Package 'ssym'

Title: Fitting Semi-Parametric log-Symmetric Regression Models
Description: Set of tools to fit a semi-parametric regression model suitable for analysis of data sets in which the response variable is continuous, strictly positive, asymmetric and possibly, censored. Under this setup, both the median and the skewness of the response variable distribution are explicitly modeled by using semi-parametric functions, whose non-parametric components may be approximated by natural cubic splines or P-splines. Supported distributions for the model error include log-normal, log-Student-t, log-power-exponential, log-hyperbolic, log-contaminated-normal, log-slash, Birnbaum-Saunders and Birnbaum-Saunders-t distributions.
Authors: Luis Hernando Vanegas <[email protected]> and Gilberto A. Paula
Maintainer: Luis Hernando Vanegas <[email protected]>
License: GPL-2 | GPL-3
Version: 1.5.8
Built: 2024-10-30 06:50:51 UTC
Source: CRAN

Help Index


Fitting Semiparametric Log-symmetric Regression Models

Description

This package allows to fit a semi-parametric regression model suitable for analysis of data sets in which the response variable is continuous, strictly positive, asymmetric and possibly, censored.

Details

Package: ssym
Type: Package
Version: 1.5.7
Date: 2016-10-15
License: GPL-2 | GPL-3

Author(s)

Luis Hernando Vanegas <[email protected]> and Gilberto A. Paula

Maintainer: Luis Hernando Vanegas

References

Vanegas, L.H. and Paula, G.A. (2015) A semiparametric approach for joint modeling of median and skewness. TEST 24, 110-135.

Vanegas, L.H. and Paula, G.A. (2016) Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics 30, 196-220.

Vanegas, L.H. and Paula, G.A. (2016) An extension of log-symmetric regression models: R codes and applications. Journal of Statistical Computation and Simulation 86, 1709-1735.

Examples

data("Snacks", package="ssym")                                    
fit <- ssym.l(log(texture) ~ type + ncs(week) | type, data=Snacks,
               family='Student', xi=15)     
summary(fit)

What time do the baboons come down from the trees?

Description

This data set arises in the course of analyzing data on the ecology of baboons in East Africa. The data consist on descent times of baboons (in hours since the day began) or censoring times and the (left) censoring status.

Usage

data(Baboons)

Format

A data frame with 152 observations on the following 2 variables.

t

descent times of baboons or censoring times, in hours since the day began.

cs

(left) censoring status.

References

Wagner, S.S. and Altmann, S.A. (1973) What time do the baboons come down from the trees? (An estimation problem). Biometrics, 29: 623-635.


Brown and Miller's Biaxial Fatigue

Description

This data set describes the life of a metal piece in cycles to failure. The response is the number of cycles to failure and the explanatory variable is the work per cycle.

Usage

data(Biaxial)

Format

A data frame with 46 observations on the following 2 variables.

Work

work per cycle.

Life

number of cycles to failure.

References

J.R. Rieck and J.R. Nedelman (1991) A log-linear model for the Birnbaum-Saunders distribution, Technometrics 33, 51:60.

Examples

data("Biaxial", package="ssym")
plot(Biaxial$Work, Biaxial$Life, type="p",
     cex=0.3, lwd=3, ylab="Life", xlab="Work per cycle",
	 main="Brown and Miller's Biaxial Fatigue Data")

BIC.ssym

Description

BIC.ssym calculates the goodness-of-fit statistic BIC from an object of class “"ssym".


Personal Injure Insurance

Description

This data set contains information on 540 settled personal injury insurance claims from an Australian insurance company, which is a sample of the original data set. These claims had legal representation were obtained for accidents that occurred from January 1998 to June 1999.

Usage

data(Claims)

Format

A data frame with 540 observations on the following 2 variables.

total

amount of paid money by an insurance policy in thousands of Australian dollars.

accmonth

month of occurrence of the accident coded 103 (January 1998) through to 120 (June 1999).

op_time

operational time in percentage.

References

de Jong P, Heller GZ. Generalized Linear Models for Insurance Data. Cambridge University Press: Cambridge, England, 2008.

Paula, G.A., Leiva, V., Barros, M. and Liu, S. (2012) Robust statistical modeling using the Birnbaum-Saunders-t distribution applied to insurance distribution, Applied Stochastic Model in Business and Industry, 28:16-34.

Examples

data("Claims", package="ssym")
plot(Claims$op_time, Claims$total, type="p", cex=0.3, lwd=3,
     ylab="Amount of paid money", xlab="Operational time",
	 main="Personal Injure Insurance Data")

coef.ssym

Description

coef.ssym extracts the parameter estimates for both submodels from an object of class “"ssym".


Building of normal probability plots with simulated envelope of the deviance-type residuals.

Description

envelope is used to calculate and display normal probability plots with simulated envelope of the deviance-type residuals.

Usage

envelope(object, reps, conf, xlab.mu, ylab.mu, main.mu, xlab.phi, ylab.phi, main.phi)

Arguments

object

an object of the class ssym. This object returned from the call to ssym.l() or ssym.nl().

reps

a positive integer representing the number of iterations in which the simulated envelopes are based. Default is reps=25.

conf

value within the interval (0,1) that represents the confidence level of the simulated envelopes. Default is conf=0.95.

xlab.mu

character. An optional label for the x axis for the graph of the deviance-type residuals for the median submodel.

ylab.mu

character. An optional label for the y axis for the graph of the deviance-type residuals for the median submodel.

main.mu

character. An optional overall title for the plot for the graph of the deviance-type residuals for the median submodel.

xlab.phi

character. An optional label for the x axis for the graph of the deviance-type residuals for the skewness submodel.

ylab.phi

character. An optional label for the y axis for the graph of the deviance-type residuals for the skewness submodel.

main.phi

character. An optional overall title for the plot for the graph of the deviance-type residuals for the skewness submodel.

Details

Objects of the class ssym obtained from the application of ssym.l2() are not supported. The smoothing parameters are assumed to be known.

Author(s)

Luis Hernando Vanegas <[email protected]> and Gilberto A. Paula

References

Atkinson, A. C. (1985) Plots, transformations and regression: an introduction to graphical methods of diagnostic regression analysis. Oxford Science Publications, Oxford.

Examples

###################################################################################
################# Blood flow Data - a log-power-exponential model #################
###################################################################################
#data("la", package="gamlss.nl")
#fit <- ssym.nl(log(PET60) ~ log(bflow) + log(1+b1*exp(-b2/bflow)) | bflow,
#       data=la, start=c(b1=-0.6,b2=98), family="Powerexp", xi=-0.45)
#summary(fit)
#
################## Simulated envelopes ##################
#envelope(fit,reps=50,conf=0.99)

Age and Eye Lens Weight of Rabbits in Australia

Description

The dry weight of the eye lens was measured for 71 free-living wild rabbits of known age. Eye lens weight tends to vary much less with environmental conditions than does total body weight, and therefore may be a much better indicator of age.

