Package 'superml'

Title: Build Machine Learning Models Like Using Python's Scikit-Learn Library in R
Description: The idea is to provide a standard interface to users who use both R and Python for building machine learning models. This package provides a scikit-learn's fit, predict interface to train machine learning models in R.
Authors: Manish Saraswat [aut, cre]
Maintainer: Manish Saraswat <[email protected]>
License: GPL-3 | file LICENSE
Version: 0.5.7
Built: 2024-11-15 06:48:48 UTC
Source: CRAN

Help Index


BM25 Matching

Description

BM25 stands for Best Matching 25. It is widely using for ranking documents and a preferred method than TF*IDF scores. It is used to find the similar documents from a corpus, given a new document. It is popularly used in information retrieval systems. This implementation is based on c++ functions hence quite optimised as well.

Usage

bm_25(document, corpus, top_n)

Arguments

document

a string for which to find similar documents

corpus

a vector of strings against which document is to be matched

top_n

top n similar documents to find

Value

a vector containing similar documents and their scores

Examples

docs <- c("chimpanzees are found in jungle",
          "chimps are jungle animals",
          "Mercedes automobiles are best",
          "merc is made in germany",
          "chimps are intelligent animals")

sentence <- "automobiles are"
s <- bm_25(document=sentence, corpus=docs, top_n=2)

cla_train

Description

Training Dataset used for classification examples. This is classic titanic dataset used to predict if a passenger will survive or not in titanic ship disaster.

Usage

cla_train

Format

An object of class data.table (inherits from data.frame) with 891 rows and 12 columns.

Source

https://www.kaggle.com/c/titanic/data


Calculate count of values in a list or vector

Description

Handy function to calculate count of values given in a list or vector

Usage

Counter(data, sort = TRUE, decreasing = FALSE)

Arguments

data

should be a vector or list of input values

sort

a logical value, to sort the result or not

decreasing

a logical value, the order of sorting to be followed

Value

count of values in a list

Examples

d <- list(c('i','am','bad'),c('you','are','also','bad'))
counts <- Counter(d, sort=TRUE, decreasing=TRUE)

Count Vectorizer

Description

Creates CountVectorizer Model.

Details

Given a list of text, it generates a bag of words model and returns a sparse matrix consisting of token counts.

Public fields

sentences

a list containing sentences

max_df

When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold, value lies between 0 and 1.

min_df

When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold, value lies between 0 and 1.

max_features

Build a vocabulary that only consider the top max_features ordered by term frequency across the corpus.

ngram_range

The lower and upper boundary of the range of n-values for different word n-grams or char n-grams to be extracted. All values of n such such that min_n <= n <= max_n will be used. For example an ngram_range of c(1, 1) means only unigrams, c(1, 2) means unigrams and bigrams, and c(2, 2) means only bigrams.

split

splitting criteria for strings, default: " "

lowercase

convert all characters to lowercase before tokenizing

regex

regex expression to use for text cleaning.

remove_stopwords

a list of stopwords to use, by default it uses its inbuilt list of standard stopwords

model

internal attribute which stores the count model

Methods

Public methods


Method new()

Usage
CountVectorizer$new(
  min_df,
  max_df,
  max_features,
  ngram_range,
  regex,
  remove_stopwords,
  split,
  lowercase
)
Arguments
min_df

numeric, When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold, value lies between 0 and 1.

max_df

numeric, When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold, value lies between 0 and 1.

max_features

integer, Build a vocabulary that only consider the top max_features ordered by term frequency across the corpus.

ngram_range

vector, The lower and upper boundary of the range of n-values for different word n-grams or char n-grams to be extracted. All values of n such such that min_n <= n <= max_n will be used. For example an ngram_range of c(1, 1) means only unigrams, c(1, 2) means unigrams and bigrams, and c(2, 2) means only bigrams.

regex

character, regex expression to use for text cleaning.

remove_stopwords

list, a list of stopwords to use, by default it uses its inbuilt list of standard english stopwords

split

character, splitting criteria for strings, default: " "

lowercase

logical, convert all characters to lowercase before tokenizing, default: TRUE

Details

Create a new 'CountVectorizer' object.

Returns

A 'CountVectorizer' object.

Examples
cv = CountVectorizer$new(min_df=0.1)

Method fit()

Usage
CountVectorizer$fit(sentences)
Arguments
sentences

a list of text sentences

Details

Fits the countvectorizer model on sentences

Returns

NULL

Examples
sents = c('i am alone in dark.','mother_mary a lot',
          'alone in the dark?', 'many mothers in the lot....')
cv = CountVectorizer$new(min_df=0.1)
cv$fit(sents)

Method fit_transform()

Usage
CountVectorizer$fit_transform(sentences)
Arguments
sentences

a list of text sentences

Details

Fits the countvectorizer model and returns a sparse matrix of count of tokens

Returns

a sparse matrix containing count of tokens in each given sentence

Examples
sents = c('i am alone in dark.','mother_mary a lot',
         'alone in the dark?', 'many mothers in the lot....')
cv <- CountVectorizer$new(min_df=0.1)
cv_count_matrix <- cv$fit_transform(sents)

Method transform()

Usage
CountVectorizer$transform(sentences)
Arguments
sentences

a list of new text sentences

Details

Returns a matrix of count of tokens

Returns

a sparse matrix containing count of tokens in each given sentence

Examples
sents = c('i am alone in dark.','mother_mary a lot',
          'alone in the dark?', 'many mothers in the lot....')
new_sents <- c("dark at night",'mothers day')
cv = CountVectorizer$new(min_df=0.1)
cv$fit(sents)
cv_count_matrix <- cv$transform(new_sents)

Method clone()

The objects of this class are cloneable with this method.

Usage
CountVectorizer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `CountVectorizer$new`
## ------------------------------------------------

cv = CountVectorizer$new(min_df=0.1)

## ------------------------------------------------
## Method `CountVectorizer$fit`
## ------------------------------------------------

sents = c('i am alone in dark.','mother_mary a lot',
          'alone in the dark?', 'many mothers in the lot....')
cv = CountVectorizer$new(min_df=0.1)
cv$fit(sents)

## ------------------------------------------------
## Method `CountVectorizer$fit_transform`
## ------------------------------------------------

sents = c('i am alone in dark.','mother_mary a lot',
         'alone in the dark?', 'many mothers in the lot....')
cv <- CountVectorizer$new(min_df=0.1)
cv_count_matrix <- cv$fit_transform(sents)

## ------------------------------------------------
## Method `CountVectorizer$transform`
## ------------------------------------------------

sents = c('i am alone in dark.','mother_mary a lot',
          'alone in the dark?', 'many mothers in the lot....')
new_sents <- c("dark at night",'mothers day')
cv = CountVectorizer$new(min_df=0.1)
cv$fit(sents)
cv_count_matrix <- cv$transform(new_sents)

Dot product similarity in vectors

Description

Computes the dot product between two given vectors.

Usage

dot(a, b, norm = TRUE)

Arguments

a

numeric vector

b

numeric vector

norm

logical, compute normalised dot product, default=True

Value

numeric vector containing sdot product score

Examples

a <- runif(5)
b <- runif(5)
s <- dot(a, b)

Dot product similarity between a vector and matrix

Description

Computes the dot product between a vector and a given matrix. The vector returned has a dot product similarity value for each row in the matrix.

Usage

dotmat(a, b, norm = TRUE)

Arguments

a

numeric vector

b

numeric matrix

norm

logical, compute normalised dot product, default=True

Value

numeric vector containing dot product scores


Grid Search CV

Description

Runs grid search cross validation scheme to find best model training parameters.

Details

Grid search CV is used to train a machine learning model with multiple combinations of training hyper parameters and finds the best combination of parameters which optimizes the evaluation metric. It creates an exhaustive set of hyperparameter combinations and train model on each combination.

