
Package: sparseGAM (via r-universe)
September 8, 2024

Type Package

Title Sparse Generalized Additive Models

Version 1.0

Date 2021-05-29

Author Ray Bai

Maintainer Ray Bai <raybaistat@gmail.com>

Description Fits sparse frequentist GAMs (SF-GAM) for continuous and
discrete responses in the exponential dispersion family with
the group lasso, group smoothly clipped absolute deviation
(SCAD), and group minimax concave (MCP) penalties
<doi:10.1007/s11222-013-9424-2>. Also fits sparse Bayesian
generalized additive models (SB-GAM) with the spike-and-slab
group lasso (SSGL) penalty of Bai et al. (2021)
<doi:10.1080/01621459.2020.1765784>. B-spline basis functions
are used to model the sparse additive functions. Stand-alone
functions for group-regularized negative binomial regression,
group-regularized gamma regression, and group-regularized
regression in the exponential dispersion family with the SSGL
penalty are also provided.

License GPL-3

Depends R (>= 3.6.0)

Imports stats, splines, MASS, pracma, grpreg

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-05-31 10:10:02 UTC

Contents
cv.grpreg.gamma . 2
cv.grpreg.nb . 4
cv.SBGAM . 5
cv.SFGAM . 7

1

https://doi.org/10.1007/s11222-013-9424-2
https://doi.org/10.1080/01621459.2020.1765784

2 cv.grpreg.gamma

cv.SSGL . 9
grpreg.gamma . 12
grpreg.nb . 14
SBGAM . 17
SFGAM . 20
SSGL . 22

Index 26

cv.grpreg.gamma Cross-validation for Group-regularized Gamma Regression

Description

This function implements K-fold cross-validation for group-regularized gamma regression with a
known shape parameter ν and the log link. For a description of group-regularized gamma regres-
sion, see the description for the grpreg.gamma function.

Our implementation is based on the least squares approximation approach of Wang and Leng
(2007), and hence, the function does not allow the total number of covariates p to be greater than
K−1
K × sample size, where K is the number of folds.

Usage

cv.grpreg.gamma(y, X, groups, gamma.shape=1, penalty=c("gLASSO","gSCAD","gMCP"),
nfolds=10, weights, taper, nlambda=100, lambda, max.iter=10000,
tol=1e-4)

Arguments

y n× 1 vector of responses.

X n × p design matrix, where the jth column of X corresponds to the jth overall
covariate.

groups p-dimensional vector of group labels. The jth entry in groups should contain
either the group number or the name of the factor level that the jth covariate
belongs to. groups must be either a vector of integers or factors.

gamma.shape known shape parameter ν in Gamma(µi, ν) distribution for the responses. De-
fault is gamma.shape=1.

penalty group regularization method to use on the groups of coefficients. The options
are "gLASSO", "gSCAD", and "gMCP". To implement cross-validation for gamma
regression with the SSGL penalty, use the cv.SSGL function.

nfolds number of folds K to use in K-fold cross-validation. Default is nfolds=10.

weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

taper tapering term γ in group SCAD and group MCP controlling how rapidly the
penalty tapers off. Default is taper=4 for group SCAD and taper=3 for group
MCP. Ignored if "gLASSO" is specified as the penalty.

cv.grpreg.gamma 3

nlambda number of regularization parameters L. Default is nlambda=100.

lambda grid of L regularization parameters. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

max.iter maximum number of iterations in the algorithm. Default is max.iter=10000.

tol convergence threshold for algorithm. Default is tol=1e-4.

Value

The function returns a list containing the following components:

lambda L× 1 vector of regularization parameters lambda used to fit the model. lambda
is displayed in descending order.

cve L× 1 vector of mean cross-validation error across all K folds. The kth entry in
cve corresponds to the kth regularization parameter in lambda.

cvse L×1 vector of standard errors for cross-validation error across all K folds. The
kth entry in cvse corresponds to the kth regularization parameter in lambda.

lambda.min value of lambda that minimizes mean cross-validation error cve.

References

Breheny, P. and Huang, J. (2015). "Group descent algorithms for nonconvex penalized linear and
logistic regression models with grouped predictors." Statistics and Computing, 25:173-187.

Wang, H. and Leng, C. (2007). "Unified LASSO estimation by least squares approximation." Jour-
nal of the American Statistical Association, 102:1039-1048.

Examples

Generate data
set.seed(12345)
X = matrix(runif(100*11), nrow=100)
n = dim(X)[1]
groups = c(1,1,1,2,2,2,3,3,4,5,5)
true.beta = c(-1,1,1,0,0,0,0,0,0,1.5,-1.5)

Generate responses from gamma regression with known shape parameter 1
eta = crossprod(t(X), true.beta)
shape = 1
y = rgamma(n, rate=shape/exp(eta), shape=shape)

10-fold cross-validation for group-regularized gamma regression
with the group LASSO penalty
gamma.cv = cv.grpreg.gamma(y, X, groups, penalty="gLASSO")

Plot cross-validation curve
plot(gamma.cv$lambda, gamma.cv$cve, type="l", xlab="lambda", ylab="CVE")
lambda which minimizes mean CVE
gamma.cv$lambda.min

4 cv.grpreg.nb

cv.grpreg.nb Cross-validation for Group-regularized Negative Binomial Regression

Description

This function implements K-fold cross-validation for group-regularized negative binomial regres-
sion with a known size parameter α and the log link. For a description of group-regularized negative
binomial regression, see the description for the grpreg.nb function.

Our implementation is based on the least squares approximation approach of Wang and Leng
(2007), and hence, the function does not allow the total number of covariates p to be greater than
K−1
K × sample size, where K is the number of folds.

Usage

cv.grpreg.nb(y, X, groups, nb.size=1, penalty=c("gLASSO","gSCAD","gMCP"),
nfolds=10, weights, taper, nlambda=100, lambda, max.iter=10000,
tol=1e-4)

Arguments

y n× 1 vector of responses.

