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Abstract

Structural vector autoregressive (SVAR) models are frequently applied to trace the
contemporaneous linkages among (macroeconomic) variables back to an interplay of or-
thogonal structural shocks. Under Gaussianity the structural parameters are unidentified
without additional (often external and not data-based) information. In contrast, the often
reasonable assumption of heteroskedastic and/or non-Gaussian model disturbances offers
the possibility to identify unique structural shocks. We describe the R package svars which
implements statistical identification techniques that can be both heteroskedasticity based
or independence based. Moreover, it includes a rich variety of analysis tools that are well
known in the SVAR literature. Next to a comprehensive review of the theoretical back-
ground, we provide a detailed description of the associated R functions. Furthermore, a
macroeconomic application serves as a step-by-step guide on how to apply these functions
to the identification and interpretation of structural VAR models.

Keywords: SVAR models, identification, independent components, non-Gaussian maximum
likelihood, changes in volatility, smooth transition covariance, R.

1. Introduction
Particularly in macroeconometrics, structural vector autoregressive (SVAR) models have be-
come a prominent tool to determine the impacts of different (economic) shocks in a system
of variables. Within these models, the unobserved structural shocks represent information
that is hidden in the reduced form vector autoregressive (VAR) model. Nevertheless, analysts
might be interested in the system’s reaction to exactly this type of isolated shocks, which is
commonly visualized by means of impulse-response functions. For instance, policy makers
could be interested in revealing the effects of an unexpected interest rate cut. Estimating
the reduced form VAR by means of least squares (LS) or maximum likelihood methods (ML)
is straightforward (see, e.g., Lütkepohl 2005), however, identifying the non-unique structural
form is a controversial topic in the SVAR literature.
Beginning with the pioneering work of Sims (1980), two main types of identification strategies
have been developed. On the one hand, following Sims (1980) original ideas such strategies
refer to economic theory. Theory based methods implement economic restrictions (e.g., short-
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run restrictions (Sims 1980), long-run restrictions (Blanchard and Quah 1989) or specific sign
patterns (Uhlig 2005)) a-priori. On the other hand, statistical identification methods which
have been developed more recently exploit the informational content of specific data features
(heteroskedasticitiy of structural shocks, uniqueness of non-Gaussian independent compo-
nents). The R package svars, which we describe in this paper, focuses on these statistical
methods to identify the structural shocks.

The R (R Core Team 2017) archive network comprises several widely applied packages for
multivariate time series models and, in particular, for analyzing VAR models. The vars pack-
age (Pfaff 2008) contains estimation techniques for reduced form VAR models, and functions
to determine the lag order and to perform several diagnostic tests. Moreover, the vars package
allows for the estimation of a basic structural form by means of theory-based short- and long-
run restrictions. Further R packages for multivariate time series analysis and VAR estimation
are tsDyn (Stigler 2010) and MTS (Tsay 2015). To the authors’ knowledge, currently only
the VARsignR package (Danne 2015) contains functions for SVAR identification by means of
theory-based sign restrictions.

Given the lack of implementations of statistical identification techniques in R, the package
svars has been explicitly developed to fill this gap by providing various recent statistical meth-
ods to estimate SVAR models. These methods build upon distinct but not mutually exclusive
statistical properties of the data (i.e., covariance changes and the uniqueness of independent
non-Gaussian distributed structural shocks). The svars package supports six identification
techniques. Three identification methods make use of the assumption of heteroskedastic
shocks, i.e., the identification (i) via changes in volatility (Rigobon 2003), (ii) via smooth
transitions of covariances (Lütkepohl and Netsunajev 2017b) and (iii) via generalized au-
toregressive conditional heteroskedasticity (GARCH) (Normadin and Phaneuf 2004; Bouakez
and Normandin 2010). Three further identification methods connect to the uniqueness of
non-Gaussian independent components, namely the detection of least dependent innovations
based on (iv) Cramér-von Mises (CVM) statistics (Herwartz 2018), (v) the distance covari-
ances (Matteson and Tsay 2017) and (vi) a parametric non-Gaussian ML approach (Lanne,
Meitz, and Saikkonen 2017).

By offering a variety of identification methods, the svars package can be applied in diverse data
settings. Additionally, it extends the existing pool of SVAR techniques in R with more recent
bootstrap procedures, further statistics and hypothesis tests directly related to inference in
SVAR models. In this sense, the svars package is designed as a complete toolbox for the struc-
tural analysis of multivariate time series. Based on objects from reduced form estimations,
svars is compatible with other packages such as vars, tsDyn and MTS. Moreover, computa-
tionally demanding modules are fully implemented in C++ and linked to R using the Rcpp
(Eddelbuettel and François 2011) and RcppArmadillo (Eddelbuettel and Sanderson 2014)
libraries. The package is available on CRAN at https://cran.r-project.org/package=svars.

The article is organized as follows: Section 2 outlines the SVAR model and the alternative
identification methods. In Section 3, we describe bootstrap methods and further diagnostic
tools for SVAR analysis. Section 4 details the package design, and Section 5 provides an illus-
trative application of two identification schemes to a real world dataset. Lastly, a summary
and an outlook on future extensions of the svars package complete this article.

https://cran.r-project.org/package=svars
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2. Structural vector autoregressive models
Consider a K-dimensional VAR model of order p

yt = µ + A1yt−1 + ... + Apyt−p + ut, (1)
= µ + A1yt−1 + ... + Apyt−p + Bεt, t = 1, ..., T, (2)

where yt = [y1t, ..., yKt]⊤ is a vector of observable variables, Ai, i = 1, . . . , p, are (K × K)
coefficient matrices, and intercept parameters are collected in µ. We focus on the case of time
invariant deterministic terms for notational clarity. Model augmentation with time-varying
deterministic terms (e.g., breaks, linear trends), however, is straightforward. Furthermore,
the VAR model is stationary (invertible) by assumption. The vector ut consists of reduced-
form residuals, which are serially uncorrelated with E(ut) = 0 and Cov(ut) = Σu. The
nonsingular matrix B captures the instantaneous effects of the structural shocks εt = B−1ut

on the variables of the system.
In the following, we briefly discuss the identification problem in SVAR analysis. Subsequently,
we present six alternative statistical approaches to uniquely determine the structural shocks.
Finally, we provide a short guidance on how to choose between these alternative identification
approaches.

2.1. The identification problem

Cross-equation relations between the reduced-form residuals in Equation 1 are characterized
by the covariance matrix

Cov(ut) = Σu = BΣεB⊤, (3)

where the covariance of the structural shocks Cov(εt) = Σε is a diagonal matrix. Thus, struc-
tural shocks are uncorrelated, which enables a meaningful impulse-response analysis (Lütke-
pohl 2005). Without any further model specification, Equation 3 holds for every matrix B
which decomposes the covariance matrix Σu. Hence, additional restrictions are necessary to
identify a (unique) matrix B.1 In this paper, we focus on identification techniques which use
the underlying data structure to determine the structural matrix. After estimating the model
in Equation 1 by means of LS or ML methods, the resulting reduced form residual estimates
ût and the corresponding covariance estimate Σ̂u provide the starting point for the subsequent
identification techniques. The following two Sections introduce the statistical identification
methods which constitute the core functions of the svars package.

2.2. Identification by means of heteroskedastic innovations

Time series are often characterized by time-varying covariance structures. Therefore, it is
tempting to unravel the structural relationships by means of such changes in the second
order moments (see, e.g., Sentana and Fiorentini 2001; Rigobon 2003). The svars package
includes three alternative heteroskedasticity based SVAR identification schemes. The first
approach is built upon unconditional shifts in the covariance (Rigobon 2003), while the second

1The identification problem is described in more detail, for instance, in Chapter 1 of Lütkepohl (2005).
Kilian and Lütkepohl (2017) resume a variety of traditional and more recent methods to identify the structural
shocks.
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procedure allows for a smooth transition between the covariance regimes (Lütkepohl and
Netsunajev 2017b). The third scheme implements the identification of the structural shocks
via conditional heteroskedasticity (Normadin and Phaneuf 2004).

Changes in volatility (CV)
Rigobon (2003) uses the presence of shifts in the time series’ variance at known time points
for the identification of structural shocks. He considers a model of exogenous covariance
changes. More precisely, the changes of the covariance matrix occur at prespecified break
dates implying

E(utu
⊤
t ) = Σt = Σu(m) for m = 1, ..., M, t = 1, . . . , T.

