Title: | Miscellaneous Functions for Southwest Fisheries Science Center |
---|---|
Description: | Collection of conversion, analytical, geodesic, mapping, and plotting functions. Used to support packages and code written by researchers at the Southwest Fisheries Science Center of the National Oceanic and Atmospheric Administration. |
Authors: | Eric Archer [aut, cre] |
Maintainer: | Eric Archer <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.6.5 |
Built: | 2024-12-06 06:55:01 UTC |
Source: | CRAN |
Runs the Affinity Propagation clustering algorithm of Frey and Dueck, 2007.
affin.prop( sim.mat, num.iter = 100, stable.iter = 10, shared.pref = "min", lambda = 0.5 )
affin.prop( sim.mat, num.iter = 100, stable.iter = 10, shared.pref = "min", lambda = 0.5 )
sim.mat |
a similarity matrix between individuals to be clustered. |
num.iter |
maximum number of iterations to attempt. |
stable.iter |
number of sequential iterations for which consistent clustering is considered acceptable. |
shared.pref |
type of shared preference to use. Can be one of "min", "median", or a numeric value. |
lambda |
damping factor. |
A matrix with one row per sample in 'sim.mat' and one column for each iteration. Values in columns indicate cluster assignment (arbitrary numbers) for each sample.
Eric Archer [email protected]
Frey, B.J., and D. Dueck. 2007. Clustering by passing messages between data points. Science 315:972-976
data(iris) # Take 75 random iris rows for example iris <- iris[sample(1:nrow(iris), 75), ] iris <- droplevels(iris) iris.sim <- -dist(iris[, -5]) iris.affin <- affin.prop(iris.sim, stable.iter = 5) table(iris$Species, iris.affin[, ncol(iris.affin)])
data(iris) # Take 75 random iris rows for example iris <- iris[sample(1:nrow(iris), 75), ] iris <- droplevels(iris) iris.sim <- -dist(iris[, -5]) iris.affin <- affin.prop(iris.sim, stable.iter = 5) table(iris$Species, iris.affin[, ncol(iris.affin)])
Convert time interval units to natural values based on magnitude of difference.
autoUnits(x)
autoUnits(x)
x |
an object inheriting from class |
Eric Archer [email protected]
autoUnits(as.difftime("0:3:35")) autoUnits(as.difftime("15:3:35")) autoUnits(ISOdate(2000, 5, 1) - ISOdate(2000, 4, 20))
autoUnits(as.difftime("0:3:35")) autoUnits(as.difftime("15:3:35")) autoUnits(ISOdate(2000, 5, 1) - ISOdate(2000, 4, 20))
Calculates the bearing between two points, given each point's latitude and longitude coordinates
bearing(lat1, lon1, lat2, lon2)
bearing(lat1, lon1, lat2, lon2)
lat1 , lon1
|
numeric. The latitude and longitude of the starting coordinate in decimal degrees. |
lat2 , lon2
|
numeric. The latitude and longitude of the ending coordinate in decimal degrees. |
vector with initial and final bearings.
Eric Archer [email protected]
# What is the bearing from San Diego, CA to Honolulu, HI? bearing(32.87, -117.25, 21.35, -157.98)
# What is the bearing from San Diego, CA to Honolulu, HI? bearing(32.87, -117.25, 21.35, -157.98)
Calculate the area of a square on the earth.
box.area(lat, lon, edge, units = "nm")
box.area(lat, lon, edge, units = "nm")
lat , lon
|
The latitude and longitude of the lower right corner of the box in decimal degrees. |
edge |
The length of one side of the square in decimal degrees. |
units |
units of distance. Can be "km" (kilometers), "nm" (nautical miles), or "mi" (statute miles). |
Eric Archer [email protected]
#What is the area of a 5 degree grid off of San Diego, CA? box.area(32.87, -117.25, edge = 1, units = "nm") box.area(32.87, -117.25, edge = 1, units = "km") box.area(32.87, -117.25, edge = 1, units = "mi")
#What is the area of a 5 degree grid off of San Diego, CA? box.area(32.87, -117.25, edge = 1, units = "nm") box.area(32.87, -117.25, edge = 1, units = "km") box.area(32.87, -117.25, edge = 1, units = "mi")
Adds curly braces to a plot.
braces( xfrom, xto, yfrom, yto, radius = 1, col = par("fg"), lty = par("lty"), lwd = par("lwd") )
braces( xfrom, xto, yfrom, yto, radius = 1, col = par("fg"), lty = par("lty"), lwd = par("lwd") )
xfrom , xto , yfrom , yto
|
start and end points of braces. Direction of brace determined by from and to arguments. |
radius |
radius of curve in brace. |
col , lty , lwd
|
color, line type, and line width of braces. See |
Orientation of brace is either horizontal or vertical, with axis along largest range of x or y in plotting units.
