Package 'subrank'

Title: Computes Copula using Ranks and Subsampling
Description: Estimation of copula using ranks and subsampling. The main feature of this method is that simulation studies show a low sensitivity to dimension, on realistic cases.
Authors: Jerome Collet
Maintainer: Jerome Collet <[email protected]>
License: GPL (>= 3)
Version: 0.9.9.3
Built: 2024-12-18 06:38:17 UTC
Source: CRAN

Help Index


Computes Copula using Ranks and Subsampling

Description

Estimation of copula using ranks and subsampling. The main feature of this method is that simulation studies show a low sensitivity to dimension, on realistic cases.

Details

The DESCRIPTION file:

Package: subrank
Type: Package
Title: Computes Copula using Ranks and Subsampling
Version: 0.9.9.3
Date: 2023-04-06
Author: Jerome Collet
Maintainer: Jerome Collet <[email protected]>
Description: Estimation of copula using ranks and subsampling. The main feature of this method is that simulation studies show a low sensitivity to dimension, on realistic cases.
License: GPL (>= 3)
LazyLoad: yes
NeedsCompilation: yes
Packaged: 2023-04-05 13:54:30 UTC; Jerome
Repository: CRAN
Date/Publication: 2023-04-05 17:50:05 UTC

Index of help topics:

corc                    Function to estimate copula using ranks and
                        sub-sampling
corc0                   Function to estimate copula using ranks and
                        sub-sampling, minimal version.
desscop                 Discrete copula graph, a two-dimensional
                        projection
desscoptous             Discrete copula graph, ALL two-dimensional
                        projections
estimdep                Dependence estimation
predictdep              Probability forecasting
predonfly               Probability forecasting
simany                  Test statistic distribution under any
                        hypothesis
simnul                  Test statistic distribution under independence
                        hypothesis
subrank-package         Computes Copula using Ranks and Subsampling

Taking a sample, its dimension, and a sub-sample size, allows to estimate a discretized copula. This object has interesting features: convergence to copula, robustness with respect to dimension.

Author(s)

Jerome Collet

Maintainer: Jerome Collet <[email protected]>

Examples

lon <- 31
a <- 2.85
x <- rnorm(lon)
y = a*x^2+rnorm(lon)
tablo = as.data.frame(cbind(x,y))
c=corc(tablo,c(1,2),8)
desscop(c,1,2)

Function to estimate copula using ranks and sub-sampling

Description

Takes a sample, its dimension, a sub-sample size, and returns a discrete copula.

Usage

corc(dataframe, varnames, subsampsize, nbsafe=5,mixties=FALSE,nthreads=2)

Arguments

dataframe

a data frame, containing the observations

varnames

the name of the variables we want to estimate the dependence between

subsampsize

the sub-sample size

nbsafe

the ratio between the number of sub-samples and the cardinality of the discretized copula.

mixties

if TRUE, put equal weight on tied values, using random permutations

nthreads

number of number of threads, assumed to be strictly positive. For "full throttle" computations, consider using parallel::detectCores()

Value

cop

an array representing the discretized copula

ties

the number of sub-samples with a tie

nsubsampreal

the effective number of sub-samples drawn

varnames

the name of the variables studied

nnm

the number of observations without missing values

Author(s)

Jerome Collet

Examples

lon <- 30
a <- 2
x <- rnorm(lon)
y = a*x^2+rnorm(lon)
datatable = as.data.frame(cbind(x,y))
c=corc(datatable,c("x","y"),8)
c
sum(c$cop)

Function to estimate copula using ranks and sub-sampling, minimal version.

Description

Minimal version of function corc.

Usage

corc0(datavector,sampsize,dimension,subsampsize,nboot,u,mixties=FALSE,nthreads=2)

Arguments

datavector

a vector, containing the observations

sampsize

the sample size

dimension

the sample dimension

subsampsize

the sub-sample size

nboot

the number of sub-samples (must be big)

u

a random seed, integer

mixties

if TRUE, put equal weight on tied values, using random permutations

nthreads

number of number of threads, assumed to be strictly positive. For "full throttle" computations, consider using parallel::detectCores()

Value

the number of hits for each vector of ranks, plus 2 last values of the vector : number of ties and number of sub-samples really used.