Here, the index m = 1, . . . , M indicates the respective variance regime. In the most simple
framework of two volatility states (i.e., M = 2) with a structural break at time point Tsb ∈
{1, . . . , T}, the reduced form covariance matrix is

E(utu
⊤
t ) =

{
Σ1 for t = 1, ..., Tsb − 1
Σ2 for t = Tsb, ..., T,

where Σ1 ̸= Σ2. The two covariance matrices can be decomposed as Σ1 = BB⊤ and Σ2 =
BΛB⊤, where Λ is a diagonal matrix with diagonal elements λii > 0, i = 1, ..., K. The
matrix Λ formalizes the change of the variance of structural shocks εt in the second regime.
In other words, the structural shocks have unit variance in the first regime, and variances
λii, i = 1, . . . , K, in the second regime. The structural shocks are uniquely identified if all
diagonal elements in Λ are distinct. Under the assumption of Gaussian residuals ut, the
log-likelihood function for the estimation of B and Λ is

log L = T
K

2 log 2π − Tsb − 1
2

[
log det(BB⊤) + tr

(
Σ̂1(BB⊤)−1

)]
− T − Tsb + 1

2
[
log det(BΛB⊤) + tr

(
Σ̂2(BΛB⊤)−1

)]
, (4)

where Σ̂1 and Σ̂2 are retrieved from estimated residuals ût, respectively, as

Σ̂1 = 1
Tsb − 1

Tsb−1∑
t=1

ûtû
⊤
t and Σ̂2 = 1

T − Tsb + 1

T∑
t=Tsb

ûtû
⊤
t .

For the numerical log-likelihood optimization of (4), the initial matrix B is the lower triangular
decomposition of T −1∑T

t=1 ûtû
⊤
t , and the initial matrix Λ is set to the identity matrix. Lanne

and Lütkepohl (2008) introduce an iterative procedure to improve the estimation precision of
this routine. The matrices B̃ and Λ̃, which are obtained from maximizing the log-likelihood
function, are used for iterative generalized least squares (GLS) estimation of the deterministic
and autoregressive parameters

β̂ = vec[µ̂, Â1, ..., Âp]

=

Tsb−1∑
t=1

(
ZtZ

⊤
t ⊗ (B̃B̃⊤)−1

)
+

T∑
t=Tsb

(
ZtZ

⊤
t ⊗ (B̃Λ̃B̃⊤)−1

)−1

×

Tsb−1∑
t=1

(
Zt ⊗ (B̃B̃⊤)−1

)
yt +

T∑
t=Tsb

(
Zt ⊗ (B̃Λ̃B̃⊤)−1

)
yt

 ,
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where Z⊤
t = [1, y⊤

t−1, ..., y⊤
t−p]. Then, the GLS estimator β̂ is used to update the covariance

estimates by means of ût = yt − (Z⊤
t ⊗ IK)β̂. This algorithm iterates until the log-likelihood

converges. Furthermore, standard errors for the structural parameters can be obtained from
the square root of the inverted information matrix (Hamilton 1994).
Identification through changes in volatility is conditional on the determination of the variance
regimes. If available, the analyst might use external information for the selection of suitable
break points (Tsb). Typically these are extraordinary events in history which can be associated
with a change in data variation (see, e.g., Rigobon and Sack 2004). Alternatively, the model
might be evaluated conditional on a range of alternative break point candidates from which
the analyst selects the model with the highest log-likelihood as described in Lütkepohl and
Schlaak (2018).

Smooth transition (co)variances (ST)
The implementation of identification via smooth transition covariances follows the descrip-
tions in Lütkepohl and Netsunajev (2017b) and generalizes the identification via changes in
volatility. The covariance matrix of the error terms ut consists of several volatility states, and
the transition from one state to another is formalized by means of a non-linear function. For
two volatility regimes with distinct covariance matrices Σ1 and Σ2, the covariance structure
at time t is

E(utu
⊤
t ) = Ωt = (1 − G(st)) Σ1 + G(st)Σ2, t = 1, . . . , T. (5)

In (5), G(·) is the transition function determined by the transition variable st. While the
transition variable is usually deterministic (e.g., st = t), the model also allows for stochastic
transition variables, for instance, lagged dependent variables (see Lütkepohl and Netsunajev
2017b, for more details). The most frequently employed transition function is the logistic
function proposed by Maddala (1977), which is of the form

G(γ, c, st) = [1 + exp(− exp(γ)(st − c))]−1 . (6)

The coefficient γ determines the slope of the function and c is the time point of transition.
Based on the covariance structure in Equation 5 and Equation 6, and the assumption of
normally distributed residuals ut, the log-likelihood function reads as

log L = T
K

2 log 2π − 1
2

T∑
t=1

log det(Ωt) − 1
2

T∑
t=1

u⊤
t Ω−1

t ut. (7)

Grid optimization enables the determination of the transition parameters γ and c. Lütkepohl
and Netsunajev (2017b) suggest an iterative procedure for every pair of parameters (γ, c).
The first step is the maximization of the log-likelihood in (7) with respect to the structural
parameters B and Λ. In the second step, the estimated matrices B̃ and Λ̃ are used to re-
estimate the reduced form VAR parameters by means of GLS estimation

β̂ =
(
(Z⊤

t ⊗ IK)WT (Zt ⊗ IK)
)−1

(Z⊤
t ⊗ IK)WT y,

where WT is a blockdiagonal (KT × KT ) weighting matrix

WT =


Ω−1

1 · · · 0
... . . . ...
0 · · · Ω−1

T

 .
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The GLS step obtains β̂ to update the covariance estimates by means of ût = yt −(Z⊤
t ⊗IK)β̂.

The two steps are performed until the log-likelihood converges. The iterative procedure is
evaluated at every parameter pair (γ, c) within a prespecified range. The parameter pair
which maximizes the log-likelihood in Equation 7 is considered to provide the best estimate
for the true transition. For a more detailed discussion of the parameter choice see Lütkepohl
and Netsunajev (2017b).

Conditional heteroskedasticity (GARCH)

As proposed by Normadin and Phaneuf (2004), Lanne and Saikkonen (2007) and Bouakez
and Normandin (2010) structural shocks are unique if their conditional variances are of the
GARCH type. For the formal exposition let Ft denote a filtration that summarizes systemic
information which is available until time t. Accordingly, the time-varying covariance can be
represented as

E(utu
⊤
t |Ft−1) = Σt|t−1 = BΛt|t−1B⊤, (8)

where
Λt|t−1 = diag(σ2

1,t|t−1, ..., σ2
K,t|t−1) (9)

is a (K × K) matrix with GARCH implied variances on the main diagonal. In the context of
SVAR identification typically low order GARCH(1,1) specifications are assumed, such that
the individual variances exhibit a dynamic structure as

σ2
k,t|t−1 = (1 − γk − gk) + γkε2

k,t−1 + gkσ2
k,t−1|t−2, k = 1, .., K. (10)

Higher-order GARCH structures are rarely employed in practice, even though this can be
done in principle. Under suitable distributional and parametric restrictions, γk > 0, gk ≥ 0
and γk + gk < 1, the marginal GARCH processes εk,t are covariance stationary (Milunovich
and Yang 2013). Sentana and Fiorentini (2001) have shown that the structural parameters
in B are uniquely identified, if there are at least K − 1 GARCH-type variances present in
Λt|t−1 . The parameters γk and gk can be estimated by means of standard univariate ML
approaches. The multivariate Gaussian log-likelihood to obtain the structural parameters in
B is

log L = T
K

2 log 2π − 1
2

T∑
t=1

log det(Σt|t−1) − 1
2

T∑
t=1

u⊤
t Σt|t−1ut. (11)

For the practical implementation of identification through patterns of conditional heteroskedas-
ticity, we follow the approach suggested by Lütkepohl and Milunovich (2016), and estimate
the parameters in (10) and (11) iteratively until the log-likelihood in (11) converges.

2.3. Identification through independent components

As implied by a result of Comon (1994), independence of the components of εt could serve
to identify the matrix B if at most one component εit exhibits a Gaussian distribution.
Furthermore, partial identification of the non-Gaussian components is possible if the system
contains multiple Gaussian components (cf. Maxand 2019). The svars package implements
three distinct approaches for identification by means of independent components. Referring
to principles of Hodges-Lehman estimation (HL estimation, Hodges and Lehmann 2006),
the first two identification strategies allow for the detection of least dependent structural
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shocks by the minimization of nonparametric dependence criteria. More specifically, the first
technique reveals the structural shocks by minimizing the CVM distance of Genest, Quessy,
and Rémillard (2007). Following a suggestion of Matteson and Tsay (2017), the distance
covariance statistic of Székely, Rizzo, and Bakirov (2007) is employed as a nonparametric
independence diagnostic for the second estimator. The third identification scheme is a fully
parametric ML approach for detecting independent Student-t distributed shocks (Lanne et al.
2017).

