
Package: swfscAirDAS (via r-universe)
October 4, 2024

Title Southwest Fisheries Science Center Aerial DAS Data Processing

Version 0.3.1

Description Process and summarize aerial survey 'DAS' data (AirDAS)
<https://swfsc-publications.fisheries.noaa.gov/publications/TM/SWFSC/
NOAA-TM-NMFS-SWFSC-185.PDF>
collected using an aerial survey program from the Southwest
Fisheries Science Center (SWFSC)
<https://www.fisheries.noaa.gov/west-coast/science-data/
california-current-marine-mammal-assessment-program>.
PDF files detailing the relevant AirDAS data formats are
included in this package.

URL https://swfsc.github.io/swfscAirDAS/,

https://github.com/swfsc/swfscAirDAS/

BugReports https://github.com/swfsc/swfscAirDAS/issues/

Depends R (>= 4.0.0)

Imports dplyr, lubridate, magrittr, methods, parallel, purrr, readr,
rlang, stringr, swfscDAS (>= 0.3.0), swfscMisc, tidyr

Suggests knitr, rmarkdown, testthat (>= 2.1.0), tibble

License Apache License (== 2)

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation no

Author Sam Woodman [aut, cre]
(<https://orcid.org/0000-0001-6071-8186>)

Maintainer Sam Woodman <sam.woodman@noaa.gov>

Repository CRAN

Date/Publication 2024-10-03 18:30:02 UTC

1

https://swfsc-publications.fisheries.noaa.gov/publications/TM/SWFSC/NOAA-TM-NMFS-SWFSC-185.PDF
https://swfsc-publications.fisheries.noaa.gov/publications/TM/SWFSC/NOAA-TM-NMFS-SWFSC-185.PDF
https://www.fisheries.noaa.gov/west-coast/science-data/california-current-marine-mammal-assessment-program
https://www.fisheries.noaa.gov/west-coast/science-data/california-current-marine-mammal-assessment-program
https://swfsc.github.io/swfscAirDAS/
https://github.com/swfsc/swfscAirDAS/
https://github.com/swfsc/swfscAirDAS/issues/
https://orcid.org/0000-0001-6071-8186

2 swfscAirDAS-package

Contents
swfscAirDAS-package . 2
airdas_check . 3
airdas_chop_condition . 4
airdas_chop_equallength . 6
airdas_chop_section . 8
airdas_comments . 9
airdas_comments_process . 10
airdas_df-class . 13
airdas_dfr-class . 14
airdas_effort . 15
airdas_effort_sight . 18
airdas_format_pdf . 19
airdas_process . 20
airdas_read . 23
airdas_segdata . 24
airdas_sight . 25
as_airdas_df . 27
as_airdas_dfr . 28
subsetting . 28

Index 31

swfscAirDAS-package Southwest Fisheries Science Center Aerial Survey DAS

Description

Process and summarize aerial survey DAS data

Details

This package contains functions designed for processing and analyzing aerial survey DAS data
(AirDAS) collected using one of the following Southwest Fisheries Science Center (SWFSC) pro-
grams: PHOCOENA, SURVEY, CARETTA, or TURTLE (such as TURTLEP or TURTLE 4D).
Functionality includes checking AirDAS data for data entry errors, reading AirDAS data into a data
frame, processing this data (extracting state and condition information for each AirDAS event), and
summarizing sighting and effort information.

Author(s)

Sam Woodman <sam.woodman@noaa.gov>

See Also

https://swfsc.github.io/swfscAirDAS/

https://swfsc.github.io/swfscAirDAS/

airdas_check 3

airdas_check Check AirDAS file

Description

Check that AirDAS file has accepted formatting and values

Usage

airdas_check(
file,
file.type = c("turtle", "caretta", "phocoena"),
skip = 0,
file.out = NULL,
sp.codes = NULL,
print.transect = TRUE

)

Arguments

file filename(s) of one or more AirDAS files

file.type character; indicates the program used to create file. Must be one of: "turtle",
"caretta", "survey", or "phocoena" (case sensitive). Default is "turtle". Passed to
airdas_read

skip integer: see read_fwf. Default is 0. Passed to airdas_read

file.out character; filename to which to write the error log. Should be a text or CSV file.
Default is NULL

sp.codes character; filename of .dat file from which to read accepted species codes. If
NULL, default (internal) file will be used. Default is NULL

print.transect logical; indicates if a table with all the transect numbers in the x should be
printed using table. Default is TRUE

Details

The default (internal) sp.codes file is located at system.file("SpCodesAirDAS.dat", package
= "swfscAirDAS").

To see the checks performed by this function, you can access the PDF locally at system.file("AirDAS_check.pdf",
package = "swfscAirDAS"), or online at https://github.com/swfsc/swfscAirDAS/blob/master/
inst/AirDAS_check.pdf

Checks that are not done by this function that may be of interest:

• Check for valid fish ball/mola/jelly/crab pot codes

• Check that datetimes are sequential, meaning they 1) are the same as or 2) come after the
previous event

https://github.com/swfsc/swfscAirDAS/blob/master/inst/AirDAS_check.pdf
https://github.com/swfsc/swfscAirDAS/blob/master/inst/AirDAS_check.pdf

4 airdas_chop_condition

Value

A data frame with five columns that list information about errors found in the AirDAS files: the
file name, line number, index (row number) from the airdas_read(file) data frame, ’ID’ (pre-
Data# columns from the DAS file), and description of the issue. This data frame is sorted by the
’Description’ column. If there are multiple issues with the same line, the issue descriptions are
concatenated together using paste(..., collapse = "; ")

If print.transect is TRUE, then the output of table(x$Data1[x$Event == "T"], useNA = "always"),
where x is the output of airdas_read(file, ...) is printed

If file.out is not NULL, then the error log is also written to the file (e.g., a .txt or .csv file) specified
by file.out

See Also

https://swfsc.github.io/swfscAirDAS/

Examples

y <- system.file("airdas_sample.das", package = "swfscAirDAS")
if (interactive()) airdas_check(y, print.transect = TRUE)

airdas_chop_condition Chop AirDAS data - condition

Description

Chop AirDAS data into a new effort segment every time a condition changes

Usage

airdas_chop_condition(x, ...)

S3 method for class 'data.frame'
airdas_chop_condition(x, ...)

S3 method for class 'airdas_df'
airdas_chop_condition(
x,
conditions,
seg.min.km = 0.1,
distance.method = NULL,
num.cores = NULL,
...

