Title: | Soil Organic Carbon and CN Ratio Driven Nitrogen Modelling Framework |
---|---|
Description: | Can be used to model the fate of soil organic carbon and soil organic nitrogen and to calculate N mineralisation rates. Provides a framework that numerically solves differential equations of soil organic carbon models based on first-order kinetics and extends these models to include the nitrogen component. The name 'sorcering' is an acronym for 'Soil ORganic Carbon & CN Ratio drIven Nitrogen modellinG framework'. |
Authors: | Marc Scherstjanoi [aut, cre], Rene Dechow [aut] |
Maintainer: | Marc Scherstjanoi <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.1.0 |
Built: | 2024-12-09 06:33:15 UTC |
Source: | CRAN |
Builds a RothC transfer matrix. Parameters taken from Coleman and Jenkinson (1996).
fget_A_RothC( clay = 23.4 )
fget_A_RothC( clay = 23.4 )
clay |
double. Soil clay content in %. |
fget_A_RothC()
returns a \(5\times 5\) matrix that contains RothC specific carbon transfer parameters based on clay content.
Marc Scherstjanoi [email protected], Rene Dechow
Coleman K, Jenkinson DS (1996). “RothC-26.3 - A Model for the turnover of carbon in soil.” In Powlson DS, Smith P, Smith JU (eds.), Evaluation of Soil Organic Matter Models, 237–246. ISBN 978-3-642-61094-3.
fget_A_RothC(clay=30)
fget_A_RothC(clay=30)
Fictional input data. Contains a matrix of three columns. Column 1: Measuremnt time. Column 2: SOC [t/ha]. Column 3: SON [t/ha].
meas_data_ex
meas_data_ex
A matrix containing 3 columns
Fictional initial soil organic carbon for the RothC SOC model
RothC_C0_ex
RothC_C0_ex
A vector containing five numeric entries
Fictional carbon input for the RothC SOC model. Columns stand for pools and rows for simulation time steps.
RothC_Cin_ex
RothC_Cin_ex
A matrix of 5 columns and 60 rows
Fictional carbon input for the RothC SOC model. The input data constists of a list of 3 matrices. Matrix columns stand for pools and matrix rows for simulation time steps.
RothC_Cin_ex_sl
RothC_Cin_ex_sl
A list of 3 matrices with 5 columns and 60 rows each
Fictional carbon input for the RothC SOC model. The input data constists of a list of 3 matrices. Matrix columns stand for pools and matrix rows for simulation time steps.
RothC_Cin_ex_sl_spin
RothC_Cin_ex_sl_spin
A list of 3 matrices with 5 columns and 12 rows each
Fictional environmental input for RothC. Rows stand for simulation time steps. Column 1: atmospheric temperature [Celsius degrees]. Column 2: precipitation [mm]. Column 3: evapotranspiration [mm]. Column 4: zeros or ones, the latter indicate time steps with growing crops.
RothC_env_in_ex
RothC_env_in_ex
A matrix of 4 columns and 60 rows
Fictional initial soil organic nitrogen for the RothC SOC model
RothC_N0_ex
RothC_N0_ex
A vector containing five numeric entries
Fictional nitrogen input for the RothC SOC model. Columns stand for pools and rows for simulation time steps.
RothC_Nin_ex
RothC_Nin_ex
A matrix of 5 columns and 60 rows
Fictional nitrogen input for the RothC SOC model. The input data constists of a list of 3 matrices. Matrix columns stand for pools and matrix rows for simulation time steps.
RothC_Nin_ex_sl
RothC_Nin_ex_sl
A list of 3 matrices with 5 columns and 60 rows each
Fictional nitrogen input for the RothC SOC model. The input data constists of a list of 3 matrices. Matrix columns stand for pools and matrix rows for simulation time steps.
RothC_Nin_ex_sl_spin
RothC_Nin_ex_sl_spin
A list of 3 matrices with 5 columns and 12 rows each
Fictional site information for RothC. Contains information to calculate xi. Vector of length 4: sample depth [mm], clay content [ or 1, 0 if unknown or if black sand method is not desired) and CN ratio (0 if unknown, but then either C0 and N0 must be defined or calcC0 = TRUE and calcN0 = TRUE).
RothC_site_ex
RothC_site_ex
A vector containing 4 numeric entries
Fictional environmental factors for the RothC SOC model. Columns stand for pools and rows for simulation time steps.
RothC_xi_ex
RothC_xi_ex
A matrix of 5 columns and 60 rows
SORCERING
can be used to model the fate of soil organic carbon (SOC) and soil organic nitrogen (SON) and to calculate N mineralisation
rates.
It provides a framework that numerically solves differential equations
of SOC models based on first-order kinetics.