Least dependent innovations build on Cramér-von Mises statistics (CVM)
Under Gaussianity, the decomposition factor B of the covariance matrix Σu is not unique as
Gaussian random vectors do not change their joint distribution under rotation. In contrast,
assuming not more than one Gaussian distributed component εit in εt, the structural matrix
B can be uniquely determined. Introducing the nonparametric identification scheme, let D
denote a lower triangular Choleski factor of the covariance matrix of the reduced-form errors,
Σu = DD⊤, which links the structural and reduced form errors by εt = D−1ut. Further
candidate structural shocks can be generated as

ε̃t = Qεt = QD−1ut, (12)

where Q is a rotation matrix such that Q ̸= IK , QQ⊤ = IK . The rotation matrix could be
parameterized as the product of K(K − 1)/2 distinct forms of orthogonal Givens rotation
matrices. In the case of K = 3, for instance, Q(θ) is defined as

Q(θ) =

1 0 0
0 cos(θ1) − sin(θ1)
0 sin(θ1) cos(θ1)

×

cos(θ2) 0 − sin(θ2)
0 1 0

sin(θ2) 0 cos(θ2)

×

cos(θ3) − sin(θ3) 0
sin(θ3) cos(θ3) 0

0 0 1

 ,

with rotation angles 0 ≤ θi ≤ π, i = 1, 2, 3. By definition, the random vector ε̃t in Equation
12 is a rotation of εt. The set of possible structural matrices B(θ) = D Q(θ) is defined in
terms of the Choleski factor D and the vector of rotation angles θ of the Givens matrices
Q(θ).
To avoid any restrictive assumption on the distribution of εt, nonparametric independence
tests are applied to measure the degree of dependence. For instance, the copula-based CVM
distance of Genest et al. (2007) has been successfully applied in the SVAR literature (Herwartz
and Plödt 2016a; Herwartz 2018) to assess mutual dependence. The CVM distance is

Bθ =
∫

(0,1)K

[
√

T

(
C(ε̃) −

K∏
i=1

U(ε̃i)
)]2

dε̃, (13)

where C is the empirical copula and U is the distribution function of a uniformly distributed
variable on {1/T, . . . , T/T}. The CVM algorithm provides a matrix estimate B̂ such that the
rotated structural shocks ε̃t minimize the CVM dependence criterion. Hence, the obtained
structural shocks are least dependent according to the statistic in (13) and the corresponding
structural matrix B̂ is the HL estimator. Standard errors for B̂ are obtained by means of
bootstrap procedures as presented in Section 3.6.

Least dependent innovations build on distance covariance (DC)
There is a variety of nonparametric criteria available to measure the degree of dependence
between random variables, one of which, namely the CVM distance, has been described before.
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The ICA algorithm by Matteson and Tsay (2017) provides a matrix estimate B̂ such that the
respective structural shocks ε̃t = B̂−1ût minimize the distance covariance of Székely et al.
(2007), which we denote as UT (ε̃t), i.e., the elements in ε̃t are least dependent according to
UT (.). Similar to the procedure building on the CVM statistic, the set of possible structural
matrices B(θ) is defined in terms of the Choleski factor D and the vector of rotation angles
θ of Q(θ). The rotation angles θ̃ = argminθ UT (ε̃t(θ)) determine the estimated structural
matrix B̂ = B(θ̃).2 In the svars package, we take advantage of the function steadyICA from
the R package steadyICA (Risk, James, and Matteson 2015) to estimate B̂. The minimum
is determined by means of a gradient algorithm.

Non-Gaussian maximum likelihood (NGML)
The identification technique described by Lanne et al. (2017) is also based on the assumption
of non-Gaussian structural error terms. They propose ML estimation to determine the set
of independent structural innovations, which are assumed to exhibit a Student t-distribution.
Moreover, Lanne et al. (2017) suggest a three-step estimation method for computationally
demanding situations. The first step consists of LS estimation of the VAR parameters β =
vec[µ, A1, ..., Ap] and of the reduced form residuals ut(β̂) = yt − µ̂ − Â1yt−1, ..., −Âpyt−p. In
the second step the log-likelihood function is maximized conditional on the first step estimates
β̂. The log-likelihood function is

log L(δ) = log L(β̂, δ) = T −1
T∑

t=1
lt(β̂, δ), (14)

where

lt(β̂, δ) =
K∑

i=1
log fi(σ−1

i ′iB(b)−1ut(β̂); dfi) − log det(B(b)) −
K∑

i=1
log σi,

and ′i is the i-th unit vector. The parameter vector of the log-likelihood function is composed
of β̂ and δ = (b, σ, df). Regarding the latter, b is a K(K − 1) × 1 vector which contains the
off-diagonal elements of the covariance decomposition matrix B. The parameters σi and dfi

are the scale and the degrees of freedom parameters of the density function fi of a Student t-
distribution, respectively. In the third step, the parameter vector δ is replaced by the estimate
δ̃ and the log-likelihood

log L(β) = log L(β, δ̃) = T −1
T∑

t=1
lt(β, δ̃)

is maximized.

2.4. Choice of an adequate identification technique

In the face of a variety of statistical approaches available to model latent structural relation-
ships, method selection becomes an important step of statistical identification. To facilitate
this selection step Table 1 provides an overview of the assumptions on the error terms εt within
the alternative identification models. Estimating the structural parameters by means of het-
eroskedasticity based approaches necessitates the corresponding type of covariance structure.

2For details on the exact minimization procedure and the empirical definition of the dependence measure
we refer to Matteson and Tsay (2017).
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Contrarily, identification through independent components is only possible in non-Gaussian
distributional frameworks. Note that we distinguish between nonparametric models (i.e.,
CVM and DC) where no further specification of the distribution of the innovations is re-
quired and fully parametric ML approaches.

Model

Assumptions on
the variance of εt the distribution of εt

Homoskedasticity Heteroskedasticity Gaussian Non-Gaussian
Unconditional Conditional Arbitrary t-distribution

Heteroskedasticity
CV ✓ ✓
ST3 ✓ ✓ ✓
GARCH ✓ ✓

Independence
CVM ✓ ✓
DC ✓ ✓
NGML ✓ ✓

Table 1: Overview of identification models and respective underlying assumptions on the
error term εt.

A more detailed discussion on method selection in the context of identification via het-
eroskedasticity can be found in Lütkepohl and Netsunajev (2017a) and Lütkepohl and Schlaak
(2018). Moreover, Herwartz, Lange, and Maxand (2019) compare heteroskedasticity and in-
dependence based models in a large scale simulation study. They show that identification by
means of covariance changes provides precise estimation results if the log-likelihood is cor-
rectly specified, whereas under (co)variance misspecification such identification schemes lack
efficiency or might suffer from estimation bias. In contrast, simulation based evidence sug-
gests that identification via independent components is more robust with respect to alternative
distributional frameworks and heteroskedasticity as long as the innovations are non-Gaussian.

3. SVAR tests, tools and bootstrap methods
As a basis for the six identification techniques, the statistical analysis of SVAR models requires
a diagnostic analysis of the underlying data structure. The presented package comprises
two types of data-driven procedures where the first group assumes heteroskedasticity and
the second one non-Gaussianity of the error terms. To decide on Gaussianity of the data
a number of normality tests are available in respective R packages (see e.g., normtest and
ICtest, Gavrilov and Pusev 2015; Nordhausen, Oja, Tyler, and Virta 2018). Furthermore,
the svars package contains several useful tests for SVAR analysis which have not yet been
implemented in R. Next we describe the diagnostics and discuss several tools which support
the economic interpretations of SVAR estimation results.