X n × p design matrix, where the jth column of X corresponds to the jth overall
covariate.

groups p-dimensional vector of group labels. The jth entry in groups should contain
either the group number or the name of the factor level that the jth covariate
belongs to. groups must be either a vector of integers or factors.

nb.size known size parameter α in NB(α, µi) distribution for the responses. Default is
nb.size=1.

penalty group regularization method to use on the groups of coefficients. The options are
"gLASSO", "gSCAD", and "gMCP". To implement cross-validation for negative
binomoial regression with the SSGL penalty, use the cv.SSGL function.

nfolds number of folds K to use in K-fold cross-validation. Default is nfolds=10.

weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

taper tapering term γ in group SCAD and group MCP controlling how rapidly the
penalty tapers off. Default is taper=4 for group SCAD and taper=3 for group
MCP. Ignored if "gLASSO" is specified as the penalty.

nlambda number of regularization parameters L. Default is nlambda=100.

lambda grid of L regularization parameters. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

max.iter maximum number of iterations in the algorithm. Default is max.iter=10000.

tol convergence threshold for algorithm. Default is tol=1e-4.

cv.SBGAM 5

Value

The function returns a list containing the following components:

lambda L× 1 vector of regularization parameters lambda used to fit the model. lambda
is displayed in descending order.

cve L× 1 vector of mean cross-validation error across all K folds. The kth entry in
cve corresponds to the kth regularization parameter in lambda.

cvse L×1 vector of standard errors for cross-validation error across all K folds. The
kth entry in cvse corresponds to the kth regularization parameter in lambda.

lambda.min value of lambda that minimizes mean cross-validation error cve.

References

Breheny, P. and Huang, J. (2015). "Group descent algorithms for nonconvex penalized linear and
logistic regression models with grouped predictors." Statistics and Computing, 25:173-187.

Wang, H. and Leng, C. (2007). "Unified LASSO estimation by least squares approximation." Jour-
nal of the American Statistical Association, 102:1039-1048.

Examples

Generate data
set.seed(1234)
X = matrix(runif(100*16), nrow=100)
n = dim(X)[1]
groups = c(1,1,1,2,2,2,2,3,4,5,5,6,7,8,8,8)
true.beta = c(-2,2,2,0,0,0,0,0,0,1.5,-1.5,0,0,-2,2,2)

Generate count responses from negative binomial regression
eta = crossprod(t(X), true.beta)
y = rnbinom(n,size=1, mu=exp(eta))

10-fold cross-validation for group-regularized negative binomial
regression with the group SCAD penalty
nb.cv = cv.grpreg.nb(y,X,groups,penalty="gMCP")

Plot cross-validation curve
plot(nb.cv$lambda, nb.cv$cve, type="l", xlab="lambda", ylab="CVE")
lambda which minimizes mean CVE
nb.cv$lambda.min

cv.SBGAM Cross-Validation for Sparse Bayesian Generalized Additive Model

Description

This function implements K-fold cross-validation for sparse Bayesian generalized additive models
(GAMs) with the spike-and-slab group lasso (SSGL) penalty. The identity link function is used for
Gaussian GAMs, the logit link is used for binomial GAMs, and the log link is used for Poisson,
negative binomial, and gamma GAMs.

6 cv.SBGAM

Usage

cv.SBGAM(y, X, df=6,
family=c("gaussian","binomial","poisson","negativebinomial","gamma"),
nb.size=1, gamma.shape=1, nfolds=5, nlambda0=20, lambda0, lambda1,
a, b, max.iter=100, tol = 1e-6, print.fold=TRUE)

Arguments

y n× 1 vector of responses.

X n × p design matrix, where the jth column of X corresponds to the jth overall
covariate.

df number of B-spline basis functions to use in each basis expansion. Default is
df=6, but the user may specify degrees of freedom as any integer greater than or
equal to 3.

family exponential dispersion family. Allows for "gaussian", "binomial", "poisson",
"negativebinomial", and "gamma". Note that for "negativebinomial", the
size parameter must be specified, while for "gamma", the shape parameter must
be specified.

nb.size known size parameter α in NB(α, µi) distribution for negative binomial re-
sponses. Default is nb.size=1. Ignored if family is not "negativebinomial".

gamma.shape known shape parameter ν in Gamma(µi, ν) distribution for gamma responses.
Default is gamma.shape=1. Ignored if family is not "gamma".

nfolds number of folds K to use in K-fold cross-validation. Default is nfolds=5.

nlambda0 number of spike hyperparameter L. Default is nlambda0=20.

lambda0 grid of L spike hyperparameters λ0. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

lambda1 slab hyperparameter λ1 in the SSGL prior. Default is lambda1=1.

a shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is a=1.

b shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is b=dim(X)[2].

max.iter maximum number of iterations in the algorithm. Default is max.iter=100.

tol convergence threshold for algorithm. Default is tol=1e-6.

print.fold Boolean variable for whether or not to print the current fold in the algorithm.
Default is print.fold=TRUE.

Value

The function returns a list containing the following components:

lambda0 L× 1 vector of spike hyperparameters lambda0 used to fit the model. lambda0
is displayed in descending order.

cve L× 1 vector of mean cross-validation error across all K folds. The kth entry in
cve corresponds to the kth regularization parameter in lambda0.

cv.SFGAM 7

cvse L×1 vector of standard errors for cross-validation error across all K folds. The
kth entry in cvse corresponds to the kth regularization parameter in lambda0.

lambda0.min value of lambda0 that minimizes mean cross-validation error cve.

References

Bai R. (2021). "Spike-and-slab group lasso for consistent Bayesian estimation and variable selec-
tion in non-Gaussian generalized additive models." arXiv pre-print arXiv:2007.07021.

Bai, R., Moran, G. E., Antonelli, J. L., Chen, Y., and Boland, M.R. (2021). "Spike-and-slab group
lassos for grouped regression and sparse generalized additive models." Journal of the American
Statistical Association, in press.

Examples

Generate data
set.seed(12345)
X = matrix(runif(30*3), nrow=30)
n = dim(X)[1]
y = 2.5*sin(pi*X[,1]) + rnorm(n)

K-fold cross-validation for 4 degrees of freedom and 4 values of lambda0
Note that if user does not specify lambda0, cv.SBGAM chooses a grid automatically.

cv.mod = cv.SBGAM(y, X, df=4, family="gaussian", lambda0=seq(from=25,to=5,by=-10))

Plot CVE curve
plot(cv.mod$lambda0, cv.mod$cve, type="l", xlab="lambda0", ylab="CVE")
lambda which minimizes cross-validation error
cv.mod$lambda0.min

cv.SFGAM Sparse Frequentist Generalized Additive Models

Description

This function implements K-fold cross-validation for sparse frequentist generalized additive mod-
els (GAMs) with the group LASSO, group SCAD, and group MCP penalties. The identity link
function is used for Gaussian GAMs, the logit link is used for binomial GAMs, and the log link is
used for Poisson, negative binomial, and gamma GAMs.

