
Package: sps (via r-universe)
March 11, 2025

Title Sequential Poisson Sampling

Version 0.6.0

Description Sequential Poisson sampling is a variation of Poisson
sampling for drawing probability-proportional-to-size samples
with a given number of units, and is commonly used for
price-index surveys. This package gives functions to draw
stratified sequential Poisson samples according to the method
by Ohlsson (1998, ISSN:0282-423X), as well as other order
sample designs by Rosén (1997,
<doi:10.1016/S0378-3758(96)00186-3>), and generate appropriate
bootstrap replicate weights according to the generalized
bootstrap method by Beaumont and Patak (2012,
<doi:10.1111/j.1751-5823.2011.00166.x>).

Depends R (>= 4.2)

Imports stats

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

License MIT + file LICENSE

Encoding UTF-8

URL https://marberts.github.io/sps/, https://github.com/marberts/sps

BugReports https://github.com/marberts/sps/issues

VignetteBuilder knitr

RoxygenNote 7.3.2

NeedsCompilation no

Author Steve Martin [aut, cre, cph]
(<https://orcid.org/0000-0003-2544-9480>), Justin Francis [ctb]

Maintainer Steve Martin <marberts@protonmail.com>

Repository CRAN

Date/Publication 2025-02-09 01:10:02 UTC

1

https://doi.org/10.1016/S0378-3758(96)00186-3
https://doi.org/10.1111/j.1751-5823.2011.00166.x
https://marberts.github.io/sps/
https://github.com/marberts/sps
https://github.com/marberts/sps/issues
https://orcid.org/0000-0003-2544-9480

2 expected_coverage

Contents
expected_coverage . 2
inclusion_prob . 3
prop_allocation . 4
sps . 6
sps_repweights . 10

Index 13

expected_coverage Expected coverage

Description

Find the expected number of strata covered by ordinary Poisson sampling without stratification.
As sequential and ordinary Poisson sampling have the same sample size on average, this gives an
approximation for the coverage under sequential Poisson sampling.

This function can also be used to calculate, e.g., the expected number of enterprises covered within
a stratum when sampling business establishments.

Usage

expected_coverage(x, n, strata, alpha = 0.001, cutoff = Inf)

Arguments

x A positive and finite numeric vector of sizes for units in the population (e.g.,
revenue for drawing a sample of businesses).

n A positive integer giving the sample size.

strata A factor, or something that can be coerced into one, giving the strata associated
with units in the population. The default is to place all units into a single stratum.

alpha A numeric vector with values between 0 and 1 for each stratum, ordered accord-
ing to the levels of strata. Units with inclusion probabilities greater than or
equal to 1 - alpha are set to 1 for each stratum. A single value is recycled for
all strata. The default is slightly larger than 0.

cutoff A positive numeric vector of cutoffs for each stratum, ordered according to the
levels of strata. Units with x >= cutoff get an inclusion probability of 1 for
each stratum. A single value is recycled for all strata. The default does not apply
a cutoff.

Value

The expected number of strata covered by the sample design.

See Also

prop_allocation() for generating proportional-to-size allocations.

inclusion_prob 3

Examples

Make a population with units of different size
x <- c(rep(1:9, each = 3), 100, 100, 100)

... and 10 strata
s <- rep(letters[1:10], each = 3)

Should get about 7 to 8 strata in a sample on average
expected_coverage(x, 15, s)

inclusion_prob Calculate inclusion probabilities

Description

Calculate stratified (first-order) inclusion probabilities.

Usage

inclusion_prob(x, n, strata = NULL, alpha = 0.001, cutoff = Inf)

becomes_ta(x, alpha = 0.001, cutoff = Inf)

Arguments

x A positive and finite numeric vector of sizes for units in the population (e.g.,
revenue for drawing a sample of businesses).

n A positive integer vector giving the sample size for each stratum, ordered ac-
cording to the levels of strata. A single value is recycled for all strata. Non-
integers are truncated towards 0.

strata A factor, or something that can be coerced into one, giving the strata associated
with units in the population. The default is to place all units into a single stratum.

alpha A numeric vector with values between 0 and 1 for each stratum, ordered accord-
ing to the levels of strata. Units with inclusion probabilities greater than or
equal to 1 - alpha are set to 1 for each stratum. A single value is recycled for
all strata. The default is slightly larger than 0.

cutoff A positive numeric vector of cutoffs for each stratum, ordered according to the
levels of strata. Units with x >= cutoff get an inclusion probability of 1 for
each stratum. A single value is recycled for all strata. The default does not apply
a cutoff.

