' the hypothesis
H0: beta1k = beta0k
coef_test2 <- test_msel(object = model, fn = coef_fn, test = "t")
summary(coef_test2)

update_msel 83

Use Wald test to test the hypothesis
H0: beta11 + beta12 - 0.5 = 0
beta11 * beta13 - beta03 = 0
test_fn <- function(object)
{

coef1 <- coef(object, regime = 1, type = "coef2")
coef0 <- coef(object, regime = 0, type = "coef2")
val <- c(coef1[1] + coef1[2] - 0.5,
coef1[1] * coef1[3] - coef0[3])

return(val)
}
classic Wald test
wald1 <- test_msel(object = model, fn = test_fn,

test = "wald", method = "classic")
summary(wald1)
score bootstrap Wald test
wald2 <- test_msel(object = model, fn = test_fn,

test = "wald", method = "score")
summary(wald2)

Replicate the latter test with the 2-step estimator
model2 <- msel(list(z1 ~ s1 + s2 | s2 + s3,

z2 ~ s1 + s3),
list(y ~ s1 + s3 + s4),
groups = groups, groups2 = groups2,
data = data, estimator = "2step")

classic Wald test
wald1_2step <- test_msel(object = model2, fn = test_fn,

test = "wald", method = "classic")
summary(wald1_2step)
score bootstrap Wald test
wald2_2step <- test_msel(object = model2, fn = test_fn,

test = "wald", method = "score")
summary(wald2_2step)

update_msel Update msel object with the new estimates

Description

This function updates parameters of the model estimated via msel function.

Usage

update_msel(object, par)

84 vcov.msel

Arguments

object an object of class 'msel'.
par a vector of parameters which substitutes object$par and used to update the

estimates i.e., object$coef, object$cuts and others.

Details

It may be useful to apply this function to the bootstrap estimates of bootstrap_msel.

Value

This function returns an object object of class 'msel' in which object$par is substituted with
par. Also, par is used to update the estimates i.e., object$coef, object$cuts and others.

vcov.msel Calculate Variance-Covariance Matrix for a msel Object.

Description

Return the variance-covariance matrix of the parameters of msel model.

Usage

S3 method for class 'msel'
vcov(
object,
...,
type = object$cov_type,
n_cores = object$other$n_cores,
n_sim = object$other$n_sim,
recalculate = FALSE

)

Arguments

object an object of class msel.
... further arguments (currently ignored).
type character representing the type of the asymptotic covariance matrix estimator. It

takes the same values as cov_type parameter of the msel function.
n_cores positive integer representing the number of CPU cores used for parallel comput-

ing. If possible it is highly recommend to set it equal to the number of available
physical cores especially when the system of ordered equations has 2 or 3 equa-
tions.

n_sim integer representing the number of GHK draws when there are more than 3
ordered equations. Otherwise alternative (much more efficient) algorithms will
be used to calculate multivariate normal probabilities.

recalculate logical; if TRUE then covariance matrix will be recalculated even if ’type’ is the
same as ’cov_type’ input argument of the model.

vcov.msel 85

Details

Argument type is closely related to the argument cov_type of msel function. See ’Details’ and
’Usage’ sections of msel for more information on cov_type argument.

Value

Returns numeric matrix which represents estimate of the asymptotic covariance matrix of model’s
parameters.

Index

∗ datasets
cps, 8

boot, 2
bootstrap, 3
bootstrap_combine_msel, 3, 4
bootstrap_combine_msel (bootstrap), 3
bootstrap_msel, 3, 4, 74, 84
bootstrap_msel (bootstrap), 3

coef.msel, 6, 30, 74
cps, 8

dmnorm, 28

exogenous_fn, 10

fitted.msel, 11
formula.msel, 11
formula_merge, 12
formula_split, 13

gena, 19, 28
grad_msel, 14

lnL_msel, 14
logLik, 17
logLik.msel, 15
loocv, 16
lrtest_msel, 16, 73, 79

msel, 3, 4, 7, 8, 15, 18, 28, 62, 64, 69, 72–75,
83–85

nobs, 17
nobs.msel, 62

optim, 19, 28

pmnorm, 19, 21, 28
predict.msel, 62, 74
print.lrtest_msel, 66

print.msel, 67
print.struct_msel, 67
print.summary.lrtest_msel, 68
print.summary.msel, 68
print.summary.test_msel, 69
pso, 19, 28

sigma.msel, 69
starsVector, 70
struct_msel, 71
summary.lrtest_msel, 71
summary.msel, 20, 72, 74
summary.test_msel, 72, 79

test_msel, 63, 73

update_msel, 4, 83

vcov.msel, 72, 84

86

	boot
	bootstrap
	coef.msel
	cps
	exogenous_fn
	fitted.msel
	formula.msel
	formula_merge
	formula_split
	grad_msel
	lnL_msel
	logLik.msel
	loocv
	lrtest_msel
	msel
	nobs.msel
	predict.msel
	print.lrtest_msel
	print.msel
	print.struct_msel
	print.summary.lrtest_msel
	print.summary.msel
	print.summary.test_msel
	sigma.msel
	starsVector
	struct_msel
	summary.lrtest_msel
	summary.msel
	summary.test_msel
	test_msel
	update_msel
	vcov.msel
	Index