Usage

cv.SFGAM(y, X, df=6,
family=c("gaussian","binomial", "poisson", "negativebinomial","gamma"),
nb.size=1, gamma.shape=1, penalty=c("gLASSO","gMCP","gSCAD"), taper,
nfolds=10, nlambda=100, lambda, max.iter=10000, tol=1e-4)

8 cv.SFGAM

Arguments

y n× 1 vector of responses.

X n × p design matrix, where the jth column of X corresponds to the jth overall
covariate.

df number of B-spline basis functions to use in each basis expansion. Default is
df=6, but the user may specify degrees of freedom as any integer greater than or
equal to 3.

family exponential dispersion family. Allows for "gaussian", "binomial", "poisson",
"negativebinomial", and "gamma". Note that for "negativebinomial", the
size parameter must be specified, while for "gamma", the shape parameter must
be specified.

nb.size known size parameter α in NB(α, µi) distribution for negative binomial re-
sponses. Default is nb.size=1. Ignored if family is not "negativebinomial".

gamma.shape known shape parameter ν in Gamma(µi, ν) distribution for gamma responses.
Default is gamma.shape=1. Ignored if family is not "gamma".

penalty group regularization method to use on the groups of basis coefficients. The
options are "gLASSO", "gSCAD", and "gMCP". To implement sparse GAMs with
the SSGL penalty, use the SBGAM function.

taper tapering term γ in group SCAD and group MCP controlling how rapidly the
penalty tapers off. Default is taper=4 for group SCAD and taper=3 for group
MCP. Ignored if "gLASSO" is specified as the penalty.

nfolds number of folds K to use in K-fold cross-validation. Default is nfolds=10.

nlambda number of regularization parameters L. Default is nlambda=100.

lambda grid of L regularization parameters. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

max.iter maximum number of iterations in the algorithm. Default is max.iter=10000.

tol convergence threshold for algorithm. Default is tol=1e-4.

Value

The function returns a list containing the following components:

lambda L× 1 vector of regularization parameters lambda used to fit the model. lambda
is displayed in descending order.

cve L× 1 vector of mean cross-validation error across all K folds. The kth entry in
cve corresponds to the kth regularization parameter in lambda.

cvse L×1 vector of standard errors for cross-validation error across all K folds. The
kth entry in cvse corresponds to the kth regularization parameter in lambda.

lambda.min value of lambda that minimizes mean cross-validation error cve.

cv.SSGL 9

References

Breheny, P. and Huang, J. (2015). "Group descent algorithms for nonconvex penalized linear and
logistic regression models with grouped predictors." Statistics and Computing, 25:173-187.

Wang, H. and Leng, C. (2007). "Unified LASSO estimation by least squares approximation." Jour-
nal of the American Statistical Association, 102:1039-1048.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68: 49-67.

Examples

Generate data
set.seed(12345)
X = matrix(runif(100*20), nrow=100)
n = dim(X)[1]
y = 5*sin(2*pi*X[,1])-5*cos(2*pi*X[,2]) + rnorm(n)

Test data with 50 observations
X.test = matrix(runif(50*20), nrow=50)

Fit sparse Gaussian generalized additive model to data with the MCP penalty
gam.mod = SFGAM(y, X, X.test, family="gaussian", penalty="gMCP")

The model corresponding to the 75th tuning parameter
gam.mod$lambda[75]
gam.mod$classifications[,75] ## The covariate index is listed first

Plot first function f_1(x_1) in 75th model
x1 = X.test[,1]
Estimates of all 20 function evaluations on test data
f.hat = gam.mod$f.pred[[75]]
Extract estimates of f_1
f1.hat = f.hat[,1]

Plot X_1 against f_1(x_1)
plot(x1[order(x1)], f1.hat[order(x1)], xlab=expression(x[1]),

ylab=expression(f[1](x[1])))

cv.SSGL Cross-Validation for Spike-and-Slab Group Lasso Regression

Description

This function implements K-fold cross-validation for group-regularized regression in the exponen-
tial dispersion family with the spike-and-slab group lasso (SSGL) penalty. The identity link function
is used for Gaussian regression, the logit link is used for binomial regression, and the log link is
used for Poisson, negative binomial, and gamma regression.

10 cv.SSGL

Usage

cv.SSGL(y, X, groups,
family=c("gaussian","binomial","poisson","negativebinomial","gamma"),
nb.size=1, gamma.shape=1, weights, nfolds=5, nlambda0=20,
lambda0, lambda1, a, b, max.iter=100, tol=1e-6, print.fold=TRUE)

Arguments

y n× 1 vector of responses.

X n × p design matrix, where the jth column of X corresponds to the jth overall
covariate.

groups p-dimensional vector of group labels. The jth entry in groups should contain
either the group number or the name of the factor level that the jth covariate
belongs to. groups must be either a vector of integers or factors.

family exponential dispersion family. Allows for "gaussian", "binomial", "poisson",
"negativebinomial", and "gamma". Note that for "negativebinomial", the
size parameter must be specified, while for "gamma", the shape parameter must
be specified.

nb.size known size parameter α in NB(α, µi) distribution for negative binomial re-
sponses. Default is nb.size=1. Ignored if family is not "negativebinomial".

gamma.shape known shape parameter ν in Gamma(µi, ν) distribution for gamma responses.
Default is gamma.shape=1. Ignored if family is not "gamma".

weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

nfolds number of folds K to use in K-fold cross-validation. Default is nfolds=5.

nlambda0 number of spike hyperparameters L. Default is nlambda0=20.

lambda0 grid of L spike hyperparameters λ0. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

lambda1 slab hyperparameter λ1 in the SSGL prior. Default is lambda1=1.

a shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is a=1.

b shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is b=dim(X)[2].

max.iter maximum number of iterations in the algorithm. Default is max.iter=100.

tol convergence threshold for algorithm. Default is tol=1e-6.

print.fold Boolean variable for whether or not to print the current fold in the algorithm.
Default is print.fold=TRUE.