Usage

data(Erabbits)

Format

A data frame with 71 observations on the following 2 variables.

age

age of rabbit, in days.

wlens

dry weight of eye lens, in milligrams.

References

Dudzinski, M.L. and Mykytowycz, R. (1961) The eye lens as an indicator of age in the wild rabbit in Australia. CSIRO Wildlife Research, 6: 156-159.

Ratkowsky, D. A. (1983). Nonlinear Regression Modelling. Marcel Dekker, New York.

Wei, B. C. (1998). Exponential Family Nonlinear Models. Springer, Singapore.

Examples

data("Erabbits", package="ssym")
plot(Erabbits$age, Erabbits$wlens, type="p", cex=0.3, lwd=3,
     ylab="Dry weight of eye lens (in milligrams)",
	 xlab="Age of the animal (in days)")

estfun.ssym

Description

estfun.ssym extracts the score functions evaluated at observed data and estimated parameters from an object of class ssym.


Tool that supports the estimation of the extra parameter.

Description

extra.parameter is used to plot a graph of the behaviour of the overall goodness-of-fit statistic and 2L(θ^)-2\textsf{L}(\hat{\theta}) versus the extra parameter ζ\zeta in the interval/region defined by the arguments lower and upper. These graphs may be used to choosing the extra parameter value.

Usage

extra.parameter(object, lower, upper, grid)

Arguments

object

an object of the class ssym. This object is returned by the call to ssym.l(), ssym.nl() or ssym.l2()

lower

lower limit(s) of the interest interval/region for the extra parameter.

upper

upper limit(s) of the interest interval/region for the extra parameter.

grid

Number of values of the extra parameter where the overall goodness-of-fit statistic and 2L(θ^)-2\textsf{L}(\hat{\theta}) are evaluated.

Author(s)

Luis Hernando Vanegas <[email protected]> and Gilberto A. Paula

References

Vanegas, L.H. and Paula, G.A. (2015b) Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics (to appear)

Examples

###################################################################################
############### Textures of snacks Data - a log-Student-t model  #################
###################################################################################
#data("Snacks", package="ssym")
#fit <- extra.parameter(log(texture) ~ type + ncs(week) | type, data=Snacks,
#        family='Student', xi=10)
#summary(fit)
#
############################ Extra parameter ###########################
#extra.parameter(fit,5,50)

###################################################################################
################## Biaxial Fatigue Data - a Birnbaum-Saunders model   #############
###################################################################################
#data("Biaxial", package="ssym")
#fit <- ssym.nl(log(Life) ~ b1*Work^b2, start=c(b1=16, b2=-0.25),
#                data=Biaxial, family='Sinh-normal', xi=1.54)
#summary(fit)
#
########################### Extra parameter ###########################
#extra.parameter(fit,1.3,1.8)

fitted.ssym

Description

fitted.ssym extracts the fitted values for both submodels from an object of class “"ssym".


Gross Domestic Product (per capita)

Description

This dataset corresponds to the per capita gross domestic product (current US$) of 190 countries during 2010.

Usage

data(gdp)

Format

A data frame with 190 observations on the following 2 variables.

Country

Country.

gdp2010

The per capita gross domestic product (current US$).

References

World Bank's DataBank website (http://databank.worldbank.org/data/).

Examples

data("gdp", package="ssym")
par(mfrow=c(1,2))
hist(gdp$gdp2010, xlim=range(gdp$gdp2010), ylim=c(0,0.00015), prob=TRUE, breaks=55,
     col="light gray",border="dark gray", xlab="GDP per capita 2010", main="Histogram")
plot(ecdf(gdp$gdp2010), xlim=range(gdp$gdp2010), ylim=c(0,1), verticals=TRUE,
     do.points=FALSE, col="dark gray", xlab="GDP per capita 2010",
	 main="Empirical Cumulative Distribution Function")

Tool to perform sensitivity analysis on the fitted model using local influence measures.

Description

influence extracts from a object of class “ssym" the local influence measures and displays their graphs versus the index of the observations.

Author(s)

Luis Hernando Vanegas <[email protected]> and Gilberto A. Paula

References

Cook, R.D. (1986). Assessment Local Influence (with discussion). Journal of the Royal Statistical Society Series B (Methodological). 48, 133-169.

Poon, W.Y. and Poon, Y.S. (1999). Conformal Normal Curvature and Assessment of Local Influence. Journal of the Royal Statistical Society Series B (Methodological). 61, 51-61.


itpE

Description

itpE performs the iterative process to fit models whose error distribution can be obtained as a power mixture of the log-normal distribution..


itpE2

Description

itpE2 runs the E-step of the iterative process to fit models whose error distribution can be obtained as a shape mixture of the Birnbaum-Saunders distribution.


itpE3

Description

itpE3 performs the iterative process to fit models whose error distribution cannot be obtained as a shape mixture of log-normal or Birnbaum-Saunders distributions.


itpEC2

Description

itpEC2 performs the iterative process to fit models under the presence of right-censored samples, wher the error distribution can be obtained as a power mixture of the log-normal distribution.


logLik.ssym

Description

logLik.ssym extracts the value of the log-likelihood function avaliated at observed data and parameter estimates from an object of class “"ssym".


Survival times for multiple myeloma patients

Description

The problem is to relate survival times for multiple myeloma patients to a number of prognostic variables.

Usage

data("myeloma")

Format

A data frame with 65 observations on the following 7 variables.

t

survival times, in months.

event

censoring status.

x1

logarithm of a blood urea nitrogen measurement at diagnosis.

x2

hemoglobin measurement at diagnosis.

x3

age at diagnosis.

x4

sex: 0, male; 1, female.

x5

serum calcium measurement at diagnosis.

References

J.F. Lawless (2002) Statistical Models and Methods for Lifetime Data, Wiley, New York. A.P. Li, Z.X. Chen and F.C. Xie (2012) Diagnostic analysis for heterogeneous log-Birnbaum-Saunders regression models, Statistics and Probability Letters 82, 1690:1698.


Tool to build the basis matrix and the penalty matrix of natural cubic splines.

Description

ncs builds the basis matrix and the penalty matrix to approximate a smooth function using a natural cubic spline.

Usage

ncs(xx, lambda, nknots, all.knots)

Arguments

xx

the explanatory variable.

lambda

an optional positive value that represents the smoothing parameter value.

nknots

an optional positive integer that represents the number of knots of the natural cubic spline. Default is m=[n13]+3m=[n^{\frac{1}{3}}]+3. The knots are located at the quantiles of order 0/(m1),1/(m1),,(m1)/(m1)0/(m-1),1/(m-1),\ldots,(m-1)/(m-1) of xx.

all.knots

logical. If TRUE, the set of knots and the set of different values of xxxx coincide. Default is FALSE.

