Package: spc4sts (via r-universe)

October 12, 2024

Type Package

Title Statistical Process Control for Stochastic Textured Surfaces Version 0.6.3 Author Anh Tuan Bui [aut, cre] and Daniel W. Apley [ths] Maintainer Anh Tuan Bui <atbui@u.northwestern.edu> Imports rpart, gridExtra, parallel Description Provides statistical process control tools for stochastic textured surfaces. The current version supports the following tools: (1) generic modeling of stochastic textured surfaces. (2) local defect monitoring and diagnostics in stochastic textured surfaces, which was proposed by Bui and Apley (2018a) [<doi:10.1080/00401706.2017.1302362>](https://doi.org/10.1080/00401706.2017.1302362). (3) global change monitoring in the nature of stochastic textured surfaces, which was proposed by Bui and Apley (2018b) [<doi:10.1080/00224065.2018.1507559>](https://doi.org/10.1080/00224065.2018.1507559). (4) computation of dissimilarity matrix of stochastic textured surface images, which was proposed by Bui and Apley (2019b) [<doi:10.1016/j.csda.2019.01.019>](https://doi.org/10.1016/j.csda.2019.01.019). License GPL-2

Encoding UTF-8 RoxygenNote 6.0.1 NeedsCompilation no Repository CRAN Date/Publication 2022-05-24 09:50:02 UTC

Contents

2 spc4sts-package

spc4sts-package *Statistical Process Control for Stochastic Textured Surfaces*

Description

Provides statistical process control tools for stochastic textured surfaces. Some tools in the package can also be used in non-SPC contexts that deal with stochastic textured surface images (see Section Details below). The current version supports the following tools:

(1) generic modeling of stochastic textured surfaces (Bui and Apley 2018a, 2018b)

(2) local defect monitoring and diagnostics in stochastic textured surfaces (Bui and Apley 2018a)

(3) global change monitoring in the nature of stochastic textured surfaces (Bui and Apley 2018b)

(4) computation of dissimilarity matrix of stochastic textured surface images (Bui and Apley 2019b).

See Bui and Apley (2021) for a vignette of this package.

Please cite this package as follows: Bui, A.T. and Apley, D.W. (2021) "spc4sts: Statistical Process Control for Stochastic Textured Surfaces in R", Journal of Quality Technology, 53, 219–242.

Details

Stochastic textured surface (STS) is the term used in Bui and Apley (2018a) to refer to a class of measurement data of material surfaces that have no distinct features other than stochastic characteristics that vary randomly. A few examples of STS data include microscopy images of material microstructure samples and images of lumber surfaces, engineered stone countertops, ceramic capacitor surfaces, and textile materials that show weave patterns (Bui and Apley 2017a, 2017b, 2019a).

For STS data, even of the same nature, each image is completely different from others on a pixelby-pixel basis. In addition, it is not straightforward to align, transform, or warp them into a common

spc4sts-package 3

"gold standard" image, as a basis for comparison. The existence of a gold standard is a fundamental requirement for most of the statistical process control (SPC) literature for profile and multivariate data that are not STSs. An example of a gold standard in non-STS data is an image of a circuit assembly with perfectly positioned chips, to which images of actual assemblies with chips positioned inaccurately are compared for SPC quality control purposes. Existing SPC methods that may be applicable to STS data rely on some form of feature extraction from the STS images (e.g., a specific frequency component from a spectral analysis of the image), but they are problem specific because prior knowledge of abnormal behavior is needed to define suitable features.

The spc4sts (Statistical Process Control for Stochastic Textured Surfaces) package is the first implementation of the methods in Bui and Apley (2018a), Bui and Apley (2018b), and Bui and Apley (2019b), and serves as the first off-the-shelf toolkit for performing SPC for general STS data without prior knowledge of abnormal behavior. The package is applicable to a wide range of materials as mentioned above, including random heterogeneous materials.