3.1. Tests for structural breaks

As described in Section 2, identification based on changes in volatility presumes at least one
3Depending on the choice of the transition variable, the ST model can capture unconditional as well as

conditional heteroskedasticity (Lütkepohl and Netsunajev 2017b).
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break point to occur in the covariance structure. To detect different types of breaks in the
data, several tests that have been implemented in the strucchange package (Zeileis, Leisch,
Hornik, and Kleiber 2002) are accessible for VAR analysis via the method stability() of the
vars package. In the following, we consider two additional types of multivariate Chow tests,
the sample split and the break point test. The sample split test addresses the null hypothesis
of constant VAR parameters µ and Ai, i = 1, 2, . . . , p. The break point test works similarly,
but also tests if the covariance matrix of the residuals ut is constant over time (Lütkepohl
and Kraetzig 2004, Chapter 3). To implement suitable likelihood ratio statistics, the VAR
is estimated conditional on the full sample of T observations and conditional on the first
T1 = Tsb − p − 1 and the last T2 = T − p − Tsb observations with Tsb indicating the break
point. The resulting residuals are denoted by ût, û

(1)
t and û

(2)
t . Then, the sample split and

break point test statistic are defined, respectively, as

λSP = (T1 + T2)
{

log det(Σ̂1,2) − log det
[( 1

T1 + T2
(T1Σ̂1 + T2Σ̂2)

)]}
(15)

and
λBP = (T1 + T2) log det(Σ̂(1,2)) − T1 log det(Σ̂1) − T2 log det(Σ̂2), (16)

where the covariance estimators are

Σ̂(1,2) = 1
T1

T1∑
t=1

ûtû
⊤
t + 1

T2

T2∑
t=T −T2+1

ûtû
⊤
t ,

Σ̂1,2 = 1
T1 + T2

 T1∑
t=1

ûtû
⊤
t +

T2∑
t=T −T2+1

ûtû
⊤
t

 ,

Σ̂1 = 1
T1

T1∑
t=1

û
(1)
t û

(1)⊤

t , and Σ̂2 = 1
T2

T∑
t=T1+1

û
(2)
t û

(2)⊤

t .

Candelon and Lütkepohl (2001) show that both test statistics λBP and λSP converge to a
non-pivotal asymptotic limit distribution. Hence, bootstrap procedures are a natural device
to obtain critical values for the statistic at hand.

3.2. Testing for identical diagonal elements

Since the structural shocks are estimated by the volatility models under the assumption
that the variance of the structural shocks change differently, respective diagnostic tests are
frequently employed in the SVAR literature (see, e.g., Herwartz and Plödt 2016b; Lütkepohl
and Velinov 2016; Lütkepohl and Netsunajev 2017a). A suitable Wald statistic to test the
null hypothesis of proportional variance shifts, H0 : λii = λjj is defined as

λW,ij = (λii − λjj)2

Var(λii) + Var(λjj) − 2Cov(λii, λjj) ∼ χ2
(2), (17)

where parameter estimates and (co)variances obtain from the ML estimation. The null hy-
pothesis is rejected for large values of λW,ij .

3.3. Test for overidentifying restrictions
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The non-Gaussian ML and heteroskedasticity based models rest on a stylized log-likelihood
optimization, which also allows for restricting the structural parameter space. Subsequently,
the implied restrictions can be tested by means of likelihood ratio statistics

λLR = 2
[
log L

(
vec(B̃)

)
− log L

(
vec(B̃r)

)]
∼ χ2

(N), (18)

where B̃ is the unrestricted ML estimator as defined in Equation 4, Equation 7 or Equation 14.
Moreover, B̃r denotes the restricted ML estimator, and N is the number of restrictions. The
null hypothesis that the restricted model holds is rejected for large values of λLR (Lütkepohl
2005).

3.4. Test on joint parameter significance

To test joint hypotheses of parameter significance for non likelihood based models as in
Herwartz (2018) the package provides a χ2-test. The statistic for testing a number of J
linearly independent hypotheses is defined as

λJS =
(
Rvec(B̂) − r

)⊤ [
Ĉov

(
vec(B̂∗∗)

)]−1 (
Rvec(B̂) − r

)
≈ χ2

(J), (19)

where R is a known J × K2 dimensional selection matrix of rank J , and r is a known J × 1
vector, which represents the considered restrictions, such that the composite null hypothesis
is H0 : Rvec(B) = r. The matrix B̂∗∗ is the bootstrap version of the covariance decomposition
matrix, and can be obtained from one of the bootstrap procedures described in Section 3.6
below.

3.5. Tools for SVAR analysis

The identified structural matrix B can help capturing the dynamic and instantaneous im-
pacts of the structural shocks within the set of variables under consideration. Several tools to
analyze these relations are described, for instance, in Kilian and Lütkepohl (2017) and Lütke-
pohl (2011). The svars package provides impulse-response functions, forecast error variance
decompositions as well as historical decompositions.

Impulse-response functions

Impulse-response functions describe the impact of isolated unit shocks on the variables of the
system with respect to a certain response delay (e.g., the zero delay gives the instantaneous
impact). For the model formulation in Equation 1 the response matrices can be derived as
follows (see, e.g., Lütkepohl 2005)

A(L)yt = µ + Bεt

yt = A(L)−1µ + A(L)−1Bεt

= ν + Φ(L)Bεt = ν +
∞∑

i=0
ΦiBεt−i = ν +

∞∑
i=0

Θiεt−i,

where ν is the unconditional mean of the series and A(L) = I − A1L − A2L2 − . . . − ApLp.
The elements of Θi := ΦiB can be interpreted as the responses of the system to shocks εt
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which summarize the informational content of dynamic parameters in Φi, i = 1, 2, 3, . . . and
of the structural matrix B. In particular, Θ0 = B.

Forecast error variance decompositions
Forecast error variance decompositions (FEVD) highlight the relative contribution of each
shock to the variation a variable under scrutiny. For the multivariate series yt, the cor-
responding h-step ahead forecast error is yt+h − yt|t(h) = Θ0εt+h + . . . + Θhεt+1, and the
forecast error variance of the k-th variable is σ2

k(h) =
∑h−1

j=0 (Θ2
k1,j + . . . + Θ2

kK,j) (Lütkepohl
2005). Since Σε = IK holds by assumption, the relative contribution of shock εit to the h-step
forecast error variance of variable ykt is

FEV Dki(h) = (Θ2
ki,0 + . . . + Θ2

ki,h−1)/σ2
k(h).

Historical decompositions
Further information on the contribution of structural shocks to a variable of interest can be
drawn from historical decompositions. The contribution of shock εjt to a variable ykt in time
period t is

y
(j)
kt =

t−1∑
i=0

Θkj,iεj,t−i + α
(t)
j1 y0 + . . . + α

(t)
jp y−p+1,

where α
(t)
ji is the j-th row of A

(t)
i , and [A(t)

1 , . . . , A
(t)
p ] consists of the first K rows of the

companion form matrix with exponent t, At (see Lütkepohl 2005, for more details).

3.6. Bootstrap methods

Wild bootstrap
Inferential issues (e.g., estimating standard errors of point estimates or confidence intervals
of impulse-responses) might rely on the so-called wild bootstrap approach, which is robust in
case of various forms of heteroskedasticity (Goncalves and Kilian 2004; Hafner and Herwartz
2009). For instance, under a fixed-design, bootstrap samples can be constructed as

y∗
t = µ̂ + Â1yt−1 + Â2yt−2 + · · · + Âpyt−p + u∗

t , t = 1, . . . , T, (20)

where Âj , j = 1, . . . , p, and µ̂ are LS parameter estimates retrieved from the data. To de-
termine bootstrap error terms u∗

t = ωtût, the scalar random variable ωt is drawn from a
distribution with zero mean and unit variance (ωt ∼ (0, 1)) which is independent of the ob-
served data. A prominent distribution choice for sampling ωt is the Gaussian distribution.
Two other frequently considered approaches are drawing ωt (i) from the so-called Rademacher
distribution with ωt being either unity or minus unity with probability 0.5 (Liu 1988), and (ii)
from the distribution suggested by Mammen (1993), where ωt = −(

√
5−1)/2 with probability

(
√

5 + 1)/(2
√

5) or ωt = (
√

5 − 1)/2 with probability (
√

5 − 1)/(2
√

5).
For the error terms û∗

t , estimated from (20), we determine the bootstrap structural parameter
matrix as B̂∗∗ = Σ̂1/2

u Σ̂−1/2
û∗ B̂∗. Here, B̂∗ is a decomposition of Σ̂û∗ derived by the described

identification procedures. The matrices Σ̂1/2
u and Σ̂1/2

û∗ are symmetric eigenvalue decomposi-
tions of Σ̂u and Σ̂û∗ , respectively. Thus, B̂∗∗ provides a factorization of the sample covariance
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matrix Σ̂u such that it can be used for inference on the structural parameters as depicted, for
instance, in (19).

Moving-block bootstrap

Brüggemann, Jentsch, and Trenkler (2016) suggest the moving-block bootstrap for inference
in VAR models characterized by conditional heteroskedasticity. The moving-block bootstrap
depends on a chosen block length ℓ < T , which determines the number of blocks n = T/ℓ
needed for data generation. The (K × ℓ)-dimensional blocks Mi,ℓ = (ûi+1, ..., ûi+ℓ), i =
0, ..., T −ℓ, are laid randomly end-to-end together to obtain the bootstrap residuals u∗

1, ..., u∗
T .