Author(s)

Jerome Collet

Examples

lon <- 30
a <- 2.85
x <- rnorm(lon)
y = a*x^2+rnorm(lon)
c=corc0(c(x,y),lon,2,8,1e5,75014)
c

c0=c(
1203, 1671, 1766, 959, 1586, 1715, 1803, 1205, 1260,1988, 2348, 1917, 3506, 2045, 1340,
1093, 2694, 2757,2233, 1085, 2322, 1793, 1569, 1263, 1709, 1747, 1512,1308, 1778, 1354,
1184, 1097, 2487, 2730, 2112, 1100,2435, 2033, 1572, 1093, 1369, 1722, 1462, 1015, 1228,
1419, 1776, 1852, 1009, 1097, 1179, 1323, 1595, 1316,1477, 2628, 889, 1178, 1981, 4000, 
35, 840, 2091, 4467,0, 27405)
set.seed(75013)
lon=30
dimension=3
sssize=4
c0==corc0(rnorm(lon*dimension),lon,dimension,sssize,1e5,75014)

Discrete copula graph, a two-dimensional projection

Description

Draws a discrete joint probability, for 2 variables, using bubbles

Usage

desscop(copest, xname, yname, normalize = FALSE, axes = TRUE)

Arguments

copest

the estimated copula (the whole structure resulting from corc)

xname

the name of the variable we want to put on the horizontal axis

yname

the name of the variable we want to put on the vertical axis

normalize

if TRUE, the smallest probability is rescaled to 0, and the largest to 1

axes

if TRUE, puts the name of the variables on the axes

Author(s)

Jerome Collet

Examples

lon <- 31
a <- 2.85
x <- rnorm(lon)
y = a*x^2+rnorm(lon)
tablo = as.data.frame(cbind(x,y))
c=corc(tablo,c("x","y"),8)
desscop(c,"x","y")

tablo = as.data.frame(cbind(x=rep(0,each=lon),y=rep(0,each=lon)))
c=corc(tablo,c("x","y"),8,mixties=TRUE)
desscop(c,"x","y")

Discrete copula graph, ALL two-dimensional projections

Description

Draws a discrete joint probability, for 2 variables, using bubbles

Usage

desscoptous(copest, normalize = FALSE)

Arguments

copest

the estimated copula (the whole structure resulting from corc)

normalize

if TRUE, the smallest probability is rescaled to 0, and the largest to 1

Author(s)

Jerome Collet

Examples

lon <- 31
a <- 2.85
x <- rnorm(lon)
y = a*x^2+rnorm(lon)
z = rnorm(lon)
tablo = as.data.frame(cbind(x,y,z))
c=corc(tablo,c("x","y","z"),8)
desscoptous(c)

Dependence estimation

Description

From a set of observations, builds a description of the multivariate distribution

Usage

estimdep(dataframe,varnames,subsampsize,nbsafe=5,mixties=FALSE,nthreads=2)

Arguments

dataframe

a data frame containing the observations

varnames

the name of the variables we want to estimate the multivariate distribution

subsampsize

the sub-sample size

nbsafe

the ratio between the discretized copula size and the number of sub-samples

mixties

if TRUE, put equal weight on tied values, using random permutations

nthreads

number of number of threads, assumed to be strictly positive. For "full throttle" computations, consider using parallel::detectCores()

Value

the description of the dependence, it is an object with the following parts:

cop

the array representing the discretized copula

margins

the matrix representing the margins, estimated using kernel density estimation

varnames

the names of the variables

Author(s)