Some tools in the package can also be used in non-SPC contexts that deal with STS images. First, the STS modeling tool can be used in STS image characterization and reconstruction (e.g., powder materials micrograph characterization and materials microstructure image reconstruction). Second, the surface dissimilarity calculation tool can be used for STS image classification, clustering, and outlier detection. Some examples are medical microscopy image classification, cancer tissue image clustering, and outlying mammalian cell image detection.

Brief descriptions of the main functions of the package are provided below:

surfacemodel() builds a supervised learning model (a regression tree in this version) to characterize the statistical behavior of the given stochastic textured surface data sample.

monitoringStat() computes the monitoring statistic(s) (for local defects and/or global changes) for the given image, based on the model built from surfacemodel().

climit() establishes the control limits (for local defects and/or global changes) at the given false alarm rates based on the monitoring statistics (for local defects and/or global changes) computed for a set of in-control images (i.e., without local defects or global changes) using monitoringStat(). It also constructs the diagnostic thresholds (for diagnosing local defects) to be used for diagnoseLD().

diagnoseLD() produces a binary diagnostic image that highlights local defects (if any) in the given stochastic textured surface image.

disMat(): computes KL and/or AKL dissimilarity matrices for the given stochastic textured surface images.

See Bui and Apley (2020) for an introduction of the package.

Author(s)

Anh Tuan Bui and Daniel W. Apley

Maintainer: Anh Tuan Bui <atbui@u.northwestern.edu>

References

Bui, A.T., and Apley, D.W. (2017a), textile: Textile Images, R package version 0.1.2. https://cran.rproject.org/package=textile.

Bui, A.T., and Apley, D.W. (2017b), Textile Images 2, Mendeley Data, v1. http://dx.doi.org/10.17632/wy3pndgpcx.1.

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

Bui, A.T. and Apley, D.W. (2018b) "Monitoring for changes in the nature of stochastic textured surfaces", Journal of Quality Technology, 50, 363-378.

Bui, A.T. and Apley D.W. (2019a) "Textile Image 3", figshare, http://dx.doi.org/10.6084/m9.figshare.7619351.v1.

Bui, A.T. and Apley, D.W. (2019b) "An exploratory analysis approach for understanding variation in stochastic textured surfaces", Computational Statistics & Data Analysis, 137, 33-50.

Bui, A.T. and Apley, D.W. (2021) "spc4sts: Statistical Process Control for Stochastic Textured Surfaces in R", Journal of Quality Technology, 53, 219–242.

Examples

```
#
# See the examples in the help pages for the main functions mentioned above.
#
```


ad *One-Sample Anderson-Darling Statistic*

Description

Computes the one-sample Anderson-Darling (AD) statistic.

Usage

 $ad(r, P)$

Arguments

Value

The AD statistic.

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

See Also

[exptailecdf,](#page-11-1) [sms,](#page-21-1) [bp](#page-4-1)

Examples

img <- matrix(rnorm(100), 10, 10) ad(img, pnorm(img))

bp *Box-Pierce-Type Statistic*

Description

Compute a Box-Pierce-type (BP) statistic for pixels in a given image. bp2() cannot be used for pixels with the boundary problem, but is more efficient than bp() for other pixels.

Usage

bp(img, i1, i2, w, K) bp2(img, i1, i2, w , K)

Arguments

Value

The BP statistic.

Warning

For pixels with the boundary problem, bp() must be used.

Note

bp() is only used in sms() for pixels with the boundary problem. It is less efficient than bp2() for other pixels.

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

See Also

[kerMat,](#page-14-1) [spaCov,](#page-22-1) [sms,](#page-21-1) [ad](#page-3-1)

Examples

```
img <- matrix(rnorm(100),10,10)
w \le -3K < - kerMat((w + 1)/2)
## for pixels with the boundary problem, e.g., Pixel (5,1),
# running bp2(img,5,1,w,K) will produce an error; instead, use bp() in this case:
bp(img,5,1,w,K)
## for pixels without the boundary problem, e.g., Pixel (5,5),
# both can be used, but bp2() is more efficient than bp()
bp2(img,5,5,w,K)
bp(img,5,5,w,K)
```
climit *Control Limit and Diagnostic Threshold Construction*

Description

Establish control limits (for local defects and/or global changes) and diagnostic thresholds (for local defects) from the given Phase I images. climit is used for the first time. climit2 can update the control limits and diagnostic thresholds given the output of climit. See Warning. To plot histograms of the Phase I monitoring statistics, use plot.climit.