)

https://swfsc.github.io/swfscAirDAS/

airdas_chop_condition 5

Arguments

x airdas_df object, or a data frame that can be coerced to a airdas_df object.
This data must be filtered for ’OnEffort’ events; see the Details section below

... ignored

conditions the conditions that trigger a new segment; see airdas_effort

seg.min.km numeric; minimum allowable segment length (in kilometers). Default is 0.1.
See the Details section below for more information

distance.method

character; see airdas_effort. Default is NULL since these distances should
have already been calculated in airdas_effort

num.cores See airdas_effort

Details

WARNING - do not call this function directly! It is exported for documentation purposes, but is
intended for internal package use only.

This function is intended to only be called by airdas_effort when the "condition" method is
specified. Thus, x must be filtered for events (rows) where either the ’OnEffort’ column is TRUE
or the ’Event’ column is either "E" or "O"; see airdas_effort for more details. This function
chops each continuous effort section (henceforth ’effort sections’) in x into modeling segments
(henceforth ’segments’) by creating a new segment every time a condition changes. Each effort
section runs from a T/R event to its corresponding E/O event. After chopping, airdas_segdata is
called (with segdata.method = "maxdist") to get relevant segdata information for each segment.

Changes in the one of the conditions specified in the conditions argument triggers a new segment.
An exception is when multiple condition changes happen at the same location, such as a ’TVPAW’
series of events. When this happens, no segments of length zero are created; rather, a single segment
is created that includes all of the condition changes (i.e. all of the events in the event series) that
happened during the series of events (i.e. at the same location). Note that this combining of events
at the same Lat/Lon happens even if seg.min.km = 0.

In addition, (almost) all segments whose length is less than seg.min.km are combined with the
segment immediately following them to ensure that the length of (almost) all segments is at least
seg.min.km. This allows users to account for situations where multiple conditions, such as Beau-
fort and a viewing condition, change in rapid succession, say <0.1 km apart. When segments are
combined, a message is printed, and the condition that was recorded for the maximum distance
within the new segment is reported. See airdas_segdata, segdata.method = "maxdist", for
more details about how the segdata information is determined. The only exception to this rule is if
the short segment ends in an "E" or an "O" event, meaning it is the last segment of the effort section.
Since in this case there is no ’next’ segment, this short segment is left as-is.

If the column dist_from_prev does not exist, the distance between subsequent events is calculated
as described in airdas_effort

Value

List of two data frames:

• x, with columns added for the corresponding unique segment code and number

6 airdas_chop_equallength

• segdata: data frame with one row for each segment, and columns with relevant data (see
airdas_effort for specifics)

airdas_chop_equallength

Chop AirDAS data - equal length

Description

Chop AirDAS data into equal-length effort segments, averaging conditions by segment

Usage

airdas_chop_equallength(x, ...)

S3 method for class 'data.frame'
airdas_chop_equallength(x, ...)

S3 method for class 'airdas_df'
airdas_chop_equallength(
x,
conditions,
seg.km,
randpicks.load = NULL,
distance.method = NULL,
num.cores = NULL,
...

)

Arguments

x airdas_df object, or a data frame that can be coerced to a airdas_df object.
This data must be filtered for ’OnEffort’ events; see the Details section below

... ignored

conditions see airdas_effort

seg.km numeric; target segment length in kilometers

randpicks.load character, data frame, or NULL. If character, must be filename of past randpicks
output to load and use (passed to file argument of read.csv). If data frame,
randpicks values will be extracted from the data frame. If NULL, new randpicks
values will be generated by the function

distance.method

character; see airdas_effort. Default is NULL since these distances should
have already been calculated in airdas_effort

num.cores See airdas_effort

airdas_chop_equallength 7

Details

WARNING - do not call this function directly! It is exported for documentation purposes, but is
intended for internal package use only.

This function is intended to only be called by airdas_effort when the "equallength" method is
specified. Thus, x must be filtered for events (rows) where either the ’OnEffort’ column is TRUE or
the ’Event’ column is either "E" or "O"; see airdas_effort for more details. This function chops
each continuous effort section (henceforth ’effort sections’) in x into modeling segments (henceforth
’segments’) of equal length. Each effort section runs from a "T"/"R" event to its corresponding
"E"/"O" event. After chopping, airdas_segdata is called to get relevant segdata information for
each segment.

When chopping the effort sections in segments of length seg.km, there are several possible scenar-
ios:

• The extra length remaining after chopping is greater than or equal to half of the target segment
length (i.e. >= 0.5*seg.km): the extra length is assigned to a random portion of the effort
section as its own segment (see Fig. 1a)

• The extra length remaining after chopping is less than half of the target segment length (i.e.
< 0.5*seg.km): the extra length is added to one of the (randomly selected) equal-length seg-
ments (see Fig. 1b)

• The length of the effort section is less than or equal to the target segment length: the entire
segment becomes a segment (see Fig. 1c)

• The length of the effort section is zero: a segment of length zero. If there are more than two
events (the "T"/R" and "E"/"O" events), the function throws a warning

Therefore, the length of each segment is constrained to be between one half and one and one half of
seg.km (i.e. 0.5*seg.km <= segment length >=1.5*seg.km), and the central tendency is approxi-
mately equal to the target segment length. The only exception is when a continuous effort section
is less than one half of the target segment length (i.e. < 0.5*seg.km; see Fig. 1c).

Note the PDF with Figs. 1a - 1c is included in the package, and can be found at: system.file("AirDAS_chop_equallength_figures.pdf",
package = "swfscAirDAS")

’Randpicks’ is a record of the random assignments that were made when chopping the effort sec-
tions into segments, and can be saved to allow users to recreate the same random allocation of extra
km when chopping. The randpicks returned by this function is a data frame with two columns: the
number of the effort section and the randpick value. Users should save the randpicks output to a
CSV file, which then can be specified using the randpicks.load argument to recreate the same
effort segments from x (i.e., using the same AirDAS data) in the future. Note that when saving with
write.csv, users must specify row.names = FALSE so that the CSV file only has two columns.
For an example randpicks file, see system.file("airdas_sample_randpicks.csv", package =
"swfscAirDAS")

If the column dist_from_prev does not exist, the distance between subsequent events is calculated
as described in airdas_effort

Value

List of three data frames:

• x, with columns added for the corresponding unique segment code and number

https://github.com/swfsc/swfscAirDAS/blob/master/inst/AirDAS_chop_equallength_figures.pdf
https://github.com/swfsc/swfscAirDAS/blob/master/inst/AirDAS_chop_equallength_figures.pdf
https://github.com/swfsc/swfscAirDAS/blob/master/inst/AirDAS_chop_equallength_figures.pdf
https://github.com/swfsc/swfscAirDAS/blob/master/inst/AirDAS_chop_equallength_figures.pdf

8 airdas_chop_section

• segdata: data frame with one row for each segment, and columns with relevant data (see
airdas_effort for specifics)

• randpicks: data frame with record of length allocations (see Details section above)

airdas_chop_section Chop AirDAS data - section

Description

Chop AirDAS data into effort segments by continuous effort section

Usage

airdas_chop_section(x, ...)