Value

xx

the explanatory variable xxxx with the following attributes: set of knots, basis matrix, penalty matrix, smoothing parameter (if it was specified), and other interest matrices.

Author(s)

Luis Hernando Vanegas <[email protected]> and Gilberto A. Paula

References

Lancaster, P. and Salkauskas, K. (1986) Curve and Surface Fitting: an introduction. Academic Press, London. Green, P.J. and Silverman, B.W. (1994) Nonparametric Regression and Generalized Linear Models, Boca Raton: Chapman and Hall.

Examples

n <- 300
t <- sort(round(runif(n),digits=1))

t2 <- ncs(t,all.knots=TRUE)
N <- attr(t2, "N") ## Basis Matrix
M <- attr(t2, "K") ## Penalty Matrix
knots <- attr(t2, "knots") ## Set of knots

Tool to plot natural cubic splines or P-splines.

Description

np.graph displays a graph of a fitted nonparametric effect, either natural cubic spline or P-spline, from an object of class ssym.

Usage

np.graph(object, which, var, exp, simul, obs, xlab, ylab, xlim, ylim, main)

Arguments

object

an object of the class ssym. This object is returned from the call to ssym.l(), ssym.nl() or ssym.l2().

which

an integer indicating the interest submodel. For example, 1 indicates location submodel, and 2 indicates skewness (or relative dispersion) submodel.

var

character. It allows to choosing the nonparametric effect using the name of the associated explanatory variable.

exp

logical. If TRUE, the fitted nonparametric effect is plotted in exponential scale. Default is FALSE.

simul

logical. If TRUE, the fitted nonparametric effect is plotted jointly with their 95%95\% simultaneous confidence intervals. If TRUE, the fitted nonparametric effect is plotted jointly with their 95%95\% pointwise confidence intervals. Default is TRUE.

obs

logical. If TRUE, the fitted nonparametric effect is plotted jointly with the observed data. Default is FALSE.

xlab

character. An optional label for the x axis.

ylab

character. An optional label for the y axis.

xlim

numeric. An optional range of values for the x axis.

ylim

numeric. An optional range of values for the y axis.

main

character. An optional overall title for the plot.

Author(s)

Luis Hernando Vanegas <[email protected]> and Gilberto A. Paula

References

Lancaster, P. and Salkauskas, K. (1986) Curve and Surface Fitting: an introduction. Academic Press, London. Green, P.J. and Silverman, B.W. (1994) Nonparametric Regression and Generalized Linear Models, Boca Raton: Chapman and Hall. Eilers P.H.C. and Marx B.D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science. 11, 89-121.

Examples

#data("Ovocytes", package="ssym")
#fit <- ssym.l(fraction ~ type + psp(time) | type + psp(time), data=Ovocytes,
#              family='Powerexp', xi=-0.55)
#
#par(mfrow = c(1,2))
#np.graph(fit, which=1, xlab="Time", main="Location")
#np.graph(fit, which=2, exp=TRUE, xlab="Time", main="Dispersion")

Fraction of cell volume

Description

This data set comes from an experiment comparing the responses of immature and mature goat ovocytes to an hyper-osmotic test. As a compound permeates, water reenters the cell, and the cell re-expands until the system reaches an osmotic equilibrium. The results are obtained using immature and ovulated (mature) ovocytes exposed to propanediol, a permeable compound. Then, the cell volume during equilibration is recorded at each time t.

Usage

data(Ovocytes)

Format

A data frame with 161 observations on the following 3 variables.

type

stage of the goat ovocyte: Mature or Immature.

time

time since exposition to propanediol.

fraction

fraction of initial isotonic cell volume at any given time t during equilibration.

References

Huet, S., Bouvier, A., Gruet, M.A. and Jolivet, E. (1996). Statistical Tools for Nonlinear Regression. Springer, New York.

Le Gal F., Gasqui P., Renard J.P. (1994) Differential Osmotic Behavior of Mammalian Oocytes before and after Maturation: A Quantitative Analysis Using Goat Oocytes as a Model. Cryobiology, 31: 154-170.

Huet S., Bouvier A., Gruet M.A., Jolivet E. (1996) Statistical Tools for Nonlinear Regression. Springer-Verlag: New York.

Examples

data("Ovocytes", package="ssym")
xl <- "Time"
yl <- "Fraction of Cell Volume"
mm <- "Fraction of Cell Volume for Mature and Immature Goat Ovocytes"
rx <- range(Ovocytes$time)
ry <- range(Ovocytes$fraction)
plot(Ovocytes$time[Ovocytes$type=='Mature'], Ovocytes$fraction[Ovocytes$type=='Mature'],
     xlim=rx, ylim=ry, type="p", cex=0.5, lwd=1, ylab="", xlab="")
par(new=TRUE)
plot(Ovocytes$time[Ovocytes$type=='Immature'], Ovocytes$fraction[Ovocytes$type=='Immature'],
     xlim=rx, ylim=ry, type="p", cex=0.5, lwd=2, ylab=yl, xlab=xl, main=mm)
legend(rx[1], ry[2], pt.lwd=c(1,2), bty="n", legend=c("Mature","Immature"), pt.cex=0.5, pch=1)

plot.ssym

Description

plot.ssym produces the graph in which the goodness-of-fit statistic Υ\Upsilon is based. This function also displays graphs of the deviance-type residuals versus the fitted values for the median and the skewness (or the relative dispersion) submodels. Under the presence of an uncensored sample, the function plot() produces a graph of the standardized individual-specific weights versus the ordinary residuals (i.e., a graph of ρ(z^k)\rho(\hat{{z}}_k) versus z^k\hat{{z}}_k, k=1,,nk=1,\ldots,n), and under the presence of a right-censored sample, the function plot() produces a graph of the survival function of the error distribution.


print.ssym

Description

print.ssym displays a summary (simpler than summary.ssym) of the fitted model including parameter estimates, (approximate) associated standard errors and goodness-of-fit statistics from an object of class ssym.


Tool to build the basis matrix and the penalty matrix of P-splines.

Description

psp builds the basis matrix and the penalty matrix to approximate a smooth function using a P-spline.

Usage

psp(xx, lambda, b.order, nknots, diff)

Arguments

xx

the explanatory variable.

lambda

an optional positive value that represents the smoothing parameter value.

b.order

an optional positive integer that specifies the degree of the B-spline basis matrix. Default is 3.

nknots

an optional positive integer that represents the number of internal knots of the P-spline. Default is m=[n13]+3m=[n^{\frac{1}{3}}]+3. The knots are located at the quantiles of order 0/(m1),1/(m1),,(m1)/(m1)0/(m-1),1/(m-1),\ldots,(m-1)/(m-1) of xx.

diff

an optional positive integer that specifies the order of the difference penalty term. Default is 2.

Value

xx

the explanatory variable xxxx with the following attributes: set of knots, B-spline basis matrix, penalty matrix and smoothing parameter (if it was specified).