Jerome Collet

Examples

lon=3000
plon=3000
subsampsize=20

##############
x=(runif(lon)-1/2)*3
y=x^2+rnorm(lon)
z=rnorm(lon)
donori=as.data.frame(cbind(x,y,z))
depori=estimdep(donori,c("x","y","z"),subsampsize)

knownvalues=data.frame(z=rnorm(plon))
prev <- predictdep(knownvalues,depori)
plot(prev$x,prev$y,xlim=c(-2,2),ylim=c(-2,5),pch=20,cex=0.5)
points(donori[,1:2],col='red',pch=20,cex=.5)

knownvalues=data.frame(x=(runif(lon)-1/2)*3)
prev <- predictdep(knownvalues,depori)
plot(prev$x,prev$y,xlim=c(-2,2),ylim=c(-2,5),pch=20,cex=0.5)
points(donori[,1:2],col='red',pch=20,cex=.5)

knownvalues=data.frame(y=runif(plon,min=-2,max=4))
prev <- predictdep(knownvalues,depori)
plot(prev$x,prev$y,xlim=c(-2,2),ylim=c(-2,5),pch=20,cex=0.5)
points(donori[,1:2],col='red',pch=20,cex=.5)

Probability forecasting

Description

From a set of incomplete observations, and a description of the dependence, provides simulated values of the unknown coordinates. It is also possible to simulate unconditionally, with empty observations.

Usage

predictdep(knownvalues,dependence,smoothing=c("Uniform","Beta"),nthreads=2)

Arguments

knownvalues

in case of conditional simulation, a matrix containing incomplete observations, the known coordinates being the same for all observations. If no variable name in knwonvalues appears in dependence$varnames, then the simulation is unconditional.

dependence

the description of the dependence we want to use to forecast, as built by function estimdep

smoothing

the smoothing method for input and output ranks.

nthreads

number of number of threads, assumed to be strictly positive. For "full throttle" computations, consider using parallel::detectCores()

Value

the matrix of the completed observations

Author(s)

Jerome Collet

Examples

lon=100
plon=100
subsampsize=10

shift=0
noise=0
knowndims=1

x=rnorm(lon)
y=2*x+noise*rnorm(lon)
donori=as.data.frame(cbind(x,y))
depori=estimdep(donori,c("x","y"),subsampsize)
##
knownvalues=data.frame(x=rnorm(plon)+shift)
prev <- predictdep(knownvalues,depori)
##
plot(prev$x,prev$y,xlim=c(-2,2),ylim=c(-2,5),pch=20,cex=0.5)
points(donori[,1:2],col='red',pch=20,cex=.5)
##
knownvalues=data.frame(x=rnorm(plon)+shift)
prev <- predictdep(knownvalues,depori,smoothing="Beta")
##
plot(prev$x,prev$y,xlim=c(-2,2),ylim=c(-2,5),pch=20,cex=0.5)
points(donori[,1:2],col='red',pch=20,cex=.5)

# souci normal si |shift|>>1

knownvalues=data.frame(z=rnorm(plon)+shift)
prev <- predictdep(knownvalues,depori)
##
plot(prev$x,prev$y,xlim=c(-2,2),ylim=c(-2,5),pch=20,cex=0.5)
points(donori[,1:2],col='red',pch=20,cex=.5)

Probability forecasting

Description

From two sets of observations, first one of complete observations and second one of incomplete observations, provides simulated values of the unknown coordinates.

Usage

predonfly(completeobs,incompleteobs,varnames,subsampsize,nbpreds=1,mixties=FALSE,
          maxtirs=1e5,complete=TRUE,nthreads=2)

Arguments

completeobs

the set of complete observations.

incompleteobs

the set of incomplete observations.

varnames

the modeled variables.

subsampsize

the sub-sample size.

nbpreds

the number of predictions for each incomplete observation.

mixties

if TRUE, should put equal weight on tied values, using random permutations (not yet implemented)

maxtirs

the maximum number of sub-samples, to stop the computation even if they did not provide nbpreds predictions for each incomplete observation.

complete

If TRUE, predictions are completed with incomplete observations

nthreads

number of number of threads, assumed to be strictly positive. For "full throttle" computations, consider using parallel::detectCores()

Value

the matrix of the completed observations

Author(s)

Jerome Collet

Examples

lon=100
plon=30
subsampsize=10

x=rnorm(lon)
y=2*x+rnorm(lon)*0
donori=as.data.frame(cbind(x,y))
##
knownvalues=data.frame(x=rnorm(plon))
prev <- predonfly(donori,knownvalues,c("x","y"),subsampsize,100)