Tim Gerrodette [email protected]
plot(x = c(0, 1), y = c(0, 1000), type = "n", xlab= "", ylab = "") braces(xfrom = 0.2, xto = 0.8, yfrom = c(400, 600), yto = c(300, 700)) plot(x = c(0, 100), y = c(0, 17), type = "n", xlab = "x", ylab = "y") text(10, 16, "radius =") for (i in 1:8) { braces(xfrom = 10 * i + 10, xto = 10 * i + 18, yfrom = 1, yto = 15, radius = i / 4, lwd = 2) text(10 * i + 12, 16, round(i / 4, 2)) } plot(c(0, 100), c(0, 17), type = "n", xlab = "x", ylab = "y") braces(30, 80, 13, 11, 1) plot(c(0, 100), c(0, 17), type = "n", xlab = "x", ylab = "y") braces(c(20, 80, 30), c(10,75,40), 1, 15, radius = c(0.2, 0.5, 0.1), lwd = c(1, 2, 3), col = 1:2, lty = 1) plot(c(0, 100), c(0, 17), type = "n") braces(20, 80, 7, 5, 1) braces(20, 80, 13, 15, 1)
plot(x = c(0, 1), y = c(0, 1000), type = "n", xlab= "", ylab = "") braces(xfrom = 0.2, xto = 0.8, yfrom = c(400, 600), yto = c(300, 700)) plot(x = c(0, 100), y = c(0, 17), type = "n", xlab = "x", ylab = "y") text(10, 16, "radius =") for (i in 1:8) { braces(xfrom = 10 * i + 10, xto = 10 * i + 18, yfrom = 1, yto = 15, radius = i / 4, lwd = 2) text(10 * i + 12, 16, round(i / 4, 2)) } plot(c(0, 100), c(0, 17), type = "n", xlab = "x", ylab = "y") braces(30, 80, 13, 11, 1) plot(c(0, 100), c(0, 17), type = "n", xlab = "x", ylab = "y") braces(c(20, 80, 30), c(10,75,40), 1, 15, radius = c(0.2, 0.5, 0.1), lwd = c(1, 2, 3), col = 1:2, lty = 1) plot(c(0, 100), c(0, 17), type = "n") braces(20, 80, 7, 5, 1) braces(20, 80, 13, 15, 1)
Create a raster of probability of categorical values interpolated across a 2-dimensional space given a set of points where each is assigned to one of several classes.
catSpatInterp( data, x.col = "x", y.col = "y", group.col = "group", num.grid = 100, knn = 10, hull.buffer = 0.1, num.cores = 1, num.batches = NULL )
catSpatInterp( data, x.col = "x", y.col = "y", group.col = "group", num.grid = 100, knn = 10, hull.buffer = 0.1, num.cores = 1, num.batches = NULL )
data |
matrix or data.frame containing points and grouping designation. |
x.col , y.col , group.col
|
numbers or characters identifying which columns
in |
num.grid |
number of grid cells for k-nearest neighbor interpolation. |
knn |
number of nearest neighbors to consider for interpolation. |
hull.buffer |
percent increase of convex hull to use as spatial area to interpolate over. |
num.cores |
number of cores to distribute interpolations over. |
num.batches |
number of batches to divide grid cell interpolations into. |
A list containing a raster and points of buffered convex hull.
Eric Archer [email protected]
Adapted from code originally presented in a blog post on Categorical Spatial Interpolation by Timo Grossenbacher https://timogrossenbacher.ch/2018/03/categorical-spatial-interpolation-with-r/
## Not run: iris.mds <- stats::cmdscale(dist(iris[, 1:4]), k = 2) mds.df <- setNames( cbind(iris.mds, data.frame(iris$Species)), c("dim1", "dim2", "Species") ) result <- catSpatInterp( mds.df, x.col = "dim1", y.col = "dim2", group.col = "Species", num.grid = 300, knn = 20, hull.buffer = 0.05, num.cores = 5, num.batches = NULL ) library(ggplot2) ggplot(mapping = aes(dim1, dim2)) + geom_raster( aes(fill = Species, alpha = prob), data = result$raster ) + geom_polygon(data = result$hull.poly, fill = NA, col = "black") + geom_hline(yintercept = 0, col = "white") + geom_vline(xintercept = 0, col = "white") + geom_point( aes(fill = Species), data = mds.df, col = "black", shape = 21, size = 4 ) + theme( axis.ticks = element_blank(), axis.text = element_blank(), axis.title = element_blank(), legend.position = "top", panel.grid = element_blank(), panel.background = element_blank() ) ## End(Not run)
## Not run: iris.mds <- stats::cmdscale(dist(iris[, 1:4]), k = 2) mds.df <- setNames( cbind(iris.mds, data.frame(iris$Species)), c("dim1", "dim2", "Species") ) result <- catSpatInterp( mds.df, x.col = "dim1", y.col = "dim2", group.col = "Species", num.grid = 300, knn = 20, hull.buffer = 0.05, num.cores = 5, num.batches = NULL ) library(ggplot2) ggplot(mapping = aes(dim1, dim2)) + geom_raster( aes(fill = Species, alpha = prob), data = result$raster ) + geom_polygon(data = result$hull.poly, fill = NA, col = "black") + geom_hline(yintercept = 0, col = "white") + geom_vline(xintercept = 0, col = "white") + geom_point( aes(fill = Species), data = mds.df, col = "black", shape = 21, size = 4 ) + theme( axis.ticks = element_blank(), axis.text = element_blank(), axis.title = element_blank(), legend.position = "top", panel.grid = element_blank(), panel.background = element_blank() ) ## End(Not run)
Upper and lower values of central quantile
central.quantile(x, pct = 0.95)
central.quantile(x, pct = 0.95)
x |
numeric vector. |
pct |
central percentile desired. |
a two element vector giving the lower and upper quantiles.