Author(s)

Luis Hernando Vanegas <[email protected]> and Gilberto A. Paula

References

Eilers P.H.C. and Marx B.D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science. 11, 89-121.

Examples

n <- 300
t <- sort(round(runif(n),digits=2))

t2 <- psp(t, diff=3)
N <- attr(t2, "N") ## B-spline basis matrix
M <- attr(t2, "K") ## Penalty Matrix
knots <- attr(t2,"knots") ## Set of knots

residuals.ssym

Description

residuals.ssym extracts the deviance-type residuals for both submodels from an object of class “"ssym".


Random generation for some symmetric continuous distributions.

Description

rvgs is used to random generation from some standard symmetric continuous distributions.

Usage

rvgs(n, family, xi)

Arguments

n

number of observations.

family

Supported families include Normal, Student, Contnormal, Powerexp, Hyperbolic, Slash, Sinh-normal and Sinh-t, which correspond to normal, Student-t, contaminated normal, power exponential, symmetric hyperbolic, slash, sinh-normal and sinh-t distributions, respectively.

xi

a numeric value or numeric vector that represents the extra parameter value of the specified distribution.

Value

x

a vector of nn observations.

Author(s)

Luis Hernando Vanegas <[email protected]> and Gilberto A. Paula

Examples

m1 <- "Standard Sinh-t distributions"
n <- 1000000
xi <- c(10,6,4)
plot(density(rvgs(n,"Sinh-t",xi=c(25,10))), xlim=c(-4.5,4.5), ylim=c(0,0.3), xlab="",
     ylab="", col=1, main="")
par(new=TRUE)
plot(density(rvgs(n,"Sinh-t",xi=c(25,6))), xlim=c(-4.5,4.5), ylim=c(0,0.3), xlab="",
     ylab="", col=2, main="")
par(new=TRUE)
plot(density(rvgs(n,"Sinh-t",xi=c(25,4))), xlim=c(-4.5,4.5), ylim=c(0,0.3), xlab="y",
     ylab="f(y)", main=m1, col=3)
legend(-4, 0.3, bty="n", legend=paste("xi = (",25,",",xi,")"), col=1:4, lty=1)

Textures of five different types of snacks

Description

This data set comes from an experiment developed in the School of Public Health - University of Sao Paulo, in which four different forms of light snacks (denoted by B, C, D, and E) were compared with a traditional snack (denoted by A) for 20 weeks. For the light snacks, the hydrogenated vegetable fat (hvf) was replaced by canola oil using different proportions: B (0% hvf, 22% canola oil), C (17% hvf, 5% canola oil), D (11% hvf, 11% canola oil) and E (5% hvf, 17% canola oil); A (22% hvf, 0% canola oil) contained no canola oil. The experiment was conducted such that a random sample of 15 units of each snack type was analyzed in a laboratory in each even week to measure various variables. A total of 75 units was analyzed in each even week; with 750 units being analyzed during the experiment.

Usage

data(Snacks)

Format

A data frame with 750 observations on the following 3 variables.

texture

texture of the snack unit.

type

a factor with levels 1-5 which correspond to A-E types of snacks.

week

week in which the snack unit was analyzed.

References

Paula, G.A., de Moura, A.S., Yamaguchi, A.M. (2004) Sensorial stability of snacks with canola oil and hydrogenated vegetable fat. Technical Report. Center of Applied Statistics, University of Sao Paulo (in Portuguese).

Paula, G.A. (2013) On diagnostics in double generalized linear models. Computational Statistics and Data Analysis, 68: 44-51.

Examples

data("Snacks", package="ssym")
boxplot(log(Snacks$texture) ~ Snacks$type, xlab="Type of Snack", ylab="Log(texture)")

Fitting Semi-parametric Log-symmetric Regression Models

Description

ssym.l is used to fit a semi-parametric regression model suitable for analysis of data sets in which the response variable is continuous, strictly positive, and asymmetric. Under this setup, both median and skewness of the response variable distribution are explicitly modeled through semi-parametric functions, whose nonparametric components may be approximated by natural cubic splines or P-splines.

Usage

ssym.l(formula, family, xi, data, epsilon, maxiter, subset, link.mu, link.phi,
       local.influence, spec, std.out)

Arguments

formula

a symbolic description of the systematic component of the model to be fitted. See details for further information.

family

a description of the (log) error distribution to be used in the model. Supported families include Normal, Student, Contnormal, Powerexp, Hyperbolic, Slash, Sinh-normal and Sinh-t, which correspond to normal, Student-t, contaminated normal, power exponential, symmetric hyperbolic, slash, sinh-normal and sinh-t distributions, respectively.

xi

a numeric value or numeric vector that represents the extra parameter of the specified error distribution.

data

an optional data frame, list or environment containing the variables in the model.

epsilon

an optional positive value, which represents the convergence criterion. Default value is 1e-07.

maxiter

an optional positive integer giving the maximal number of iterations for the estimating process. Default value is 1e03.

subset

an optional expression that specifies a subset of individuals to be used in the fitting process.

link.mu

an optional character that specifies the link function of the median submodel.

link.phi

an optional character that specifies the link function of the skewness submodel.

local.influence

logical. If TRUE, local influence measures under two perturbation schemes are calculated. Default is FALSE.

spec

an optional character. The smoothing parameter is estimated by minimizing a overall goodness-of-fit criterion such as AIC or BIC. spec is an optional string to specify the goodness-of-fit measure to be used. Default value is AIC.

std.out

logical. If FALSE, just a reduced set of attributes is returned by the model-fitting function. Default is TRUE

.

Details

The argument formula comprises of three parts (separated by the symbols "~" and "|"), namely: observed response variable in log-scale, predictor of the median submodel (having logarithmic link) and predictor of the skewness (or the relative dispersion) submodel (having logarithmic link). An arbitrary number of nonparametric effects may be specified in the predictors. These effects are specified to be approximated by natural cubic splines or P-splines using the functions ncs() or psp(), respectively.

The iterative estimation process is based on the Fisher scoring and backfitting algorithms. Because some distributions such as log-Student-t, log-contaminated-normal, log-power-exponential, log-slash and log-hyperbolic may be obtained as a power mixture of the log-normal distribution, the expectation-maximization (EM) algorithm is applied in those cases to obtain a more efficient iterative process of parameter estimation. Furthermore, because the Birnbaum-Saunders-t distribution can be obtained as a scale mixture of the Birnbaum-Saunders distribution, the expectation-maximization algorithm is also applied in this case to obtain a more efficient iterative process of parameter estimation. The smoothing parameter is chosen by minimizing the AIC or BIC criteria.

The function ssym.l() calculates overall goodness-of-fit statistics, deviance-type residuals for both submodels, as well as local influence measures under the case-weight and response perturbation schemes.