Value

The function returns a list containing the following components:

lambda0 L× 1 vector of spike hyperparameters lambda0 used to fit the model. lambda0
is displayed in descending order.

cv.SSGL 11

cve L× 1 vector of mean cross-validation error across all K folds. The kth entry in
cve corresponds to the kth regularization parameter in lambda0.

cvse L×1 vector of standard errors for cross-validation error across all K folds. The
kth entry in cvse corresponds to the kth regularization parameter in lambda0.

lambda0.min value of lambda0 that minimizes mean cross-validation error cve.

References

Bai R. (2021). "Spike-and-slab group lasso for consistent Bayesian estimation and variable selec-
tion in non-Gaussian generalized additive models." arXiv pre-print arXiv:2007.07021.

Bai, R., Moran, G. E., Antonelli, J. L., Chen, Y., and Boland, M.R. (2021). "Spike-and-slab group
lassos for grouped regression and sparse generalized additive models." Journal of the American
Statistical Association, in press.

Examples

Generate data
set.seed(12345)
X = matrix(runif(30*6), nrow=30)
n = dim(X)[1]
groups = c(1,1,1,2,2,3)
true.beta = c(-1.5,0.5,-1.5,0,0,0)

Generate responses from Gaussian distribution
y = crossprod(t(X), true.beta) + rnorm(n)

K-fold cross-validation for 3 choices of lambda0
Note that if user does not specify lambda0, cv.SSGL chooses a grid automatically.

ssgl.mods = cv.SSGL(y, X, groups, family="gaussian", lambda0=seq(from=10,to=2,by=-4))

Plot cross-validation curve
plot(ssgl.mods$lambda0, ssgl.mods$cve, type="l", xlab="lambda0", ylab="CVE")
lambda which minimizes mean CVE
ssgl.mods$lambda0.min

Example with Poisson regression

Generate count responses
eta = crossprod(t(X), true.beta)
y = rpois(n,exp(eta))

K-fold cross-validation with 4 choices of lambda0
Note that if user does not specify lambda0, cv.SSGL chooses a grid automatically.

ssgl.poisson.mods = cv.SSGL(y, X, groups, family="poisson", lambda0=seq(from=8,to=2,by=-2))

Plot cross-validation curve
plot(ssgl.poisson.mods$lambda0, ssgl.poisson.mods$cve, type="l", xlab="lambda0", ylab="CVE")
lambda which minimizes mean CVE

12 grpreg.gamma

ssgl.poisson.mods$lambda0.min

grpreg.gamma Group-regularized Gamma Regression

Description

This function implements group-regularized gamma regression with a known shape parameter ν
and the log link. In gamma regression, we assume that yi ∼ Gamma(µi, ν), where

f(yi|µi, ν) =
1

Γ(ν)
(
ν

µi
)ν exp(− ν

µi
yi)y

ν−1
i , y > 0.

Then E(yi) = µi, and we relate µi to a set of p covariates xi through the log link,

log(µi) = β0 + xT
i β, i = 1, ..., n

If the covariates in each xi are grouped according to known groups g = 1, ..., G, then this func-
tion may estimate some of the G groups of coefficients as all zero, depending on the amount of
regularization.

Our implementation for regularized gamma regression is based on the least squares approximation
approach of Wang and Leng (2007), and hence, the function does not allow the total number of
covariates p to be greater than sample size.

Usage

grpreg.gamma(y, X, X.test, groups, gamma.shape=1,
penalty=c("gLASSO","gSCAD","gMCP"),
weights, taper, nlambda=100, lambda, max.iter=10000, tol=1e-4)

Arguments

y n× 1 vector of responses for training data.

X n× p design matrix for training data, where the jth column of X corresponds to
the jth overall covariate.

X.test ntest × p design matrix for test data to calculate predictions. X.test must have
the same number of columns as X, but not necessarily the same number of rows.
If no test data is provided or if in-sample predictions are desired, then the func-
tion automatically sets X.test=X in order to calculate in-sample predictions.

groups p-dimensional vector of group labels. The jth entry in groups should contain
either the group number or the name of the factor level that the jth covariate
belongs to. groups must be either a vector of integers or factors.

gamma.shape known shape parameter ν in Gamma(µi, ν) distribution for the responses. De-
fault is gamma.shape=1.

grpreg.gamma 13

penalty group regularization method to use on the groups of coefficients. The options are
"gLASSO", "gSCAD", "gMCP". To implement gamma regression with the SSGL
penalty, use the SSGL function.

weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

taper tapering term γ in group SCAD and group MCP controlling how rapidly the
penalty tapers off. Default is taper=4 for group SCAD and taper=3 for group
MCP. Ignored if "gLASSO" is specified as the penalty.

nlambda number of regularization parameters L. Default is nlambda=100.

lambda grid of L regularization parameters. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

max.iter maximum number of iterations in the algorithm. Default is max.iter=10000.

tol convergence threshold for algorithm. Default is tol=1e-4.

Value

The function returns a list containing the following components:

lambda L× 1 vector of regularization parameters lambda used to fit the model. lambda
is displayed in descending order.

beta0 L× 1 vector of estimated intercepts. The kth entry in beta0 corresponds to the
kth regularization parameter in lambda.

beta p × L matrix of estimated regression coefficients. The kth column in beta
corresponds to the kth regularization parameter in lambda.

mu.pred ntest × L matrix of predicted mean response values µtest = E(Ytest) based
on the test data in X.test (or training data X if no argument was specified for
X.test). The kth column in mu.pred corresponds to the predictions for the kth
regularization parameter in lambda.

classifications

G×L matrix of classifications, where G is the number of groups. An entry of "1"
indicates that the group was classified as nonzero, and an entry of "0" indicates
that the group was classified as zero. The kth column of classifications
corresponds to the kth regularization parameter in lambda.

loss L × 1 vector of negative log-likelihood of the fitted models. The kth entry in
loss corresponds to the kth regularization parameter in lambda.

References

Breheny, P. and Huang, J. (2015). "Group descent algorithms for nonconvex penalized linear and
logistic regression models with grouped predictors." Statistics and Computing, 25:173-187.

Wang, H. and Leng, C. (2007). "Unified LASSO estimation by least squares approximation." Jour-
nal of the American Statistical Association, 102:1039-1048.