Eric Archer [email protected]
x <- runif(1000) central.quantile(x) central.quantile(x, pct = 0.75)
x <- runif(1000) central.quantile(x) central.quantile(x, pct = 0.75)
Creates a circular polygon (optionally on the earth) centered at a given point with a constant radius.
circle.polygon( x, y, radius, brng.limits = 0, sides = 1, by.length = TRUE, units = "nm", ellipsoid = datum(), dist.method = "lawofcosines", destination.type = "ellipsoid", poly.type = "cart.earth" )
circle.polygon( x, y, radius, brng.limits = 0, sides = 1, by.length = TRUE, units = "nm", ellipsoid = datum(), dist.method = "lawofcosines", destination.type = "ellipsoid", poly.type = "cart.earth" )
x , y
|
number specifying the coordinates of the center of the circle in decimal degrees.
If |
radius |
radius of sphere. |
brng.limits |
number, or vector of two numbers. If one value is given, it is used as the starting bearing in degrees for the first point of the circle. If a vector of two values is given, then they are used as the start and end bearings of arc. |
sides |
number that represents either length of sides or number of sides, as specified by the 'by.length' argument. |
by.length |
logical. If |
units |
character for units of distance: Can be "km" (kilometers), "nm" (nautical miles), "mi" (statute miles). |
ellipsoid |
ellipsoid model parameters as returned from a call to |
dist.method |
character specifying method for calculating distance for |
destination.type |
character specifying type of surface for |
poly.type |
character specifying the type of polygon calculation to use. Can be one of "cartesian" using basic cartesian coordinates, "cart.earth" for a simple polygon on the earth's surface treating latitude and longitude as cartesian coordinates, or "gc.earth" for a more precise calculation keeping a constant great-circle radius. |
A matrix representing the desired circle polygon centered at lat, lon of radius.
Eric Archer [email protected]
cart.earth <- circle.polygon(-117.24, 32.86, 40, poly.type = "cart.earth") lat.range <- c(32, 34) lon.range <- c(-118.5, -116) op <- par(mar = c(3, 5, 5, 5) + 0.1, oma = c(1, 1, 1, 1)) plot.new() plot.window(xlim = lon.range, ylim = lat.range) points(-117.24, 32.86, pch = 19, col = "red") polygon(cart.earth, border = "red", lwd = 3) lat.lon.axes(n = 3) box(lwd = 2) mtext("poly.type = 'cart.earth'", line = 3) par(op)
cart.earth <- circle.polygon(-117.24, 32.86, 40, poly.type = "cart.earth") lat.range <- c(32, 34) lon.range <- c(-118.5, -116) op <- par(mar = c(3, 5, 5, 5) + 0.1, oma = c(1, 1, 1, 1)) plot.new() plot.window(xlim = lon.range, ylim = lat.range) points(-117.24, 32.86, pch = 19, col = "red") polygon(cart.earth, border = "red", lwd = 3) lat.lon.axes(n = 3) box(lwd = 2) mtext("poly.type = 'cart.earth'", line = 3) par(op)
Return the name of a color listed given the number.
color.name(i)
color.name(i)
i |
integer specifying color . |
character value of 'i' color.
Eric Archer [email protected]
Converts angles between radians and degrees.
convert.angle(x, from = c("degrees", "radians"), to = c("radians", "degrees"))
convert.angle(x, from = c("degrees", "radians"), to = c("radians", "degrees"))
x |
numeric. The angle to be converted. |
from , to
|
character. Units to convert from and to. Can be "radians" or "degrees" or any partial match (case-sensitive). |
Eric Archer [email protected]
convert.angle(45, "deg", "rad") convert.angle(4.5, "r", "d")
convert.angle(45, "deg", "rad") convert.angle(4.5, "r", "d")
Convert distances between kilometers, nautical miles, and statute miles.
convert.distance(x, from = c("nm", "km", "mi"), to = c("km", "nm", "mi"))
convert.distance(x, from = c("nm", "km", "mi"), to = c("km", "nm", "mi"))
x |
numeric. The distance to be converted. |
from , to
|
character. Units to convert from and to. Can be "km" (kilometers), "nm" (nautical miles), or "mi" (statute miles), or any partial match thereof (case sensitive). |
Eric Archer [email protected]
Copy between lower left and upper right triangles of a matrix.
copy.tri(x, from = "lower")
copy.tri(x, from = "lower")
x |
a matrix. |
from |
triangle to copy from. Can be "lower" or "upper". |
a matrix.