Public fields

trainer

superml trainer object, could be either XGBTrainer, RFTrainer, NBTrainer etc.

parameters

a list of parameters to tune

n_folds

number of folds to use to split the train data

scoring

scoring metric used to evaluate the best model, multiple values can be provided. currently supports: auc, accuracy, mse, rmse, logloss, mae, f1, precision, recall

evaluation_scores

parameter for internal use

Methods

Public methods


Method new()

Usage
GridSearchCV$new(trainer = NA, parameters = NA, n_folds = NA, scoring = NA)
Arguments
trainer

superml trainer object, could be either XGBTrainer, RFTrainer, NBTrainer etc.

parameters

list, a list of parameters to tune

n_folds

integer, number of folds to use to split the train data

scoring

character, scoring metric used to evaluate the best model, multiple values can be provided. currently supports: auc, accuracy, mse, rmse, logloss, mae, f1, precision, recall

Details

Create a new 'GridSearchCV' object.

Returns

A 'GridSearchCV' object.

Examples
rf <- RFTrainer$new()
gst <-GridSearchCV$new(trainer = rf,
                      parameters = list(n_estimators = c(100),
                                        max_depth = c(5,2,10)),
                                        n_folds = 3,
                                        scoring = c('accuracy','auc'))

Method fit()

Usage
GridSearchCV$fit(X, y)
Arguments
X

data.frame or data.table

y

character, name of target variable

Details

Trains the model using grid search

Returns

NULL

Examples
rf <- RFTrainer$new()
gst <-GridSearchCV$new(trainer = rf,
                      parameters = list(n_estimators = c(100),
                                        max_depth = c(5,2,10)),
                                        n_folds = 3,
                                        scoring = c('accuracy','auc'))
data("iris")
gst$fit(iris, "Species")

Method best_iteration()

Usage
GridSearchCV$best_iteration(metric = NULL)
Arguments
metric

character, which metric to use for evaluation

Details

Returns the best parameters

Returns

a list of best parameters

Examples
rf <- RFTrainer$new()
gst <-GridSearchCV$new(trainer = rf,
                      parameters = list(n_estimators = c(100),
                                        max_depth = c(5,2,10)),
                                        n_folds = 3,
                                        scoring = c('accuracy','auc'))
data("iris")
gst$fit(iris, "Species")
gst$best_iteration()

Method clone()

The objects of this class are cloneable with this method.

Usage
GridSearchCV$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `GridSearchCV$new`
## ------------------------------------------------

rf <- RFTrainer$new()
gst <-GridSearchCV$new(trainer = rf,
                      parameters = list(n_estimators = c(100),
                                        max_depth = c(5,2,10)),
                                        n_folds = 3,
                                        scoring = c('accuracy','auc'))

## ------------------------------------------------
## Method `GridSearchCV$fit`
## ------------------------------------------------

rf <- RFTrainer$new()
gst <-GridSearchCV$new(trainer = rf,
                      parameters = list(n_estimators = c(100),
                                        max_depth = c(5,2,10)),
                                        n_folds = 3,
                                        scoring = c('accuracy','auc'))
data("iris")
gst$fit(iris, "Species")

## ------------------------------------------------
## Method `GridSearchCV$best_iteration`
## ------------------------------------------------

rf <- RFTrainer$new()
gst <-GridSearchCV$new(trainer = rf,
                      parameters = list(n_estimators = c(100),
                                        max_depth = c(5,2,10)),
                                        n_folds = 3,
                                        scoring = c('accuracy','auc'))
data("iris")
gst$fit(iris, "Species")
gst$best_iteration()

kFoldMean Calculator

Description

Calculates out-of-fold mean features (also known as target encoding) for train and test data. This strategy is widely used to avoid overfitting or causing leakage while creating features using the target variable. This method is experimental. If the results you get are unexpected, please report them in github issues.

Usage

kFoldMean(train_df, test_df, colname, target, n_fold = 5, seed = 42)

Arguments

train_df

train dataset

test_df

test dataset

colname

name of categorical column

target

the target or dependent variable, should be a string.

n_fold

the number of folds to use for doing kfold computation, default=5

seed

the seed value, to ensure reproducibility, it could be any positive value, default=42

Value

a train and test data table with out-of-fold mean value of the target for the given categorical variable

Examples

train <- data.frame(region=c('del','csk','rcb','del','csk','pune','guj','del'),
                    win = c(0,1,1,0,0,0,0,1))
test <- data.frame(region=c('rcb','csk','rcb','del','guj','pune','csk','kol'))
train_result <- kFoldMean(train_df = train,
                          test_df = test,
                          colname = 'region',
                          target = 'win',
                          seed = 1220)$train

test_result <- kFoldMean(train_df = train,
                         test_df = test,
                         colname = 'region',
                         target = 'win',
                         seed = 1220)$test

K-Means Trainer

Description

Trains a k-means machine learning model in R

Details

Trains a unsupervised K-Means clustering algorithm. It borrows mini-batch k-means function from ClusterR package written in c++, hence it is quite fast.

Public fields

clusters

the number of clusters

batch_size

the size of the mini batches

num_init

number of times the algorithm will be run with different centroid seeds

max_iters

the maximum number of clustering iterations

init_fraction

percentage of data to use for the initialization centroids (applies if initializer is kmeans++ or optimal_init). Should be a float number between 0.0 and 1.0.

initializer

the method of initialization. One of, optimal_init, quantile_init, kmeans++ and random.

early_stop_iter

continue that many iterations after calculation of the best within-cluster-sum-ofsquared-error

verbose

either TRUE or FALSE, indicating whether progress is printed during clustering

centroids

a matrix of initial cluster centroids. The rows of the CENTROIDS matrix should be equal to the number of clusters and the columns should be equal to the columns of the data

tol

a float number. If, in case of an iteration (iteration > 1 and iteration < max_iters) "tol" is greater than the squared norm of the centroids, then kmeans has converged

tol_optimal_init

tolerance value for the ’optimal_init’ initializer. The higher this value is, the far appart from each other the centroids are.

seed

integer value for random number generator (RNG)

model

use for internal purpose

max_clusters

either a numeric value, a contiguous or non-continguous numeric vector specifying the cluster search space

Methods

Public methods


Method new()

Usage
KMeansTrainer$new(
  clusters,
  batch_size = 10,
  num_init = 1,
  max_iters = 100,
  init_fraction = 1,
  initializer = "kmeans++",
  early_stop_iter = 10,
  verbose = FALSE,
  centroids = NULL,
  tol = 1e-04,
  tol_optimal_init = 0.3,
  seed = 1,
  max_clusters = NA
)
Arguments
clusters

numeric, When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold, value lies between 0 and 1.

batch_size

nuemric, When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold, value lies between 0 and 1.

num_init

integer, use top features sorted by count to be used in bag of words matrix.

max_iters

character, regex expression to use for text cleaning.

init_fraction

list, a list of stopwords to use, by default it uses its inbuilt list of standard stopwords

initializer

character, splitting criteria for strings, default: " "

early_stop_iter

continue that many iterations after calculation of the best within-cluster-sum-ofsquared-error

verbose

either TRUE or FALSE, indicating whether progress is printed during clustering

centroids

a matrix of initial cluster centroids. The rows of the CENTROIDS matrix should be equal to the number of clusters and the columns should be equal to the columns of the data

tol

a float number. If, in case of an iteration (iteration > 1 and iteration < max_iters) "tol" is greater than the squared norm of the centroids, then kmeans has converged

tol_optimal_init

tolerance value for the ’optimal_init’ initializer. The higher this value is, the far appart from each other the centroids are.

seed

integer value for random number generator (RNG)

max_clusters

either a numeric value, a contiguous or non-continguous numeric vector specifying the cluster search space

Details

Create a new 'KMeansTrainer' object.