14 grpreg.nb

Examples

Generate data
set.seed(12345)
X = matrix(runif(100*11), nrow=100)
n = dim(X)[1]
groups = c("a","a","a","b","b","b","c","c","d","e","e")
groups = as.factor(groups)
true.beta = c(-1,1,1,0,0,0,0,0,0,1.5,-1.5)

Generate responses from gamma regression with known shape parameter 1
eta = crossprod(t(X), true.beta)
shape = 1
y = rgamma(n, rate=shape/exp(eta), shape=shape)

Generate test data
n.test = 50
X.test = matrix(runif(n.test*11), nrow=n.test)

Fit gamma regression models with the group LASSO penalty
gamma.mod = grpreg.gamma(y, X, X.test, groups, penalty="gLASSO")

Tuning parameters used to fit models
gamma.mod$lambda

Predicted n.test-dimensional vectors mu=E(Y.test) based on test data, X.test.
The kth column of 'mu.pred' corresponds to the kth entry in 'lambda.'
gamma.mod$mu.pred

Classifications of the 5 groups. The kth column of 'classifications'
corresponds to the kth entry in 'lambda.'
gamma.mod$classifications

grpreg.nb Group-regularized Negative Binomial Regression

Description

This function implements group-regularized negative binomial regression with a known size pa-
rameter α and the log link. In negative binomial regression, we assume that yi ∼ NB(α, µi),
where

f(yi|α, µi) =
Γ(y + α)

y!Γ(α)
(

µi

µi + α
)y(

α

µi + α
)α, y = 0, 1, 2, ...

Then E(yi) = µi, and we relate µi to a set of p covariates xi through the log link,

log(µi) = β0 + xT
i β, i = 1, ..., n

grpreg.nb 15

If the covariates in each xi are grouped according to known groups g = 1, ..., G, then this func-
tion may estimate some of the G groups of coefficients as all zero, depending on the amount of
regularization.

Our implementation for regularized negative binomial regression is based on the least squares ap-
proximation approach of Wang and Leng (2007), and hence, the function does not allow the total
number of covariates p to be greater than sample size.

Usage

grpreg.nb(y, X, X.test, groups, nb.size=1, penalty=c("gLASSO","gSCAD","gMCP"),
weights, taper, nlambda=100, lambda, max.iter=10000, tol=1e-4)

Arguments

y n× 1 vector of responses for training data.

X n× p design matrix for training data, where the jth column of X corresponds to
the jth overall covariate.

X.test ntest × p design matrix for test data to calculate predictions. X.test must have
the same number of columns as X, but not necessarily the same number of rows.
If no test data is provided or if in-sample predictions are desired, then the func-
tion automatically sets X.test=X in order to calculate in-sample predictions.

groups p-dimensional vector of group labels. The jth entry in groups should contain
either the group number or the name of the factor level that the jth covariate
belongs to. groups must be either a vector of integers or factors.

nb.size known size parameter α in NB(α, µi) distribution for the responses. Default is
nb.size=1.

penalty group regularization method to use on the groups of coefficients. The options
are "gLASSO", "gSCAD", "gMCP". To implement negative binomial regression
with the SSGL penalty, use the SSGL function.

weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

taper tapering term γ in group SCAD and group MCP controlling how rapidly the
penalty tapers off. Default is taper=4 for group SCAD and taper=3 for group
MCP. Ignored if "gLASSO" is specified as the penalty.

nlambda number of regularization parameters L. Default is nlambda=100.

lambda grid of L regularization parameters. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

max.iter maximum number of iterations in the algorithm. Default is max.iter=10000.

tol convergence threshold for algorithm. Default is tol=1e-4.

Value

The function returns a list containing the following components:

16 grpreg.nb

lambda L× 1 vector of regularization parameters lambda used to fit the model. lambda
is displayed in descending order.

beta0 L× 1 vector of estimated intercepts. The kth entry in beta0 corresponds to the
kth regularization parameter in lambda.

beta p × L matrix of estimated regression coefficients. The kth column in beta
corresponds to the kth regularization parameter in lambda.

mu.pred ntest × L matrix of predicted mean response values µtest = E(Ytest) based
on the test data in X.test (or training data X if no argument was specified for
X.test). The kth column in mu.pred corresponds to the predictions for the kth
regularization parameter in lambda.

classifications

G×L matrix of classifications, where G is the number of groups. An entry of "1"
indicates that the group was classified as nonzero, and an entry of "0" indicates
that the group was classified as zero. The kth column of classifications
corresponds to the kth regularization parameter in lambda.

loss L × 1 vector of negative log-likelihood of the fitted models. The kth entry in
loss corresponds to the kth regularization parameter in lambda.

References

Breheny, P. and Huang, J. (2015). "Group descent algorithms for nonconvex penalized linear and
logistic regression models with grouped predictors." Statistics and Computing, 25:173-187.

Wang, H. and Leng, C. (2007). "Unified LASSO estimation by least squares approximation." Jour-
nal of the American Statistical Association, 102:1039-1048.

Examples

Generate training data
set.seed(1234)
X = matrix(runif(100*16), nrow=100)
n = dim(X)[1]
groups = c("A","A","A","B","B","B","C","C","D","E","E","F","G","H","H","H")
groups = as.factor(groups)
true.beta = c(-2,2,2,0,0,0,0,0,0,1.5,-1.5,0,0,-2,2,2)

Generate count responses from negative binomial regression
eta = crossprod(t(X), true.beta)
y = rnbinom(n,size=1, mu=exp(eta))

Generate test data
n.test = 50
X.test = matrix(runif(n.test*16), nrow=n.test)

Fit negative binomial regression models with the group SCAD penalty
nb.mod = grpreg.nb(y, X, X.test, groups, penalty="gSCAD")

Tuning parameters used to fit models
nb.mod$lambda

SBGAM 17

Predicted n.test-dimensional vectors mu=E(Y.test) based on test data, X.test.
The kth column of 'mu.pred' corresponds to the kth entry in 'lambda.'
nb.mod$mu.pred

Classifications of the 8 groups. The kth column of 'classifications'
corresponds to the kth entry in lambda.
nb.mod$classifications

SBGAM Sparse Bayesian Generalized Additive Models

Description

This function implements sparse Bayesian generalized additive models (GAMs) with the spike-
and-slab group lasso (SSGL) penalty. Let yi denote the ith response and xi denote a p-dimensional
vector of covariates. GAMs are of the form,

g(E(yi)) = β0 +

p∑
j=1

fj(xij), i = 1, ..., n,

where g is a monotone increasing link function. The identity link function is used for Gaussian
regression, the logit link is used for binomial regression, and the log link is used for Poisson,
negative binomial, and gamma regression. With the SSGL penalty, some of the univariate functions
fj(xj) will be estimated as f̂j(xj) = 0, depending on the size of the spike hyperparameter λ0 in
the SSGL prior. The functions fj(xj), j = 1, ..., p, are modeled using B-spline basis expansions.