Eric Archer [email protected]
x <- matrix(1:9, nrow = 3) print(x) copy.tri(x)
x <- matrix(1:9, nrow = 3) print(x) copy.tri(x)
Return point where two lines cross
crossing.point(l1, l2)
crossing.point(l1, l2)
l1 , l2
|
matrices representing two lines, where first two columns are x and y values respectively |
a data.frame of x and y values of points where lines cross
Eric Archer [email protected]
x <- 1:100 line1 <- cbind(x, 3 + 3 * x) line2 <- cbind(x, 10 - 3 * x) plot(line1[, 1], line1[, 2], type = "l", col = "red") lines(line2[, 1], line2[, 2], col = "blue") cr.pt <- crossing.point(line1, line2) print(cr.pt)
x <- 1:100 line1 <- cbind(x, 3 + 3 * x) line2 <- cbind(x, 10 - 3 * x) plot(line1[, 1], line1[, 2], type = "l", col = "red") lines(line2[, 1], line2[, 2], col = "blue") cr.pt <- crossing.point(line1, line2) print(cr.pt)
Return parameters specifying ellipsoid datum model.
datum(model = c("wgs84", "grs80", "airy", "international", "clarke", "grs67"))
datum(model = c("wgs84", "grs80", "airy", "international", "clarke", "grs67"))
model |
character, specifying which model to use for ellipsoid model. Options are: "wgs84", "grs80", "airy", "international", "clarke", "grs67", or partial matches thereof (case-sensitive). |
vector of a, b, and f parameters.
Model parameters are based on distances in km.
Eric Archer [email protected]
Calculates latitude and longitude of the destination along a sphere or ellipsoid.
destination( lat, lon, brng, distance, units = c("nm", "km", "mi"), ellipsoid = datum(), radius = convert.distance(6371, "km", "nm"), type = c("ellipsoid", "sphere", "vincenty") )
destination( lat, lon, brng, distance, units = c("nm", "km", "mi"), ellipsoid = datum(), radius = convert.distance(6371, "km", "nm"), type = c("ellipsoid", "sphere", "vincenty") )
lat , lon
|
numeric. The latitude and longitude of the coordinate in decimal degrees. |
brng |
numeric. The bearing, ranging from 0 to 360 degrees. |
distance |
numeric. The distance travelled, in units specified by |
units |
units of distance. Can be "km" (kilometers), "nm" (nautical miles), or "mi" (statute miles), or any partial match thereof (case sensitive). |
ellipsoid |
ellipsoid model parameters as returned from a call to |
radius |
numeric. Define the radius for |
type |
Character defining type of surface. Can be "sphere", "ellipsoid", "vincenty", or partial match thereof (case-sensitive). |
latitude and longitude of destination.
Eric Archer [email protected]
Ellipsoid code adapted from JavaScript by
Larry Bogan.
Vincenty code adapted from JavaScript by
Chris Veness.
Vincenty, T. 1975. Direct and inverse solutions of geodesics on the ellipsoid with
application of nested equations.
Survey Review 22(176):88-93.
destination(32.87, -117.25, 262, 4174, units = "km", type = "sphere") destination(32.87, -117.25, 262, 4174, units = "km", type = "ellipsoid") destination(32.87, -117.25, 262, 4174, units = "km", type = "vincenty")
destination(32.87, -117.25, 262, 4174, units = "km", type = "sphere") destination(32.87, -117.25, 262, 4174, units = "km", type = "ellipsoid") destination(32.87, -117.25, 262, 4174, units = "km", type = "vincenty")
Calculates the distance between two coordinates using the Law of Cosines, Haversine, or Vincenty methods.
distance( lat1, lon1, lat2, lon2, radius = convert.distance(6371, "km", "nm"), units = c("nm", "km", "mi"), ellipsoid = datum(), iter.limit = 20, method = c("lawofcosines", "haversine", "vincenty") )
distance( lat1, lon1, lat2, lon2, radius = convert.distance(6371, "km", "nm"), units = c("nm", "km", "mi"), ellipsoid = datum(), iter.limit = 20, method = c("lawofcosines", "haversine", "vincenty") )
lat1 , lon1 , lat2 , lon2
|
The latitude and longitude of the first and second points in decimal degrees. |
radius |
radius of sphere. |
units |
units of distance. Can be "km" (kilometers), "nm" (nautical miles), or "mi" (statute miles), or any partial match thereof (case sensitive). |
ellipsoid |
ellipsoid model parameters as returned from a
call to |
iter.limit |
An integer value defining the limit of iterations for Vincenty method. |
method |
Character defining the distance method to use. Can be "lawofcosines", "haversine", "vincenty", or any partial match thereof (case sensitive). |
Eric Archer [email protected]
Code adapted from JavaScript by
Chris Veness
Vincenty, T. 1975. Direct and inverse solutions of geodesics on the
ellipsoid with application of nested equations.
Survey Review 22(176):88-93.