4 prop_allocation

Details

Within a stratum, the inclusion probability for a unit is given by π = nx/
∑

x. These values can
be greater than 1 in practice, and so they are constructed iteratively by taking units with π ≥ 1− α
(from largest to smallest) and assigning these units an inclusion probability of 1, with the remaining
inclusion probabilities recalculated at each step. If α > 0, then any ties among units with the same
size are broken by their position.

The becomes_ta() function reverses this operations and finds the critical sample size at which a
unit enters the take-all stratum. This value is undefined for units that are always included in the
sample (because their size exceeds cutoff) or never included.

Value

inclusion_prob() returns a numeric vector of inclusion probabilities for each unit in the popula-
tion.

becomes_ta() returns an integer vector giving the sample size at which a unit enters the take-all
stratum.

See Also

sps() for drawing a sequential Poisson sample.

Examples

Make inclusion probabilities for a population with units
of different size
x <- c(1:10, 100)
(pi <- inclusion_prob(x, 5))

The last unit is sufficiently large to be included in all
samples with two or more units
becomes_ta(x)

Use the inclusion probabilities to calculate the variance of the
sample size for Poisson sampling
sum(pi * (1 - pi))

prop_allocation Construct a proportional allocation

Description

Generate a proportional-to-size allocation for stratified sampling.

prop_allocation 5

Usage

prop_allocation(
x,
n,
strata,
initial = 0L,
divisor = function(a) a + 1,
ties = c("largest", "first")

)

Arguments

x A positive and finite numeric vector of sizes for units in the population (e.g.,
revenue for drawing a sample of businesses).

n A positive integer giving the sample size.

strata A factor, or something that can be coerced into one, giving the strata associated
with units in the population. The default is to place all units into a single stratum.

initial A positive integer vector giving the initial (or minimal) allocation for each stra-
tum, ordered according to the levels of strata. A single integer is recycled for
each stratum using a special algorithm to ensure a feasible allocation; see de-
tails. Non-integers are truncated towards 0. The default allows for no units to be
allocated to a stratum.

divisor A divisor function for the divisor (highest-averages) apportionment method. The
default uses the Jefferson (D’Hondt) method. See details for other possible func-
tions.

ties Either ’largest’ to break ties in favor of the stratum with the largest size, or ’first’
to break ties in favor of the ordering of strata.

Details

The prop_allocation() function gives a sample size for each level in strata that is proportional
to the sum of x across strata and adds up to n. This is done using the divisor (highest-averages)
apportionment method (Balinksi and Young, 1982, Appendix A), for which there are a number of
different divisor functions:

Jefferson/D’Hondt \(a) a + 1

Webster/Sainte-Laguë \(a) a + 0.5

Imperiali \(a) a + 2

Huntington-Hill \(a) sqrt(a * (a + 1))

Danish \(a) a + 1 / 3

Adams \(a) a

Dean \(a) a * (a + 1) / (a + 0.5)

Note that a divisor function with d(0) = 0 (i.e., Huntington-Hill, Adams, Dean) should have an
initial allocation of at least 1 for all strata. In all cases, ties are broken according to the sum of x
if ties = 'largest'; otherwise, if ties = 'first', then ties are broken according to the levels of
strata.

6 sps

In cases where the number of units with non-zero size in a stratum is smaller than its allocation,
the allocation for that stratum is set to the number of available units, with the remaining sample
size reallocated to other strata proportional to x. This is similar to PROC SURVEYSELECT in SAS with
ALLOC = PROPORTIONAL.

Passing a single integer for the initial allocation first checks that recycling this value for each stratum
does not result in an allocation larger than the sample size. If it does, then the value is reduced so
that recycling does not exceed the sample size. This recycled vector can be further reduced in cases
where it exceeds the number of units in a stratum, the result of which is the initial allocation. This
special recycling ensures that the initial allocation is feasible.

Value

A named integer vector of sample sizes for each stratum in strata.

References

Balinksi, M. L. and Young, H. P. (1982). Fair Representation: Meeting the Ideal of One Man, One
Vote. Yale University Press.