Returns

A 'KMeansTrainer' object.

Examples
data <- rbind(replicate(20, rnorm(1e4, 2)),
             replicate(20, rnorm(1e4, -1)),
             replicate(20, rnorm(1e4, 5)))
km_model <- KMeansTrainer$new(clusters=2, batch_size=30, max_clusters=6)

Method fit()

Usage
KMeansTrainer$fit(X, y = NULL, find_optimal = FALSE)
Arguments
X

data.frame or matrix containing features

y

NULL only kept here for superml's standard way

find_optimal

logical, to find the optimal clusters automatically

Details

Trains the KMeansTrainer model

Returns

NULL

Examples
data <- rbind(replicate(20, rnorm(1e4, 2)),
             replicate(20, rnorm(1e4, -1)),
             replicate(20, rnorm(1e4, 5)))
km_model <- KMeansTrainer$new(clusters=2, batch_size=30, max_clusters=6)
km_model$fit(data, find_optimal = FALSE)

Method predict()

Usage
KMeansTrainer$predict(X)
Arguments
X

data.frame or matrix

Details

Returns the prediction on test data

Returns

a vector of predictions

Examples
data <- rbind(replicate(20, rnorm(1e4, 2)),
             replicate(20, rnorm(1e4, -1)),
             replicate(20, rnorm(1e4, 5)))
km_model <- KMeansTrainer$new(clusters=2, batch_size=30, max_clusters=6)
km_model$fit(data, find_optimal = FALSE)
predictions <- km_model$predict(data)

Method clone()

The objects of this class are cloneable with this method.

Usage
KMeansTrainer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `KMeansTrainer$new`
## ------------------------------------------------

data <- rbind(replicate(20, rnorm(1e4, 2)),
             replicate(20, rnorm(1e4, -1)),
             replicate(20, rnorm(1e4, 5)))
km_model <- KMeansTrainer$new(clusters=2, batch_size=30, max_clusters=6)

## ------------------------------------------------
## Method `KMeansTrainer$fit`
## ------------------------------------------------

data <- rbind(replicate(20, rnorm(1e4, 2)),
             replicate(20, rnorm(1e4, -1)),
             replicate(20, rnorm(1e4, 5)))
km_model <- KMeansTrainer$new(clusters=2, batch_size=30, max_clusters=6)
km_model$fit(data, find_optimal = FALSE)

## ------------------------------------------------
## Method `KMeansTrainer$predict`
## ------------------------------------------------

data <- rbind(replicate(20, rnorm(1e4, 2)),
             replicate(20, rnorm(1e4, -1)),
             replicate(20, rnorm(1e4, 5)))
km_model <- KMeansTrainer$new(clusters=2, batch_size=30, max_clusters=6)
km_model$fit(data, find_optimal = FALSE)
predictions <- km_model$predict(data)

K Nearest Neighbours Trainer

Description

Trains a k nearest neighbour model using fast search algorithms. KNN is a supervised learning algorithm which is used for both regression and classification problems.

Format

R6Class object.

Usage

For usage details see Methods, Arguments and Examples sections.

bst = KNNTrainer$new(k=1, prob=FALSE, algorithm=NULL, type="class")
bst$fit(X_train, X_test, "target")
bst$predict(type)

Methods

$new()

Initialise the instance of the trainer

$fit()

trains the knn model and stores the test prediction

$predict()

returns predictions

Arguments

k

number of neighbours to predict

prob

if probability should be computed, default=FALSE

algorithm

algorithm used to train the model, possible values are 'kd_tree','cover_tree','brute'

type

type of problem to solve i.e. regression or classification, possible values are 'reg' or 'class'

Public fields

k

number of neighbours to predict

prob

if probability should be computed, default=FALSE

algorithm

algorithm used to train the model, possible values are 'kd_tree','cover_tree','brute'

type

type of problem to solve i.e. regression or classification, possible values are 'reg' or 'class'

model

for internal use

Methods

Public methods


Method new()

Usage
KNNTrainer$new(k, prob, algorithm, type)
Arguments
k

k number of neighbours to predict

prob

if probability should be computed, default=FALSE

algorithm

algorithm used to train the model, possible values are 'kd_tree','cover_tree','brute'

type

type of problem to solve i.e. regression or classification, possible values are 'reg' or 'class'

Details

Create a new 'KNNTrainer' object.

Returns

A 'KNNTrainer' object.

Examples
data("iris")

iris$Species <- as.integer(as.factor(iris$Species))

xtrain <- iris[1:100,]
xtest <- iris[101:150,]

bst <- KNNTrainer$new(k=3, prob=TRUE, type="class")
bst$fit(xtrain, xtest, 'Species')
pred <- bst$predict(type="raw")

Method fit()

Usage
KNNTrainer$fit(train, test, y)
Arguments
train

data.frame or matrix

test

data.frame or matrix

y

character, name of target variable

Details

Trains the KNNTrainer model

Returns

NULL

Examples
data("iris")

iris$Species <- as.integer(as.factor(iris$Species))

xtrain <- iris[1:100,]
xtest <- iris[101:150,]

bst <- KNNTrainer$new(k=3, prob=TRUE, type="class")
bst$fit(xtrain, xtest, 'Species')

Method predict()

Usage
KNNTrainer$predict(type = "raw")
Arguments
type

character, 'raw' for labels else 'prob'

Details

Predits the nearest neigbours for test data

Returns

a list of predicted neighbours

Examples
data("iris")

iris$Species <- as.integer(as.factor(iris$Species))

xtrain <- iris[1:100,]
xtest <- iris[101:150,]

bst <- KNNTrainer$new(k=3, prob=TRUE, type="class")
bst$fit(xtrain, xtest, 'Species')
pred <- bst$predict(type="raw")

Method clone()

The objects of this class are cloneable with this method.

Usage
KNNTrainer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

data("iris")

iris$Species <- as.integer(as.factor(iris$Species))

xtrain <- iris[1:100,]
xtest <- iris[101:150,]

bst <- KNNTrainer$new(k=3, prob=TRUE, type="class")
bst$fit(xtrain, xtest, 'Species')
pred <- bst$predict(type="raw")

## ------------------------------------------------
## Method `KNNTrainer$new`
## ------------------------------------------------

data("iris")

iris$Species <- as.integer(as.factor(iris$Species))

xtrain <- iris[1:100,]
xtest <- iris[101:150,]

bst <- KNNTrainer$new(k=3, prob=TRUE, type="class")
bst$fit(xtrain, xtest, 'Species')
pred <- bst$predict(type="raw")

## ------------------------------------------------
## Method `KNNTrainer$fit`
## ------------------------------------------------

data("iris")

iris$Species <- as.integer(as.factor(iris$Species))

xtrain <- iris[1:100,]
xtest <- iris[101:150,]

bst <- KNNTrainer$new(k=3, prob=TRUE, type="class")
bst$fit(xtrain, xtest, 'Species')

## ------------------------------------------------
## Method `KNNTrainer$predict`
## ------------------------------------------------

data("iris")

iris$Species <- as.integer(as.factor(iris$Species))

xtrain <- iris[1:100,]
xtest <- iris[101:150,]

bst <- KNNTrainer$new(k=3, prob=TRUE, type="class")
bst$fit(xtrain, xtest, 'Species')
pred <- bst$predict(type="raw")

Label Encoder

Description

Encodes and decodes categorical variables into integer values and vice versa. This is a commonly performed task in data preparation during model training, because all machine learning models require the data to be encoded into numerical format. It takes a vector of character or factor values and encodes them into numeric.

Format

R6Class object.