After centering the residuals, the bootstrap time series may be constructed recursively as

y∗
t = µ̂ + Â1y∗

t−1 + Â2y∗
t−2 + · · · + Âpy∗

t−p + u∗
t , t = 1, . . . , T. (21)

It is important to note that asymptotic theory for block bootstrap schemes is typically derived
under the assumption that ℓ → ∞ as T → ∞. Yet, there is no consensus in the literature on
the choice of ℓ in finite samples and, hence, choosing a block length in practice is not straight-
forward. In general, the chosen block length should ensure that residuals being more than ℓ
time points apart from each other are uncorrelated. A more thorough discussion on the choice
of the block length can be found in Lahiri (2003). The bootstrap covariance decomposition
B̂∗∗ is determined analogously to the case of wild bootstrap sampling described before. Note
that both the wild bootstrap and the moving-block bootstrap can be implemented either
under a fixed-design as in (20) or a recursive-design as in (21).

Bootstrap-after-bootstrap

Kilian (1998) proposes a bias-corrected bootstrap procedure to account for small sample
biases. By means of the so-called bootstrap-after-bootstrap method, the true underlying
data generating process (DGP) is not approximated by the bootstrap DGP as in Equation
20 and Equation 21, but rather by means of a bootstrap DGP with bias-corrected VAR
parameters β̂BC = [µ̂BC , ÂBC

1 , ..., ÂBC
p ].

The approach consists of two stages. In the first stage, bootstrap replications for β̂∗ =
[µ̂∗, Â∗

1, ..., Â∗
p] are generated according to Equation 20 or Equation 21, and bias terms are

approximated as Ψ̂ = ¯̂
β

∗
− β̂. Subsequently, the modulus of the largest root of the companion

matrix associated with β̂ can be calculated, which is denoted by m(β̂). If m(β̂) ≥ 1, β̂BC = β̂
is set without any adjustment. However, if m(β̂) < 1, then the VAR parameters are corrected
such that β̂BC = β̂ − Ψ̂.4
In the second stage, the actual bootstrap samples can be obtained from substituting β̂BC

for β̂ in Equation 20 or Equation 21. Kilian (1998) shows by means of a simulation study
that in small samples the bootstrap-after-bootstrap method tends to be more accurate than
standard bootstrap approaches. Kilian and Lütkepohl (2017) provide more insights into the
merits of bias adjustments in resampling, as well as a detailed overview of further bootstrap
approaches in the context of SVAR models.

4. Package design
4The exact bias correction is an iterative procedure and described in Kilian (1998)
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Table 2 summarizes the design of the svars package. The package is built around the six core
functions for identification of the structural VAR form (id.cv, id.cvm, id.dc, id.garch,
id.ngml, id.st). Moreover, various methods and further diagnostic tools are available for
the resulting objects of class svars which have been described in Section 3. In the following,
we describe the mandatory and optional input arguments of the implemented functions in a
detailed manner.

Function or method Class Methods for class Functions for class Description

• Core functions for SVAR identification
⋄ SVAR models refered to (co)variance changes

id.cv svars fevd, irf, hd, mb.boot, − Estimates the structural
print, summary wild.boot shocks via unconditional

(co)variance shifts.

id.garch svars fevd, irf, hd, mb.boot, − Estimates the structural
print, summary wild.boot shocks through conditional

heteroskedasticity.

id.st svars fevd, irf, hd, mb.boot, − Estimates the structural
print, summary wild.boot shocks via smooth

(co)variance transitions.
⋄ SVAR models based on independent components

id.cvm svars fevd, irf, hd, mb.boot, − Estimates the structural
print, summary wild.boot shocks via nonparametric

CVM statistic.

id.dc svars fevd, irf, hd, mb.boot, − Estimates the structural
print, summary wild.boot shocks via nonparametric

distance covariance statistic.

id.ngml svars fevd, irf, hd, mb.boot, − Estimates the structural
print, summary wild.boot shocks via parametric

non-Gaussian ML.
• Functions and methods for SVAR analysis

⋄ Pre-tests and joint significance tests

chow.test chow print, summary − Computes Chow test
types on structural breaks.

stability chowpretest plot, print chow.test − Performs multiple Chow tests
in prespecified range.

js.test
jstest print, summary − Performs chi-square test

on joint parameter
significance.

⋄ Further SVAR statistics

irf svarirf plot, print − Calculates impulse-
response functions.

fevd svarfevd plot, print − Calculates forecast error
variance decomposition.

hd hd plot, print − Computes historical
decomposition.

⋄ Bootstrap procedures

mb.boot sboot plot, ba.boot, js.test − Moving-block bootstrap
print, summary for inferential analysis.

wild.boot sboot plot, ba.boot, js.test − Wild bootstrap
print, summary for inferential analysis.

ba.boot sboot plot, ba.boot, js.test − Bootstrap-after-bootstrap
print, summary for bias correction in

inferential analysis.

Table 2: Package design of svars.
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4.1. Core functions for SVAR identification
To apply the implemented identification techniques the user needs to provide an estimated
reduced form VAR or vector error correction model (VECM) object of class varest or vec2var
from the vars package. Alternatively, an object of class nlVar or VECM from the tsDyn
package or the list delivered by the function VAR of the MTS package can serve as an input
argument for id.cv, id.cvm, id.dc, id.garch, id.ngml or id.st. Besides the estimated
VAR objects, the identification procedures allow for further input arguments which differ
across the techniques. In the following, we describe these options separately.

SVAR models built on (co)variance changes
For identification by means of changes in volatility the following command can be used

id.cv(x, SB, start = NULL, end = NULL, frequency = NULL, format = NULL,
dateVector = NULL, max.iter = 50, crit = 0.001,
restriction_matrix = NULL).

The function id.cv() requires the specification of a structural break point. Conditional on
the data structure, the user may provide the breakpoint SB in various formats. Firstly, the
sample can be separated into two parts by specifying the breakpoint in either integer or date
formats. Secondly, single time instances can be assigned to a variance regime by passing a
vector consisting of zeros and ones to the function. If the estimation of the reduced form VAR
is based on a non-time series class object (e.g., ts), the user can add the information on the
date and frequency by making use of the parameter dateVector or by specifying start/end
and format/frequency. However, providing time series class objects or specifying dates is
optional and the function also handles conventional observation numbers.
The log-likelihood and VAR coefficients are re-estimated in the algorithm until the log-
likelihood changes by less than the value of crit or the maximum number of iterations
(max.iter) is reached. Additionally, the function id.cv() allows for restricted ML estima-
tion via the input argument restriction_matrix. There are two formats of specifying the
restriction matrix, either pass (i) a K ×K matrix, in which NA indicates unrestricted elements
and 0 a restricted element, or (ii) a K2 × K2 matrix of rank M , where M is the number of
unrestricted coefficients (Lütkepohl 2005). In this case, unit (zero) values on the main diag-
onal refer to the unrestricted (restricted) coefficients. In case of over-identifying restrictions,
id.cv() estimates the unrestricted and the restricted SVAR to perform the likelihood ratio
test outlined in Section 3.3.
The function

id.garch(x, max.iter = 5, crit = 0.001, restriction_matrix = NULL)

provides model identification if structural shocks exhibit conditional heteroskedasticity. Iden-
tification proceeds in two steps. In the first step K univariate GARCH(1,1) models (see
Equation 10) are estimated. In the second step a full, joint ML estimation of the parameters
in B is performed. These two steps are executed until the multivariate log-likelihood changes
by less than the value of crit or the maximum number of iterations (max.iter) is reached.
Analogously to the id.cv() function, passing a restriction_matrix enables the user to
estimate and test restricted models.
Identification by means of smooth covariance transitions is implemented as
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id.st(x, nc = 1, c_lower = 0.3, c_upper = 0.7, c_step = 5, c_fix = NULL,
transition_variable = NULL, gamma_lower = -3, gamma_upper = 2,
gamma_step = 0.5, gamma_fix = NULL, max.iter = 5, crit = 0.001,
restriction_matrix = NULL, lr_test = FALSE),

which entails several input arguments for adjustments. However, the user may run the func-
tion without any further specifications of input arguments only by passing the reduced form
estimated VAR object. Since finding the optimal parameters γ and c as described in Section
2.2.2 is computationally demanding, the id.st function supports parallelization with nc de-
termining the number of cores used. Grid optimization is optional. By default, the function
searches for the transition point c to be located between 0.3T (c_lower) and 0.7T (c_upper)
with a step width of 5 time points (c_step). If the user wants to specify the transition point
in advance, she can pass an observation number to c_fix. Analogously, for the slope pa-
rameter γ the user can either specify a fixed slope parameter gamma_fix, or let the function
optimize the transition coefficient between gamma_lower and gamma_upper.
Conditional on the location (c) and slope (γ) parameter the algorithm consists of an iterative
procedure of log-likelihood optimization and GLS estimation until the improvement of the log-
likelihood is smaller than crit or the maximum number of iterations (max.iter) is reached.
By default, the transition variable corresponds to time, however, the user may choose another
transition variable by passing a numeric vector to transition_variable. Note that the
input argument for the location parameter has to be adjusted to the scale of the transition
variable. Analogously to the previous functions, passing a restriction_matrix enables the
estimation of restricted models. Due to the fact that the smooth transition covariance model
is computationally demanding, it is possible to decide if the function performs a likelihood
ratio test or not by specifying lr_test as either TRUE or FALSE.