See Also

sps() for stratified sequential Poisson sampling.

expected_coverage() to calculate the expected number of strata in a sample without stratification.

strAlloc() in the PracTools package for other allocation methods.

Examples

Make a population with units of different size
x <- c(rep(1:9, each = 3), 100, 100, 100)

... and 10 strata
s <- rep(letters[1:10], each = 3)

Generate an allocation
prop_allocation(x, 15, s, initial = 1)

sps Stratified sequential Poisson sampling

Description

Draw a stratified probability-proportional-to-size sample using the sequential and ordinary Poisson
methods, and generate other order sampling schemes.

sps 7

Usage

sps(x, n, strata = NULL, prn = NULL, alpha = 0.001, cutoff = Inf)

ps(x, n, strata = NULL, prn = NULL, alpha = 0.001, cutoff = Inf)

order_sampling(dist)

Arguments

x A positive and finite numeric vector of sizes for units in the population (e.g.,
revenue for drawing a sample of businesses).

n A positive integer vector giving the sample size for each stratum, ordered ac-
cording to the levels of strata. A single value is recycled for all strata. Non-
integers are truncated towards 0.

strata A factor, or something that can be coerced into one, giving the strata associated
with units in the population. The default is to place all units into a single stratum.

prn A numeric vector of permanent random numbers for units in the population, dis-
tributed uniform between 0 and 1. The default does not use permanent random
numbers, instead generating a random vector when the function is called.

alpha A numeric vector with values between 0 and 1 for each stratum, ordered accord-
ing to the levels of strata. Units with inclusion probabilities greater than or
equal to 1 - alpha are set to 1 for each stratum. A single value is recycled for
all strata. The default is slightly larger than 0.

cutoff A positive numeric vector of cutoffs for each stratum, ordered according to the
levels of strata. Units with x >= cutoff get an inclusion probability of 1 for
each stratum. A single value is recycled for all strata. The default does not apply
a cutoff.

dist A function giving the fixed order distribution shape for an order sampling scheme.
See details.

Details

The sps() function draws a sample according to the sequential Poisson procedure, the details of
which are given by Ohlsson (1998). It is also called uniform order sampling, as it is a type of order
sampling; see Rosén (1997, 2000) for a more general presentation of the method. This is the same
method used by PROC SURVEYSELECT in SAS with METHOD = SEQ_POISSON.

For each stratum, the sequential Poisson procedure starts by stratifying units in the population based
on their (target) inclusion probabilities π. Units with π = 0 are placed into a take-none stratum,
units with 0 < π < 1 are placed into a take-some stratum, and units with π = 1 are placed into
a take-all stratum. As noted by Ohlsson (1998), it can be useful to set α to a small positive value
when calculating inclusion probabilities, and this is the default behavior.

After units are appropriately stratified, a sample of take-some units is drawn by assigning each unit
a value ξ = u/π, where u is a random deviate from the uniform distribution between 0 and 1.
The units with the smallest values for ξ are included in the sample, along with the take-all units.
(Ties in ξ are technically a measure-zero event—in practice these are broken by position.) This
results in a fixed sample size at the expense of the sampling procedure being only approximately

8 sps

probability-proportional-to-size (i.e., the inclusion probabilities from the sample design are close
but not exactly equal to π; see Matei and Tillé, 2007, for details on the exact computation).

Ordinary Poisson sampling follows the same procedure as above, except that all units with ξ < 1
are included in the sample; consequently, while it does not contain a fixed number of units, the
procedure is strictly probability-proportional-to-size. Despite this difference, the standard Horvitz-
Thompson estimator for the total (of the take-some stratum) is asymptotically unbiased, normally
distributed, and equally efficient under both procedures. The ps() function draws a sample using
the ordinary Poisson method.

A useful feature of sequential and ordinary Poisson sampling is the ability to coordinate samples by
using permanent random numbers for u. Keeping u fixed when updating a sample retains a larger
number of overlapping units, whereas switching u for u− z mod 1 or 1− (u− z mod 1), for some
z between 0 and 1, when drawing different samples from the same frame reduces the number of
overlapping units.

