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CLIQUE The CLIQUE Algorithm for Subspace Clustering

Description

The CLIQUE Algorithm finds clusters by first dividing each dimension into xi equal-width intervals
and saving those intervals where the density is greater than tau as clusters. Then each set of two
dimensions is examined: If there are two intersecting intervals in these two dimensions and the
density in the intersection of these intervals is greater than tau, the intersection is again saved as
a cluster. This is repeated for all sets of three, four, five,. . . dimensions. After every step adjacent
clusters are replaced by a joint cluster and in the end all of the clusters are output.

Usage

CLIQUE(data, xi = 10, tau = 0.2)

Arguments

data A Matrix of input data.

xi Number of Intervals.

tau Density Threshold.

References

Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan. Automatic
Subspace Clustering of High Dimensional Data for Data Mining Applications. In Proc. ACM
SIGMOD, 1999.

See Also

Other subspace.clustering.algorithms: FIRES; P3C; ProClus; SubClu

Examples

data("subspace_dataset")
CLIQUE(subspace_dataset,xi=40,tau=0.06)
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clustering_from_file Reads a Clustering Object from a File

Description

Reads a File and creates an object of class subspace_clustering from that.

Usage

clustering_from_file(file_path, index_starts_at = 0, dim = NULL)

Arguments

file_path The path to the File from which the clustering should be read

index_starts_at

The index used in the file to refer to the first object in The data matrix

dim if provided, overrides any value for dim that is found in the first line of the file

Note

Files must have the following Format: The first line contains the substring "DIM=*dim*;" where
*dim* is the number of dimensions of the data set.

Each subsequent line corresponds to a cluster and contains only numbers separated by spaces. The
first *dim* of these values have to be either ’0’ or ’1’ and indicate in which subspace a cluster exists.
All other values in the line have to be the row numbers of the objects that the cluster contains. Row
numbers in the file are assumed to be 0-indexed and are changed to 1-indexed as they are loaded
into R. This can be changed with the parameter index_starts_at. E.g. a clustering for a three-
dimensional dataset with one cluster that is in the first and third dimension and contains the first,
second and 1337-th object has to be represented as:

DIM=3;
1 0 1 0 1 1336

See Also

clustering_to_file
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clustering_to_file Write a Subspace Clustering to Disk

Description

Write a Subspace Clustering to Disk

Usage

clustering_to_file(clustering, file_path, index_should_start_at = 0)

Arguments

clustering a subspace clustering object as generated by one of the functions from the sub-
space package

file_path the path to the file into which the clustering should be written
index_should_start_at

the value that is used to refer to the first value in the dataset.

Note

By default, R uses the value 1 when referring to the first object in a data frame or array, while
most other languages use 0. To make working with this convention easy, clusterings written to disk
are converted to this 0-indexing System. The standard parameter for the corresponding function
clustering_from_file is set in such a way that files read will automatically be converted to 1-
indexes, which means that you should never need to change this parameter if you work exclusively
with the subspace package.

See Also

clustering_from_file

FIRES The FIRES Algorithm for Subspace Clustering

Description

The FIRES Algorithm follows a three phase framework: In a first phase, base-clusters are generated
using a clustering-algorithm on each dimension in isolation. Then these base-clusters are merged
in a second phase to find multidimensional cluster-approximations. These approximations are then
refined in the third phase.

Usage

FIRES(data, base_dbscan_epsilon = 1, base_dbscan_minpts = 4,
minimumpercent = 25, k = 1, mu = 1, minclu = 1, split = 0.66,
post_dbscan_epsilon = 1, post_dbscan_minpts = 1)
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Arguments

data A matrix or data frame of input data.
base_dbscan_epsilon

parameter for the dbscan execution that generates the base clusters
base_dbscan_minpts

parameter for the dbscan execution that generates the base clusters

minimumpercent size a base-cluster must have relative to the average size of base clusters so that
it is not discarded

k amount of base-clusters that every base-cluster is compared to for merging pur-
poses

mu number of most similar clusters in which two clusters must overlap in order to
be considered best-merge-clusters of each other

minclu number of best-merge-candidates a cluster must have to be considered a best-
merge-cluster

split a base-cluster is split to merge it with two different clusters iff both clusters
resulting from the split have at least this size in proportion to the average size of
base-clusters

post_dbscan_epsilon

parameter for the dbscan execution that turns the cluster-approximations into the
clusters that are output at the end

post_dbscan_minpts

parameter for the dbscan execution that turns the cluster-approximations into the
clusters that are output at the end

Details

In this implementation, the first phase consists of a run of DBSCAN with the parameters base_dbscan_epsilon
and base_dbscan_minpts on the objects as they appear from each particular dimension. Then, all of
these base-clusters whose size is smaller than minimumpercent of the average cluster size, e.g. 25
because they are not likely to contain important information for the clustering.