SVAR models built on independent components

For identifying independent components by means of the CVM distance the function

id.cvm(x, dd = NULL, itermax = 500, steptol = 100, iter2 = 75)

can be employed. In Section 2 we have elaborated on how this approach evaluates a CVM test
for rotated versions of the shocks. We use the implementation of the CVM test in the package
copula (Hofert, Kojadinovic, Maechler, and Yan 2017). The function indepTestSim from the
copula package generates an independent sample to calculate the p-value for the test statistic.
The sample is passed to the svars function id.cvm as argument dd. If dd = NULL the sample
is simulated within the id.cvm function. Simulating the independent sample in advance and
passing the object to the id.cvm function may save computation time if the estimation is
repeatedly applied to the same data set. The estimation of independent components through
CVM statistics proceeds in two steps. The first stage is a global optimization using the
differential evolution algorithm from the DEoptim package (Ardia, Mullen, Peterson, and
Ulrich 2016). In the second stage, the test statistic is optimized locally around the estimated
parameters from the first stage. The precision of the algorithm can be determined by the
input arguments itermax and steptol at the first stage (for more details see the help file of
DEoptim) and iter2 at the second stage.
The function
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id.dc(x, PIT = FALSE)

identifies the structural shocks by means of distance covariance statistics. The implementation
is built on the ICA algorithm from the package steadyICA (Risk et al. 2015). The function
steadyICA therein applies a gradient algorithm to determine the minimum of the dependence
criterion. The option PIT determines if probability integral transformation (PIT) is applied
to transform the marginal densities of the structural shocks prior to the evaluation of the
dependence criterion.
Estimating the structural shocks via non-Gaussian ML estimation is implemented with the
function

id.ngml(x, stage3 = FALSE, restriction_matrix = NULL).

The input argument stage3 indicates if the autoregressive parameters of the VAR model are
estimated by maximizing the log-likelihood function which Lanne et al. (2017) describe as
the third step of their model. Since this step does not change the result of the estimated
covariance decomposition, and the estimation of the autoregressive parameter is computa-
tionally rather demanding, the default is set to FALSE. Analogously to the functions id.cv,
id.garch and id.st, the user may run a restricted estimation by passing an appropriate
restriction_matrix argument to id.ngml.
All identification functions (id.cv, id.garch, id.st, id.cvm, id.dc, id.ngml) return an ob-
ject of class svars. The summary method for this class returns the estimated impact relation
matrix with standard errors and various further information depending on the chosen identi-
fication method, while print only returns the covariance decomposition. The plot method
is only applicable to objects from the function id.st and shows the optimized transition
function of the variance from the first to the second volatility regime.

4.2. Functions and methods for SVAR analysis

The following functions and methods are built around the cornerstone functions which have
been introduced in the last section. To obtain a user-friendly environment within the svars
package, most of the implementations are feasible only by passing an object of class svars or
sboot and leaving further specifications optional. Moreover, to facilitate compatibility with
other R packages, we refer to the vars package (Pfaff 2008), and adapt methods for parameter
tests, impulse-response analysis and forecast error variance decompositions.

Pre-tests and joint significance tests

For prior analysis of parameter stability, the function

chow.test(x, SB, nboot = 500, start = NULL, end = NULL,
frequency = NULL, format = NULL, dateVector = NULL)

includes two versions of structural break tests. The input argument x needs to be a reduced
form estimation result of class varest, vec2var or nlVar. The time point of the assumed
structural break has to be passed in SB. The user can work with date formats, in the same way
as described for the id.cv() function above. To calculate the p-values and critical values, the
function employs a fixed-design wild bootstrap. The number of bootstrap replications needs
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to be provided by nboot. The summary() method returns the results from the sample split and
break point tests. Additionally, the package includes an augmentation of the stability()
method of the vars package (Pfaff 2008), which provides access to a variety of parameter
stability analysis tools of strucchange (Zeileis et al. 2002). The method has been extended to
contain multivariate Chow tests

stability(x, type = "mv-chow-test", h = 0.15).

By specifying type = "mv-chow-test" and h = 0.15 the test statistics for all possible struc-
tural break points between (h/2)T and (1-h/2)T are calculated. The resulting object of class
chowpretest from stability() can be used as an input argument for x in chow.test()
afterwards without any further input specifications. Subsequently, the function provides the
test results for the structural break at the observation with the corresponding highest break
point test statistic resulting from stability().
After obtaining point- and bootstrap estimates, the user can test joint hypotheses on the
estimated elements in the structural matrix B by means of the function

js.test(x, R, r = NULL),

where x is an object of class sboot. If r = NULL, the function performs a test of the hypothesis
H0 : Rvec(B) = 0.

Further SVAR statistics

Following the descriptions in Section 3, impulse-response functions can be calculated by means
of

irf(x, n.ahead = 20)

where x is an object of class svars. The user can specify the time horizon of the impulse-
response functions, which is 20 periods by default. The same input arguments are passed to
calculate forecast error variance decompositions using

fevd(x, n.ahead = 10).

Historical decompositions are calculated by the function

hd(x, series = 1).

By default, the first series, i.e., the series in the first column of the original data set is decom-
posed. For all three analysis tools plot methods are available to visualize the resulting objects.

Bootstrap procedures

The bootstrap procedures described in Section 3 are implemented in the functions mb.boot,
wild.boot and ba.boot. The required input object x is of class svars. Furthermore, it is
possible to record how often one or multiple bootstrap shocks hold a specific sign pattern.
This helps to evaluate the plausibility of the signs of instantaneous effects as described in
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Herwartz (2018). The appearance of specific sign patterns is documented by passing a list of
vectors containing 1 and −1 to the input argument signrest. Every list entry represents the
impact effects of a shock to the variables in the system. Thus, each list entry is of the same
size as the VAR model, i.e., contains K elements. The list can consist of 1 up to K entries,
one for each structural shock. By default, the bootstrap functions evaluate the occurrence of
the sign pattern of the point estimate. The R function for the moving-block bootstrap is

mb.boot(x, design = "recursive", b.length = 15, n.ahead = 20,
nboot = 500, nc = 1, dd = NULL, signrest = NULL, itermax = 300,
steptol = 200, iter2 = 50),

where the user needs to specify the block length with input argument b.length. As described
in Section 3.6 there is no consensus in the literature about the optimal block length in finite
samples. In applied work, however, a typical block length is about 10% of the sample size
(see, e.g., Brüggemann et al. 2016; Lütkepohl and Schlaak 2019). The wild bootstrap method
is implemented as

wild.boot(x, design = "fixed", distr = "rademacher", n.ahead = 20,
nboot = 500, nc = 1, dd = NULL, signrest = NULL, itermax = 300,
steptol = 200, iter2 = 50).

The user can choose to draw ωt from a Rademacher distribution with distr = "rademacher",
from a Gaussian distribution with distr = "gaussian" or from the distribution suggested
in Mammen (1993) with distr = "mammen". The remaining input arguments for the two
bootstrap functions are identical, e.g., both can be called as fixed-design (design = "fixed")
or as recursive-design (design = "recursive"). Bootstrap impulse-responses are calculated
in the functions for which the horizon needs to be determined via n.ahead. An integer for
the number of bootstrap replications is supplied by the nboot argument. Parallelization
is possible with a suitable choice of nc. The arguments dd, itermax, steptol and iter2
correspond to the input arguments of the id.cvm model and are only applied if the point
estimates have been derived by this method. Both bootstrap functions return an object of
class sboot for which summary and plot methods can be applied.
Furthermore, the bootstrap-after-bootstrap procedure is implemented as

ba.boot(x, nc = 1).