# What is the distance from San Diego, CA to Honolulu, HI? distance(32.87, -117.25, 21.35, -157.98, method = "lawofcosines") distance(32.87, -117.25, 21.35, -157.98, method = "haversine") distance(32.87, -117.25, 21.35, -157.98, method = "vincenty")
# What is the distance from San Diego, CA to Honolulu, HI? distance(32.87, -117.25, 21.35, -157.98, method = "lawofcosines") distance(32.87, -117.25, 21.35, -157.98, method = "haversine") distance(32.87, -117.25, 21.35, -157.98, method = "vincenty")
Summarize a numerical distribution.
distSmry(x, p = 0.95, ...)
distSmry(x, p = 0.95, ...)
x |
vector of numerical values. |
p |
percent of distribution to summarized by quantile interval (ci) and highest posterior density interval (hdi). |
... |
arguments passed to |
Eric Archer [email protected]
Calculate unbiased estimate of diversity for a vector of items
diversity(x)
diversity(x)
x |
character or numeric vector or factor |
Eric Archer [email protected]
x <- sample(1:5, 100, replace = TRUE) diversity(x)
x <- sample(1:5, 100, replace = TRUE) diversity(x)
Calculate Fisher's method p-value to summarize a vector of p-values based on a chi-squared distribution.
fisher.p(p)
fisher.p(p)
p |
vector of p-values. |
Eric Archer [email protected]
Calculates the geometric mean of a vector.
geometric.mean(x, w = NULL, na.rm = FALSE)
geometric.mean(x, w = NULL, na.rm = FALSE)
x |
a numeric vector. |
w |
an optional numerical vector of weights the same length as |
na.rm |
a logical value indicating whether NA values should be stripped before the computation proceeds. |
Eric Archer [email protected]
x <- rlnorm(100) mean(x) median(x) geometric.mean(x)
x <- rlnorm(100) mean(x) median(x) geometric.mean(x)
Plot a biplot of a Principal Components Analysis using ggplot2.
ggBiplot(pca, x = 1, y = 2, mult.fac = 0.8, arrow.size = 1.5, label.size = 6)
ggBiplot(pca, x = 1, y = 2, mult.fac = 0.8, arrow.size = 1.5, label.size = 6)
pca |
result from a call to |
x , y
|
the number or column names of the components to plot. |
mult.fac |
multiplier factor for lengths of arrows from |
arrow.size |
thickness of arrow lines. |
label.size |
size of labels. |
the ggplot2 object is invisibly returned.
Eric Archer [email protected]
pc.cr <- princomp(USArrests, cor = TRUE) ggBiplot(pc.cr)
pc.cr <- princomp(USArrests, cor = TRUE) ggBiplot(pc.cr)
Calculate the harmonic mean of a set of numbers.
harmonic.mean(x, w = NULL, na.rm = FALSE)
harmonic.mean(x, w = NULL, na.rm = FALSE)
x |
a numeric vector. |
w |
an optional numerical vector of weights the same length as |
na.rm |
a logical value indicating whether NA values should be stripped before the computation proceeds. |
If zeroes are present in x
, function will return approximation
with a warning. In this case, weights will not be used.
Eric Archer [email protected]
x <- rlnorm(100) mean(x) median(x) harmonic.mean(x)
x <- rlnorm(100) mean(x) median(x) harmonic.mean(x)
Identify optimal combination of variables to minimize number of samples with missing data.
imdo(x, groups = NULL, plot = TRUE) imdoPlot(opt.smry, equal.axes = FALSE)
imdo(x, groups = NULL, plot = TRUE) imdoPlot(opt.smry, equal.axes = FALSE)
x |
data.frame or matrix to optimize. |
groups |
vector of groups as long as number of rows in |
plot |
generate a plot of the optimization results. |
opt.smry |
data.frame of optimization summary results from run of
|
equal.axes |
show imdo plot with both axes on same scale? |
Eric Archer [email protected]
Calculates the perpendicular point and distance to a line for a series of points.
intersectingPoint(pts, p1 = NULL, p2 = NULL, intercept = NULL, slope = NULL)
intersectingPoint(pts, p1 = NULL, p2 = NULL, intercept = NULL, slope = NULL)
pts |
two element vector or two column matrix of x and y values of points. |
p1 , p2
|
two element vectors of two points laying on line. |
intercept , slope
|
the intercept and slope of the line. |
A matrix containing columns giving the x and y values of the intersecting point on the line, and the distance to each point.
The line can be specified by providing either p1
and p2
or intercept
and slope
. If intercept
and
slope
are specified, then p1
and p2
will be ignored.
Eric Archer [email protected]
pts <- cbind(x = runif(5, 0, 10), y = runif(5, 0, 10)) intersectingPoint(pts, p1 = c(-1, -1), p2 = c(60, 60)) intersectingPoint(pts, intercept = 0, slope = 1)
pts <- cbind(x = runif(5, 0, 10), y = runif(5, 0, 10)) intersectingPoint(pts, p1 = c(-1, -1), p2 = c(60, 60)) intersectingPoint(pts, intercept = 0, slope = 1)
Is a numeric value between two other values?
isBetween(x, a, b = NULL, include.ends = FALSE, na.convert = TRUE)
isBetween(x, a, b = NULL, include.ends = FALSE, na.convert = TRUE)
x |
vector of numeric values to check. |
a , b
|
numeric values describing range. |
include.ends |
logical. Should test include |
na.convert |
logical. If |
Order of a
and b
does not matter. If b
is
NULL
the range will be taken from values in a
.