Usage

For usage details see Methods, Arguments and Examples sections.

lbl = LabelEncoder$new()
lbl$fit(x)
lbl$fit_transform(x)
lbl$transform(x)

Methods

$new()

Initialise the instance of the encoder

$fit()

creates a memory of encodings but doesn't return anything

$transform()

based on encodings learned in fit method is applies the transformation

$fit_transform()

encodes the data and keep a memory of encodings simultaneously

$inverse_transform()

encodes the data and keep a memory of encodings simultaneously

Arguments

data

a vector or list containing the character / factor values

Public fields

input_data

internal use

encodings

internal use

decodings

internal use

fit_model

internal use

Methods

Public methods


Method fit()

Usage
LabelEncoder$fit(data_col)
Arguments
data_col

a vector containing non-null values

Details

Fits the labelencoder model on given data

Returns

NULL, calculates the encoding and save in memory

Examples
data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$fit_transform(data_ex$Name)
decode_names <- lbl$inverse_transform(data_ex$Name)

Method fit_transform()

Usage
LabelEncoder$fit_transform(data_col)
Arguments
data_col

a vector containing non-null values

Details

Fits and returns the encoding

Returns

encoding values for the given input data

Examples
data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$fit_transform(data_ex$Name)

Method transform()

Usage
LabelEncoder$transform(data_col)
Arguments
data_col

a vector containing non-null values

Details

Returns the encodings from the fitted model

Returns

encoding values for the given input data

Examples
data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$transform(data_ex$Name)

Method inverse_transform()

Usage
LabelEncoder$inverse_transform(coded_col)
Arguments
coded_col

a vector containing label encoded values

Details

Gives back the original values from a encoded values

Returns

original values from the label encoded data

Examples
data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$fit_transform(data_ex$Name)
decode_names <- lbl$inverse_transform(data_ex$Name)

Method clone()

The objects of this class are cloneable with this method.

Usage
LabelEncoder$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
data_ex$Name <- lbl$fit_transform(data_ex$Name)
decode_names <- lbl$inverse_transform(data_ex$Name)

## ------------------------------------------------
## Method `LabelEncoder$fit`
## ------------------------------------------------

data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$fit_transform(data_ex$Name)
decode_names <- lbl$inverse_transform(data_ex$Name)

## ------------------------------------------------
## Method `LabelEncoder$fit_transform`
## ------------------------------------------------

data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$fit_transform(data_ex$Name)

## ------------------------------------------------
## Method `LabelEncoder$transform`
## ------------------------------------------------

data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$transform(data_ex$Name)

## ------------------------------------------------
## Method `LabelEncoder$inverse_transform`
## ------------------------------------------------

data_ex <- data.frame(Score = c(10,20,30,4), Name=c('Ao','Bo','Bo','Co'))
lbl <- LabelEncoder$new()
lbl$fit(data_ex$Name)
data_ex$Name <- lbl$fit_transform(data_ex$Name)
decode_names <- lbl$inverse_transform(data_ex$Name)

Linear Models Trainer

Description

Trains regression, lasso, ridge model in R

Details

Trains linear models such as Logistic, Lasso or Ridge regression model. It is built on glmnet R package. This class provides fit, predict, cross valdidation functions.

Public fields

family

type of regression to perform, values can be "gaussian" ,"binomial", "multinomial","mgaussian"

weights

observation weights. Can be total counts if responses are proportion matrices. Default is 1 for each observation

alpha

The elasticnet mixing parameter, alpha=1 is the lasso penalty, alpha=0 the ridge penalty, alpha=NULL is simple regression

lambda

the number of lambda values - default is 100

standardize

normalise the features in the given data

standardize.response

normalise the dependent variable between 0 and 1, default = FALSE

model

internal use

cvmodel

internal use

Flag

internal use

is_lasso

internal use

iid_names

internal use

Methods

Public methods


Method new()

Usage
LMTrainer$new(family, weights, alpha, lambda, standardize.response)
Arguments
family

character, type of regression to perform, values can be "gaussian" ,"binomial", "multinomial","mgaussian"

weights

numeric, observation weights. Can be total counts if responses are proportion matrices. Default is 1 for each observation

alpha

integer, The elasticnet mixing parameter, alpha=1 is the lasso penalty, alpha=0 the ridge penalty, alpha=NULL is simple regression

lambda

integer, the number of lambda values - default is 100

standardize.response

logical, normalise the dependent variable between 0 and 1, default = FALSE

Details

Create a new 'LMTrainer' object.

Returns

A 'LMTrainer' object.

Examples
\dontrun{
LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
           "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing)  <-  names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
}

Method fit()

Usage
LMTrainer$fit(X, y)
Arguments
X

data.frame containing train featuers

y

character, name of target variable

Details

Fits the LMTrainer model on given data

Returns

NULL, train the model and saves internally

Examples
\dontrun{
LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
           "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing)  <-  names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$fit(X = housing, y = 'MEDV')
}

Method predict()

Usage
LMTrainer$predict(df, lambda = NULL)
Arguments
df

data.frame containing test features

lambda

integer, the number of lambda values - default is 100. By default it picks the best value from the model.

Details

Returns predictions for test data

Returns

vector, a vector containing predictions

Examples
\dontrun{
LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
           "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing)  <-  names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$fit(X = housing, y = 'MEDV')
predictions <- lf$cv_predict(df = housing)
}

Method cv_model()

Usage
LMTrainer$cv_model(X, y, nfolds, parallel, type.measure = "deviance")
Arguments
X

data.frame containing test features

y

character, name of target variable

nfolds

integer, number of folds

parallel

logical, if do parallel computation. Default=FALSE

type.measure

character, evaluation metric type. Default = deviance

Details

Train regression model using cross validation

Returns

NULL, trains the model and saves it in memory

Examples
\dontrun{
LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
           "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing)  <-  names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$cv_model(X = housing, y = 'MEDV', nfolds = 5, parallel = FALSE)
}

Method cv_predict()

Usage
LMTrainer$cv_predict(df, lambda = NULL)
Arguments
df

data.frame containing test features

lambda

integer, the number of lambda values - default is 100. By default it picks the best value from the model.

Details

Get predictions from the cross validated regression model

Returns

vector a vector containing predicted values

Examples
\dontrun{
LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
           "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing)  <-  names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$cv_model(X = housing, y = 'MEDV', nfolds = 5, parallel = FALSE)
predictions <- lf$cv_predict(df = housing)
}

Method get_importance()

Usage
LMTrainer$get_importance()
Details

Get feature importance using model coefficients

Returns

a matrix containing feature coefficients

Examples
\dontrun{
LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
           "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing)  <-  names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$cv_model(X = housing, y = 'MEDV', nfolds = 5, parallel = FALSE)
predictions <- lf$cv_predict(df = housing)
coefs <- lf$get_importance()
}

Method clone()

The objects of this class are cloneable with this method.

Usage
LMTrainer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `LMTrainer$new`
## ------------------------------------------------

## Not run: 
LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
           "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing)  <-  names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)

## End(Not run)

## ------------------------------------------------
## Method `LMTrainer$fit`
## ------------------------------------------------

## Not run: 
LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
           "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing)  <-  names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$fit(X = housing, y = 'MEDV')

## End(Not run)

## ------------------------------------------------
## Method `LMTrainer$predict`
## ------------------------------------------------

## Not run: 
LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
           "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing)  <-  names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$fit(X = housing, y = 'MEDV')
predictions <- lf$cv_predict(df = housing)

## End(Not run)

## ------------------------------------------------
## Method `LMTrainer$cv_model`
## ------------------------------------------------

## Not run: 
LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
           "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing)  <-  names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$cv_model(X = housing, y = 'MEDV', nfolds = 5, parallel = FALSE)

## End(Not run)

## ------------------------------------------------
## Method `LMTrainer$cv_predict`
## ------------------------------------------------

## Not run: 
LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
           "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing)  <-  names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$cv_model(X = housing, y = 'MEDV', nfolds = 5, parallel = FALSE)
predictions <- lf$cv_predict(df = housing)

## End(Not run)

## ------------------------------------------------
## Method `LMTrainer$get_importance`
## ------------------------------------------------

## Not run: 
LINK <- "http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
housing <- read.table(LINK)
names <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS",
           "RAD","TAX","PTRATIO","B","LSTAT","MEDV")
names(housing)  <-  names
lf <- LMTrainer$new(family = 'gaussian', alpha=1)
lf$cv_model(X = housing, y = 'MEDV', nfolds = 5, parallel = FALSE)
predictions <- lf$cv_predict(df = housing)
coefs <- lf$get_importance()

## End(Not run)

Naive Bayes Trainer

Description

Trains a probabilistic naive bayes model

Details

Trains a naive bayes model. It is built on top high performance naivebayes R package.

