
Package: speakeasyR (via r-universe)
October 25, 2024

Title Fast and Robust Multi-Scale Graph Clustering

Version 0.1.4

Description A graph community detection algorithm that aims to be
performant on large graphs and robust, returning consistent
results across runs. SpeakEasy 2 (SE2), the underlying
algorithm, is described in Chris Gaiteri, David R. Connell &
Faraz A. Sultan et al. (2023) <doi:10.1186/s13059-023-03062-0>.
The core algorithm is written in 'C', providing speed and
keeping the memory requirements low. This implementation can
take advantage of multiple computing cores without increasing
memory usage. SE2 can detect community structure across scales,
making it a good choice for biological data, which often has
hierarchical structure. Graphs can be passed to the algorithm
as adjacency matrices using base 'R' matrices, the 'Matrix'
library, 'igraph' graphs, or any data that can be coerced into
a matrix.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.1

Imports Matrix, methods

Suggests igraph, scRNAseq, SummarizedExperiment, knitr, rmarkdown,
testthat (>= 3.0.0)

URL https://github.com/SpeakEasy-2/speakeasyR

BugReports https://github.com/SpeakEasy-2/speakeasyR/issues

VignetteBuilder knitr

Config/testthat/edition 3

SystemRequirements arpack (optional)

NeedsCompilation yes

Author David Connell [aut, cre, cph]
(<https://orcid.org/0000-0002-4841-6756>), Chris Gaiteri [cph]
(Author of original SpeakEasy 2 algorithm.), Gábor Csárdi [cph,

1

https://doi.org/10.1186/s13059-023-03062-0
https://github.com/SpeakEasy-2/speakeasyR
https://github.com/SpeakEasy-2/speakeasyR/issues
https://orcid.org/0000-0002-4841-6756

2 Contents

ctb] (Author of igraph C library.), Tamás Nepusz [cph, ctb]
(Author of igraph C library.), Szabolcs Horvát [cph, ctb]
(Author of igraph C library.), Vincent Traag [cph, ctb] (Author
of igraph C library.), Fabio Zanini [cph, ctb] (Author of
igraph C library.), Daniel Noom [cph, ctb] (Author of igraph C
library.), The igraph development team [cph] (Copyright holder
of igraph C library.), Free Software Foundation, Inc. [cph]
(Copyright holder of GPL licenses.), Ross Ihaka [cph, ctb]
(Author of Mathlib.), The R Development Core Team [cph]
(Copyright holder of Mathlib.), Royal Statistical Society [cph]
(Copyright holder of Mathlib.), The R Core Team [cph]
(Copyright holder of Mathlib.), The Regents of the University
of California [cph] (Copyright holder of stdlib's qsort.),
Timothy Davis [cph, ctb] (Author of CXSPARSE (cs).), Richard
Lehoucq [cph, ctb] (Author of arpack.), Danny Scrensen [cph,
ctb] (Author of arpack and lapack.), Phuong Vu [cph, ctb]
(Author of arpack.), Chao Yang [cph, ctb] (Author of arpack.),
Allan Cornet [cph, ctb] (Author of arpack.), Sylvestre Ledru
[cph, ctb] (Author of arpack.), Chao Yang [cph, ctb] (Author of
arpack.), Rice University [cph] (Copyright holder of arpack.),
Scilab Enterprises [cph] (Copyright holder of arpack-ng.),
Melissa O'Neill [cph, ctb] (Author of PCG random number
generator.), Steven Johnson [cph, ctb] (Author of ax_pthread.),
Daniel G. [cph, ctb] (Author of ax_pthread.), Marc Stevens
[cph, ctb] (Author of ax_pthread.), Minh Nguyen [cph, ctb]
(Author of ax_pthread.), Elliot Paquette [cph, ctb]
(Contributor to igraph.), Pascal Pons [cph, ctb] (Contributor
to igraph.), Jordi Hermoso [cph, ctb] (Contributor to arpack.),
Sébastien Fabbro [cph, ctb] (Contributor to arpack.), Shinya
Tasaki [cph, ctb] (Provided code used in the gene clustering
example.)

Maintainer David Connell <david32@dcon.addy.io>

Repository CRAN

Date/Publication 2024-09-24 22:40:02 UTC

Contents

cluster . 3
cluster_genes . 4
knn_graph . 6
order_nodes . 7

Index 9

cluster 3

cluster SpeakEasy 2 community detection

Description

Group nodes into communities.