In the second phase, these base clusters are merged to produce subspace cluster approximations.
This is achieved by computing the k-most-similar clusters for each base-cluster. Then the set of
best-merge-candidates for each base-cluster is determined, which contains those clusters whose k-
most-similar clusters overlap the k-most similar clusters of the cluster by at least mu. If a cluster
has at least minclu best-merge-candidates,it is considered a best-merge cluster. Finally, every pair
of best-merge-clusters that are best-merge-candidates of each other is grouped together with all of
their best-merge-candidates to form the cluster approximations.

Note that some clusters need to be split and merged with two different other clusters. This is done
before the merging by determining whether the intersection between a cluster and its most similar
cluster as well as the size of the cluster without this intersection are both larger than split times the
average size of the base clusters.

In the third phase, base-clusters are repeatedly removed from cluster-approximations if their re-
moval improves the amount of objects that are shared by all base-clusters in the approximation.
Finally, to generate the definitive clusters from the cluster approximation, for each approximation
all base-clusters in the approximation are combined and the a clustering algorithm is performed on
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these points. In this implementation, DBSCAN was chosen for this purpose and will be performed
with the parameters post_dbscan_epsilon and post_dbscan_minpts.

References

Hans-Peter Kriegel, Peer Kröger, Matthias Renz and Sebastian Wurst A Generic Framework for Ef-
ficient Subspace Clustering of High-Dimensional Data In Proc. 5th IEEE International Conference
on Data Mining, 2005

See Also

Other subspace.clustering.algorithms: CLIQUE; P3C; ProClus; SubClu

Examples

data("subspace_dataset")
FIRES(subspace_dataset)

P3C The P3C Algorithm for Projected Clustering

Description

The main idea of the P3C algorithm is to use statistical distributions for the task of finding clusters.
To this end each dimension is first split into 1+log_2(nrow(data)) bins and the chi-square test is used
to compute the probability that the sizes of these bins are uniformly distributed. If this probability is
bigger than 1-ChiSquareAlpha, nothing happens. Otherwise the largest bins will be removed until
this is the case. The bins that were removed in this way are then used to find clusters. To this end,
bins that are adjacent are merged. Then clusters are formed by taking a bin from one dimension
and determining the probability of sharing as many points as it does with each bin from another
dimension. The bin is then intersected with the bin from another dimension where this probability
is the lowest, given that it is at least lower than 1.00E-PoissonThreshold and this is repeated until
no such bin is found.

Usage

P3C(data, ChiSquareAlpha = 0.005, PoissonThreshold = 19)

Arguments

data A Matrix of input data.

ChiSquareAlpha probability of not being uniformly distributed that the points in a dimension
are allowed to have without assuming that there is a cluster visible from this
dimension

PoissonThreshold

maximum probability for a bin in another dimension to deviate from the ob-
served bin as much as it does that is allowed. The value used for this will be
1.00*10^-PoissonThreshold.
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References

Gabriela Moise, Jörg Sander and Martin Ester P3C: A Robust Projected Clustering Algorithm In
Proc. 6th IEEE International Conference on Data Mining 2006

See Also

Other subspace.clustering.algorithms: CLIQUE; FIRES; ProClus; SubClu

Examples

data("subspace_dataset")
P3C(subspace_dataset,PoissonThreshold=3)

plot.subspace_clustering

Plotting Subspace Clusterings

Description

Plotting for Subspace clusterings as generated by the package subspace.

Generates a 2d-scatterplot with interactive controls to select the dimensions that should be plotted.
This visualization is created using the ggvis package and is therefore also compatible with shiny.

Usage

## S3 method for class 'subspace_clustering'
plot(x, data, color_by = "mix",
standardcolors = c("#1F77B4", "#FF7F0E", "#2CA02C", "#D62728", "#9467BD",
"#8C564B", "#E377C2", "#7F7F7F", "#BCBD22", "#17BECF", "#000000"),
tooltip_on = "hover", ...)

Arguments

x an S3-Object of type subspace_clustering as generated by any of the functions
of the subspace package

data The original data matrix on which the clustering was performed.

color_by a parameter indicating how a point that is in multiple clusters should be colored.
If "mix" is selected, the point will be colored as a mixture of the colors of both
of the clusters that the point is in. If "any" is selected, a random color is selected
from the colors of all the clusters that the point is in.

standardcolors a vector of strings representing HTML-Colors that will be used to color the
points by cluster assignment. Noise will be colored with the last color in the
vector.

tooltip_on decides if tooltips should be shown on "hover" or on "click"

... this is passed on to ggvis::layer_points and can be used to change, for example
the size of the points
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Value

a ggvis object. If the return value is not used, a plot will be shown, but the returned plot can also be
altered using ggvis

Note

When passing ellipsis parameters, the ":=" syntax from ggvis may get in your way, but you can
work around this by manually creating a props object as seen in the example.