There is another implementation of sparse Gaussian GAMs with the SSGL penalty available at
https://github.com/jantonelli111/SSGL, which uses natural cubic splines as the basis functions. This
package sparseGAM uses B-spline basis functions and also implements sparse GAMs with the SSGL
penalty for binomial, Poisson, negative binomial, and gamma regression.

For implementation of sparse frequentist GAMs with the group LASSO, group SCAD, and group
MCP penalties, use the SFGAM function.

Usage

SBGAM(y, X, X.test, df=6,
family=c("gaussian","binomial","poisson","negativebinomial","gamma"),
nb.size=1, gamma.shape=1, nlambda0=20, lambda0, lambda1, a, b,
max.iter=100, tol = 1e-6, print.iter=TRUE)

Arguments

y n× 1 vector of responses for training data.

X n× p design matrix for training data, where the jth column of X corresponds to
the jth overall covariate.

18 SBGAM

X.test ntest × p design matrix for test data to calculate predictions. X.test must have
the same number of columns as X, but not necessarily the same number of rows.
If no test data is provided or if in-sample predictions are desired, then the func-
tion automatically sets X.test=X in order to calculate in-sample predictions.

df number of B-spline basis functions to use in each basis expansion. Default is
df=6, but the user may specify degrees of freedom as any integer greater than or
equal to 3.

family exponential dispersion family. Allows for "gaussian", "binomial", "poisson",
"negativebinomial", and "gamma". Note that for "negativebinomial", the
size parameter must be specified, while for "gamma", the shape parameter must
be specified.

nb.size known size parameter α in NB(α, µi) distribution for negative binomial re-
sponses. Default is nb.size=1. Ignored if family is not "negativebinomial".

gamma.shape known shape parameter ν in Gamma(µi, ν) distribution for gamma responses.
Default is gamma.shape=1. Ignored if family is not "gamma".

nlambda0 number of spike hyperparameter L. Default is nlambda0=20.

lambda0 grid of L spike hyperparameters λ0. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

lambda1 slab hyperparameter λ1 in the SSGL prior. Default is lambda1=1.

a shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is a=1.

b shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is b=dim(X)[2].

max.iter maximum number of iterations in the algorithm. Default is max.iter=100.

tol convergence threshold for algorithm. Default is tol=1e-6.

print.iter Boolean variable for whether or not to print the current nlambda0 in the algo-
rithm. Default is print.iter=TRUE.

Value

The function returns a list containing the following components:

lambda0 L× 1 vector of spike hyperparameters lambda0 used to fit the model. lambda0
is displayed in descending order.

f.pred List of L ntest × p matrices, where the kth matrix in the list corresponds to the
kth spike hyperparameter in lambda0. The jth column in each matrix in f.pred
is the estimate of the jth function evaluated on the test data in X.test for the
jth covariate (or training data X if X.test was not specified).

mu.pred ntest × L matrix of predicted mean response values µtest = E(Ytest) based
on the test data in X.test (or training data X if no argument was specified for
X.test). The kth column in mu.pred corresponds to the predictions for the kth
spike hyperparameter in lambda0.

SBGAM 19

classifications

p×L matrix of classifications. An entry of "1" indicates that the corresponding
function was classified as nonzero, and an entry of "0" indicates that the function
was classified as zero. The kth column of classifications corresponds to the
kth spike hyperparameter in lambda0.

beta0 L× 1 vector of estimated intercepts. The kth entry in beta0 corresponds to the
kth spike hyperparameter in lambda0.

beta dp × L matrix of estimated basis coefficients. The kth column in beta corre-
sponds to the kth spike hyperparameter in lambda0.

loss vector of either the residual sum of squares ("gaussian") or the negative log-
likelihood ("binomial", "poisson", "negativebinomial", "gamma") of the
fitted model. The kth entry in loss corresponds to the kth spike hyperparameter
in lambda0.

References

Bai R. (2021). "Spike-and-slab group lasso for consistent Bayesian estimation and variable selec-
tion in non-Gaussian generalized additive models." arXiv pre-print arXiv:2007.07021.

Bai, R., Moran, G. E., Antonelli, J. L., Chen, Y., and Boland, M.R. (2021). "Spike-and-slab group
lassos for grouped regression and sparse generalized additive models." Journal of the American
Statistical Association, in press.

Examples

Generate data
set.seed(12345)
X = matrix(runif(100*5), nrow=100)
n = dim(X)[1]
y = 3*sin(2*pi*X[,1])-3*cos(2*pi*X[,2]) + rnorm(n)

Test data with 30 observations
X.test = matrix(runif(30*5), nrow=30)

Fit sparse Bayesian generalized additive model to data with the SSGL penalty
and 5 spike hyperparameters
SBGAM.mod = SBGAM(y, X, X.test, family="gaussian", lambda0=seq(from=50,to=10,by=-10))

The model corresponding to the 1st spike hyperparameter
SBGAM.mod$lambda[1]
SBGAM.mod$classifications[,1]

Plot first function f_1(x_1) in 2nd model
x1 = X.test[,1]
Estimates of all 20 function evaluations on test data
f.hat = SBGAM.mod$f.pred[[1]]
Extract estimates of f_1
f1.hat = f.hat[,1]

Plot X_1 against f_1(x_1)
plot(x1[order(x1)], f1.hat[order(x1)], xlab=expression(x[1]),

20 SFGAM

ylab=expression(f[1](x[1])))

SFGAM Sparse Frequentist Generalized Additive Models

Description

This function implements sparse frequentist generalized additive models (GAMs) with the group
LASSO, group SCAD, and group MCP penalties. Let yi denote the ith response and xi denote a
p-dimensional vector of covariates. GAMs are of the form,

g(E(yi)) = β0 +

p∑
j=1

fj(xij), i = 1, ..., n,

where g is a monotone increasing link function. The identity link function is used for Gaussian re-
gression, the logit link is used for binomial regression, and the log link is used for Poisson, negative
binomial, and gamma regression. The univariate functions are estimated using linear combinations
of B-spline basis functions. Under group regularization of the basis coefficients, some of the uni-
variate functions fj(xj) will be estimated as f̂j(xj) = 0, depending on the size of the regularization
parameter λ.