Public fields

prior

numeric vector with prior probabilities. vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.

laplace

value used for Laplace smoothing. Defaults to 0 (no Laplace smoothing)

usekernel

if TRUE, density is used to estimate the densities of metric predictors

model

for internal use

Methods

Public methods


Method new()

Usage
NBTrainer$new(prior, laplace, usekernel)
Arguments
prior

numeric, prior numeric vector with prior probabilities. vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.

laplace

nuemric, value used for Laplace smoothing. Defaults to 0 (no Laplace smoothing)

usekernel

logical, if TRUE, density is used to estimate the densities of metric predictors

Details

Create a new 'NBTrainer' object.

Returns

A 'NBTrainer' object.

Examples
data(iris)
nb <- NBTrainer$new()

Method fit()

Usage
NBTrainer$fit(X, y)
Arguments
X

data.frame containing train features

y

character, name of target variable

Details

Fits the naive bayes model

Returns

NULL, trains and saves the model in memory

Examples
data(iris)
nb <- NBTrainer$new()
nb$fit(iris, 'Species')

Method predict()

Usage
NBTrainer$predict(X, type = "class")
Arguments
X

data.frame containing test features

type

character, if the predictions should be labels or probability

Details

Returns predictions from the model

Returns

NULL, trains and saves the model in memory

Examples
data(iris)
nb <- NBTrainer$new()
nb$fit(iris, 'Species')
y <- nb$predict(iris)

Method clone()

The objects of this class are cloneable with this method.

Usage
NBTrainer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `NBTrainer$new`
## ------------------------------------------------

data(iris)
nb <- NBTrainer$new()

## ------------------------------------------------
## Method `NBTrainer$fit`
## ------------------------------------------------

data(iris)
nb <- NBTrainer$new()
nb$fit(iris, 'Species')

## ------------------------------------------------
## Method `NBTrainer$predict`
## ------------------------------------------------

data(iris)
nb <- NBTrainer$new()
nb$fit(iris, 'Species')
y <- nb$predict(iris)

normalise1d

Description

Normalises a 1 dimensional vector towards unit p norm. By default, p = 2 is used. For a given vector, eg: c(1,2,3), norm value is calculated as 'x / |x|' where '|x|' is calculated as the square root of sum of square of values in the given vector.

Usage

normalise1d(vec, pnorm = 2L)

Arguments

vec

vector containing integers or numeric values.

pnorm

integer, default: 2

Value

a vector containing normalised values

Examples

val <- c(1,10,5,3,8)
norm_val <- normalise1d(val)

normalise2d

Description

Normalises a matrix towards unit p norm row wise or column wise. By default, p = 2 is used. To normalise row wise, use axis=0. To normalise column wise, use axis=1. as the square root of sum of square of values in the given vector.

Usage

normalise2d(mat, pnorm = 2L, axis = 1L)

Arguments

mat

numeric matrix

pnorm

integer value, default value=2

axis

integer (0 or 1), row wise = 0, column wise = 1

Value

normalised numeric matrix

Examples

mat <- matrix(runif(12), 3, 4)

## normalise matrix row wise
r <- normalise2d(mat, axis=0)

## normalise matrix column wise
r <- normalise2d(mat, axis=1)

Random Search CV

Description

Hyperparameter tuning using random search scheme.

Details

Given a set of hyper parameters, random search trainer provides a faster way of hyper parameter tuning. Here, the number of models to be trained can be defined by the user.

Super class

superml::GridSearchCV -> RandomSearchTrainer

Public fields

n_iter

number of models to be trained

Methods

Public methods

Inherited methods

Method new()

Usage
RandomSearchCV$new(
  trainer = NA,
  parameters = NA,
  n_folds = NA,
  scoring = NA,
  n_iter = NA
)
Arguments
trainer

superml trainer object, must be either XGBTrainer, LMTrainer, RFTrainer, NBTrainer

parameters

list, list containing parameters

n_folds

integer, number of folds to use to split the train data

scoring

character, scoring metric used to evaluate the best model, multiple values can be provided. currently supports: auc, accuracy, mse, rmse, logloss, mae, f1, precision, recall

n_iter

integer, number of models to be trained

Details

Create a new 'RandomSearchTrainer' object.

Returns

A 'RandomSearchTrainer' object.

Examples
rf <- RFTrainer$new()
rst <-RandomSearchCV$new(trainer = rf,
                            parameters = list(n_estimators = c(100,500),
                            max_depth = c(5,2,10,14)),
                            n_folds = 3,
                            scoring = c('accuracy','auc'),
                            n_iter = 4)

Method fit()

Usage
RandomSearchCV$fit(X, y)
Arguments
X

data.frame containing features

y

character, name of target variable

Details

Train the model on given hyperparameters

Returns

NULL, tunes hyperparameters and stores the result in memory

Examples
rf <- RFTrainer$new()
rst <-RandomSearchCV$new(trainer = rf,
                            parameters = list(n_estimators = c(100,500),
                            max_depth = c(5,2,10,14)),
                            n_folds = 3,
                            scoring = c('accuracy','auc'),
                            n_iter = 4)
data("iris")
rst$fit(iris, "Species")
rst$best_iteration()

Method clone()

The objects of this class are cloneable with this method.

Usage
RandomSearchCV$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `RandomSearchCV$new`
## ------------------------------------------------

rf <- RFTrainer$new()
rst <-RandomSearchCV$new(trainer = rf,
                            parameters = list(n_estimators = c(100,500),
                            max_depth = c(5,2,10,14)),
                            n_folds = 3,
                            scoring = c('accuracy','auc'),
                            n_iter = 4)

## ------------------------------------------------
## Method `RandomSearchCV$fit`
## ------------------------------------------------

rf <- RFTrainer$new()
rst <-RandomSearchCV$new(trainer = rf,
                            parameters = list(n_estimators = c(100,500),
                            max_depth = c(5,2,10,14)),
                            n_folds = 3,
                            scoring = c('accuracy','auc'),
                            n_iter = 4)
data("iris")
rst$fit(iris, "Species")
rst$best_iteration()

reg_train

Description

Training Dataset used for regression examples. In this data set, we have to predict the sale price of the houses.

Usage

reg_train

Format

An object of class data.table (inherits from data.frame) with 1460 rows and 81 columns.

Source

https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data


Random Forest Trainer

Description

Trains a random forest model.

Details

Trains a Random Forest model. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. This implementation uses ranger R package which provides faster model training.