S3 method for class 'data.frame'
airdas_chop_section(x, ...)

S3 method for class 'airdas_df'
airdas_chop_section(
x,
conditions,
distance.method = NULL,
num.cores = NULL,
...

)

Arguments

x airdas_df object, or a data frame that can be coerced to a airdas_df object.
This data must be filtered for ’OnEffort’ events; see the Details section below

... ignored

conditions see airdas_effort

distance.method

character; see airdas_effort. Default is NULL since these distances should
have already been calculated in airdas_effort

num.cores See airdas_effort

Details

WARNING - do not call this function directly! It is exported for documentation purposes, but is
intended for internal package use only.

This function is simply a wrapper for airdas_chop_equallength. It calls airdas_chop_equallength,
with seg.km set to a value larger than the longest continuous effort section in x. Thus, the effort is
’chopped’ into the continuous effort sections and then summarized.

airdas_comments 9

See the Examples section for an example where the two methods give the same output. Note that
the longest continuous effort section in the sample data is ~32km.

For an example of how to summarize data by transect, see vignette("swfscAirDAS"). In short, if
looking to group by individual transects, use segdata$transect_idx <- cumsum(segdata$event
== "T") to create a column with a transect index. Then you can use group_by(transect_idx) and
summarise to summarise the desired data by transect

Value

See airdas_chop_equallength. The randpicks values will all be NA

Examples

y <- system.file("airdas_sample.das", package = "swfscAirDAS")
y.proc <- airdas_process(y)

y.eff1 <- airdas_effort(y.proc, method = "equallength", seg.km = 35, num.cores = 1)
y.eff2 <- airdas_effort(y.proc, method = "section", num.cores = 1)

all.equal(y.eff1, y.eff2)

airdas_comments Extract comments from AirDAS data

Description

Extract comments from airdas_dfr or airdas_df object

Usage

airdas_comments(x)

S3 method for class 'data.frame'
airdas_comments(x)

S3 method for class 'airdas_df'
airdas_comments(x)

S3 method for class 'airdas_dfr'
airdas_comments(x)

Arguments

x airdas_dfr or airdas_df object, or a data frame that can be coerced to a
airdas_dfr object

10 airdas_comments_process

Details

This function recreates the comment strings by pasting the Data# columns back together for the C
events (comments)

See the examples section for how to search for comments with the phrase "record" to determine
what extra information (e.g. molas) was being recorded vs ignored.

Value

x, filtered for C events and with the added column comment_str containing the concatenated com-
ment strings

Examples

y <- system.file("airdas_sample.das", package = "swfscAirDAS")
y.read <- airdas_read(y, file.type = "turtle")

airdas_comments(y.read)

Extract all comments containing "record"
y.comm <- airdas_comments(y.read)
y.comm[grepl("record", y.comm$comment_str, ignore.case = TRUE),]

Extract all comments containing "record", but not "recorder"
y.comm <- airdas_comments(y.read)
y.comm[grepl("record", y.comm$comment_str, ignore.case = TRUE) &

!grepl("recorder", y.comm$comment_str, ignore.case = TRUE),]

Join comments with processed data
dplyr::left_join(y.read, y.comm[, c("file_das", "line_num", "comment_str")],

by = c("file_das", "line_num"))

airdas_comments_process

Process comments in AirDAS data

Description

Extract miscellaneous information recorded in AirDAS data comments, i.e. comment-data

Usage

airdas_comments_process(x, ...)

S3 method for class 'data.frame'
airdas_comments_process(x, ...)

S3 method for class 'airdas_dfr'

airdas_comments_process 11

airdas_comments_process(x, comment.format = NULL, ...)

S3 method for class 'airdas_df'
airdas_comments_process(x, comment.format = NULL, ...)

Arguments

x airdas_dfr or airdas_df object, or a data frame that can be coerced to a
airdas_dfr object

... ignored

comment.format list; default is NULL. See the ’Using comment.format’ section

Details

Historically, project-specific or miscellaneous data have been recorded in AirDAS comments us-
ing specific formats and character codes. This functions identifies and extracts this data from the
comment text strings. However, different data types have different comment-data formats. Specif-
ically, TURTLE and PHOCOENA comment-data uses identifier codes that each signify a certain
data pattern, while other comment-data (usually that of CARETTA) uses data separated by some
delimiter.

Value

x, filtered for comments with recorded data, with the following columns added:

• comment_str: the full comment string

• Misc#: Some number of descriptor columns. There should be n columns, although the mini-
mum number will be two columns

• Value: Associated count or percentage for TURTLE/PHOCOENA data

• flag_check: logical indicating if the TURTLE/PHOCOENA comment string was longer than
an expected number of characters, and thus should be manually inspected

See the additional sections for more context. If comment.format is NULL, then the output data
frame would two Misc# columns: a level one descriptor, e.g. "Fish ball" or "Jellyfish", and a level
two descriptor, e.g. s, m, or c. However, if comment.format$n is say 4, then the output data frame
would have columns Misc1, Misc2, Misc3, and Misc4.

Messages are printed if either comment.format is not NULL and not comment-data is identified
using comment.format, or if x has TURTLE/PHOCOENA data but no TURTLE/PHOCOENA
comment-data

TURTLE and PHOCOENA comment-data

Current supported data types are: fish balls, molas, jellyfish, and crab pots. See any of the AirDAS
format PDFs (airdas_format_pdf) for information about the specific codes and formats used to
record this data. All comments are converted to lower case for processing to avoid missing data.