For implementation of sparse Bayesian GAMs with the SSGL penalty, use the SBGAM function.

Usage

SFGAM(y, X, X.test, df=6,
family=c("gaussian","binomial", "poisson", "negativebinomial","gamma"),
nb.size=1, gamma.shape=1, penalty=c("gLASSO","gMCP","gSCAD"), taper,
nlambda=100, lambda, max.iter=10000, tol=1e-4)

Arguments

y n× 1 vector of responses for training data.

X n× p design matrix for training data, where the jth column of X corresponds to
the jth overall covariate.

X.test ntest × p design matrix for test data to calculate predictions. X.test must have
the same number of columns as X, but not necessarily the same number of rows.
If no test data is provided or if in-sample predictions are desired, then the func-
tion automatically sets X.test=X in order to calculate in-sample predictions.

df number of B-spline basis functions to use in each basis expansion. Default is
df=6, but the user may specify degrees of freedom as any integer greater than or
equal to 3.

family exponential dispersion family. Allows for "gaussian", "binomial", "poisson",
"negativebinomial", and "gamma". Note that for "negativebinomial", the
size parameter must be specified, while for "gamma", the shape parameter must
be specified.

SFGAM 21

nb.size known size parameter α in NB(α, µi) distribution for negative binomial re-
sponses. Default is nb.size=1. Ignored if family is not "negativebinomial".

gamma.shape known shape parameter ν in Gamma(µi, ν) distribution for gamma responses.
Default is gamma.shape=1. Ignored if family is not "gamma".

penalty group regularization method to use on the groups of basis coefficients. The
options are "gLASSO", "gSCAD", and "gMCP". To implement sparse GAMs with
the SSGL penalty, use the SBGAM function.

taper tapering term γ in group SCAD and group MCP controlling how rapidly the
penalty tapers off. Default is taper=4 for group SCAD and taper=3 for group
MCP. Ignored if "gLASSO" is specified as the penalty.

nlambda number of regularization parameters L. Default is nlambda=100.

lambda grid of L regularization parameters. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

max.iter maximum number of iterations in the algorithm. Default is max.iter=10000.

tol convergence threshold for algorithm. Default is tol=1e-4.

Value

The function returns a list containing the following components:

lambda L× 1 vector of regularization parameters lambda used to fit the model. lambda
is displayed in descending order.

f.pred List of L ntest × p matrices, where the kth matrix in the list corresponds to
the kth regularization parameter in lambda. The jth column in each matrix in
f.pred is the estimate of the jth function evaluated on the test data in X.test
for the jth covariate (or training data X if X.test was not specified).

mu.pred ntest × L matrix of predicted mean response values µtest = E(Ytest) based
on the test data in X.test (or training data X if no argument was specified for
X.test). The kth column in mu.pred corresponds to the predictions for the kth
regularization parameter in lambda.

classifications

p×L matrix of classifications. An entry of "1" indicates that the corresponding
function was classified as nonzero, and an entry of "0" indicates that the function
was classified as zero. The kth column of classifications corresponds to the
kth regularization parameter in lambda.

beta0 L× 1 vector of estimated intercepts. The kth entry in beta0 corresponds to the
kth regularization parameter in lambda.

beta dp × L matrix of estimated basis coefficients. The kth column in beta corre-
sponds to the kth regularization parameter in lambda.

loss vector of either the residual sum of squares ("gaussian") or the negative log-
likelihood ("binomial", "poisson", "negativebinomial", "gamma") of the
fitted model. The kth entry in loss corresponds to the kth regularization param-
eter in lambda.

22 SSGL

References

Breheny, P. and Huang, J. (2015). "Group descent algorithms for nonconvex penalized linear and
logistic regression models with grouped predictors." Statistics and Computing, 25:173-187.

Wang, H. and Leng, C. (2007). "Unified LASSO estimation by least squares approximation." Jour-
nal of the American Statistical Association, 102:1039-1048.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68: 49-67.

Examples

Generate data
set.seed(12345)
X = matrix(runif(100*20), nrow=100)
n = dim(X)[1]
y = 5*sin(2*pi*X[,1])-5*cos(2*pi*X[,2]) + rnorm(n)

Test data with 50 observations
X.test = matrix(runif(50*20), nrow=50)

K-fold cross-validation with group MCP penalty
cv.mod = cv.SFGAM(y, X, family="gaussian", penalty="gMCP")
Plot CVE curve
plot(cv.mod$lambda, cv.mod$cve, type="l", xlab="lambda", ylab="CVE")
lambda which minimizes cross-validation error
lambda.opt = cv.mod$lambda.min

Fit a single model with lambda.opt
SFGAM.mod = SFGAM(y, X, X.test, penalty="gMCP", lambda=lambda.opt)

Classifications
SFGAM.mod$classifications
Predicted function evaluations on test data
f.pred = SFGAM.mod$f.pred

Plot estimated first function
x1 = X.test[,1]
f1.hat = f.pred[,1]

Plot x_1 against f_1(x_1)
plot(x1[order(x1)], f1.hat[order(x1)], xlab=expression(x[1]),

ylab=expression(f[1](x[1])))

SSGL Spike-and-Slab Group Lasso Regression

SSGL 23

Description

This is a stand-alone function for group-regularized regression models in the exponential dispersion
family with the spike-and-slab group lasso (SSGL) penalty. Let yi denote the ith response and xi

denote a p-dimensional vector of covariates. We fit models of the form,

g(E(yi)) = β0 + xT
i β, i = 1, ..., n,

where g is a monotone increasing link function. The identity link function is used for Gaussian
regression, the logit link is used for binomial regression, and the log link is used for Poisson,
negative binomial, and gamma regression.