Usage

```
climit(imgs, fa.rate, model, type, stat = c("ad", "bp"), w = 5,
       nD = 10, no_cores = 1, verbose = FALSE)
climit2(cl, fa.rate, nD)
```
Arguments

climit **7**

Value

An object of class climit. See [climit.object](#page-7-1).

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

Bui, A.T. and Apley, D.W. (2018b) "Monitoring for changes in the nature of stochastic textured surfaces", Journal of Quality Technology, 50, 363-378.

See Also

[monitoringStat,](#page-16-1) [diagnoseLD](#page-9-1)

Examples

```
## build the in-control model
img \le sarGen(m = 50, n = 50, border = 50) # training image
model \le surfacemodel(img, nb = 1, keep.residuals = TRUE)
## after that, generate Phase I images
imgs \leq -array(0, c(50, 50, 3))for (j in 1:dim(imgs)[3])
  imgs[,jj \leq sarsGen(phi1 = .6, phi2 = .35, m = 50, n = 50, border = 50)## establish control limits and diagnostic thresholds
# construct control limits (for both local defects and global changes)
# and diagnostic thresholds (for local defects) for the first time
cl \le climit(imgs, fa.rate = .05, model, type = 1:2, stat = "ad", w = 5, nD = 50)
cl
# update new control limit and diagnostic threshold
cl2 \leq climit2(cl, \text{ } fa.rate = .01, \text{ } nD = 5)
```

```
# plots histograms of Phase I monitoring statistics
plot(cl2)
## after that, monitor a Phase II image as follows:
# create a new image with a local defect
img2 \le sarGen(phi1 = .6, phi2 = .35, m = 50, n = 50, border = 50) # simulate a new image
img3 <- imposeDefect(img2)$img # add a local defect to this image
ms3 <- monitoringStat(img = img3, model = model, cl = cl2) # computing monitoring statistics
# now create a new image with parameters reduced by 5% (representing a global change)
img4 <- sarGen(phi1 = .6*.95, phi2 = .35*.95, m = 50, n = 50, border = 50)
ms4 <- monitoringStat(img = img4, model = model, cl = cl2) # computing monitoring statistics
## diagnose for local defect regions in img3
bimg \le diagnoseLD(ms3, dth = 9, plot.it = FALSE) # use climit() to find dth
#par(mfcol = c(1, 2))#par(mar = c(2, 0.5, 1, 0.5))
image(xaxt = 'n', yaxt = 'n', as_matrix(t(apply(img3, 2, rev))),col = gray((0:32)/32), xlab = '', ylab = '', asp = 1, bty = 'n')
image(xaxt = 'n', yaxt = 'n', as_matrix(t(aply(bimg, 2, rev))),col = gray(c(1, .5)), xlab = '', ylab = '', asp = 1, bty = 'n')#
# NOTE: The above example is just for quick illustration. To obtain a good
# control limit, the training image should be representative (e.g., set
# m = 250, n = 250, and border = 200). The number of Phase I images also
# needs to be large (e.g., 100 images or more).
#
# For real images in a textile application, use the R data package "textile".
#
```
climit.object *Control Limit and Diagnostic Threshold Construction Object*

Description

Tthe object returned by climit or climit2.

Value

dataPrep 99 and 2008 and 2008

globalStat contains values for global change monitoring: PIstats is a vector that stores the monitoring statistics computed for all the Phase I images. xval is the xval argument of the climit function. control.limit.trans_chi2 and control.limit.ecdf are a scalar/vector that stores the established control limit(s) using the parametric approximation of the empirical distributions and the empirical distributions directly, respectively. The former is recommended when the number of Phase I images is not enough for using directly the empirical distribution.