Eric Archer [email protected]
Calculate width of labels for plots.
lab.wid(labels)
lab.wid(labels)
labels |
vector of labels to be used on plots |
Add latitude and longitude axes to a map.
lat.lon.axes(n = 5, lon.n = n, lat.n = n)
lat.lon.axes(n = 5, lon.n = n, lat.n = n)
n , lon.n , lat.n
|
the number of tick marks desired. Can be specified separately for longitude ( |
Eric Archer [email protected]
Convert numeric month to season: Winter = Dec-Feb, Spring = Mar-May, Summer = Jun-Aug, Fall = Sep-Nov
month2Season(x)
month2Season(x)
x |
a vector of months from 1:12 |
Eric Archer [email protected]
months <- sample(1:12, 10, rep = TRUE) months month2Season(months)
months <- sample(1:12, 10, rep = TRUE) months month2Season(months)
Counts NAs in an object.
na.count(x)
na.count(x)
x |
a vector, data.frame, or matrix. |
Eric Archer [email protected]
x <- sample(c(1:10, NA), 30, replace = TRUE) na.count(x) x.df <- do.call(data.frame, lapply(1:4, function(i) sample(c(1:10, NA), 30, replace = TRUE))) colnames(x.df) <- paste("X", 1:4, sep = "") na.count(x.df)
x <- sample(c(1:10, NA), 30, replace = TRUE) na.count(x) x.df <- do.call(data.frame, lapply(1:4, function(i) sample(c(1:10, NA), 30, replace = TRUE))) colnames(x.df) <- paste("X", 1:4, sep = "") na.count(x.df)
odds |
converts probability to odds |
logOdds |
converts odds to log-odds |
invOdds |
converts odds to probability |
invLogOdds |
converts log-odds to odds |
odds(x) logOdds(x) invOdds(x) invLogOdds(x)
odds(x) logOdds(x) invOdds(x) invLogOdds(x)
x |
a numeric vector of probabilities (0 to 1), odds (0 to Inf), or log.odds (-Inf to Inf). |
Eric Archer [email protected]
x <- sort(runif(10)) odds.df <- data.frame(x = x, odds = odds(x), logOdds = logOdds(x)) odds.df invOdds(odds.df$odds) invLogOdds(odds.df$logOdds)
x <- sort(runif(10)) odds.df <- data.frame(x = x, odds = odds(x), logOdds = logOdds(x)) odds.df invOdds(odds.df$odds) invLogOdds(odds.df$logOdds)
Does the function have just one argument?
one.arg(f)
one.arg(f)
f |
a function. |
Eric Archer [email protected]
one.arg(mean) one.arg(one.arg)
one.arg(mean) one.arg(one.arg)
Calculate the perpendicular distance of a matrix of points to a line.
perpDist(pts, line)
perpDist(pts, line)
pts |
two column matrix of points. |
line |
either a 2x2 matrix of points defining line or two element vector giving intercept and slope of line. |
Eric Archer [email protected]
ran.pts <- matrix(runif(10), ncol = 2) x <- perpDist(ran.pts, c(0, 1)) x plot.new() plot.window(xlim = c(0, 1), ylim = c(0, 1), asp = 1) abline(a = 0, b = 1) points(ran.pts[, 1], ran.pts[, 2]) segments(ran.pts[, 1], ran.pts[, 2], x[, 1], x[, 2], lty = "dashed") points(x[, 1], x[, 2], col = "red") axis(1, pos = 0) axis(2, pos = 0)
ran.pts <- matrix(runif(10), ncol = 2) x <- perpDist(ran.pts, c(0, 1)) x plot.new() plot.window(xlim = c(0, 1), ylim = c(0, 1), asp = 1) abline(a = 0, b = 1) points(ran.pts[, 1], ran.pts[, 2]) segments(ran.pts[, 1], ran.pts[, 2], x[, 1], x[, 2], lty = "dashed") points(x[, 1], x[, 2], col = "red") axis(1, pos = 0) axis(2, pos = 0)
Compute the perpendicular point between points and a line specified by an intercept and slope.
perpPoint(pts, line)
perpPoint(pts, line)
pts |
two column matrix of points. |
line |
two element vector giving intercept and slope of a line. |
Eric Archer [email protected]
Plot individual assignment probability distributions.
plotAssignments( probs, orig, type = NULL, ylab = NULL, freq.sep.line = TRUE, plot = TRUE )
plotAssignments( probs, orig, type = NULL, ylab = NULL, freq.sep.line = TRUE, plot = TRUE )
probs |
matrix or data.frame of individual assignment probabilities. Each column represents probability of assignment to that group and rows sum to one. |
orig |
vector of original group assignments |
type |
either |
ylab |
label for y-axis |
freq.sep.line |
put frequency of original group on second line in facet
label? If |
plot |
display the plot? |
the ggplot
object is invisibly returned.