These different codes contain (at most): a level one descriptor (e.g. fish ball or crab pot), a level two
descriptor (e.g. size or jellyfish species), and a value (a count or percentage). Thus, the extracted
data are returned together in this structure. The output data frame is long data, i.e. it has one piece

12 airdas_comments_process

of information per line. For instance, if the comment is "fb1s fb1m", then the output data frame will
have one line for the small fish ball and one for the medium fish ball. See Value section for more
details.

Currently this function only recognizes mola data recorded using the "m1", "m2", and "m3" codes
(small, medium, and large mola, respectively). Thus, "mola" is not recognized and processed.

The following codes are used for the level two descriptors:

Description Code
Small s
Medium m
Large l
Unknown u
Chrysaora c
Moon jelly m
Egg yolk e
Other o

Using comment.format

comment.format is a list that allows the user to specify the comment-data format. To use this
argument, data must be separated by a delimiter. This list must contain three named elements:

• n: A single number indicating the number of elements of data in each comment. Must equal
the length of type. A comment must contain exactly this number of sep to be recognized as
comment-data

• sep: A single string indicating the field separator string (delimiter). Values within each com-
ment are separated by this string. Currently accepted values are ";" and ","

• type: A character vector of length n indicating the data type of each data element (column).
All values must be one of: "character", "numeric", or "integer".

For instance, for most CARETTA data comment.format should be list(n = 5, sep = ";", type
= c("character", "character", "numeric", "numeric", "character"))

Examples

y <- system.file("airdas_sample.das", package = "swfscAirDAS")
y.proc <- airdas_process(y)

airdas_comments_process(y.proc)

airdas_df-class 13

airdas_df-class airdas_df class

Description

The airdas_df class is a subclass of data.frame, created to provide a concise and robust way
to ensure that the input to downstream AirDAS processing functions, such as airdas_sight, ad-
heres to certain requirements. Specifically, objects of class airdas_df are data frames with spe-
cific column names and classes, as detailed in the ’Properties of airdas_df’ section. In addition,
airdas_df objects have no NA values in the ’Lat’ ’Lon’, or ’DateTime’ columns. Objects of class
airdas_df are created by airdas_process or as_airdas_df, and are intended to be passed di-
rectly to DAS processing functions such as airdas_sight.

Subsetting, say for a specific date or transect number, or otherwise altering an object of class
airdas_df will cause the object to drop its airdas_df class attribute, although note that com-
bining two airdas_df objects using rbind will return an object with a airdas_df class attribute.
If this object is then passed to a DAS processing function such as airdas_sight, the function will
try to coerce the object to a airdas_df object.

Properties of airdas_df objects

Objects of class airdas_df have a class attribute of c("airdas_df", "data.frame"). All values
in the OnEffort column must be TRUE or FALSE (no NA values). All on effort events must have non-
NA Lat/Lon/DateTime values, and there must be no events with a "#" event code (deleted event).
Like airdas_dfr events, there must be a file_type column where all values are one of: "turtle",
"caretta", "survey", or "phocoena" (case sensitive; see airdas_read for more details about file
types).

In addition, airdas_df objects must have the following column names and classes:

Column name Column class
Event "character"
DateTime c("POSIXct", "POSIXt")
Lat "numeric"
Lon "numeric"
OnEffort "logical"
Trans "character"
Bft "numeric"
CCover "numeric"
Jelly "numeric"
HorizSun "numeric"
VertSun "numeric"
HKR "character"
Haze "logical"
Kelp "logical"
Red tide "logical"
AltFt "numeric"
SpKnot "numeric"

14 airdas_dfr-class

ObsL "character"
ObsB "character"
ObsR "character"
Rec "character"
VLI "character"
VLO "character"
VB "character"
VRI "character"
VRO "character"
Data1 "character"
Data2 "character"
Data3 "character"
Data4 "character"
Data5 "character"
Data6 "character"
Data7 "character"
EffortDot "logical"
EventNum "character"
file_das "character"
line_num "integer"
file_type "character"

See Also

as_airdas_df

airdas_dfr-class airdas_dfr class

Description

The airdas_dfr class is a subclass of data.frame, created to provide a concise and robust way
to ensure that the input to airdas_processadheres to certain requirements. Specifically, objects
of class airdas_dfr are data frames with specific column names and classes, as detailed in the
’Properties of airdas_dfr’ section. Objects of class airdas_dfr are created by airdas_read or
as_airdas_dfr, and are intended to be passed directly to airdas_process.

Subsetting or otherwise altering an object of class airdas_dfr will cause the object to drop its
airdas_dfr class attribute, although note that combining two airdas_dfr objects using rbind
will return an object with a airdas_dfr class attribute. airdas_process will then try to coerce the
object to a airdas_dfr object. It is strongly recommended to pass an object of class airdas_dfr
to airdas_process before subsetting, e.g. for events from a certain date range.

airdas_effort 15

Properties of airdas_dfr objects

Objects of class airdas_dfr have a class attribute of c("airdas_dfr", "data.frame"). They
must have a column file_type where all values are one of: "turtle", "caretta", "survey", or "pho-
coena" (case sensitive; see airdas_read for more details). airdas_dfr objects also must not have
any NA event codes.

In addition, they must have the following column names and classes:

Column name Column class
Event "character"
EffortDot "logical"
DateTime c("POSIXct", "POSIXt")
Lat "numeric"
Lon "numeric"
Data1 "character"
Data2 "character"
Data3 "character"
Data4 "character"
Data5 "character"
Data6 "character"
Data7 "character"
EventNum "character"
file_das "character"
line_num "integer"
file_type "character"

See Also

as_airdas_dfr

airdas_effort Summarize AirDAS effort

Description

Chop AirDAS data into effort segments

Usage

airdas_effort(x, ...)

S3 method for class 'data.frame'
airdas_effort(x, ...)

S3 method for class 'airdas_df'
airdas_effort(

16 airdas_effort

x,
method = c("condition", "equallength", "section"),
conditions = NULL,
distance.method = c("greatcircle", "lawofcosines", "haversine", "vincenty"),
num.cores = NULL,
angle.min = 12,
bft.max = 5,
...