Value

theta.mu

a vector of parameter estimates associated with the median submodel.

theta.phi

a vector of parameter estimates associated with the skewness (or the relative dispersion) submodel.

vcov.mu

approximate variance-covariance matrix associated with the median submodel.

vcov.phi

approximate variance-covariance matrix associated with the skewness (or the relative dispersion) submodel.

weights

final weights of the iterative process.

lambdas.mu

estimate of the smoothing parameter(s) associated with the nonparametric part of the median submodel.

lambdas.phi

estimate of the smoothing parameter(s) associated with the nonparametric part of the skewness (or the relative dispersion) submodel.

gle.mu

degrees of freedom associated with the nonparametric part of the median submodel.

gle.phi

degrees of freedom associated with the nonparametric part of the skewness (or the relative dispersion) submodel.

deviance.mu

a vector with the individual contributions to the deviance associated with the median submodel.

deviance.phi

a vector with the individual contributions to the deviance associated with the skewness (or the relative dispersion) submodel.

mu.fitted

a vector with the fitted values of the (in log-scale) median submodel.

phi.fitted

a vector with the fitted values of the skewness (or the relative dispersion) submodel.

lpdf

a vector of individual contributions to the log-likelihood function.

Author(s)

Luis Hernando Vanegas <[email protected]> and Gilberto A. Paula

References

Vanegas, L.H. and Paula, G.A. (2015) A semiparametric approach for joint modeling of median and skewness. TEST 24, 110-135.

Vanegas, L.H. and Paula, G.A. (2016) Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics 30, 196-220.

Vanegas, L.H. and Paula, G.A. (2016) An extension of log-symmetric regression models: R codes and applications. Journal of Statistical Computation and Simulation 86, 1709-1735.

See Also

ssym.nl, ssym.l2

Examples

###################################################################################
######### Fraction of Cell Volume Data - a log-power-exponential model  ###########
###################################################################################
#data("Ovocytes", package="ssym")
#fit <- ssym.l(log(fraction) ~ type + psp(time) | type + psp(time),
#               data=Ovocytes, family='Powerexp', xi=-0.55, local.influence=TRUE)
#summary(fit)
#
################## Graph of the nonparametric effects ##################
#par(mfrow=c(1,2))
#np.graph(fit, which=1, exp=TRUE)
#np.graph(fit, which=2, exp=TRUE)
#
################## Graph of deviance-type residuals ##################
#plot(fit)
#
################### Simulated envelopes ##################
#envelope(fit)
#
################### Graph of local influence measures ##################
#out <- influence(fit)

###################################################################################
############### Textures of snacks Data - a log-Student-t model  #################
###################################################################################
#data("Snacks", package="ssym")
#fit <- ssym.l(log(texture) ~ type + ncs(week) | type, data=Snacks,
#        family='Student', xi=15, local.influence=TRUE)
#summary(fit)
#
############################ Extra parameter ###########################
#extra.parameter(fit,5,50)
#
################### Graph of the nonparametric effect ##################
#np.graph(fit, which=1, exp=TRUE)
#
################### Graph of deviance-type residuals ##################
#plot(fit)
#
################### Simulated envelopes ##################
#envelope(fit)
#
################### Plot of influence measures ##################
#out <- influence(fit)

###################################################################################
################### Daphnia Data - a log-normal model ########################
###################################################################################
#data("daphnia", package="nlreg")
#fit <- ssym.l(log(time) ~ ncs(conc) | ncs(conc), data=daphnia, family="Normal")
#summary(fit)
#
################### Graph of the nonparametric effects ##################
#par(mfrow=c(1,2))
#np.graph(fit, which=1, exp=TRUE)
#np.graph(fit, which=2, exp=TRUE)
#
################### Simulated envelopes ##################
#envelope(fit)

###################################################################################
####################### gam.data - a Power-exponential model   ####################
###################################################################################
#data("gam.data", package="gam")
#
#fit <- ssym.l(y~psp(x),data=gam.data,family="Powerexp",xi=-0.5)
#summary(fit)
#
################## Graph of the nonparametric effect ##################
#np.graph(fit, which=1)
#
###################################################################################
######### Personal Injury Insurance Data - a Birnbaum-Saunders-t model   ##########
###################################################################################
#data("Claims", package="ssym")
#fit <- ssym.l(log(total) ~ op_time | op_time, data=Claims,
#        family='Sinh-t', xi=c(0.1,4), local.influence=TRUE)
#summary(fit)
#
################## Plot of deviance-type residuals ##################
#plot(fit)
#
################### Simulated envelopes ##################
#envelope(fit)
################## Plot of influence measures ##################
#out <- influence(fit)

###################################################################################
######### Body Fat Percentage Data - a Birnbaum-Saunders-t model   ##########
###################################################################################
#data("ais", package="sn")
#fit <- ssym.l(log(Bfat)~1, data=ais, family='Sinh-t', xi=c(4.5,4))
#summary(fit)
#
########################### Extra parameter ###########################
#extra.parameter(fit,c(3,4),c(5,7))
#
################## Plot of the fitted model ##################
#id <- sort(ais$Bfat, index=TRUE)$ix
#par(mfrow=c(1,2))
#hist(ais$Bfat[id],xlim=range(ais$Bfat),ylim=c(0,0.1),prob=TRUE,breaks=15,
#     col="light gray",border="dark gray",xlab="",ylab="",main="")
#par(new=TRUE)
#plot(ais$Bfat[id],exp(fit$lpdf[id])/ais$Bfat[id],xlim=range(ais$Bfat),
#     ylim=c(0,0.1),type="l",xlab="",ylab="Density",main="Histogram")
#	 
#plot(ais$Bfat[id],fit$cdfz[id],xlim=range(ais$Bfat),ylim=c(0,1),type="l",
#     xlab="",ylab="",main="")
#par(new=TRUE)
#plot(ecdf(ais$Bfat[id]),xlim=range(ais$Bfat),ylim=c(0,1),verticals=TRUE,
#     do.points=FALSE,col="dark gray",ylab="Probability",xlab="",main="ECDF")

###################################################################################
################### ALCOA Aluminium Data - a log-slash model   ####################
###################################################################################

#data("alcoa", package="robustloggamma")
#alcoa2 <- data.frame(alcoa$dist[alcoa$label=="C"])
#colnames(alcoa2) <- "dist"
#
#fit <- ssym.l(log(dist) ~ 1, data=alcoa2, family="Slash", xi=1.212)
#
################## Plot of the fitted model ##################
#id <- sort(alcoa2$dist, index=TRUE)$ix
#par(mfrow=c(1,2))
#hist(alcoa2$dist[id],xlim=c(0,45),ylim=c(0,0.1),prob=TRUE,breaks=60,
#     col="light gray",border="dark gray",xlab="",ylab="",main="")
#par(new=TRUE)
#plot(alcoa2$dist[id],exp(fit$lpdf[id])/alcoa2$dist[id],xlim=c(0,45),
#ylim=c(0,0.1), type="l",xlab="",ylab="",main="")
#	 
#plot(alcoa2$dist[id],fit$cdfz[id],xlim=range(alcoa2$dist),ylim=c(0,1),type="l",
#     xlab="",ylab="",main="")
#par(new=TRUE)
#plot(ecdf(alcoa2$dist[id]),xlim=range(alcoa2$dist),ylim=c(0,1),verticals=TRUE,
#     do.points=FALSE,col="dark gray",ylab="",xlab="",main="")