Despite the focus on sequential Poisson sampling, all order sampling procedures follow the same
approach as sequential Poisson sampling. The order_sampling() function can be used to generate
other order sampling functions by passing an appropriate function to make the ranking variable ξ:

Sequential Poisson sampling \(x) x

Successive sampling \(x) log(1 - x)

Pareto sampling \(x) x / (1 - x)

Value

sps() and ps() return an object of class sps_sample. This is an integer vector of indices for the
units in the population that form the sample, along with a weights attribute that gives the design
(inverse probability) weights for each unit in the sample (keeping in mind that sequential Poisson
sampling is only approximately probability-proportional-to-size). weights() can be used to access
the design weights attribute of an sps_sample object, and levels() can be used to determine
which units are in the take-all or take-some strata. Mathematical and binary/unary operators strip
attributes, as does replacement.

order_sampling returns a function the with the same interface as sps() and ps().

References

Matei, A., and Tillé, Y. (2007). Computational aspects of order πps sampling schemes. Computa-
tional Statistics & Data Analysis, 51: 3703-3717.

Ohlsson, E. (1998). Sequential Poisson Sampling. Journal of Official Statistics, 14(2): 149-162.

Rosén, B. (1997). On sampling with probability proportional to size. Journal of Statistical Planning
and Inference, 62(2): 159-191.

Rosén, B. (2000). On inclusion probabilities for order πps sampling. Journal of Statistical Planning
and Inference, 90(1): 117-143.

See Also

prop_allocation() for generating proportional-to-size allocations.

inclusion_prob() for calculating the inclusion probabilities.

sps 9

sps_repweights() for generating bootstrap replicate weights.

The UPpoisson() and UPopips() functions in the sampling package for ordinary and sequen-
tial Poisson sampling, respectively. Note that the algorithm for order sampling in the UPopips()
function is currently incorrect, giving a worse approximation for the inclusion probabilities than it
should.

The UP* functions in the sampling package, the S.* functions in the TeachingSampling package,
and the pps package for other probability-proportional-to-size sampling methods.

The pps() function in the prnsamplr package for Pareto order sampling with permanent random
numbers.

Examples

Make a population with units of different size
x <- c(1:10, 100)

#---- Sequential Poisson sampling ----
Draw a sequential Poisson sample
(samp <- sps(x, 5))

Get the design (inverse probability) weights
weights(samp)

All units except 11 are in the take-some (TS) stratum
levels(samp)

Ensure that the top 10% of units are in the sample
sps(x, 5, cutoff = quantile(x, 0.9))

#---- Ordinary Poisson sampling ----
Ordinary Poisson sampling gives a random sample size for the
take-some stratum
ps(x, 5)

#---- Stratified Sequential Poisson sampling ----
Draw a stratified sample with a proportional allocation
strata <- rep(letters[1:4], each = 5)
(allocation <- prop_allocation(1:20, 12, strata))
(samp <- sps(1:20, allocation, strata))

Use the Horvitz-Thompson estimator to estimate the total
y <- runif(20) * 1:20
sum(weights(samp) * y[samp])

#---- Useful properties of Sequential Poisson sampling ----
It can be useful to set 'prn' in order to extend the sample
to get a fixed net sample
u <- runif(11)
(samp <- sps(x, 6, prn = u))

Removing unit 5 gives the same net sample
sps(x[-samp[5]], 6, prn = u[-samp[5]])

10 sps_repweights

Also useful for topping up a sample
all(samp %in% sps(x, 7, prn = u))

#---- Other order-sampling methods ----
Generate new order-sampling functions from the parameters of
the inverse generalized Pareto distribution
igpd <- function(shape, scale = 1, location = 0) {

if (shape == 0) {
function(x) -scale * log(1 - x) + location

} else {
function(x) scale * (1 - (1 - x)^shape) / shape + location

}
}

order_sampling2 <- function(x) order_sampling(igpd(x))

order_sampling2(1)(x, 6, prn = u) # sequential Poisson
order_sampling2(0)(x, 6, prn = u) # successive
order_sampling2(-1)(x, 6, prn = u) # Pareto

sps_repweights Bootstrap replicate weights for sequential Poisson sampling

Description

Produce bootstrap replicate weights that are appropriate for Poisson sampling, and therefore ap-
proximately correct for sequential Poisson sampling.