Eric Archer [email protected]
n <- 40 probs <- abs(c(rnorm(n, 80, 10), rnorm(n, 20, 10))) probs <- (probs - min(probs)) / max(probs) probs <- cbind(probs, 1 - probs) colnames(probs) <- NULL orig <- rep(c("Group.1", "Group.2"), each = n) plotAssignments(probs, orig) n <- 15 probs <- abs(c(rnorm(n, 80, 10), rnorm(n, 20, 10))) probs <- (probs - min(probs)) / max(probs) probs <- cbind(probs, 1 - probs) colnames(probs) <- NULL orig <- rep(c("Group.1", "Group.2"), each = n) plotAssignments(probs, orig)
n <- 40 probs <- abs(c(rnorm(n, 80, 10), rnorm(n, 20, 10))) probs <- (probs - min(probs)) / max(probs) probs <- cbind(probs, 1 - probs) colnames(probs) <- NULL orig <- rep(c("Group.1", "Group.2"), each = n) plotAssignments(probs, orig) n <- 15 probs <- abs(c(rnorm(n, 80, 10), rnorm(n, 20, 10))) probs <- (probs - min(probs)) / max(probs) probs <- cbind(probs, 1 - probs) colnames(probs) <- NULL orig <- rep(c("Group.1", "Group.2"), each = n) plotAssignments(probs, orig)
Calculate the p-value for a permutation test.
pVal(obs, null.dist)
pVal(obs, null.dist)
obs |
observed value. |
null.dist |
vector of values from permutation null distribution. |
Eric Archer [email protected]
null.dist <- rnorm(1000) obs <- rnorm(1, mean = 1) plot(density(null.dist), xlim = range(c(obs, null.dist)), main = "") abline(v = obs) print(obs) pVal(obs, null.dist)
null.dist <- rnorm(1000) obs <- rnorm(1, mean = 1) plot(density(null.dist), xlim = range(c(obs, null.dist)), main = "") abline(v = obs) print(obs) pVal(obs, null.dist)
Rounds numeric columns in data.frames
## S3 method for class 'data.frame' ceiling(x) ## S3 method for class 'data.frame' floor(x) ## S3 method for class 'data.frame' trunc(x, ...) ## S3 method for class 'data.frame' round(x, digits = 0) ## S3 method for class 'data.frame' signif(x, digits = 6)
## S3 method for class 'data.frame' ceiling(x) ## S3 method for class 'data.frame' floor(x) ## S3 method for class 'data.frame' trunc(x, ...) ## S3 method for class 'data.frame' round(x, digits = 0) ## S3 method for class 'data.frame' signif(x, digits = 6)
x |
a data.frame with numeric columns. |
... |
arguments to be passed to methods. |
digits |
integer indicating the number of decimal places ( |
Takes a data.frame and returns a data.frame with the specified function applied to each numeric column.
Eric Archer [email protected]
data(mtcars) round(mtcars, 0) signif(mtcars, 2)
data(mtcars) round(mtcars, 0) signif(mtcars, 2)
Return the number of rows and columns for n
that best fits on a page of size width
x height
.
row.col.page.fit(n, width = 8.5, height = 11)
row.col.page.fit(n, width = 8.5, height = 11)
n |
number of items (e.g., plots) to fit on page. |
width , height
|
dimensions of page. |
A vector listing the number of rows and columns to use.
Eric Archer [email protected]
# 9 frames on US letter paper row.col.page.fit(9) # 9 frames on a square row.col.page.fit(9, width = 10, height = 10)
# 9 frames on US letter paper row.col.page.fit(9) # 9 frames on a square row.col.page.fit(9, width = 10, height = 10)
Convert runjags posterior to named list of vectors or arrays.
runjags2list(post, collapse.chains = TRUE)
runjags2list(post, collapse.chains = TRUE)
post |
list of class 'runjags'. The output from a call to run.jags. |
collapse.chains |
return array with dimension for each chain? |
If collapse.chains = TRUE
, the last dimension of arrays will always
be samples from the posterior. If collapse.chains = FALSE
, the last
dimension of arrays will be individual chains, and the one prior to that
will be samples from the posterior for each chain.
aperm to transpose the array if necessary. as.data.frame.table to convert arrays to data.frames.
Produce a scatter plot with a histogram or density plot in the margins
scatterdens(x, y, dens.frac = 1/5, ...) scatterhist(x, y, xlab = "", ylab = "", dens.frac = 1/5, ...)
scatterdens(x, y, dens.frac = 1/5, ...) scatterhist(x, y, xlab = "", ylab = "", dens.frac = 1/5, ...)
x , y
|
vectors of points to plot. |
dens.frac |
fraction of screen to be taken up by density plots on margins. |
... |
Arguments to be passed to plot. |
xlab , ylab
|
labels for x and y axes. |
Eric Archer [email protected]
Original code by Ken Kleiman
x <- rnorm(100) y <- rlnorm(100) op <- par(ask = TRUE) scatterdens(x, y, xlab = "x", ylab = "y") par(op)
x <- rnorm(100) y <- rlnorm(100) op <- par(ask = TRUE) scatterdens(x, y, xlab = "x", ylab = "y") par(op)
Setup parallel clusters for different operating systems.
setupClusters(num.cores = 1, max.cores = NULL)
setupClusters(num.cores = 1, max.cores = NULL)
num.cores |
number of cores for multithreading.