Public fields

n_estimators

the number of trees in the forest, default= 100

max_features

the number of features to consider when looking for the best split. Possible values are auto(default) takes sqrt(num_of_features), sqrt same as auto, log takes log(num_of_features), none takes all features

max_depth

the maximum depth of each tree

min_node_size

the minumum number of samples required to split an internal node

criterion

the function to measure the quality of split. For classification, gini is used which is a measure of gini index. For regression, the variance of responses is used.

classification

whether to train for classification (1) or regression (0)

verbose

show computation status and estimated runtime

seed

seed value

class_weights

weights associated with the classes for sampling of training observation

always_split

vector of feature names to be always used for splitting

importance

Variable importance mode, one of 'none', 'impurity', 'impurity_corrected', 'permutation'. The 'impurity' measure is the Gini index for classification, the variance of the responses for regression. Defaults to "impurity"

Methods

Public methods


Method new()

Usage
RFTrainer$new(
  n_estimators,
  max_depth,
  max_features,
  min_node_size,
  classification,
  class_weights,
  always_split,
  verbose,
  save_model,
  seed,
  importance
)
Arguments
n_estimators

integer, the number of trees in the forest, default= 100

max_depth

integer, the maximum depth of each tree

max_features

integer, the number of features to consider when looking for the best split. Possible values are auto(default) takes sqrt(num_of_features), sqrt same as auto, log takes log(num_of_features), none takes all features

min_node_size

integer, the minumum number of samples required to split an internal node

classification

integer, whether to train for classification (1) or regression (0)

class_weights

weights associated with the classes for sampling of training observation

always_split

vector of feature names to be always used for splitting

verbose

logical, show computation status and estimated runtime

save_model

logical, whether to save model

seed

integer, seed value

importance

Variable importance mode, one of 'none', 'impurity', 'impurity_corrected', 'permutation'. The 'impurity' measure is the Gini index for classification, the variance of the responses for regression. Defaults to "impurity"

Details

Create a new 'RFTrainer' object.

Returns

A 'RFTrainer' object.

Examples
data("iris")
bst <- RFTrainer$new(n_estimators=10,
                     max_depth=4,
                     classification=1,
                     seed=42,
                     verbose=TRUE)

Method fit()

Usage
RFTrainer$fit(X, y)
Arguments
X

data.frame containing train features

y

character, name of the target variable

Details

Trains the random forest model

Returns

NULL, trains and saves the model in memory

Examples
data("iris")
bst <- RFTrainer$new(n_estimators=10,
                     max_depth=4,
                     classification=1,
                     seed=42,
                     verbose=TRUE)
bst$fit(iris, 'Species')

Method predict()

Usage
RFTrainer$predict(df)
Arguments
df

data.frame containing test features

Details

Return predictions from random forest model

Returns

a vector containing predictions

Examples
data("iris")
bst <- RFTrainer$new(n_estimators=10,
                     max_depth=4,
                     classification=1,
                     seed=42,
                     verbose=TRUE)
bst$fit(iris, 'Species')
predictions <- bst$predict(iris)

Method get_importance()

Usage
RFTrainer$get_importance()
Details

Returns feature importance from the model

Returns

a data frame containing feature predictions

Examples
data("iris")
bst <- RFTrainer$new(n_estimators=50,
                     max_depth=4,
                     classification=1,
                     seed=42,
                     verbose=TRUE)
bst$fit(iris, 'Species')
predictions <- bst$predict(iris)
bst$get_importance()

Method clone()

The objects of this class are cloneable with this method.

Usage
RFTrainer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `RFTrainer$new`
## ------------------------------------------------

data("iris")
bst <- RFTrainer$new(n_estimators=10,
                     max_depth=4,
                     classification=1,
                     seed=42,
                     verbose=TRUE)

## ------------------------------------------------
## Method `RFTrainer$fit`
## ------------------------------------------------

data("iris")
bst <- RFTrainer$new(n_estimators=10,
                     max_depth=4,
                     classification=1,
                     seed=42,
                     verbose=TRUE)
bst$fit(iris, 'Species')

## ------------------------------------------------
## Method `RFTrainer$predict`
## ------------------------------------------------

data("iris")
bst <- RFTrainer$new(n_estimators=10,
                     max_depth=4,
                     classification=1,
                     seed=42,
                     verbose=TRUE)
bst$fit(iris, 'Species')
predictions <- bst$predict(iris)

## ------------------------------------------------
## Method `RFTrainer$get_importance`
## ------------------------------------------------

data("iris")
bst <- RFTrainer$new(n_estimators=50,
                     max_depth=4,
                     classification=1,
                     seed=42,
                     verbose=TRUE)
bst$fit(iris, 'Species')
predictions <- bst$predict(iris)
bst$get_importance()

smoothMean Calculator

Description

Calculates target encodings using a smoothing parameter and count of categorical variables. This approach is more robust to possibility of leakage and avoid overfitting.

Usage

smoothMean(
  train_df,
  test_df,
  colname,
  target,
  min_samples_leaf = 1,
  smoothing = 1,
  noise_level = 0
)

Arguments

train_df

train dataset

test_df

test dataset

colname

name of categorical column

target

name of target column

min_samples_leaf

minimum samples to take category average into account

smoothing

smoothing effect to balance categorical average vs prior

noise_level

random noise to add, optional

Value

a train and test data table with mean encodings of the target for the given categorical variable

Examples

train <- data.frame(region=c('del','csk','rcb','del','csk','pune','guj','del'),
                    win = c(0,1,1,0,0,1,0,1))
test <- data.frame(region=c('rcb','csk','rcb','del','guj','pune','csk','kol'))

# calculate encodings
all_means <- smoothMean(train_df = train,
                         test_df = test,
                         colname = 'region',
                         target = 'win')
train_mean <- all_means$train
test_mean <- all_means$test

sort_index

Description

For a given vector, return the indexes of the sorted array and not the sorted array itself.

Usage

sort_index(vec, ascending = TRUE)

Arguments

vec

numeric vector

ascending

logical, order to return (ascending or descending), default = True

Value

numeric vector containing sorted indexes

Examples

v <- c(10,3,1,4)
j <- sort_index(v)

TfIDF(Term Frequency Inverse Document Frequency) Vectorizer

Description

Creates a tf-idf matrix

Details

Given a list of text, it creates a sparse matrix consisting of tf-idf score for tokens from the text.

Super class

superml::CountVectorizer -> TfIdfVectorizer

Public fields

sentences

a list containing sentences

max_df

When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold, value lies between 0 and 1.

min_df

When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold, value lies between 0 and 1.

max_features

use top features sorted by count to be used in bag of words matrix.

ngram_range

The lower and upper boundary of the range of n-values for different word n-grams or char n-grams to be extracted. All values of n such such that min_n <= n <= max_n will be used. For example an ngram_range of c(1, 1) means only unigrams, c(1, 2) means unigrams and bigrams, and c(2, 2) means only bigrams.

split

splitting criteria for strings, default: " "

lowercase

convert all characters to lowercase before tokenizing

regex

regex expression to use for text cleaning.

remove_stopwords

a list of stopwords to use, by default it uses its inbuilt list of standard stopwords

smooth_idf

logical, to prevent zero division, adds one to document frequencies, as if an extra document was seen containing every term in the collection exactly once

norm

logical, if TRUE, each output row will have unit norm ‘l2’: Sum of squares of vector elements is 1. if FALSE returns non-normalized vectors, default: TRUE

Methods

Public methods


Method new()

Usage
TfIdfVectorizer$new(
  min_df,
  max_df,
  max_features,
  ngram_range,
  regex,
  remove_stopwords,
  split,
  lowercase,
  smooth_idf,
  norm
)
Arguments
min_df

numeric, When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold, value lies between 0 and 1.

max_df

numeric, When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold, value lies between 0 and 1.

max_features

integer, Build a vocabulary that only consider the top max_features ordered by term frequency across the corpus.

ngram_range

vector, The lower and upper boundary of the range of n-values for different word n-grams or char n-grams to be extracted. All values of n such such that min_n <= n <= max_n will be used. For example an ngram_range of c(1, 1) means only unigrams, c(1, 2) means unigrams and bigrams, and c(2, 2) means only bigrams.

regex

character, regex expression to use for text cleaning.

remove_stopwords

list, a list of stopwords to use, by default it uses its inbuilt list of standard english stopwords

split

character, splitting criteria for strings, default: " "

lowercase

logical, convert all characters to lowercase before tokenizing, default: TRUE

smooth_idf

logical, to prevent zero division, adds one to document frequencies, as if an extra document was seen containing every term in the collection exactly once

norm

logical, if TRUE, each output row will have unit norm ‘l2’: Sum of squares of vector elements is 1. if FALSE returns non-normalized vectors, default: TRUE

parallel

logical, speeds up ngrams computation using n-1 cores, defaults: TRUE

Details

Create a new 'TfIdfVectorizer' object.