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

Bui, A.T. and Apley, D.W. (2018b) "Monitoring for changes in the nature of stochastic textured surfaces", Journal of Quality Technology, 50, 363-378.

See Also

[climit](#page-5-1)

dataPrep *Neighborhood Data Preparation*

Description

Prepares a neighborhood data from a given image, using the left-to-right then top-to-bottom raster scan order (see Bui and Apley 2018a).

Usage

```
dataPrep(img, nb, vars = NULL, subsample = 1)
```
Arguments

Value

A dataframe with column names "V1", "V2", "V3", ... The first column "V1" contains the response pixel, whereas the other columns contain pixels in the neighborhood (with size nb) of the response pixel.

Note

Only rows without missing values (corresponding to pixels with full neighborhood) are returned.

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

See Also

[surfacemodel,](#page-23-1) [monitoringStat](#page-16-1)

Examples

```
## construct a neighborhood data for an unrealistically small mock image (7x9 pixels).
mock.img \leq matrix(sample(0:255, 63, replace = TRUE), 7, 9)
mock.img
dataPrep(img = mock.img, nb = 2) # the same with nb = c(2, 2, 2)## select only columns "V2", "V5", and "V13" in the output
dataPrep(img = mock.img, nb = 2, vars = c("V2", "V5", "V13"))## return only a half number of rows
dataPrep(img = mock img, nb = 2, subsample = .5)
```
diagnoseLD *Diagnose Local Defects on Stochastic Textured Surfaces*

Description

Produces a binary diagnostic image of a given stochastic textured surface image based on its spatial moving statistics.

Usage

diagnoseLD(ms, dth, plot.it = TRUE)

disMat 11

Arguments

Value

The binary diagnostic image in the matrix format.

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

See Also

[monitoringStat,](#page-16-1) [climit](#page-5-1)

Examples

see the examples in the help file of climit() ?climit

Pairwise Dissimilarity Matrix of Stochastic Textured Surfaces

Description

Compute KL and ALK dissimiarlity matrices for the given stochastic textured surface images.

Usage

```
disMat(imgs, nb, cp=1e-3, subsample = c(1, .5),
                   standardize = TRUE, keep.fits = FALSE, verbose=FALSE)
```
Arguments

Value

the KL and AKL dissimilarity matrices.

Author(s)

Anh Bui

References

Bui, A.T. and Apley, D.W. (2019b) "An exploratory analysis approach for understanding variation in stochastic textured surfaces", Computational Statistics & Data Analysis, 137, 33-50.

Examples

```
## generate images: the first two are similar, the third is different with the other two
phi1 \leq c(.6, .6, .5)phi2 <- c(.35, .35, .3)
imgs <- array(0, c(100,100,3))
for (j in 1:dim(imgs)[3])
  imgs[,, j] <- sarGen(phi1 = phi1[j], phi2 = phi2[j], m = 100, n = 100, border = 50)
## compute KL and AKL dissimilarity matrices
disMat(ings = imgs, nb = 1)
```


Description

Computes the empirical cumulative distribution funciton (ecdf) of a given vector of observations, and approximates the tails of the ecdf with exponential curves.

Usage

```
exptailecdf(x, N = max(2, 0.002 * length(x)), m = min(N, 5))
```
exptailecdf 13

Arguments

Details

An ecdf has a probability of 0 or 1 for any new observation that lies beyond the range of the data of the cedf. This is a problem when using the ecdf as the reference cdf for the one-sample Anderson-Darling (AD) statistic because the computational formula of the AD statistic is infinite with such probabilities. The ecdf with exponential tail approximation replaces the tails of the ecdf with exponential curves, which extend to infinity, to solve this problem. The exponential curves are estimated using the observations at the tails of the ecdf. See Bui and Apley (2018a) for more details.

Value

An object of class exptailecdf. See [exptailecdf.object](#page-13-1)

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

See Also

[exptailecdf.object,](#page-13-1) [pexptailecdf,](#page-17-1) [ecdf,](#page-0-0) [ad](#page-3-1)

Examples

```
r <- rnorm(1000)
Fr <- exptailecdf(r)
```


Description

The object returned by exptailecdf.