)

Arguments

x airdas_df object; output from airdas_process, or a data frame that can be
coerced to a airdas_df object

... arguments passed to the chopping function specified using method, such as
seg.km or seg.min.km

method character; method to use to chop AirDAS data into effort segments Can be "con-
dition", "equallength", "section", or any partial match thereof (case sensitive)

conditions character vector of names of conditions to include in segdata output. These
values must be column names from the output of airdas_process, e.g. ’Bft’,
’CCover’, etc. The default is NULL, in which case all relevant conditions will be
included. If method == "condition", then these also are the conditions which
trigger segment chopping when they change.

distance.method

character; method to use to calculate distance between lat/lon coordinates. Can
be "greatcircle", "lawofcosines", "haversine", "vincenty", or any partial match
thereof (case sensitive). Default is "greatcircle"

num.cores Number of CPUs to over which to distribute computations. Defaults to NULL,
which uses one fewer than the number of cores reported by detectCores Using
1 core likely will be faster for smaller datasets

angle.min passed to airdas_sight

bft.max numeric; the maximum Beaufort (column ’Bft’) for which to mark a sighting as
TRUE in ’included’ (see Details). Default is 5.

Details

This is the top-level function for chopping processed AirDAS data into modeling segments (hence-
forth ’segments’), and assigning sightings and related information (e.g., weather conditions) to each
segment. This function returns data frames with all relevant information for the effort segments and
associated sightings (’segdata’ and ’sightinfo’, respectively). Before chopping, the AirDAS data
is filtered for events (rows) where either the ’OnEffort’ column is TRUE or the ’Event’ column is
"E" or "O". In other words, the data is filtered for continuous effort sections (henceforth ’effort
sections’), where effort sections run from "T"/"R" to "E"/"O" events (inclusive), and then passed
to the chopping function specified using method. All on effort events must not have NA Lat or Lon
values; note Lat/Lon values for 1 events were ’filled in’ in airdas_process.

airdas_effort 17

The following chopping methods are currently available: "condition", "equallength", and "section".
When using the "condition" method, effort sections are chopped into segments every time a con-
dition specified in conditions changes, thereby ensuring that the conditions are consistent across
the entire segment. See airdas_chop_condition for more details about this method, including
arguments that must be passed to it via

The "equallength" method consists of chopping effort sections into equal-length segments of length
seg.km, and doing a weighted average of the conditions for the length of that segment. See
airdas_chop_equallength for more details about this method, including arguments that must
be passed to it via

The "section" method involves ’chopping’ the effort into continuous effort sections, i.e. each con-
tinuous effort section is a single effort segment. See airdas_chop_section for more details about
this method.

The distance between the lat/lon points of subsequent events is calculated using the method specified
in distance.method. If "greatcircle", distance_greatcircle is used, while distance is used
otherwise. See airdas_sight for how the sightings are processed.

The sightinfo data frame includes the column ’included’, which is used in airdas_effort_sight
when summarizing the number of sightings and animals for selected species. airdas_effort_sight
is a separate function to allow users to personalize the ’included’ values as desired for their specific
analysis. By default, i.e. in the output of this function, ’included’ is TRUE if: the sighting was a
standard sighting (see airdas_sight) and in a Beaufort sea state less than or equal to ’btf.max’.

Value

List of three data frames:

• segdata: one row for every segment, and columns for information including unique segment
number, event code that started the associated continuous effort section, the starting and end-
ing line of the segment in the DAS file (stlin, endlin), start/end/midpoint coordinates(lat1/lon1,
lat2/lon2, and mlat/mlon, respectively), the start/end/midpoint date/time of the segment (Date-
Time1, DateTime2, and mDateTime, respectively; mDateTime is the average of DateTime1
and DateTime2), segment length (dist), and conditions (e.g. Beaufort)

• sightinfo: details for all sightings in x, including: the unique segment number it is associated
with, segment mid points (lat/lon), the ’included’ column described in the Details section, and
the output information described in airdas_sight

• randpicks: see airdas_chop_equallength. NULL if using "condition" method.

Examples

y <- system.file("airdas_sample.das", package = "swfscAirDAS")
y.proc <- airdas_process(y)

airdas_effort(
y.proc, method = "condition", conditions = "Bft", seg.min.km = 0.05,
num.cores = 1

)

y.rand <- system.file("airdas_sample_randpicks.csv", package = "swfscAirDAS")
airdas_effort(

18 airdas_effort_sight

y.proc, method = "equallength", conditions = c("Bft", "CCover"),
seg.km = 3, randpicks.load = y.rand, num.cores = 1

)

airdas_effort(y.proc, method = "section", num.cores = 1)

airdas_effort_sight Summarize AirDAS sightings by effort segment

Description

Summarize number of sightings and animals for selected species by segment

Usage

airdas_effort_sight(x.list, sp.codes, sp.events = c("S", "t"))

Arguments

x.list list; output of airdas_effort

sp.codes character; species code(s) to include in segdata. These code(s) will be converted
to lower case to match airdas_sight

sp.events character; event code(s) to include in the sightinfo output. This argument super-
sedes the ’included’ value when determining whether a sighting is included in
the segment summaries. Must be one or more of: "S", "t" (case-sensitive). The
default is that all of these event codes are kept

Details

This function takes the output of airdas_effort and adds columns for the number of sightings
(nSI) and number of animals (ANI) for selected species (selected via sp.codes) for each segment
to the segdata element of x.list. However, only sightings with an included value of TRUE (in-
cluded is a column in sightinfo) are included in the summaries. Having this step separate from
airdas_effort allows users to personalize the included values as desired for their analysis.

Value

A list, identical to x.list except for 1) the nSI and ANI columns added to x.list$segdata, one
each for each element of sp.codes, and 2) the included column of x.list$sightinfo, which has
been set as FALSE for sightings of species not listed in sp.codes

airdas_format_pdf 19

Examples

y <- system.file("airdas_sample.das", package = "swfscAirDAS")
y.proc <- airdas_process(y)
y.cond <- airdas_effort(

y.proc, method = "condition", conditions = "Bft", seg.min.km = 0.05,
num.cores = 1

)

airdas_effort_sight(y.cond, sp.codes = c("mn", "bm"))

airdas_format_pdf Aerial DAS format requirements

Description

Access and save local PDF documents describing the data format of the different file types supported
by swfscAirDAS

Usage

airdas_format_pdf(file, file.type = c("phocoena", "caretta", "turtle"), ...)