Returns

A 'TfIdfVectorizer' object.

Examples
TfIdfVectorizer$new()

Method fit()

Usage
TfIdfVectorizer$fit(sentences)
Arguments
sentences

a list of text sentences

Details

Fits the TfIdfVectorizer model on sentences

Returns

NULL

Examples
sents = c('i am alone in dark.','mother_mary a lot',
          'alone in the dark?', 'many mothers in the lot....')
tf = TfIdfVectorizer$new(smooth_idf = TRUE, min_df = 0.3)
tf$fit(sents)

Method fit_transform()

Usage
TfIdfVectorizer$fit_transform(sentences)
Arguments
sentences

a list of text sentences

Details

Fits the TfIdfVectorizer model and returns a sparse matrix of count of tokens

Returns

a sparse matrix containing tf-idf score for tokens in each given sentence

Examples
\dontrun{
sents <- c('i am alone in dark.','mother_mary a lot',
         'alone in the dark?', 'many mothers in the lot....')
tf <- TfIdfVectorizer$new(smooth_idf = TRUE, min_df = 0.1)
tf_matrix <- tf$fit_transform(sents)
}

Method transform()

Usage
TfIdfVectorizer$transform(sentences)
Arguments
sentences

a list of new text sentences

Details

Returns a matrix of tf-idf score of tokens

Returns

a sparse matrix containing tf-idf score for tokens in each given sentence

Examples
\dontrun{
sents = c('i am alone in dark.','mother_mary a lot',
          'alone in the dark?', 'many mothers in the lot....')
new_sents <- c("dark at night",'mothers day')
tf = TfIdfVectorizer$new(min_df=0.1)
tf$fit(sents)
tf_matrix <- tf$transform(new_sents)
}

Method clone()

The objects of this class are cloneable with this method.

Usage
TfIdfVectorizer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `TfIdfVectorizer$new`
## ------------------------------------------------

TfIdfVectorizer$new()

## ------------------------------------------------
## Method `TfIdfVectorizer$fit`
## ------------------------------------------------

sents = c('i am alone in dark.','mother_mary a lot',
          'alone in the dark?', 'many mothers in the lot....')
tf = TfIdfVectorizer$new(smooth_idf = TRUE, min_df = 0.3)
tf$fit(sents)

## ------------------------------------------------
## Method `TfIdfVectorizer$fit_transform`
## ------------------------------------------------

## Not run: 
sents <- c('i am alone in dark.','mother_mary a lot',
         'alone in the dark?', 'many mothers in the lot....')
tf <- TfIdfVectorizer$new(smooth_idf = TRUE, min_df = 0.1)
tf_matrix <- tf$fit_transform(sents)

## End(Not run)

## ------------------------------------------------
## Method `TfIdfVectorizer$transform`
## ------------------------------------------------

## Not run: 
sents = c('i am alone in dark.','mother_mary a lot',
          'alone in the dark?', 'many mothers in the lot....')
new_sents <- c("dark at night",'mothers day')
tf = TfIdfVectorizer$new(min_df=0.1)
tf$fit(sents)
tf_matrix <- tf$transform(new_sents)

## End(Not run)

Extreme Gradient Boosting Trainer

Description

Trains a XGBoost model in R

Details

Trains a Extreme Gradient Boosting Model. XGBoost belongs to a family of boosting algorithms that creates an ensemble of weak learner to learn about data. It is a wrapper for original xgboost R package, you can find the documentation here: http://xgboost.readthedocs.io/en/latest/parameter.html

Public fields

booster

the trainer type, the values are gbtree(default), gblinear, dart:gbtree

objective

specify the learning task. Check the link above for all possible values.

nthread

number of parallel threads used to run, default is to run using all threads available

silent

0 means printing running messages, 1 means silent mode

n_estimators

number of trees to grow, default = 100

learning_rate

Step size shrinkage used in update to prevents overfitting. Lower the learning rate, more time it takes in training, value lies between between 0 and 1. Default = 0.3

gamma

Minimum loss reduction required to make a further partition on a leaf node of the tree. The larger gamma is, the more conservative the algorithm will be. Value lies between 0 and infinity, Default = 0

max_depth

the maximum depth of each tree, default = 6

min_child_weight

Minimum sum of instance weight (hessian) needed in a child. If the tree partition step results in a leaf node with the sum of instance weight less than min_child_weight, then the building process will give up further partitioning. In linear regression task, this simply corresponds to minimum number of instances needed to be in each node. The larger min_child_weight is, the more conservative the algorithm will be. Value lies between 0 and infinity. Default = 1

subsample

Subsample ratio of the training instances. Setting it to 0.5 means that XGBoost would randomly sample half of the training data prior to growing trees. and this will prevent overfitting. Subsampling will occur once in every boosting iteration. Value lies between 0 and 1. Default = 1

colsample_bytree

Subsample ratio of columns when constructing each tree. Subsampling will occur once in every boosting iteration. Value lies between 0 and 1. Default = 1

lambda

L2 regularization term on weights. Increasing this value will make model more conservative. Default = 1

alpha

L1 regularization term on weights. Increasing this value will make model more conservative. Default = 0

eval_metric

Evaluation metrics for validation data, a default metric will be assigned according to objective

print_every

print training log after n iterations. Default = 50

feval

custom evaluation function

early_stopping

Used to prevent overfitting, stops model training after this number of iterations if there is no improvement seen

maximize

If feval and early_stopping_rounds are set, then this parameter must be set as well. When it is TRUE, it means the larger the evaluation score the better.

custom_objective

custom objective function

save_period

when it is non-NULL, model is saved to disk after every save_period rounds, 0 means save at the end.

save_name

the name or path for periodically saved model file.

xgb_model

a previously built model to continue the training from. Could be either an object of class xgb.Booster, or its raw data, or the name of a file with a previously saved model.

callbacks

a list of callback functions to perform various task during boosting. See callbacks. Some of the callbacks are automatically created depending on the parameters' values. User can provide either existing or their own callback methods in order to customize the training process.

verbose

If 0, xgboost will stay silent. If 1, xgboost will print information of performance. If 2, xgboost will print some additional information. Setting verbose > 0 automatically engages the cb.evaluation.log and cb.print.evaluation callback functions.

watchlist

what information should be printed when verbose=1 or verbose=2. Watchlist is used to specify validation set monitoring during training. For example user can specify watchlist=list(validation1=mat1, validation2=mat2) to watch the performance of each round's model on mat1 and mat2

num_class

set number of classes in case of multiclassification problem

weight

a vector indicating the weight for each row of the input.

na_missing

by default is set to NA, which means that NA values should be considered as 'missing' by the algorithm. Sometimes, 0 or other extreme value might be used to represent missing values. This parameter is only used when input is a dense matrix.

feature_names

internal use, stores the feature names for model importance

cv_model

internal use

Methods

Public methods


Method new()

Usage
XGBTrainer$new(
  booster,
  objective,
  nthread,
  silent,
  n_estimators,
  learning_rate,
  gamma,
  max_depth,
  min_child_weight,
  subsample,
  colsample_bytree,
  lambda,
  alpha,
  eval_metric,
  print_every,
  feval,
  early_stopping,
  maximize,
  custom_objective,
  save_period,
  save_name,
  xgb_model,
  callbacks,
  verbose,
  num_class,
  weight,
  na_missing
)
Arguments
booster

the trainer type, the values are gbtree(default), gblinear, dart:gbtree

objective

specify the learning task. Check the link above for all possible values.