In contrast to the other bootstrap functions of svars, x is of class sboot, since the function
only performs the bias correction and the second step of the procedure described above in
Section 3.6. The necessary results from the first step of the algorithm are determined from
the bootstrap object, which is passed to the function to obtain the most efficient implemen-
tation of this hierarchical bootstrap procedure. The second step bootstrap (after the bias
correction) is executed with exactly the same specifications as in the first stage. Hence, no
further input arguments are needed.

5. Example
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To illustrate the functions and methods of the svars package, we replicate the empirical results
of Herwartz and Plödt (2016b) obtained through the identification by means of unconditional
covariance shifts (id.cv()). We augment their analysis by further statistics and complement
the analysis with results from identification through independent components using the DC
approach (id.dc()).5 The main objective of the application in this Section is to present the
usage of the functions rather than discussing the results in depth.
Herwartz and Plödt (2016b) apply identification by means of the CV approach to investigate
the effects of a monetary policy shock on the economy of the United States (US). They
consider three series: the output gap "x", which is defined as the log-deviation of real gross
domestic product (GDP) from the potential output, the inflation "pi" as quarter-on-quarter
growth rates of the GDP deflator and the federal funds rate "i". The data comes from the
Federal Reserve Economic Data (FRED) database of the Federal Reserve Bank of St. Louis.
The time series are sampled at the quarterly frequency and cover the time period from 1965Q1
until 2008Q3. The svars package contains this example data set labeled "USA".
The first step of the analysis is to load the svars package into the workspace. Furthermore,
the ggplot2 (Wickham 2009) package enables to display the data in a convenient way.

R> library("svars")
R> library("ggplot2")
R> data("USA")

In order to estimate the structural shocks via the id.cv() function, the user has to specify
the time point of the variance shift in advance. An appropriate time point might be found by
visual inspection of the series, historical information or previous analyses. Figure 1 depicts
the three time series. Inflation data ("pi") show less fluctuation during the second half of the
data set.

R> autoplot(USA, facets = T) + theme_bw() + ylab('')

Herwartz and Plödt (2016b) determine the break point at 1979Q3 due to a policy shift of the
Federal Reserve Bank which caused a reduction of the volatility in US macroeconomic data
(Stock and Watson 2003).
The next step of the analysis is the estimation of the reduced form VAR, for instance, by
means of the function VAR() from the vars package. We specify a VAR model with intercept
of order p = 6. After model estimation, we can use the resulting varest object to estimate
the structural form with the function id.cv(). We provide the structural break point with
the function argument SB in ts date format.

R> plain.var <- vars::VAR(USA, p = 6, type = 'const')
R> usa.cv <- id.cv(plain.var, SB = c(1979, 3))
R> summary(usa.cv)

Identification Results
----------------------

5Estimation via the CVM criterion and DC deliver qualitatively the same results. Identifying independent
components by means of NGML and ST models provide results that are comparable to those obtained from
assuming covariance shifts. Identification via the assumption of GARCH-type variances obtains results which
are qualitatively different from those of all other approaches.
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Figure 1: US macroeconomic data.

Method: Changes in Volatility
Sample size: 169
Likelihood: -564.2994
Structural Break: At Observation Number 59 during 1979 Q3
Number of GLS estimations: 21
Number of Restrictions: 0

Estimated unconditional Heteroscedasticity Matrix (Lambda):
[,1] [,2] [,3]

x 0.3925906 0.000000 0.000000
pi 0.0000000 0.191641 0.000000
i 0.0000000 0.000000 1.244348

Standard Errors of Lambda:
[,1] [,2] [,3]

x 0.09265819 0.00000000 0.0000000
pi 0.00000000 0.04527264 0.0000000
i 0.00000000 0.00000000 0.2935572

Estimated B Matrix (unique decomposition of the covariance matrix):
[,1] [,2] [,3]

x 0.61193300 -0.5931964 0.2241237
pi 0.75559400 1.2987520 0.1131134
i -0.02899916 0.1572953 0.7084709
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Standard Errors of B:
[,1] [,2] [,3]

x 0.1330924 0.1955350 0.07101215
pi 0.2498466 0.2600376 0.09960245
i 0.1559672 0.1213446 0.07004430

Pairwise Wald Test:
Test statistic p-value

lambda_1=lambda_2 3.80 0.05 *
lambda_1=lambda_3 7.66 0.01 **
lambda_2=lambda_3 12.56 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The summary of the identified object displays the estimated decomposition of the covariance
matrix B̂, as well as the covariance shift matrix Λ̂ and their corresponding standard errors.
Moreover, the summary provides the results of pairwise Wald-type tests for distinct diagonal
elements of Λ̂ which is necessary for unique identification of the structural shocks. In the
present case, all three tests statistics yield a rejection of the null hypotheses of equal diagonal
elements with 10% significance. The ordering of the columns of B̂ is arbitrary and the user
has to arrange them in an economically meaningful way. For instance, Herwartz and Plödt
(2016b) order the columns according to a unique sign pattern which indicates the direction
of the shocks on impact. The code below orders the columns in the same way.

R> usa.cv$B <- usa.cv$B[, c(3, 2, 1)]
R> usa.cv$B[,3] <- usa.cv$B[, 3] * (-1)

R> usa.cv$B_SE <- usa.cv$B_SE[, c(3, 2, 1)]

R> usa.cv$Lambda <- diag(diag(usa.cv$Lambda)[c(3, 2, 1)])
R> usa.cv$Lambda_SE <- diag(diag(usa.cv$Lambda_SE)[c(3, 2, 1)])

R> round(usa.cv$B, 3)

[,1] [,2] [,3]
x 0.224 -0.593 -0.612
pi 0.113 1.299 -0.756
i 0.708 0.157 0.029

R> round(usa.cv$Lambda, 3)

[,1] [,2] [,3]
x 1.244 0.000 0.000
pi 0.000 0.192 0.000
i 0.000 0.000 0.393

Herwartz and Plödt (2016b) interpret the impact effects in the first column of the matrix B̂
to characterize a demand shock. Similarly, the effects in the second (third) column indicate a
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supply (monetary policy) shock. The authors argue that their shock labeling according to the
estmated sign patterns is in line with the relevant literature. Since the matrix Λ̂ represents
the variance of structural shocks in the second regime, Herwartz and Plödt (2016b) interpret
the diagonal elements of Λ̂ such that the supply and monetary policy shocks have relatively
lower variances and the demand shock a higher variance in regime two (i.e., for time instances
t > TSB = 59 or after the second quarter of 1979). The authors compare the results from this
statistical identification scheme with a model structure implied by covariance decomposition
matrix B which is lower triangular by assumption (Sims 1980). The id.cv() function enables
the user to test for such restrictions by setting up a restriction matrix as described in the
code below.

restMat <- matrix(rep(NA, 9), ncol = 3)
restMat[1, c(2, 3)] <- 0
restMat[2, 3] <- 0
restMat

[,1] [,2] [,3]
[1,] NA 0 0
[2,] NA NA 0
[3,] NA NA NA

R> restricted.model <- id.cv(plain.var, SB = c(1979, 3),
+ restriction_matrix = restMat)
R> summary(restricted.model)

Identification Results
----------------------

Method: Changes in Volatility
Sample size: 169
Likelihood: -568.6664
Structural Break: At Observation Number 59 during 1979 Q3
Number of GLS estimations: 23
Number of Restrictions: 3

Estimated unconditional Heteroscedasticity Matrix (Lambda):
[,1] [,2] [,3]

x 0.3501948 0.0000000 0.0000000
pi 0.0000000 0.2346854 0.0000000
i 0.0000000 0.0000000 0.9420116

Standard Errors of Lambda:
[,1] [,2] [,3]

x 0.08266738 0.00000000 0.000000
pi 0.00000000 0.05616318 0.000000
i 0.00000000 0.00000000 0.227189
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Estimated B Matrix (unique decomposition of the covariance matrix):
[,1] [,2] [,3]

x 0.87988465 0.0000000 0.0000000
pi 0.08137972 1.5306503 0.0000000
i 0.31518384 0.2606745 0.7378484

Standard Errors of B:
[,1] [,2] [,3]

x 0.08638851 0.00000000 0.00000000
pi 0.10334026 0.15169565 0.00000000
i 0.08527442 0.08620187 0.07354585

Pairwise Wald Test:
Test statistic p-value

lambda_1=lambda_2 1.34 0.25
lambda_1=lambda_3 5.99 0.01 **
lambda_2=lambda_3 9.13 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Likelihood Ratio Test:
Test statistic p-value

8.734 0.033 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Since the structural shocks are just identified by the change in the covariance matrix, any
further restriction on B over identifies the model and makes the restrictions testable. The
function automatically performs a likelihood ratio test in case of such over identifying restric-
tions. The summary depicts the estimation results from the restricted model as well as the
test statistics and p-values. The likelihood ratio test indicates that the null hypothesis of
a lower triangular structural impact matrix has to be rejected at the 5% significance level.
Herwartz and Plödt (2016b) argue that identification by means of zero restrictions according
to a lower triangular matrix lacks economic intuition which we can support with the obtained
diagnostic. Therefore, the unrestricted model should be preferred for further analysis.
The next step is the calculation of impulse-response functions with boostrap confidence bands
to investigate future effects of the economically labeled structural shocks on the variables
included in the model. Moreover, the implemented bootstrap functions allow for an evaluation
of the significance of unique sign patterns in B̂ as described in Herwartz (2018). We define
a list of sign restrictions and label them as demand, supply and monetary policy shock
respectively.