Arguments

file character; the name of the file where the PDF will be saved

file.type character; indicates which data format PDF to extract. Must be one of: "turtle",
"caretta", "survey", or "phocoena" (case sensitive)

... passed to file.copy; might included named argument overwrite

Details

This function is a wrapper function for file.copy. It saves a PDF document describing the speci-
fied aerial DAS data format requirements by copying the PDF document to file

The PDF files can also be manually copied or downloaded from:

PHOCOENA

• Can be copied from: system.file("AirDAS_Format_PHOCOENA.pdf", package = "swfscAirDAS")

• Can be downloaded from: https://github.com/swfsc/swfscAirDAS/blob/master/inst/
AirDAS_Format_PHOCOENA.pdf

CARETTA

• Can be copied from: system.file("AirDAS_Format_CARETTA.pdf", package = "swfscAirDAS")

• Can be downloaded from: https://github.com/swfsc/swfscAirDAS/blob/master/inst/
AirDAS_Format_CARETTA.pdf

https://github.com/swfsc/swfscAirDAS/blob/master/inst/AirDAS_Format_PHOCOENA.pdf
https://github.com/swfsc/swfscAirDAS/blob/master/inst/AirDAS_Format_PHOCOENA.pdf
https://github.com/swfsc/swfscAirDAS/blob/master/inst/AirDAS_Format_CARETTA.pdf
https://github.com/swfsc/swfscAirDAS/blob/master/inst/AirDAS_Format_CARETTA.pdf

20 airdas_process

TURTLE

• Can be copied from: system.file("AirDAS_Format_TURTLE.pdf", package = "swfscAirDAS")

• Can be downloaded from: https://github.com/swfsc/swfscAirDAS/blob/master/inst/
AirDAS_Format_TURTLE.pdf

Value

output of file.copy: TRUE if writing of file was successful, and FALSE otherwise

See Also

https://swfsc.github.io/swfscAirDAS/

Examples

if (interactive()) {
airdas_format_pdf(
"AirDAS_Format_TURTLE.pdf", file.type = "turtle",
overwrite = FALSE

)
}

airdas_process Process aerial survey DAS data

Description

Process AirDAS data (the output of airdas_read), including extracting state and condition infor-
mation for each AirDAS event

Usage

airdas_process(x, ...)

S3 method for class 'character'
airdas_process(x, ...)

S3 method for class 'data.frame'
airdas_process(x, ...)

S3 method for class 'airdas_dfr'
airdas_process(
x,
days.gap.part = 0.5/24,
days.gap.full = 12/24,
gap.message = FALSE,

https://github.com/swfsc/swfscAirDAS/blob/master/inst/AirDAS_Format_TURTLE.pdf
https://github.com/swfsc/swfscAirDAS/blob/master/inst/AirDAS_Format_TURTLE.pdf
https://swfsc.github.io/swfscAirDAS/

airdas_process 21

reset.transect = TRUE,
trans.upper = FALSE,
...

)

Arguments

x an object of class airdas_dfr object, an object that can be coerced to class
airdas_dfr, or a character (filepath) which is first passed to airdas_read

... passed to airdas_read if x is a character. Otherwise ignored

days.gap.part numeric of length 1; time gap (in days) used to identify when a ’partial reset’ is
performed, i.e. when propagated info (weather, observers, etc) is reset. Default
is 30 minutes; must be less than or equal to days.gap.full

days.gap.full numeric of length 1; time gap (in days) used to identify when a ’full reset; is
performed, i.e. when all info (transect number and propagated info) is reset.
Default is 12 hours; must be greater than days.gap.part

gap.message logical; default is FALSE. Indicates if messages should be printed detailing which
row(s) of the output data frame were partially or fully reset

reset.transect logical; default is TRUE. Indicates if propagated info (weather, observers, etc)
should be reset to NA when beginning a new transect. See Details section

trans.upper logical; indicates if all transect codes should be capitalized using toupper. De-
fault is FALSE

Details

If x is a character, it is assumed to be a filepath and first passed to airdas_read. This output is then
processed.

This function cannot handle concatenated airdas_dfr objects of multiple file types. In other words,
AirDAS data must be processed and then concatenated.

AirDAS data is event-based, meaning most events indicate when a state or weather condition
changes. For instance, a ’W’ event indicates when one or more weather conditions (such as Beau-
fort sea state) change, and the weather conditions are the same for subsequent events until the next
’W’ event. For each state/condition: a new column is created, the state/condition information is
extracted from relevant events, and extracted information is propagated to appropriate subsequent
rows (events). Thus, each row in the output data frame contains all pertinent state/condition infor-
mation for that row.

The following assumptions/decisions are made during processing:

• All ’#’ events (deleted events) are removed

• ’DateTime’, ’Lat’, and ’Lon’ information are added to ’1’ events where applicable

• Effort is determined as follows: T/R events turns effort on, and O/E events turn effort off.
T/R events themselves will be on effort, while O/E events will be off effort. The ’EffortDot’
column is ignored

• ’HKR’ values are converted to lower case. "Y" values are considered to be "H" values

• Observer (’ObsL’, ’ObsB’, ’ObsR’, ’Rec’) values are converted to lower case

22 airdas_process

• Viewing condition (’VLI’, ’VLO’, ’VB’, ’VRI’, ’VRO’) values are converted to lower case

• Missing values are NA rather than -1

Normally, a T event (to indicate starting/resuming a transect) is immediately followed by a VPAW
event series, creating a TVPAW event series. The reset.transect argument causes the conditions
set in the VPAW event series (Beaufort, viewing conditions, altitude, etc.) to be reset to NA at each
T event

Value

An airdas_df object, which is also a data frame. It consists of the input data frame, i.e. the output
of airdas_read, with the following columns added:

State/condition Column name Notes
On/off effort OnEffort
Transect code Trans
Beaufort sea state Bft
Percent overcast (cloud cover) CCover
Jellyfish code Jelly not in PHOCOENA data
Horizontal sun (clock system) HorizSun
Vertical sun (clock system) VertSun only in PHOCOENA data
Haze/Kelp/Red tide code HKR
Haze (from HKR code) Haze
Kelp (from HKR code) Kelp
Red tide (from HKR code) RedTide
Altitude (feet) AltFt
Speed (knots) SpKnot
Left observer ObsL
Belly observer ObsB
Right observer ObsR
Data recorder Rec
Viewing condition - left inside VLI
Viewing condition - left outside VLO
Viewing condition - belly VB
Viewing condition - right inside VRI
Viewing condition - right outside VRO

See airdas_format_pdf for which data columns the condition information is extracted form for
each file type. In addition, warnings are printed with line numbers of unexpected event codes

Examples

y <- system.file("airdas_sample.das", package = "swfscAirDAS")
airdas_process(y, trans.upper = FALSE)

y.read <- airdas_read(y)
airdas_process(y.read)

airdas_read 23

airdas_read Read AirDAS file(s)

Description

Read one or more fixed-width aerial survey DAS text file(s) generated by TURTLEP, or another
AirDAS program, into a data frame, where each line is data for a specific event

Usage

airdas_read(
file,
file.type = c("turtle", "caretta", "survey", "phocoena"),
skip = 0,
tz = "UTC",
...