##################################################################################
################### Boston Housing Data - a log-Slash model   ####################
###################################################################################
#data("Boston", package="MASS")
#fit <- ssym.l(log(medv) ~ crim + rm + tax + psp(lstat) + psp(dis) | psp(lstat),
#              data=Boston, family="Slash", xi=1.56, local.influence=TRUE)
#summary(fit)
#
########################### Extra parameter ###########################
#extra.parameter(fit,1.0,2.3)
#
################## Plot of deviance-type residuals ##################
#plot(fit)
#
################## Plot of nonparametric effects ##################
#par(mfrow=c(1,3))
#np.graph(fit,which=1,exp=TRUE,"lstat")
#np.graph(fit,which=1,exp=TRUE,"dis")
#np.graph(fit,which=2,exp=TRUE,"lstat")
#
################## Plot of influence measures ##################
#out <- influence(fit)
#
################### Simulated envelopes ##################
#envelope(fit)

###################################################################################
####################### mcycle Data - a Power-exponential model   #################
###################################################################################
#data("mcycle", package="MASS")
#fit <- ssym.l(accel ~ ncs(times)|ncs(times), data=mcycle, family="Powerexp",xi=-0.6)
#summary(fit)
#
################## Plot of nonparametric effects ##################
#par(mfrow=c(1,2))
#np.graph(fit,which=1,obs=TRUE)
#np.graph(fit,which=2,exp=TRUE,obs=TRUE)
#
################### Simulated envelopes ##################
#envelope(fit)

###################################################################################
################### Steel Data - a log-hyperbolic model   ####################
###################################################################################
#data("Steel", package="ssym")
#fit <- ssym.l(log(life)~psp(stress), data=Steel, family="Hyperbolic", xi=1.25)
#summary(fit)
#
########################### Extra parameter ###########################
#extra.parameter(fit,0.5,2)
#
################## Plot of nonparametric effects ##################
#np.graph(fit,which=1,exp=TRUE)

Fitting Censored Semi-parametric Log-symmetric Regression Models

Description

ssym.l2 is used to fit a semi-parametric regression model suitable for analysis of data sets in which the response variable is continuous, strictly positive, asymmetric and right-censored. Under this setup, both median and skewness of the response variable distribution are explicitly modeled through semi-parametric functions, whose nonparametric components may be approximated by natural cubic splines or P-splines.

Usage

ssym.l2(formula, family, xi, data, epsilon, maxiter, subset, link.mu, link.phi,
        local.influence, spec, std.out)

Arguments

formula

a symbolic description of the systematic component of the model to be fitted. See details for further information.

family

a description of the (log) error distribution to be used in the model. Supported families include Normal, Student, Contnormal, Powerexp, Hyperbolic, Slash, Sinh-normal and Sinh-t, which correspond to normal, Student-t, contaminated normal, power exponential, symmetric hyperbolic, slash, sinh-normal and sinh-t distributions, respectively.

xi

a numeric value or numeric vector that represents the extra parameter of the specified error distribution.

data

an optional data frame, list or environment containing the variables in the model.

epsilon

an optional positive value, which represents the convergence criterion. Default value is 1e-07.

maxiter

an optional positive integer giving the maximal number of iterations for the estimating process. Default value is 1e03.

subset

an optional expression specifying a subset of individuals to be used in the fitting process.

link.mu

an optional character that specifies the link function of the median submodel.

link.phi

an optional character that specifies the link function of the skewness submodel.

local.influence

logical. If TRUE, local influence measures under two perturbation schemes are calculated. Default is FALSE.

spec

character. The smoothing parameter is estimated by minimizing a overall goodness-of-fit criterion such as AIC or BIC. spec is an optional string to specify the goodness-of-fit measure to be used. Default value is AIC.

std.out

logical. If FALSE, just a reduced set of attributes is returned by the model-fitting function. Default is TRUE

.

Details

The argument formula comprises of three parts (separated by the symbols "~" and "|"), namely: event status and observed response variable (in log-scale) in a object of class Surv, predictor of the median submodel (having logarithmic link) and predictor of the skewness (or the relative dispersion) submodel (having logarithmic link). An arbitrary number of nonparametric effects may be specified in the predictors. These effects are specified to be approximated by natural cubic splines or P-splines using the functions ncs() or psp(), respectively.

The iterative estimation process is based on the Gauss-Seidel, Newton-Raphson and backfitting algorithms. The smoothing parameter is chosen by minimizing the AIC or BIC criteria.

The function ssym.l2() calculates overall goodness-of-fit statistics, deviance-type residuals for both submodels, as well as local influence measures under the case-weight and response perturbation schemes.

Value

theta.mu

a vector of parameter estimates associated with the median submodel.

theta.phi

a vector of parameter estimates associated with the skewness (or the relative dispersion) submodel.

vcov.mu

approximate variance-covariance matrix associated with the median submodel.

vcov.phi

approximate variance-covariance matrix associated with the skewness (or the relative dispersion) submodel.

lambdas.mu

estimate of the smoothing parameter(s) associated with the nonparametric part of the median submodel.

lambdas.phi

estimate of the smoothing parameter(s) associated with the nonparametric part of the skewness (or the relative dispersion) submodel.

gle.mu

degrees of freedom associated with the nonparametric part of the median submodel.

gle.phi

degrees of freedom associated with the nonparametric part of the skewness (or the relative dispersion) submodel.

deviance.mu

a vector with the individual contributions to the deviance associated with the median submodel.

deviance.phi

a vector with the individual contributions to the deviance associated with the skewness (or the relative dispersion) submodel.

mu.fitted

a vector with the fitted values of the (in log-scale) median submodel.

phi.fitted

a vector with the fitted values of the skewness (or the relative dispersion) submodel.

lpdf

a vector of individual contributions to the log-likelihood function.

Author(s)

Luis Hernando Vanegas <[email protected]> and Gilberto A. Paula

References

Vanegas, L.H. and Paula, G.A. (2015) A semiparametric approach for joint modeling of median and skewness. TEST 24, 110-135.

Vanegas, L.H. and Paula, G.A. (2016) Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics 30, 196-220.

Vanegas, L.H. and Paula, G.A. (2016) An extension of log-symmetric regression models: R codes and applications. Journal of Statistical Computation and Simulation 86, 1709-1735.