R> signrest <- list(demand = c(1, 1, 1), supply = c(-1, 1, 1),
+ monetary_policy = c(-1, -1, 1))

For illustration, we use the wild bootstrap implemented with a Rademacher distribution,
fixed-design and 1000 bootstrap replications as in Herwartz and Plödt (2016b). To reduce
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computation time we parallelize the bootstrap and specify a seed to obtain reproducible
results. The time horizon for the impulse-response analysis has to be determined in advance
using the argument n.ahead.

R> cores <- parallel::detectCores() - 1
R> set.seed(231)
R> usa.cv.boot <- wild.boot(usa.cv, design = "fixed",
+ distr = "rademacher", nboot = 1000, n.ahead = 15,
+ nc = cores, signrest = signrest)
R> summary(usa.cv.boot)

Bootstrap Results
-----------------

Method: Wild bootstrap
Bootstrap iterations: 1000
Distribution used: rademacher
Design: fixed

Point estimates:
[,1] [,2] [,3]

x 0.2241237 -0.5931964 -0.61193300
pi 0.1131134 1.2987520 -0.75559400
i 0.7084709 0.1572953 0.02899916

Bootstrap means:
[,1] [,2] [,3]

x 0.08562671 -0.51047857 -0.6270604
pi 0.08586727 1.13181279 -0.7800737
i 0.69257452 0.02945994 -0.1839417

Bootstrap standard errors:
[,1] [,2] [,3]

x 0.14112596 0.3093977 0.2501647
pi 0.16608174 0.4580203 0.5958669
i 0.07464771 0.2309445 0.2205195

Identified sign patterns:
=========================
Specified sign pattern:

demand supply monetary_policy
x 1 -1 -1
pi 1 1 -1
i 1 1 1

Unique occurrence of single shocks according to sign pattern:
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demand : 64.9 %
supply : 65 %
monetary_policy : 28.4 %

Joint occurrence of specified shocks: 12.7 %

R> plot(usa.cv.boot, lowerq = 0.16, upperq = 0.84)

The summary reveals that only 12.7% of all bootstrap estimates are in line with all economi-
cally motivated sign patterns jointly. The sign pattern of the monetary policy shock appears
in only 28.4% of all bootstrap samples. Furthermore, the bootstrap means indicate that the
third shock is more in line with the sign pattern of the demand shock. This result is plausible
noting that the point estimate in the lower right corner is close to zero and, therefore, lacks a
significantly positive effect on the interest rate. Figure 2 shows the impulse-response functions
of normalized shocks having unit variance in the first regime. Herwartz and Plödt (2016b)
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Figure 2: Impulse-response functions with 68% confidence bands based on 1000 bootstrap
replications. Structural shocks identified through unconditional shift in the covariance struc-
ture.

argue that the negative reaction of the interest rate to a monetary policy shock after the
initial period is implausible, and puts the interpretation of this shock as a monetary policy
shock into question. The results from the bootstrap support the authors’ argumentation with
regard to the shock labeling.
Furthermore, we can calculate the forecast error variance decomposition to investigate the
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contribution of each shock to the prediction mean squared error of the variables. The fevd()
method creates an object for visual inspection of the forecast error variance decomposition
by means of the plot function.

R> fev.cv <- fevd(usa.cv, n.ahead = 30)
R> plot(fev.cv)

Figure 3 depicts the forecast error variance decomposition. It is evident that the monetary
policy shock accounts for more than 50% of the prediction mean squared error of the output
gap, whereas the demand shock constantly accounts for only about 5% of the prediction mean
squared error. Moreover, the demand shock contributes almost 100% of the forecast error
variance of the interest rates on impact. Thus, the forecast error decompositions hint at a
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Figure 3: Forecast error variance decomposition for 30 periods. Structural shocks identified
by means of the CV model.

shock labeling which differs from the one developed above on the basis of sign patterns of
B̂. Furthermore, they confirm the conclusion of Herwartz and Plödt (2016b) that the empir-
ical model fails to identify a monetary policy shock according to its theoretical effect patterns.

We re-estimate the structural form with the DC method under the assumption of independent
non-Gaussian shocks.6

R> usa.dc <- id.dc(plain.var, PIT = FALSE)
R> summary(usa.dc)

6Component-wise kurtosis and skewness tests as implemented in the package normtest (Gavrilov and Pusev
2015) as well as fourth-order blind identification based tests from the package ICtest (Nordhausen et al. 2018)
show no indication for Gaussian components.
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Identification Results
----------------------

Method: Distance covariances
Sample size: 169

Estimated B Matrix (unique decomposition of the covariance matrix):
[,1] [,2] [,3]

x 0.541926899 -0.36707854 0.1964223
pi 0.508827712 0.92428628 0.1967426
i 0.003560267 0.02576151 0.8194037

The estimated structural matrix differs from the estimated matrix obtained from the CV
approach. The matrix identified by means of the DC method does not allow for a labelling
of the shocks that accords with a unique sign pattern. Nevertheless, it is possible to label
the shocks in a meaningful way, since one could assume that the loading of the structural
shocks on reduced form errors is stronger for own effects in comparison with cross variable
effects. The finding that a positive monetary policy shock has a positive effect on output
and inflation might seem to be at odds with intuition at first, although this mechanism can
be observed rather frequently in the literature (e.g., Lütkepohl and Netsunajev 2017a) and is
usually referred to as a so-called price puzzle (Eichenbaum 1992). Conditional on the estimate
B̂, we construct the historical decomposition. As an example, we decompose the output into
its underlying determinants over the sample period. In the data set output is the first column
and, hence, series = 1 is the provided option.

R> hd.cv.1 <- hd(usa.dc, series = 1)
R> plot(hd.cv.1)

Figure 4 indicates that output fluctuations are mainly explained by demand shocks rather
than supply or monetary policy shocks.

6. Summary
The R package svars provides a vast set of estimation techniques that build on several as-
sumptions on the data and a variety of input arguments. In the present article we describe
how the implemented identification techniques for SVAR models depend on assumptions of
heteroskedasticity and independence coupled with non-Gaussianity to retrieve the structural
shocks from the reduced form VAR model. Furthermore, we provide a set of auxiliary func-
tions which complement the cornerstone identification methods, and thereby offer a complete
toolbox for structural analysis in a multivariate time series context.

We give a step-by-step guideline on how to use the functions on a real dataset comparing
one representative from both groups of heteroskedasticity and independence based identifi-
cation. Even though the estimation results are similar, identification by means of covariance
shifts might imply a misleading sign pattern which is indicated in the forecast error variance
decomposition. Moreover, we illustrate how to test sign and zero restrictions by means of
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Figure 4: Historical decomposition of the US output gap in percent deviations from the mean.
Structural shocks are identified by means of the DC algorithm.

restricted log-likelihood estimation and bootstrap methods.

The svars package contains six alternative and recent SVAR identification techniques. Besides
these, further popular data-driven identification approaches include, e.g., the heteroskedas-
tic model with Markov switching mechanisms (Lanne, Lütkepohl, and Maciejowska 2010;
Herwartz and Lütkepohl 2014) or pseudo ML estimation (Gourieroux, Monfort, and Renne
2017). Moreover, an option to test for long run restrictions by means of likelihood based
identification schemes is a possible augmentation of the package. We regard both directions
as promising for future developments of svars.
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