Value

Author(s)

Anh Bui

See Also

[exptailecdf](#page-11-1)

Description

Superimposes a local defect (a 2D stochastic AR(1) image from sarGen) on a given image.

Usage

 $imposeDefect(img, loc = NULL, a = 4, b = 10,eps = 0.05, phi1 = 0, phi2 = 0, sigma = 0.01)$

Arguments

kerMat 15

Details

The defect is generated using [sarGen](#page-18-1).

Value

A list of the following:

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

Examples

```
## generate an image without defects
img \le sarGen(m = 100, n = 100, border = 50)
image(img,col=gray(c(0:32)/32))
```
superimpose a defect img2 <- imposeDefect(img) image(img2\$img,col=gray(c(0:32)/32))

kerMat *Epanechnikov quadratic kernel matrix*

Description

Computes the Epanechnikov quadratic kernel in 2-D, and returns the positive kernel values.

Usage

kerMat(p)

Arguments

p the bandwidth parameter

Value

A matrix containing all the positive kernel values

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

See Also

[bp](#page-4-1)

Examples

kerMat(5)

mbChange *Matchbox Change*

Description

Modifies a given image to have a matchbox change.

Usage

mbChange(img, alpha = 1)

Arguments

Details

Each column i of img is modified as follows: img[2:nrow(img), i] <- (1 - alpha*(i-1)/ncol(img))*img[2:nrow(img) + alpha*(i-1)/ncol(img)*img[1:(nrow(img)-1),i]

Value

The matchboxed image in the matrix format.

Author(s)

Anh Bui

References

Bui, A.T. and Apley, D.W. (2018b) "Monitoring for changes in the nature of stochastic textured surfaces", Journal of Quality Technology, 50, 363-378.

Description

Computes monitoring statistic(s) for local defects (see Bui and Apley 2018a) and/or global changes (see Bui and Apley 2018b) for a given stochastic textured surface image.

Usage

monitoringStat(img, model, type, stat = c("ad", "bp"), w, cl = NULL, verbose = FALSE)

Arguments

Value

A monitoringStat object containing the following components:

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

Bui, A.T. and Apley, D.W. (2018b) "Monitoring for changes in the nature of stochastic textured surfaces", Journal of Quality Technology, 50, 363-378.

See Also

[surfacemodel,](#page-23-1) [sms,](#page-21-1) [dataPrep](#page-8-1)

Examples

run the example in the help file of climit() ?climit

pexptailecdf *Predictions from an Exptailecdf Object*

Description

Returns the values of the exptailecdf object at given observations.

Usage

pexptailecdf(Fx, y)

Arguments

Value

An object of the same type with y that stores the evaluations of the exptailecdf object at the given y.

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

See Also

[exptailecdf.object,](#page-13-1) [exptailecdf](#page-11-1)

plotce that the set of t

Examples

```
r <- rnorm(1000)
Fr <- exptailecdf(r)
pexptailecdf(Fr, max(r) + .1)
pexptailecdf(Fr, c(min(r) - .1, max(r) + .1))pexptailecdf(Fr, matrix(c(.8, .9, 1, 1.1), 2, 2))
```
plotcc *Control Chart Plotting*

Description

Plotting a control chart.

Usage

plotcc(statsII, CL, statsI = NULL)

Arguments

Value

No return value, called for plotting control charts.

Author(s)

Anh Bui

sarGen *Stochastic Autoregressive Image Generator*

Description

Generates a 2D stochastic AR(1) image.

Usage

```
sarGen(phi1 = .6, phi2 = .35, sigma = .01, m = 250, n = 250, border = 200)
```
Arguments

Details

The pixel $y(i,j)$ of the 2D AR(1) process satisfies: $y(i,j) = \text{phi1*}y(i-1,j) + \text{phi2*}y(i,j-1) +$ e(i,j), where e(i,j) follows a zero-mean Gaussian distribution with standard deviation of sigma. The process is then rescaled to [0, 255] to produce a greyscale image.