Usage

cluster(
graph,
discard_transient = 3,
independent_runs = 10,
max_threads = 0,
seed = 0,
target_clusters = 0,
target_partitions = 5,
subcluster = 1,
min_clust = 5,
verbose = FALSE,
is_directed = "detect"

)

Arguments

graph A graph or adjacency matrix in a form that can be converted to matrix or
Matrix::dgCMatrix using an as.matrix() coercion method. Accepted types
include matrix, dgCMatrix, ngCMatrix, and igraph::graphs.

discard_transient

The number of partitions to discard before tracking.
independent_runs

How many runs SpeakEasy2 should perform.

max_threads The maximum number of threads to use. By default this is the same as the
number of independent runs. If max_threads is greater than or equal to the
number of processing cores, all cores may run. If max_threads is less than the
number of cores, at most max_threads cores will run.

seed Random seed to use for reproducible results. SpeakEasy2 uses a different ran-
dom number generator than R, but if the seed is not explicitly set, R’s random
number generator is used create one. Because of this, setting R’s RNG will also
cause reproducible results.

target_clusters

The number of random initial labels to use.
target_partitions

Number of partitions to find per independent run.

subcluster Depth of clustering. If greater than 1, perform recursive clustering.

4 cluster_genes

min_clust Smallest clusters to recursively cluster. If subcluster not set to a value greater
than 1, this has no effect.

verbose Whether to provide additional information about the clustering or not.
is_directed Whether the graph should be treated as directed or not. By default, if the graph

is symmetric it is treated as undirected.

Value

A membership vector. If subclustering, returns a matrix with number of rows equal to the number
of recursive clustering. Each row is the membership at different hierarchical scales, such that the
last rows are the highest resolution.

Examples

if (require("igraph")) {
graph <- igraph::graph.famous("zachary")
membership <- cluster(graph, max_threads = 2)

}

cluster_genes Cluster a gene expression matrix

Description

Use the Speakeasy 2 community detection algorithm to cluster genes based on their gene expression.
A gene coexpression network is created by taking correlating the input gene expression matrix to
genes that tend to be expressed together. This matrix is then clustered to find gene modules.

Note: This is intended for gene expression sampled from bulk sequencing. Samples from single cell
sequencing may work but will need to be preprocessed due to the greater noise-to-signal ratio. See
the speakeasyR vignette for an example of single cell preprocessing. For more information about
working with single cell data see: Malte D Luecken & Fabian J Theis (2019) Current Best Practices
in Single-cell Rna-seq Analysis: a Tutorial, Molecular Systems Biology.

Usage

cluster_genes(
gene_expression,
k = NULL,
discard_transient = 3,
independent_runs = 10,
max_threads = 0,
seed = 0,
target_clusters = 0,
target_partitions = 5,
subcluster = 1,
min_clust = 5,
verbose = FALSE

)

cluster_genes 5

Arguments

gene_expression

a matrix of gene expression data with data from multiple samples (in the form
genes x samples).

k number of neighbors to include if converting to a k-nearest neighbor graph.
Should be a non-negative integer less than the number of genes. If this value
is not set the raw GCN is clustered. The kNN graph is a sparse directed graph
with binary edges between a node and it’s most similar k neighbors. Conversion
to a kNN graph can provide good clustering results much faster than using the
full graph in cases with a large number of genes.

discard_transient

The number of partitions to discard before tracking.
independent_runs

How many runs SpeakEasy2 should perform.

max_threads The maximum number of threads to use. By default this is the same as the
number of independent runs. If max_threads is greater than or equal to the
number of processing cores, all cores may run. If max_threads is less than the
number of cores, at most max_threads cores will run.

seed Random seed to use for reproducible results. SpeakEasy2 uses a different ran-
dom number generator than R, but if the seed is not explicitly set, R’s random
number generator is used create one. Because of this, setting R’s RNG will also
cause reproducible results.

target_clusters

The number of random initial labels to use.
target_partitions

Number of partitions to find per independent run.

subcluster Depth of clustering. If greater than 1, perform recursive clustering.

min_clust Smallest clusters to recursively cluster. If subcluster not set to a value greater
than 1, this has no effect.

verbose Whether to provide additional information about the clustering or not.

Value

A membership vector. If subclustering, returns a matrix with number of rows equal to the number
of recursive clustering. Each row is the membership at different hierarchical scales, such that the
last rows are the highest resolution.