)

Arguments

file filename(s) of one or more AirDAS files

file.type character; indicates the program used to create file. Must be one of: "turtle",
"caretta", "survey", or "phocoena" (case sensitive). Default is "turtle"

skip integer: see read_fwf. Default is 0

tz character; see strptime. Default is UTC

... ignored

Details

Reads/parses aerial survey DAS data into columns of a data frame. If file contains multiple file-
names, then the individual data frames will be combined using rbind

See airdas_format_pdf for information about AirDAS format requirements for the specific file
types (programs)

Value

An airdas_dfr object, which is also a data frame, with AirDAS data read into columns. The data
are read into the data frame as characters, with the following exceptions:

Name Class Details
EffortDot logical TRUE if "." was present, and FALSE otherwise
DateTime POSIXct combination of ’Date’ and ’Time’ columns, with time zone tz
Lat numeric ’Latitude’ columns converted to decimal degrees in range [-90, 90]
Lon numeric ’Longitude’ columns converted to decimal degrees in range [-180, 180]
Data# character leading/trailing whitespace trimmed for non-comment events (i.e. where ’Event’ is not "C")
file_das character base filename, extracted from the file argument

24 airdas_segdata

line_num integer line number of each data row
file_type character file.type argument

Examples

y <- system.file("airdas_sample.das", package = "swfscAirDAS")
airdas_read(y, file.type = "turtle")

airdas_segdata Summarize AirDAS data for a continuous effort section

Description

Summarize AirDAS effort data by effort segment, while averaging conditions

Usage

airdas_segdata(x, ...)

S3 method for class 'data.frame'
airdas_segdata(x, ...)

S3 method for class 'airdas_df'
airdas_segdata(
x,
conditions,
segdata.method = c("avg", "maxdist"),
seg.lengths,
section.id,
...

)

Arguments

x airdas_df object, or a data frame that can be coerced to a airdas_df object.
Must contain a single continuous effort section of AirDAS data; see the Details
section below

... ignored

conditions see airdas_effort, or see Details section for more information

segdata.method character; either "avg" or "maxdist". "avg" means the condition values will
be calculated as a weighted average by distance, while "maxdist" means the
condition values will be those recorded for the longest distance during that seg-
ment

seg.lengths numeric; length of the modeling segments into which x will be chopped

section.id numeric; the ID of x (the current continuous effort section)

airdas_sight 25

Details

WARNING - do not call this function directly! It is exported for documentation purposes, but is
intended for internal package use only.

This function was designed to be called by one of the airdas_chop_ functions, e.g. airdas_chop_equallength,
and thus users should avoid calling it themselves. It loops through the events in x, calculating and
storing relevant information for each modeling segment as it goes. Because x is a continuous effort
section, it must begin with a "T" or "R" event and end with the corresponding "E" or "O" event.

For each segment, this function reports the segment ID, transect code, the start/end/mid coordinates
(lat/lon), start/end/mid date/times (DateTime), segment length, year, month, day, time, observers,
and average conditions (which are specified by conditions). The segment ID is designated as
section.id _ index of the modeling segment. Thus, if section.id is 1, then the segment ID for
the second segment from x is "1_2".

When segdata.method is "avg", the condition values are calculated as a weighted average by dis-
tance. The reported value for logical columns (e.g. Haze) is the percentage (in decimals) of the seg-
ment in which that condition was TRUE. For character columns, the reported value for each segment
is the unique value(s) present in the segment, with NAs omitted, pasted together via paste(...,
collapse = "; "). When segdata.method is "maxdist", the reported values are, for each condi-
tion, the value recorded for the longest distance during that segment (with NAs omitted).

Transect code, file name, and vent code that started the continuous effort section are also included in
the segdata output. These values (excluding NAs) must be consistent across the entire effort section,
and thus across all segments in x; a warning is printed if there are any inconsistencies.

bearing and destination are used to calculate the segment start, mid, and end points, with method
= "vincenty".

Value

Data frame with the segdata information described above and in airdas_effort

airdas_sight Aerial DAS sightings

Description

Extract sighting information from aerial DAS data

Usage

airdas_sight(x, ...)

S3 method for class 'data.frame'
airdas_sight(x, ...)

S3 method for class 'airdas_df'
airdas_sight(x, angle.min = 12, ...)

26 airdas_sight

Arguments

x airdas_df object; output from airdas_process, or a data frame that can be
coerced to a airdas_df object

... ignored

angle.min numeric; the minimum (absolute value) angle for which to consider a sighting a
standard sighting. Default is 12

Details

AirDAS events contain specific information in the ’Data#’ columns, with the information depending
on the event code and file type for that row. This function extracts relevant data for sighting events,
and returns a data frame with dedicated columns for each piece of sighting information. It can
handle multiple file types in x; for instance, x could be processed PHOCOENA and TURTLE data
combined using rbind. See airdas_format_pdf for more information about the expected events
and event formats, depending on the file type.

All species codes are converted to lower case using tolower.

Abbreviations used in column names include: Gs = group size, Sp = species, Mixed = mixed species
(multi-species) sighting. In addition, note that multi-species group sizes are rounded to the nearest
whole number using round(, 0)

A ’sighting by a standard observer’ (’ObsStd’) is a sighting made by ObsL, ObsB, or ObsR (not
the data recorder or pilot). A ’standard sighting’ (’SightStd’) is a sighting that was made while on
effort, by a standard observer, and with the absolute value of the angle of declination being greater
than or equal to angle.min. Resights (Events ’s’) are not considered standard events, and thus both
’ObsStd’ and ’SightStd’ will be NA for ’s’ events.

Value

Data frame with 1) the columns from x, excluding the ’Data#’ columns, and 2) columns with sight-
ing information extracted from ’Data#’ columns as described below. The data frame has one row for
each sighting, or one row for each species of each sighting if it is a multi-species (mixed) sighting.