Value

The generated image in the matrix format.

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

See Also

[imposeDefect](#page-13-2)

Examples

```
## generate an image without defects
img <- sarGen(m = 100, n = 100, border = 50)
image(img,col=gray(c(0:32)/32))
```


Description

Shows the neighborhood corresponding to the left-to-right then top-to-bottom raster scan order with additional information: variable names of the data frame returned by dataPrep, predictors used in the model returned by surfacemodel, or their percentage importance in the model (currently extracted from the rpart object). This function is useful for choosing a good neighborhood size and understanding relationship between pixels (e.g., periodicity).

Usage

```
showNb(model, what = c("neighborhood", "predictors", "importance"), plot.it = TRUE)
```
Arguments

Value

A matrix that contains the information for the plot (using the grid.table function).

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

See Also

[dataPrep,](#page-8-1) [surfacemodel](#page-23-1)

Examples

```
## show the neighorhood with variables names of the data frame constructed by dataPrep()
img \le matrix(1:25, 5, 5) # an image of size 5x5 pixels
img
dataPrep(img, 2)
showNb(c(2, 2, 2)) # showNb(2) has the same effect
## show the neighorhood with predictors and their importance used in the model returned
## by surfacemodel()
img \le sarGen(m = 100, n = 100, border = 50) # training image
model \le surfacemodel(img, nb = 3)
showNb(model, "predictors") # show predictors
showNb(model, "importance") # show predictor percentage importance
```
sms *Spatial Moving Statistic*

Description

Computes the spatial moving statistics (SMS) for pixels in a given image.

Usage

sms(img, stat = $c("ad", "bp")$, w, Fr , gamma = $(w + 1)/2)$

Arguments

Value

A matrix containing the SMS values computed for the pixels in img.

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

 $spaCov$ 23

See Also

[ad,](#page-3-1) [bp,](#page-4-1) [monitoringStat](#page-16-1)

Examples

```
img <- matrix(rnorm(100),10,10)
ms.ad <- sms(img, "ad", 3, exptailecdf(rnorm(1000)))
ms.bp \leftarrow sms(img, "bp", 3)
```
spaCov *Spatial Weighted Covariance*

Description

Computes the spatial weighted covariance of a pair of pixels in a given image.

Usage

spaCov(img, i1, i2, j1, j2, K)

Arguments

Value

The spatial weighted covariance.

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

See Also

[kerMat,](#page-14-1) [bp](#page-4-1)

Description

Provides a statistical represenation for a given stochastic textured surface image via a supervised learning model (a regression tree in this version).

Usage

surfacemodel(img, nb, trim.vars = TRUE, $cp = 1e-5$, xval = 5, standardize = TRUE, subsample = 1, verbose = FALSE, keep.residuals = FALSE)

Arguments

Value

A surfacemodel object containing the following components:

surfacemodel 25

Note

The best value for the neighborhood size nb argument can be chosen by comparing the crossvalidated R-squared values R2cv of models built with different values of nb. Users may use 'surfacemodel' with some initial large nb, and then use the showNb() function to visualize the importance of the predictors used in the fitted model to have some idea about the range of important predictors to reduce (or increase if necessary) nb.

After finalizing the choice of nb, it is better to set trim.vars = TRUE to further remove some unused variables within that neighborhood.

The raster scan order for constructing the neiborhood data in dataPrep() is left-to-right then topto-bottom (see Bui and Apley 208a). Rotating the image by every 90 degrees could be used to quicly change to some other raster scan orders. Again, the cross-validated R-squared R2cv output can be used to select the best raster scan order. See the below examples.

plot.surfacemodel() is a generic function for surfacemodel() that produces two plots: a plot of the cross-validation R-squared against the complexity parameter and a histogram of the residuals (along with a normal density curve) of the fitted model.

Author(s)

Anh Bui

References

Bui, A.T. and Apley., D.W. (2018a) "A Monitoring and Diagnostic Approach for Stochastic Textured Surfaces", Technometrics, 60, 1-13.