Examples

Set parameters
set.seed(123) # For reproducibility
ngene <- 200
nsample <- 1000
ncluster <- 5

Create a function to simulate gene expression data
simulate_gene_expression <- function(ngene, nsample, ncluster) {

6 knn_graph

Initialize the expression matrix
expr_matrix <- matrix(0, nrow = ngene, ncol = nsample)

Create cluster centers for genes
cluster_centers <- matrix(rnorm(ncluster * nsample, mean = 5, sd = 2),

nrow = ncluster, ncol = nsample
)

Assign genes to clusters
gene_clusters <- sample(1:ncluster, ngene, replace = TRUE)

for (i in 1:ngene) {
cluster <- gene_clusters[i]
expr_matrix[i,] <- cluster_centers[cluster,] +

rnorm(nsample, mean = 0, sd = 1)
}

return(list(expr_matrix = expr_matrix, gene_clusters = gene_clusters))
}

Simulate the data
simulated_data <- simulate_gene_expression(ngene, nsample, ncluster)

Extract the expression matrix and gene clusters
expr_matrix <- simulated_data$expr_matrix
gene_clusters <- simulated_data$gene_clusters

Cluster and test quality of results
modules <- cluster_genes(expr_matrix, max_threads = 2)

knn_graph K-nearest neighbors graph

Description

Create a directed sparse graph with edges to each nodes k nearest neighbors. Nearness is calculated
as the inverse of the euclidean distance between two columns.

Usage

knn_graph(mat, k, weighted = FALSE)

Arguments

mat A matrix to be compared column-by-column.

k How many nearest neighbors to collect.

weighted By default, a binary edge is made between a node and each of it’s k closest
nodes. Set weighted to TRUE to weigh each edge by the similarity (inverse of
euclidean distance).

order_nodes 7

Value

A directed sparse adjacency matrix with k * ncol(mat) nonzero edges. Each column has k edges
connected to the k closest columns (not including itself).

Examples

Simple random graph
mat <- matrix(runif(100) > 0.75, nrow = 5)
knn_graph(mat, 3)

Don't run because loading data is slow.

if (requireNamespace("scRNAseq") &&
requireNamespace("SummarizedExperiment")) {
Single Cell RNA data
library(Matrix)

expression <- scRNAseq::FletcherOlfactoryData()
cell_types <- expression$cluster_id

Filter genes with low expression. Remove any genes with less than 10
cells with with any reads.
counts <- SummarizedExperiment::assay(expression, "counts")
indices <- rowSums(counts > 0) > 10
counts <- counts[indices,]

Normalize by shifted logarithm
target <- median(colSums(counts))
size_factors <- colSums(counts) / target
counts_norm <- log(t(t(counts) / size_factors + 1))

Dimension reduction
counts_norm <- t(prcomp(t(counts_norm), scale. = FALSE)$x)[1:50,]

adj <- knn_graph(counts_norm, 10)
}

order_nodes Group nodes by community

Description

Reorders the graph to group nodes in the same community together. Useful for viewing community
structure of a graph using a heatmap().

Usage

order_nodes(graph, membership, is_directed = "detect")

8 order_nodes

Arguments

graph The graph or adjacency matrix the membership vector was created for.

membership A vector or matrix listing node communities. The output from cluster()
(should also work for other clustering algorithms that return membership in the
same format).

is_directed Whether the graph should be treated as directed or not. By default, if the graph
is symmetric it is treated as undirected.

Details

Communities are ordered by size, so nodes in the largest community are first. Within a community,
nodes are order by highest-to-lowest degree.

If membership is in matrix form (the output from cluster() with subcluster > 1) a matrix is
returned with the indices for level one in row 1 and level n in row n. Each row reorders the com-
munities of the previous row such that, at the second level, nodes are still grouped by the first level
communities. This allows the hierarchical structure to be viewed.

See vignette for a multilevel example.

Value

An index vector or matrix. The number of rows are equal to the value of subcluster passed to
cluster().

Examples

if (require("igraph")) {
n_nodes <- 100
n_types <- 3
Mixing parameter (likelihood an edge is between communities).
mu <- 0.3
pref <- matrix(mu, n_types, n_types)
diag(pref) <- 1 - mu
g <- igraph::sample_pref(n_nodes, types = n_types, pref.matrix = pref)
Use a dense matrix representation to easily apply index.
adj <- as(g[], "matrix")
memb <- speakeasyR::cluster(adj, seed = 222, max_threads = 2)
ordering <- speakeasyR::order_nodes(adj, memb)

heatmap(adj[ordering, ordering], scale = "none", Rowv = NA, Colv = NA)

}

Index

cluster, 3
cluster(), 8
cluster_genes, 4

knn_graph, 6

order_nodes, 7

9

	cluster
	cluster_genes
	knn_graph
	order_nodes
	Index