nthread

number of parallel threads used to run, default is to run using all threads available

silent

0 means printing running messages, 1 means silent mode

n_estimators

number of trees to grow, default = 100

learning_rate

Step size shrinkage used in update to prevents overfitting. Lower the learning rate, more time it takes in training, value lies between between 0 and 1. Default = 0.3

gamma

Minimum loss reduction required to make a further partition on a leaf node of the tree. The larger gamma is, the more conservative the algorithm will be. Value lies between 0 and infinity, Default = 0

max_depth

the maximum depth of each tree, default = 6

min_child_weight

Minimum sum of instance weight (hessian) needed in a child. If the tree partition step results in a leaf node with the sum of instance weight less than min_child_weight, then the building process will give up further partitioning. In linear regression task, this simply corresponds to minimum number of instances needed to be in each node. The larger min_child_weight is, the more conservative the algorithm will be. Value lies between 0 and infinity. Default = 1

subsample

Subsample ratio of the training instances. Setting it to 0.5 means that XGBoost would randomly sample half of the training data prior to growing trees. and this will prevent overfitting. Subsampling will occur once in every boosting iteration. Value lies between 0 and 1. Default = 1

colsample_bytree

Subsample ratio of columns when constructing each tree. Subsampling will occur once in every boosting iteration. Value lies between 0 and 1. Default = 1

lambda

L2 regularization term on weights. Increasing this value will make model more conservative. Default = 1

alpha

L1 regularization term on weights. Increasing this value will make model more conservative. Default = 0

eval_metric

Evaluation metrics for validation data, a default metric will be assigned according to objective

print_every

print training log after n iterations. Default = 50

feval

custom evaluation function

early_stopping

Used to prevent overfitting, stops model training after this number of iterations if there is no improvement seen

maximize

If feval and early_stopping_rounds are set, then this parameter must be set as well. When it is TRUE, it means the larger the evaluation score the better.

custom_objective

custom objective function

save_period

when it is non-NULL, model is saved to disk after every save_period rounds, 0 means save at the end.

save_name

the name or path for periodically saved model file.

xgb_model

a previously built model to continue the training from. Could be either an object of class xgb.Booster, or its raw data, or the name of a file with a previously saved model.

callbacks

a list of callback functions to perform various task during boosting. See callbacks. Some of the callbacks are automatically created depending on the parameters' values. User can provide either existing or their own callback methods in order to customize the training process.

verbose

If 0, xgboost will stay silent. If 1, xgboost will print information of performance. If 2, xgboost will print some additional information. Setting verbose > 0 automatically engages the cb.evaluation.log and cb.print.evaluation callback functions.

num_class

set number of classes in case of multiclassification problem

weight

a vector indicating the weight for each row of the input.

na_missing

by default is set to NA, which means that NA values should be considered as 'missing' by the algorithm. Sometimes, 0 or other extreme value might be used to represent missing values. This parameter is only used when input is a dense matrix.

Details

Create a new 'XGBTrainer' object.

Returns

A 'XGBTrainer' object.

Examples
library(data.table)
df <- copy(iris)

# convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

# initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
                      maximize = FALSE,
                      eval_metric = 'merror',
                      num_class=3,
                      n_estimators = 2)

Method cross_val()

Usage
XGBTrainer$cross_val(X, y, nfolds = 5, stratified = TRUE, folds = NULL)
Arguments
X

data.frame

y

character, name of target variable

nfolds

integer, number of folds

stratified

logical, whether to use stratified sampling

folds

the list of CV folds' indices - either those passed through the folds parameter or randomly generated.

Details

Trains the xgboost model using cross validation scheme

Returns

NULL, trains a model and saves it in memory

Examples
\dontrun{
library(data.table)
df <- copy(iris)

# convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

# initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
                      maximize = FALSE,
                      eval_metric = 'merror',
                      num_class=3,
                      n_estimators = 2)

# do cross validation to find optimal value for n_estimators
xgb$cross_val(X = df, y = 'Species',nfolds = 3, stratified = TRUE)
}

Method fit()

Usage
XGBTrainer$fit(X, y, valid = NULL)
Arguments
X

data.frame, training data

y

character, name of target variable

valid

data.frame, validation data

Details

Fits the xgboost model on given data

Returns

NULL, trains a model and keeps it in memory

Examples
library(data.table)
df <- copy(iris)

# convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

# initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
                      maximize = FALSE,
                      eval_metric = 'merror',
                      num_class=3,
                      n_estimators = 2)
xgb$fit(df, 'Species')

Method predict()

Usage
XGBTrainer$predict(df)
Arguments
df

data.frame, test data set

Details

Returns predicted values for a given test data

Returns

xgboost predictions

Examples
#' library(data.table)
df <- copy(iris)

# convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

# initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
                      maximize = FALSE,
                      eval_metric = 'merror',
                      num_class=3,
                      n_estimators = 2)
xgb$fit(df, 'Species')

# make predictions
preds <- xgb$predict(as.matrix(iris[,1:4]))

Method show_importance()

Usage
XGBTrainer$show_importance(type = "plot", topn = 10)
Arguments
type

character, could be 'plot' or 'table'

topn

integer, top n features to display

Details

Shows feature importance plot

Returns

a table or a plot of feature importance

Examples
\dontrun{
library(data.table)
df <- copy(iris)

# convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

# initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
                      maximize = FALSE,
                      eval_metric = 'merror',
                      num_class=3,
                      n_estimators = 2)
xgb$fit(df, 'Species')
xgb$show_importance()
}

Method clone()

The objects of this class are cloneable with this method.

Usage
XGBTrainer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `XGBTrainer$new`
## ------------------------------------------------

library(data.table)
df <- copy(iris)

# convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

# initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
                      maximize = FALSE,
                      eval_metric = 'merror',
                      num_class=3,
                      n_estimators = 2)

## ------------------------------------------------
## Method `XGBTrainer$cross_val`
## ------------------------------------------------

## Not run: 
library(data.table)
df <- copy(iris)

# convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

# initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
                      maximize = FALSE,
                      eval_metric = 'merror',
                      num_class=3,
                      n_estimators = 2)

# do cross validation to find optimal value for n_estimators
xgb$cross_val(X = df, y = 'Species',nfolds = 3, stratified = TRUE)

## End(Not run)

## ------------------------------------------------
## Method `XGBTrainer$fit`
## ------------------------------------------------

library(data.table)
df <- copy(iris)

# convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

# initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
                      maximize = FALSE,
                      eval_metric = 'merror',
                      num_class=3,
                      n_estimators = 2)
xgb$fit(df, 'Species')

## ------------------------------------------------
## Method `XGBTrainer$predict`
## ------------------------------------------------

#' library(data.table)
df <- copy(iris)

# convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

# initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
                      maximize = FALSE,
                      eval_metric = 'merror',
                      num_class=3,
                      n_estimators = 2)
xgb$fit(df, 'Species')

# make predictions
preds <- xgb$predict(as.matrix(iris[,1:4]))

## ------------------------------------------------
## Method `XGBTrainer$show_importance`
## ------------------------------------------------

## Not run: 
library(data.table)
df <- copy(iris)

# convert characters/factors to numeric
df$Species <- as.numeric(as.factor(df$Species))-1

# initialise model
xgb <- XGBTrainer$new(objective = 'multi:softmax',
                      maximize = FALSE,
                      eval_metric = 'merror',
                      num_class=3,
                      n_estimators = 2)
xgb$fit(df, 'Species')
xgb$show_importance()

## End(Not run)