Usage

sps_repweights(w, replicates = 1000L, tau = min_tau(1e-04), dist = NULL)

min_tau(tol)

Arguments

w A numeric vector of design (inverse probability) weights for a (sequential) Pois-
son sample.

replicates A positive integer that gives the number of bootstrap replicates (1,000 by de-
fault). Non-integers are truncated towards 0.

tau A number greater than or equal to 1 that gives the rescale factor for the bootstrap
weights. Setting to 1 does not rescale the weights. This can also be a function
that takes a vector of bootstrap adjustments and returns a number larger than
1. The default automatically picks the smallest feasible rescale factor (up to a
small tolerance).

sps_repweights 11

dist A function that produces random deviates with mean 0 and standard deviation 1,
such as rnorm(). The default uses the pseudo-population method from section
4.1 of Beaumont and Patak (2012); see details.

tol A non-negative number, strictly less than 1, that gives the tolerance for deter-
mining the minimum feasible value of tau.

Details

Replicate weights are constructed using the generalized bootstrap method by Beaumont and Patak
(2012). Their method takes a vector of design weights w, finds a vector of adjustments a for each
bootstrap replicate, and calculates the replicate weights as aw.

There are two ways to calculate the adjustments a. The default pseudo-population method randomly
rounds w for each replicate to produce a collection of integer weights w′ that are used to generate a
random vector b from the binomial distribution. The vector of adjustments is then a = 1+b−w′/w.
Specifying a deviates-generating function for dist uses this function to produce a random vector d
that is then used to make an adjustment a = 1 + d

√
1− 1/w.

The adjustments can be rescaled by a value τ ≥ 1 to prevent negative replicate weights. With this
rescaling, the adjustment becomes (a + τ − 1)/τ . If τ > 1 then the resulting bootstrap variance
estimator should be multiplied by τ2.

Value

sps_repweights() returns a matrix of bootstrap replicate weights with replicates columns (one
for each replicate) and length(w) rows (one for each unit in the sample), with the value of tau as
an attribute.

min_tau() returns a function that takes a vector of bootstrap adjustments and returns the smallest
value for τ such that the rescaled adjustments are greater than or equal to tol.

Note

As an alternative to the bootstrap, Ohlsson (1998, equations 2.13) proposes an analytic estimator for
the variance of the total Ŷ =

∑
wy (for the take-some units) under sequential Poisson sampling:

V (Ŷ) =
n

n− 1

∑(
1− 1

w

)(
wy − Ŷ

n

)2

.

See Rosén (1997, equation 3.11) for a more general version of this estimator that can be applied
to other order sampling schemes. Replacing the left-most correction by n/(m − 1), where m is
the number of units in the sample, gives a similar estimator for the total under ordinary Poisson
sampling, Ŷ = n/m

∑
wy.

References

Beaumont, J.-F. and Patak, Z. (2012). On the Generalized Bootstrap for Sample Surveys with
Special Attention to Poisson Sampling. International Statistical Review, 80(1): 127-148.

Ohlsson, E. (1998). Sequential Poisson Sampling. Journal of Official Statistics, 14(2): 149-162.

Rosén, B. (1997). On sampling with probability proportional to size. Journal of Statistical Planning
and Inference, 62(2): 159-191.

12 sps_repweights

See Also

sps() for drawing a sequential Poisson sample.

bootstrapFP() (with method = "wGeneralised") in the bootstrapFP package for calculating the
variance of Horvitz-Thompson estimators using the generalized bootstrap and make_gen_boot_factors()
in the svrep package.

Examples

Make a population with units of different size
x <- c(1:10, 100)

Draw a sequential Poisson sample
(samp <- sps(x, 5))

Make some bootstrap replicates
dist <- list(

pseudo_population = NULL,
standard_normal = rnorm,
exponential = \(x) rexp(x) - 1,
uniform = \(x) runif(x, -sqrt(3), sqrt(3))

)

lapply(dist, sps_repweights, w = weights(samp), replicates = 5, tau = 2)

Index

becomes_ta (inclusion_prob), 3

expected_coverage, 2
expected_coverage(), 6

inclusion_prob, 3
inclusion_prob(), 8

Mathematical and binary/unary
operators, 8

min_tau (sps_repweights), 10

order_sampling (sps), 6

prop_allocation, 4
prop_allocation(), 2, 8
ps (sps), 6

rnorm(), 11

sps, 6
sps(), 4, 6, 12
sps_repweights, 10
sps_repweights(), 9

13

	expected_coverage
	inclusion_prob
	prop_allocation
	sps
	sps_repweights
	Index