Examples

#Load the example dataset for this package
data("subspace_dataset")
#Load the true clustering for this dataset
path_to_clustering <- paste(path.package("subspace"),"/extdata/subspace_dataset.true",sep="")
clustering <- clustering_from_file(file_path=path_to_clustering)
#also generate a clustering with one of the algorithms
clustering2 <- CLIQUE(subspace_dataset,tau=0.2)

#now plot the generated clustering
plot(clustering2,subspace_dataset)
#plot the true clustering with small points
plot(clustering,subspace_dataset,size=0.1)

#Now plot the points with a different shape.
#This requires the workaround that was discussed in "Notes"
p <- ggvis::prop(property="shape",x="cross")
plot(clustering,subspace_dataset,props=p)

ProClus The ProClus Algorithm for Projected Clustering

Description

The ProClus algorithm works in a manner similar to K-Medoids. Initially, a set of medoids of a size
that is proportional to k is chosen. Then medoids that are likely to be outliers or are part of a cluster
that is better represented by another medoid are removed until k medoids are left. Clusters are then
assumed to be around these medoids.

Usage

ProClus(data, k = 4, d = 3)

Arguments

data A Matrix of input data.

k Number of Clusters to be found.

d Average number of dimensions in which the clusters reside
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References

C. C. Aggarwal and C. Procopiuc Fast Algorithms for Projected Clustering. In Proc. ACM SIG-
MOD 1999.

See Also

Other subspace.clustering.algorithms: CLIQUE; FIRES; P3C; SubClu

Examples

data("subspace_dataset")
ProClus(subspace_dataset,k=12,d=2.5)

SubClu The SubClu Algorithm for Subspace Clustering

Description

The SubClu Algorithm follows a bottom-up framework, in which one-dimensional clusters are gen-
erated with DBSCAN and then each cluster is expanded one dimension at a time into a dimension
that is known to have a cluster that only differs in one dimension from this cluster. This expansion
is done using DBSCAN with the same parameters that were used for the original DBSCAN that
produced the clusters.

Usage

SubClu(data, epsilon = 4, minSupport = 4)

Arguments

data A Matrix of input data.

epsilon size of environment parameter for DBSCAN

minSupport minimum number of points parameter for DBSCAN

References

Karin Kailing, Hans-Peter Kriegel and Peer Kröger Density-Connected Subspace Clustering for
High-Dimensional Data

See Also

Other subspace.clustering.algorithms: CLIQUE; FIRES; P3C; ProClus

Examples

data("subspace_dataset")
SubClu(subspace_dataset,epsilon=1,minSupport=5)
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subspace Subspace: An R-Interface to the Subspace and Projected Clustering
Algorithms of the OpenSubspace package

Description

This package provides access to five of the most popular clustering algorithms in the subspace
paradigm.

Details

The algorithms CLIQUE, P3C, ProClus, SubClu and FIRES can be applied to data.frames and ma-
trices and will return S3 objects representing clusterings. For example, using the built-in demo
dataset, you can do:

>data("subspace_dataset")
>clustering <-P3C(subspace_dataset,PoissonThreshold=2)
>clustering
Subspace clustering generated by the package Subspace, containing 12 clusters.

These subspace_clustering objects are actually just lists of subspace_cluster objects, which can be
accessed as follows.

>clustering[[1]]
Subspace cluster generated by the package Subspace. This cluster consists of 140 objects
in a 3 dimensional subspace.

Each of these clusters then holds a vector representing its subspace and a vector with the indexes of
the objects the belong in this cluster. In this example, these could be accessed as clustering[[1]]$objects
and clustering[[1]]$subspace.

This package also provides a plot method for subspace_clustering objects:

>plot(clustering,subspace_dataset)
Showing dynamic visualisation. Press Escape/Ctrl + C to stop.

These plots are created using the ggvis package.

Finally, you can save clusterings to a file using the clustering_from_file and clustering_to_file
functions.

For example you could save the clustering from this example to a file and load the true clustering
of the demo dataset:

>clustering_to_file(clustering,file_path="clustering.txt")
>path_to_clustering <- paste(path.package("subspace"),"/extdata/subspace_dataset.true",sep="")
true_clustering <- clustering_from_file(file_path=path_to_clustering)

References

Müller E., Günnemann S., Assent I., Seidl T.: Evaluating Clustering in Subspace Projections of
High Dimensional Data http://dme.rwth-aachen.de/OpenSubspace/ In Proc. 35th International Con-
ference on Very Large Data Bases (VLDB 2009), Lyon, France. (2009)
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subspace_dataset Synthetic Subspace Clustering Dataset

Description

This is a synthetic dataset to demonstrate the subspace clustering algorithms in the package sub-
space
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