If |
max.cores |
maximum number of cores to use. |
an object of class c("SOCKcluster", "cluster")
.
Eric Archer [email protected]
Plots male and female symbols on current plot.
sex.symbols(x, y, sex = 1, col = par("fg"), lwd = par("lwd"), cex = 1)
sex.symbols(x, y, sex = 1, col = par("fg"), lwd = par("lwd"), cex = 1)
x , y
|
the |
sex |
a numeric vector containing the values 1 (male) or 2 (female). If of length one, then value is recycled for all symbols. |
col , lwd , cex
|
color, line width, and character expansion for each point. |
Tim Gerrodette [email protected]
x <- runif(20, 0, 10) y <- runif(20, 0, 200) plot(x, y, type = "n") sex.symbols(x, y, sex = 1:2, cex = 1.5, lwd = c(1.5, 4), col = c("blue", "red"))
x <- runif(20, 0, 10) y <- runif(20, 0, 200) plot(x, y, type = "n") sex.symbols(x, y, sex = 1:2, cex = 1.5, lwd = c(1.5, 4), col = c("blue", "red"))
Compute parameters and moments of skew normal distribution.
sn.location(mode, scale, shape) sn.mean(dp) sn.mode(dp) sn.variance(scale, shape) sn.skewness(shape) sn.delta(shape) sn.m0(shape)
sn.location(mode, scale, shape) sn.mean(dp) sn.mode(dp) sn.variance(scale, shape) sn.skewness(shape) sn.delta(shape) sn.m0(shape)
mode |
mode of skew normal distribution. |
scale |
skew normal scale parameter. |
shape |
skew normal shape parameter. |
dp |
3 element vector of (in order) location, scale, and shape parameters. |
sn.location |
location parameter computed from mode, scale, and shape. |
sn.mean |
mean of the skew normal distribution. |
sn.mode |
mode of the skew normal distribution. |
sn.variance |
variance of the skew normal distribution. |
sn.skewness |
skewness of the skew normal distribution. |
sn.delta |
value used in other moment computations. |
sn.m0 |
value used in mode computation. |
Eric Archer [email protected]
https://en.wikipedia.org/wiki/Skew_normal_distribution
sn
package by Adelchi Azzalini for skew normal
PDF and CDF functions.
Azzalini, A. with the collaboration of Capitanio, A. (2014).
The Skew-Normal and Related Families. Cambridge University Press,
IMS Monographs series.
Calculate Fisher's method p-value to summarize a vector of p-values based on a chi-squared distribution.
stouffer.p(p, w = NULL)
stouffer.p(p, w = NULL)
p |
vector of p-values. |
w |
vector weights. |
Eric Archer [email protected]
Return transparent form of a named color.
transparent(col, percent = 50)
transparent(col, percent = 50)
col |
vector of colors as name, hexadecimal, or positive integer
(see |
percent |
percent of transparency (0 = solid, 100 = transparent). |
Eric Archer [email protected]
pct <- seq(0, 100, by = 10) plot(pct, pct, bg = transparent("red", pct), pch = 21, cex = 4, xlab = "X", ylab = "Y")
pct <- seq(0, 100, by = 10) plot(pct, pct, bg = transparent("red", pct), pch = 21, cex = 4, xlab = "X", ylab = "Y")
Tests whether a histogram is significantly different from a uniform distribution.
uniform.test(hist.output, B = NULL)
uniform.test(hist.output, B = NULL)
hist.output |
output from a call to |
B |
number of replicates for chi-squared permutation. |
result of chi-squared test.
Eric Archer [email protected]
x.unif <- runif(100) uniform.test(hist(x.unif), B = 1000) x.lnorm <- rlnorm(100) uniform.test(hist(x.lnorm), B = 1000)
x.unif <- runif(100) uniform.test(hist(x.unif), B = 1000) x.lnorm <- rlnorm(100) uniform.test(hist(x.lnorm), B = 1000)
Calculate weighted Fisher's method p-value to summarize a vector of p-values based on a chi-squared distribution.
weighted.fisher.p(p, w = NULL)
weighted.fisher.p(p, w = NULL)
p |
vector of p-values. |
w |
vector weights. |
Eric Archer [email protected]
Find values of one vector that are nearest to values in another vector.
which.nearest(x, y)
which.nearest(x, y)
x |
vector of values to be compared against. |
y |
vector of values to examine relative to @return For each value in |
Tim Gerrodette [email protected]
x <- sort(sample(1:100, 20)) y <- sort(sample(min(x):max(x), 5)) i <- which.nearest(x, y) x y x[i]
x <- sort(sample(1:100, 20)) y <- sort(sample(min(x):max(x), 5)) i <- which.nearest(x, y) x y x[i]
Return character representation of integers that are zero-padded to the left so all are the same length.
zero.pad(x)
zero.pad(x)
x |
a vector of integers. |
Eric Archer [email protected]
x <- c(0, 1, 3, 4, 10) zero.pad(x) x <- c(x, 11, 12, 100, 1000) zero.pad(x)
x <- c(0, 1, 3, 4, 10) zero.pad(x) x <- c(x, 11, 12, 100, 1000) zero.pad(x)