##
plot(prev$x,prev$y,pch=20,cex=0.5,
     ylim=range(c(prev$y,donori$y),na.rm=TRUE),xlim=range(c(prev$x,donori$x)))
points(donori[,1:2],col='red',pch=20,cex=.5)

lon=3000
mg=20
dimtot=4
rayon=6

genboules <- function(lon,a,d)
{
  ss <- function(vec)
  {return(sum(vec*vec))}
  surface=matrix(nrow=lon,ncol=d,data=rnorm(lon*d))
  rayons=sqrt(apply(surface,1,ss))
  surface=surface/rayons
  return(matrix(nrow=lon,ncol=d,data=rnorm(lon*d))+a*surface)
}

##############

donori=genboules(lon,rayon,dimtot)
donori=as.data.frame(donori)

dimconnues=3:dimtot
valconnues=matrix(nrow=1,ncol=length(dimconnues),data=0)
valconnues=as.data.frame(valconnues)
names(valconnues)=names(donori)[3:dimtot]
prev <- predonfly(donori,valconnues,names(donori),subsampsize,100)

boule2=genboules(plon,rayon,2)

plot(boule2[,1:2],xlab='X1',ylab='X2',pch=20,cex=.5)
plot(prev$V1,prev$V2,xlab='X1',ylab='X2',pch=20,cex=.5)

Test statistic distribution under any hypothesis

Description

Simulates the test statistic, under independence

Usage

simany(sampsize,dimension,subsampsizes,sampnum,nbsafe=5,nthreads=2, fun=NULL, ...)

Arguments

sampsize

sample size

dimension

sample dimension

subsampsizes

vector of sub-sample sizes

sampnum

number of samples

nbsafe

the ratio between the number of sub-samples and the cardinality of the discretized copula.

nthreads

number of number of threads, assumed to be strictly positive. For "full throttle" computations, consider using parallel::detectCores()

fun

the function describing the dependence.

...

optional arguments to fun

Value

lrs

the distances with independent case

lrs2mean

the distances with theoretical value, given dependence fun

scarcities

the proportions of non-reached vector ranks

DistTypes

a recall of the list of the distance types: "KL","L2","L1","APE"

Author(s)

Jerome Collet

Examples

depquad <- function(lon,dd,a)
{
  x <- rnorm(lon)
  y0 <- a*x^2
  y <- y0 + rnorm(lon)
  reste=rnorm((dd-2)*lon)
  return(c(x,y,reste))
}
sims0=simany(101,3,8,50,nbsafe=1)
seuils=apply(sims0$lrs,3,quantile,0.95)
seuils=matrix(ncol=4,nrow=50,seuils,byrow=TRUE)
sims1=simany(101,3,8,50,nbsafe=1,fun=depquad,a=0.5)
apply(sims1$lrs[,1,]>seuils,2,mean)

Test statistic distribution under independence hypothesis

Description

Simulates the test statistic, under independence

Usage

simnul(sampsize, dimension, subsampsizes, sampnum,KL=TRUE,nbsafe=5,nthreads=2)

Arguments

sampsize

sample size

dimension

sample dimension

subsampsizes

vector of sub-sample sizes

sampnum

number of samples

KL

if TRUE, returns the Kullback-Leibler divergence with the independent case, if FALSE, the L2 distance. There is no re-normalization, contrary to what happens for simany.

nbsafe

the ratio between the number of sub-samples and the cardinality of the discretized copula.

nthreads

number of number of threads, assumed to be strictly positive. For "full throttle" computations, consider using parallel::detectCores()

Value

lrs

the distances with independent case

scarcities

the proportions of non-reached vector ranks

Author(s)

Jerome Collet

Examples

library(datasets)
# plot(swiss)
c=corc(swiss,1:3,8)
c
RV=sum(c$cop*log(c$cop),na.rm=TRUE)+3*log(8)
sims=simnul(47,3,8,100)
pvalue=mean(RV<sims$lrs)
pvalue
RV
summary(sims$lrs)