See Also

ssym.nl, ssym.l

Examples

###################################################################################
################ Lung Cancer Trial - a log-Student model ##########################
###################################################################################
#data("veteran", package="survival")
#fit <- ssym.l2(Surv(log(time), status) ~ karno| karno, data = veteran,
#              family="Student", xi=4.5)
#summary(fit)
#
########################### Extra parameter ###########################
#extra.parameter(fit,3,10)
#
################## Graph of deviance-type residuals ##################
#plot(fit)

####################################################################################
########## Primary biliary cirrhosis - a Power-exponential model ###################
####################################################################################
# data("pbc", package="survival")
# pbc2 <- data.frame(pbc[!is.na(pbc$edema) & !is.na(pbc$stage) & !is.na(pbc$bili),])
#
# fit <- ssym.l2(Surv(log(time),ifelse(status>=1,1,0) ) ~ factor(edema) +
#                stage + ncs(bili), data = pbc2, family="Powerexp",
#                xi=0.47, local.influence=TRUE)
# summary(fit)
#
########################### Extra parameter ###########################
#extra.parameter(fit,c(0.6,3),c(0.9,5))
#
################## Graph of the nonparametric effect ##################
#np.graph(fit, which=1, exp=TRUE)
#
################## Graph of deviance-type residuals ##################
#plot(fit)

####################################################################################
################### Myeloma - a Birnbaum-Saunders model ###########################
####################################################################################
# data("myeloma", package="ssym")
#
#fit <- ssym.l2(Surv(log(t),1-event) ~ x1 + x2 + x5| -1 + x3, data=myeloma,
#       family="Sinh-normal", xi=1.8)
#summary(fit)
#
################## Graph of deviance-type residuals ##################
#plot(fit)

####################################################################################
################ Baboons Data - a log-power-exponential model   ####################
####################################################################################
########################## left-censored observations ##############################
####################################################################################

#data("Baboons", package="ssym")
#fit <- ssym.l2(Surv(-log(t),1-cs) ~ 1, data=Baboons, family="Powerexp", xi=-0.35)
#
#summary(fit)
################## Graph of deviance-type residuals ##################
#plot(fit)

Fitting Semi-parametric Log-symmetric Regression Models

Description

ssym.nl is used to fit a semi-parametric regression model suitable for analysis of data sets in which the response variable is continuous, strictly positive, and asymmetric. Under this setup, both median and skewness of the response variable distribution are explicitly modeled, the median using a nonlinear function and the skewness through semi-parametric functions, whose nonparametric components may be approximated by natural cubic splines or P-splines.

Usage

ssym.nl(formula, start, family, xi, data, epsilon, maxiter, subset, link.phi,
       local.influence, spec, std.out)

Arguments

formula

a symbolic description of the systematic component of the model to be fitted. See details for further information.

start

a named numeric vector of starting estimates for the parameters in the specified nonlinear function.

family

a description of the (log) error distribution to be used in the model. Supported families include Normal, Student, Contnormal, Powerexp, Hyperbolic, Slash, Sinh-normal and Sinh-t, which correspond to normal, Student-t, contaminated normal, power exponential, symmetric hyperbolic, slash, sinh-normal and sinh-t distributions, respectively.

xi

a numeric value or numeric vector that represents the extra parameter of the specified error distribution.

data

an optional data frame, list or environment containing the variables in the model.

epsilon

an optional positive value, which represents the convergence criterion. Default value is 1e-07.

maxiter

an optional positive integer giving the maximal number of iterations for the estimating process. Default value is 1e03.

subset

an optional expression that specifies a subset of individuals to be used in the fitting process.

link.phi

an optional character that specifies the link function of the skewness submodel.

local.influence

logical. If TRUE, local influence measures under two perturbation schemes are calculated. Default is FALSE.

spec

character. The smoothing parameter is estimated by minimizing a overall goodness-of-fit criterion such as AIC or BIC. spec is an optional string to specify the goodness-of-fit measure to be used. Default value is AIC.

std.out

logical. If FALSE, just a reduced set of attributes is returned by the model-fitting function. Default is TRUE

.

Details

The argument formula comprises of three parts (separated by the symbols "~" and "|"), namely: observed response variable in log-scale, predictor of the median submodel (having logarithmic link) and predictor of the skewness (or the relative dispersion) submodel (having logarithmic link). An arbitrary number of nonparametric effects may be specified in the predictor of the skewness submodel. These effects are specified to be approximated by natural cubic splines or P-splines using the functions ncs() or psp(), respectively.

The iterative estimation process is based on the Fisher scoring and backfitting algorithms. Because some distributions such as log-Student-t, log-contaminated-normal, log-power-exponential, log-slash and log-hyperbolic may be obtained as a power mixture of the log-normal distribution, the expectation-maximization (EM) algorithm is applied in those cases to obtain a more efficient iterative process of parameter estimation. Furthermore, because the Birnbaum-Saunders-t distribution can be obtained as a scale mixture of the Birnbaum-Saunders distribution, the expectation-maximization algorithm is also applied in this case to obtain a more efficient iterative process of parameter estimation. The smoothing parameter is chosen by minimizing the AIC or BIC criteria.

The function ssym.nl() calculates overall goodness-of-fit statistics, deviance-type residuals for both submodels, as well as local influence measures under the case-weight and response perturbation schemes.

Value

theta.mu

a vector of parameter estimates associated with the median submodel.

theta.phi

a vector of parameter estimates associated with the skewness (or the relative dispersion) submodel.

vcov.mu

approximate variance-covariance matrix associated with the median submodel.

vcov.phi

approximate variance-covariance matrix associated with the skewness (or the relative dispersion) submodel.

weights

final weights of the iterative process.

lambdas.phi

estimate of the smoothing parameter(s) associated with the nonparametric part of the skewness (or the relative dispersion) submodel.

gle.mu

degrees of freedom associated with the nonparametric part of the median submodel.

gle.phi

degrees of freedom associated with the nonparametric part of the skewness (or the relative dispersion) submodel.

deviance.mu

a vector with the individual contributions to the deviance associated with the median submodel.

deviance.phi

a vector with the individual contributions to the deviance associated with the skewness (or the relative dispersion) submodel.

mu.fitted

a vector with the fitted values of the (in log-scale) median submodel.

phi.fitted

a vector with the fitted values of the skewness (or the relative dispersion) submodel.

lpdf

a vector of individual contributions to the log-likelihood function.

Author(s)

Luis Hernando Vanegas <[email protected]> and Gilberto A. Paula

References

Vanegas, L.H. and Paula, G.A. (2015) A semiparametric approach for joint modeling of median and skewness. TEST 24, 110-135.

Vanegas, L.H. and Paula, G.A. (2016) Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics 30, 196-220.

Vanegas, L.H. and Paula, G.A. (2016) An extension of log-symmetric regression models: R codes and applications. Journal of Statistical Computation and Simulation 86, 1709-1735.