If the covariates in each xi are grouped according to known groups g = 1, ..., G, then this func-
tion may estimate some of the G groups of coefficients as all zero, depending on the amount of
regularization.

Another implementation of the SSGL model for Gaussian regression models is available on Github
at https://github.com/jantonelli111/SSGL. This package sparseGAM also implements the SSGL
model for binomial, Poisson, negative binomial, and gamma regression.

Usage

SSGL(y, X, X.test, groups,
family=c("gaussian","binomial","poisson","negativebinomial","gamma"),
nb.size=1, gamma.shape=1, weights, nlambda0=20, lambda0, lambda1, a, b,
max.iter=100, tol = 1e-6, print.iter=TRUE)

Arguments

y n× 1 vector of responses for training data.

X n× p design matrix for training data, where the jth column of X corresponds to
the jth overall covariate.

X.test ntest × p design matrix for test data to calculate predictions. X.test must have
the same number of columns as X, but not necessarily the same number of rows.
If no test data is provided or if in-sample predictions are desired, then the func-
tion automatically sets X.test=X in order to calculate in-sample predictions.

groups p-dimensional vector of group labels. The jth entry in groups should contain
either the group number or the name of the factor level that the jth covariate
belongs to. groups must be either a vector of integers or factors.

family exponential dispersion family. Allows for "gaussian", "binomial", "poisson",
"negativebinomial", and "gamma". Note that for "negativebinomial", the
size parameter must be specified, while for "gamma", the shape parameter must
be specified.

nb.size known size parameter α in NB(α, µi) distribution for the negative binomial re-
sponses. Default is nb.size=1. Ignored if family is not "negativebinomial".

gamma.shape known shape parameter ν in Gamma(µi, ν) distribution for gamma responses.
Default is gamma.shape=1. Ignored if family is not "gamma".

weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

24 SSGL

nlambda0 number of spike hyperparameters L. Default is nlambda0=20.

lambda0 grid of L spike hyperparameters λ0. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

lambda1 slab hyperparameter λ1 in the SSGL prior. Default is lambda1=1.

a shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is a=1.

b shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is b=dim(X)[2].

max.iter maximum number of iterations in the algorithm. Default is max.iter=100.

tol convergence threshold for algorithm. Default is tol=1e-6.

print.iter Boolean variable for whether or not to print the current nlambda0 in the algo-
rithm. Default is print.iter=TRUE.

Value

The function returns a list containing the following components:

lambda0 L× 1 vector of spike hyperpameters lambda0 used to fit the model. lambda0 is
displayed in descending order.

beta0 L× 1 vector of estimated intercepts. The kth entry in beta0 corresponds to the
kth spike hyperparameter in lambda0.

beta p × L matrix of estimated regression coefficients. The kth column in beta
corresponds to the kth spike hyperparameter in lambda0.

mu.pred ntest × L matrix of predicted mean response values µtest = E(Ytest) based
on the test data in X.test (or training data X if no argument was specified
forX.test). The kth column in mu.pred corresponds to the predictions for the
kth spike hyperparameter in lambda0.

classifications

G×L matrix of classifications, where G is the number of groups. An entry of "1"
indicates that the group was classified as nonzero, and an entry of "0" indicates
that the group was classified as zero. The kth column of classifications
corresponds to the kth spike hyperparameter in lambda0.

loss vector of either the residual sum of squares ("gaussian") or the negative log-
likelihood ("binomial", "poisson", "negativebinomial", "gamma") of the
fitted model. The kth entry in loss corresponds to the kth spike hyperparameter
in lambda0.

References

Bai R. (2021). "Spike-and-slab group lasso for consistent Bayesian estimation and variable selec-
tion in non-Gaussian generalized additive models." arXiv pre-print arXiv:2007.07021.

Bai, R., Moran, G. E., Antonelli, J. L., Chen, Y., and Boland, M.R. (2021). "Spike-and-slab group
lassos for grouped regression and sparse generalized additive models." Journal of the American
Statistical Association, in press.

SSGL 25

Examples

Generate data
set.seed(12345)
X = matrix(runif(100*10), nrow=100)
n = dim(X)[1]
groups = c("A","A","A","B","B","B","C","C","D","D")
groups = as.factor(groups)
true.beta = c(-2.5,1.5,1.5,0,0,0,2,-2,0,0)

Generate responses from Gaussian distribution
y = crossprod(t(X),true.beta) + rnorm(n)

Generate test data
n.test = 50
X.test = matrix(runif(n.test*10), nrow=n.test)

Fit SSGL model with 10 spike hyperparameters
Note that if user does not specify lambda0, the SSGL function chooses a grid automatically.

SSGL.mod = SSGL(y, X, X.test, groups, family="gaussian", lambda0=seq(from=50,to=5,by=-5))

Regression coefficient estimates
SSGL.mod$beta

Predicted n.test-dimensional vectors mu=E(Y.test) based on test data, X.test.
The kth column of 'mu.pred' corresponds to the kth entry in 'lambda.'
SSGL.mod$mu.pred

Classifications of the 8 groups. The kth column of 'classifications'
corresponds to the kth entry in 'lambda.'
SSGL.mod$classifications

Example with binomial regression

Generate binary responses
eta = crossprod(t(X), true.beta)
y = rbinom(n, size=1, prob=1/(1+exp(-eta)))

Fit SSGL model with 10 spike hyperparameters
Note that if user does not specify lambda0, the SSGL function chooses a grid automatically.

SSGL.mod = SSGL(y, X, X.test, groups, family="binomial",
lambda0=seq(from=10,to=1,by=-1))

Predicted probabilities of success mu=E(Y.test) based on test data, X.test
SSGL.mod$mu.pred

Classifications of the 8 groups.
SSGL.mod$classifications

Index

cv.grpreg.gamma, 2
cv.grpreg.nb, 4
cv.SBGAM, 5
cv.SFGAM, 7
cv.SSGL, 9

grpreg.gamma, 12
grpreg.nb, 14

SBGAM, 17
SFGAM, 20
SSGL, 22

26

	cv.grpreg.gamma
	cv.grpreg.nb
	cv.SBGAM
	cv.SFGAM
	cv.SSGL
	grpreg.gamma
	grpreg.nb
	SBGAM
	SFGAM
	SSGL
	Index