See Also

[dataPrep,](#page-8-1) [showNb,](#page-20-1) [monitoringStat,](#page-16-1) [rpart](#page-0-0)

Examples

```
## fit a model to characterize the surface of a simulated image:
img \le sarGen(m = 50, n = 50, border = 50) # training image
model <- surfacemodel(img, nb = 1, keep.residuals = TRUE) # see Note above for how to select nb
model
# plot cross-validation R-squared against complexity parameter and residual histogram
plot(model, type=1:2)
## change the raster scan order from left-to-right then top-to-bottom to
## left-to-right then bottom-to-top, and re-fit the model
## (see the Note section above)
img2 <- as.matrix(t(apply(img , 2, rev)))
model2 \le surfacemodel(img2, nb = 1)
model2$R2cv # cross-validation R-squared
```
Description

Computes time-weighted moving statistics EWMA or tabular CUSUM

Usage

twms(x, type = $c("ewma", "cusum"),$ lambda, mu0, K, x0 = 0)

Arguments

Value

the EWMA or tabular CUSUM statistics

Author(s)

Anh Bui

Examples

z <- twms(1:10, "ewma", lambda=0.2) C <- twms(1:10, "cusum", mu0=5, K=1)

Index

ad, [4,](#page-3-0) *[6](#page-5-0)*, *[13](#page-12-0)*, *[23](#page-22-0)* bp, *[5](#page-4-0)*, [5,](#page-4-0) *[16](#page-15-0)*, *[23](#page-22-0)* bp2 *(*bp*)*, [5](#page-4-0) climit, [6,](#page-5-0) *[9](#page-8-0)*, *[11](#page-10-0)* climit.object, *[7](#page-6-0)*, [8](#page-7-0) climit2 *(*climit*)*, [6](#page-5-0) dataPrep, [9,](#page-8-0) *[18](#page-17-0)*, *[21](#page-20-0)*, *[25](#page-24-0)* diagnoseLD, *[7](#page-6-0)*, [10](#page-9-0) disMat, [11](#page-10-0) ecdf, *[13](#page-12-0)* exptailecdf, *[5](#page-4-0)*, [12,](#page-11-0) *[14](#page-13-0)*, *[18](#page-17-0)*, *[22](#page-21-0)* exptailecdf.object, *[13](#page-12-0)*, [14,](#page-13-0) *[18](#page-17-0)* imposeDefect, [14,](#page-13-0) *[20](#page-19-0)* kerMat, *[6](#page-5-0)*, [15,](#page-14-0) *[22,](#page-21-0) [23](#page-22-0)* mbChange, [16](#page-15-0) monitoringStat, *[7](#page-6-0)*, *[10,](#page-9-0) [11](#page-10-0)*, [17,](#page-16-0) *[23](#page-22-0)*, *[25](#page-24-0)* pexptailecdf, *[13](#page-12-0)*, [18](#page-17-0) plot.climit *(*climit*)*, [6](#page-5-0) plot.surfacemodel *(*surfacemodel*)*, [24](#page-23-0) plotcc, [19](#page-18-0) print.climit *(*climit*)*, [6](#page-5-0) print.exptailecdf *(*exptailecdf*)*, [12](#page-11-0) print.monitoringStat *(*monitoringStat*)*, [17](#page-16-0) print.surfacemodel *(*surfacemodel*)*, [24](#page-23-0) rpart, *[25](#page-24-0)* rpart.control, *[24](#page-23-0)* sarGen, *[15](#page-14-0)*, [19](#page-18-0) showNb, [21,](#page-20-0) *[25](#page-24-0)* sms, *[5,](#page-4-0) [6](#page-5-0)*, *[18](#page-17-0)*, [22](#page-21-0) spaCov, *[6](#page-5-0)*, [23](#page-22-0)

spc4sts *(*spc4sts-package*)*, [2](#page-1-0) spc4sts-package, [2](#page-1-0) surfacemodel, *[10](#page-9-0)*, *[18](#page-17-0)*, *[21](#page-20-0)*, [24](#page-23-0)

twms, [26](#page-25-0)