See Also

ssym.l, ssym.l2

Examples

###################################################################################
######### Ultrasonic Calibration Data - a log-contaminated-normal model ###########
###################################################################################
#data("Chwirut1", package="NISTnls")
#fit<-ssym.nl(log(y) ~ -b1*x-log(b2 + b3*x)|x,start=c(b1=0.15,b2=0.005,b3=0.012),
#      data=Chwirut1, family='Contnormal', xi=c(0.68,0.1), local.influence=TRUE)
#summary(fit)
#
########################### Extra parameter ###########################
#extra.parameter(fit,c(0.4,0.08),c(0.9,0.11))
#
################## Graph of deviance-type residuals ##################
#plot(fit)
#
################## Simulated envelopes ##################
#envelope(fit)
#
################## Graph of local influence measures ##################
#out <- influence.ssym(fit)

###################################################################################
################## Biaxial Fatigue Data - a Birnbaum-Saunders model   #############
###################################################################################
#data("Biaxial", package="ssym")
#fit <- ssym.nl(log(Life) ~ b1*Work^b2, start=c(b1=16, b2=-0.25),
#                data=Biaxial, family='Sinh-normal', xi=1.54)
#summary(fit)
#
########################### Extra parameter ###########################
#extra.parameter(fit,1.3,1.8)
#
################## Graph of deviance-type residuals ##################
#plot(fit)
#
################## Simulated envelopes ##################
#envelope(fit,reps=100,conf=0.95)
###################################################################################
################## European rabbits Data - a log-normal model   #############
###################################################################################
#data("Erabbits", package="ssym")
#fit <- ssym.nl(log(wlens) ~ b1 - b2/(b3 + age) | age, start=c(b1=5,
#               b2=130, b3=36), data=Erabbits, family='Normal')
#summary(fit)
#
################## Graph of deviance-type residuals ##################
#plot(fit)
#
################## Simulated envelopes ##################
#envelope(fit)
#
###################################################################################
################### Metsulfuron Data - a log-Student-t model ######################
###################################################################################
#data("M4", package="nlreg")
#fit <- ssym.nl(log(area) ~ log(b1+(b2-b1)/(1+(dose/b3)^b4))|ncs(dose), data=M4,
#       start = c(b1=4, b2=1400, b3=0.11, b4=1.23), family="Student", xi=6)
#summary(fit)
#
########################### Extra parameter ###########################
#extra.parameter(fit,3,10)
#
################## Graph of deviance-type residuals ##################
#plot(fit)
#
################## Graph of the nonparametric effect ##################
#np.graph(fit,which=2,"dose")
#
################## Simulated envelopes ##################
#envelope(fit)
#
###################################################################################
################# Blood flow Data - a log-power-exponential model #################
###################################################################################
#data("la", package="gamlss.nl")
#fit <- ssym.nl(log(PET60) ~ log(bflow) + log(1+b1*exp(-b2/bflow)) | bflow,
#       data=la, start=c(b1=-0.6,b2=98), family="Powerexp", xi=-0.45)
#summary(fit)
#
########################### Extra parameter ###########################
#extra.parameter(fit,-0.5,0)
################## Graph of deviance-type residuals ##################
#plot(fit)
#
################## Simulated envelopes ##################
#envelope(fit,reps=100,conf=0.99)
#
###################################################################################
######### Gross Domestic Product per capita Data - a Birnbaum-Saunders model ######
###################################################################################
#data("gdp", package="ssym")
#fit <- ssym.nl(log(gdp2010) ~ b1, start=c(b1=mean(log(gdp$gdp2010))), data=gdp, 
#               family='Sinh-normal', xi=2.2)
#summary(fit)
########################### Extra parameter ###########################
#extra.parameter(fit,0.5,3)
################## Plot of the fitted model ##################
#id <- sort(gdp$gdp2010, index=TRUE)$ix
#par(mfrow=c(1,2))
#hist(gdp$gdp2010[id],xlim=range(gdp$gdp2010),ylim=c(0,0.00025),prob=TRUE,
#     breaks=200,col="light gray",border="dark gray",xlab="",ylab="",main="")
#par(new=TRUE)
#plot(gdp$gdp2010[id],exp(fit$lpdf[id])/gdp$gdp2010[id],xlim=range(gdp$gdp2010),
#     ylim=c(0,0.00025),type="l",xlab="",ylab="Density",main="Histogram")
#	 
#plot(gdp$gdp2010[id],fit$cdfz[id],xlim=range(gdp$gdp2010),ylim=c(0,1),type="l",
#     xlab="",ylab="",main="")
#par(new=TRUE)
#plot(ecdf(gdp$gdp2010[id]),xlim=range(gdp$gdp2010),ylim=c(0,1),verticals=TRUE,
#     do.points=FALSE,col="dark gray",ylab="Probability.",xlab="",main="ECDF")
###################################################################################
############# Australian Institute of Sport Data - a log-normal model #############
###################################################################################
#data("ais", package="sn")
#sex <- ifelse(ais$sex=="male",1,0)
#ais2 <- data.frame(BMI=ais$BMI,LBM=ais$LBM,sex)
#start = c(b1=7, b2=0.3, b3=2)
#fit <- ssym.nl(log(BMI) ~ log(b1 + b2*LBM + b3*sex) | sex + LBM,
#               data=ais2, start=start, family="Normal")
#summary(fit)
#
################## Graph of deviance-type residuals ##################
#plot(fit)
#
################## Simulated envelopes ##################
#envelope(fit)
#
###################################################################################
################ Daphnia Data - a log-power-exponential model #####################
###################################################################################
#data("daphnia", package="nlreg")
#fit <- ssym.nl(log(time) ~ log(b1+(b2-b1)/(1+(conc/b4)^b3)) | ncs(conc),
#       data=daphnia, start = c(b1=0, b2=50 , b3=2, b4=0.2), family="Powerexp",
#		xi=-0.42)
#summary(fit)
#
########################### Extra parameter ###########################
#extra.parameter(fit,-0.5,-0.3)
#
################## Graph of deviance-type residuals ##################
#plot(fit)
#
################## Graph of the nonparametric effect ##################
#np.graph(fit,which=2,"conc")
#
################## Simulated envelopes ##################
#envelope(fit)

Hardened Steel

Description

This dataset consists of the failure times for hardened steel specimens in a rolling contact fatigue test. Ten independent observations were taken at each of the four values of contact stress. The response is the length of the time until each specimen of the hardened steel failed.

Usage

data(Steel)

Format

A data frame with 40 observations on the following 2 variables.

stress

values of contact stress, in pounds per square inch x 10610^{-6}

life

length of the time until the specimen of the hardened steel failed.

References

McCool, J. (1980) Confidence limits for Weibull regression with censored data. Transactions on Reliability, 29: 145-150.


summary.ssym

Description

summary.ssym displays the summary of the fitted model including parameter estimates, associated (approximated) standard errors and goodness-of-fit statistics from an object of class “"ssym".


vcov.ssym

Description

vcov.ssym extracts the approximate variance-covariance matrix associated to the parameter estimates from an object of class “"ssym".