Added sighting information columns:

Sighting information Column name Notes
Sighting number SightNo
Observer that made the sighting Obs
Angle of declination Angle Left is negative
Sighting by standard observer ObsStd Logical; described in Details
Standard sighting SightStd Logical; described in Details
Mixed species sighting Mixed Logical
Species code SpCode All characters converted to lower case
Group size of school GsTotal Only different from GsSp for mixed species sightings
Group size of species GsSp
Turtle length (feet if numeric) TurtleSize NA for non-"t" events; may be character or numeric
Turtle travel direction (degrees) TurtleDirection NA for non-"t" events
Turtle tail visible? TurtleTail NA for non-"t" events

as_airdas_df 27

The TurtleSize will be of class character is there is any CARETTA data in x, and of class numeric
otherwise.

Examples

y <- system.file("airdas_sample.das", package = "swfscAirDAS")
y.proc <- airdas_process(y)

airdas_sight(y.proc)

as_airdas_df Coerce object to a airdas_df object

Description

Check if an object is of class airdas_df, or coerce it if possible.

Usage

as_airdas_df(x)

S3 method for class 'airdas_df'
as_airdas_df(x)

S3 method for class 'data.frame'
as_airdas_df(x)

Arguments

x An object to be coerced to class airdas_df

Details

Currently only data frames can be coerced to an object of class airdas_df. If x does not have
column names, classes, and contents as specified in airdas_df, then the function returns an error
message detailing the first column that does not meet the airdas_df requirements.

Value

An object of class airdas_df

See Also

airdas_df-class

28 subsetting

as_airdas_dfr Coerce object to a airdas_dfr object

Description

Check if an object is of class airdas_dfr, or coerce it if possible.

Usage

as_airdas_dfr(x)

S3 method for class 'airdas_dfr'
as_airdas_dfr(x)

S3 method for class 'data.frame'
as_airdas_dfr(x)

Arguments

x An object to be coerced to class airdas_dfr

Details

Currently only data frames can be coerced to an object of class airdas_dfr. If x does not have
column names and classes as specified in airdas_dfr, then the function returns an error message
detailing the first column that does not meet the airdas_dfr requirements.

Value

An object of class ‘airdas_dfr‘

See Also

airdas_dfr-class

subsetting Subsetting objects created using swfscAirDAS

Description

Subsetting airdas_dfr or airdas_df objects

subsetting 29

Usage

S3 method for class 'airdas_dfr'
x[i, j, ..., drop = TRUE]

S3 replacement method for class 'airdas_dfr'
x$name <- value

S3 replacement method for class 'airdas_dfr'
x[i, j, ...] <- value

S3 replacement method for class 'airdas_dfr'
x[[i]] <- value

S3 method for class 'airdas_df'
x[i, j, ..., drop = TRUE]

S3 replacement method for class 'airdas_df'
x$name <- value

S3 replacement method for class 'airdas_df'
x[i, j, ...] <- value

S3 replacement method for class 'airdas_df'
x[[i]] <- value

Arguments

x object of class airdas_dfr or airdas_df

i, j, ... elements to extract or replace, see [.data.frame

drop logical, see [.data.frame

name A literal character string or ..., see [.data.frame

value A suitable replacement value, see [.data.frame

Details

When subsetting a airdas_dfr or airdas_df object, henceforth a airdas_ object, using any of the
functions described in [.data.frame, then then the airdas_ class is simply dropped and the object
is of class data.frame. This is because of the strict format requirements of airdas_ objects; it is
likely that a subsetted airdas_ object will not have the format required by subsequent swfscAirDAS
functions, and thus it is safest to drop the airdas_ class. If a data frame is passed to downstream
swfscAirDAS functions that require a airdas_ object, then they will attempt to coerce the object to
the necessary airdas_ class See as_airdas_dfr and as_airdas_df for more details.

Examples

y <- system.file("airdas_sample.das", package = "swfscAirDAS")
y.read <- airdas_read(y)

30 subsetting

All return a data frame:
class(y.read[1:10,])
class(y.read[, 1:10])

y.df <- y.read
y.df[, 1] <- "a"
class(y.df)

y.df <- y.read
y.df$Event <- "a"
class(y.df)

y.df <- y.read
y.df[["Event"]] <- "a"
class(y.df)

Index

∗ package
swfscAirDAS-package, 2

[.airdas_df (subsetting), 28
[.airdas_dfr (subsetting), 28
[.data.frame, 29
[<-.airdas_df (subsetting), 28
[<-.airdas_dfr (subsetting), 28
[[<-.airdas_df (subsetting), 28
[[<-.airdas_dfr (subsetting), 28
$<-.airdas_df (subsetting), 28
$<-.airdas_dfr (subsetting), 28

airdas_check, 3
airdas_chop_condition, 4, 17
airdas_chop_equallength, 6, 8, 9, 17, 25
airdas_chop_section, 8, 17
airdas_comments, 9
airdas_comments_process, 10
airdas_df, 27
airdas_df (airdas_df-class), 13
airdas_df-class, 13
airdas_dfr, 28
airdas_dfr (airdas_dfr-class), 14
airdas_dfr-class, 14
airdas_effort, 5–8, 15, 18, 24, 25
airdas_effort_sight, 17, 18
airdas_format_pdf, 11, 19, 22, 23, 26
airdas_process, 13, 14, 16, 20, 26
airdas_read, 3, 13–15, 20–22, 23
airdas_segdata, 5, 7, 24
airdas_sight, 13, 16–18, 25
as_airdas_df, 13, 14, 27, 29
as_airdas_dfr, 14, 15, 28, 29

bearing, 25

data.frame, 13, 14
destination, 25
detectCores, 16
distance, 17

distance_greatcircle, 17

file.copy, 19, 20

group_by, 9

rbind, 13, 14, 23, 26
read.csv, 6
read_fwf, 3, 23

strptime, 23
subsetting, 28
summarise, 9
swfscAirDAS (swfscAirDAS-package), 2
swfscAirDAS-package, 2

table, 3
tolower, 26
toupper, 21

write.csv, 7

31

	swfscAirDAS-package
	airdas_check
	airdas_chop_condition
	airdas_chop_equallength
	airdas_chop_section
	airdas_comments
	airdas_comments_process
	airdas_df-class
	airdas_dfr-class
	airdas_effort
	airdas_effort_sight
	airdas_format_pdf
	airdas_process
	airdas_read
	airdas_segdata
	airdas_sight
	as_airdas_df
	as_airdas_dfr
	subsetting
	Index