An SOC model can be simply defined or a predefined existing SOC model can be chosen and then run to predict the temporal development of SOC. Beyond this, SORCERING
determines the fluxes of SON and N mineralisation / immobilisation.
Basic inputs are
(1) the model parameters of a given SOC model expressed as the C transfer matrix (including information on decomposition and transfer rates between model pools),
(2) either the initial distributions of C and N among model pools as a direct input or
time series of at least three C and N measurement points with which these initial distributions
can be calculated using linear regression,
and
(3) time series of C and N inputs and rate modifying environmental factors.
In case a predefined SOC model is used, instead of model parameters and time series of rate modifying factors,
model-specific environmental and stand data must be passed for the calculation of decomposition and transfer rates.
The fourth-order Runge-Kutta algorithm is used to numerically solve the system of differential equations.
sorcering( A = NULL, tsteps = "monthly", C0 = NULL, N0 = NULL, Cin = NULL, Nin = NULL, Cin_wood = NULL, Nin_wood = NULL, wood_diam = NULL, xi = NULL, env_in = NULL, site = NULL, theta = NULL, theta_unc = NULL, theta_n_unc = 1, meas_data = NULL, A_sl = NULL, C0_sl = NULL, N0_sl = NULL, Cin_sl = NULL, Nin_sl = NULL, Cin_wood_sl = NULL, Nin_wood_sl = NULL, wood_diam_sl = NULL, xi_sl = NULL, env_in_sl = NULL, site_sl = NULL, sitelist = NULL, meas_data_sl = NULL, calcN = FALSE, calcNbalance = FALSE, calcN0 = FALSE, calcC0 = FALSE, calcCN_fast_init = FALSE, CTool_input_raw = FALSE, RothC_Cin4C0 = FALSE, C0_fracts = NULL, multisite = FALSE, pooltypes = NULL, CN_fast_init = 40, CN_bio = 9, CN_spin = NULL, CN_fast_init_sl = NULL, CN_bio_sl = NULL, CN_spin_sl = NULL, init_info = FALSE, model = "", spinup = FALSE, t_spin = 2, t_spin_sl = 2)
sorcering( A = NULL, tsteps = "monthly", C0 = NULL, N0 = NULL, Cin = NULL, Nin = NULL, Cin_wood = NULL, Nin_wood = NULL, wood_diam = NULL, xi = NULL, env_in = NULL, site = NULL, theta = NULL, theta_unc = NULL, theta_n_unc = 1, meas_data = NULL, A_sl = NULL, C0_sl = NULL, N0_sl = NULL, Cin_sl = NULL, Nin_sl = NULL, Cin_wood_sl = NULL, Nin_wood_sl = NULL, wood_diam_sl = NULL, xi_sl = NULL, env_in_sl = NULL, site_sl = NULL, sitelist = NULL, meas_data_sl = NULL, calcN = FALSE, calcNbalance = FALSE, calcN0 = FALSE, calcC0 = FALSE, calcCN_fast_init = FALSE, CTool_input_raw = FALSE, RothC_Cin4C0 = FALSE, C0_fracts = NULL, multisite = FALSE, pooltypes = NULL, CN_fast_init = 40, CN_bio = 9, CN_spin = NULL, CN_fast_init_sl = NULL, CN_bio_sl = NULL, CN_spin_sl = NULL, init_info = FALSE, model = "", spinup = FALSE, t_spin = 2, t_spin_sl = 2)
A |
square matrix. Transfer matrix typical for SOC modelling. Defines number of pools, decomposition and transfer rates. n\(\times\)n elements with n = number of pools. Diagonal values are decomposition rates [yr-1]. Off-diagonals represent the transfer between pools . Only used when |
tsteps |
character string indicating the type of simulation time steps. Valid options are |
C0 |
either vector with a length equal to the number of pools or scalar. If vector, initial soil organic carbon per pool [tC ha-1].
If scalar, initial total soil organic carbon [tC ha-1]. In the latter case, either |
N0 |
vector with a length equal to the number of pools. Contains initial soil organic nitrogen per pool [tN ha-1]. If |
Cin |
either matrix with a number of columns equal to the number of pools and a number of rows corresponding to simulation time steps (if |
Nin |
either matrix with a number of columns equal to the number of pools and a number of rows corresponding to simulation time steps (if |
Cin_wood |
list of lengths of different wood diameter classes. Each list element must be in |
Nin_wood |
list of lengths of different wood diameter classes. Each list element must be in |
wood_diam |
vector with wood diameter [cm]. The first element corresponds to the first list element of |
xi |
either matrix with a number of columns equal to the number of pools and a number of rows corresponding to simulation time steps (if |
env_in |
matrix with a model-specific number of columns and a number of rows corresponding to simulation time steps (if |
site |
vector of model-specific length. Contains site-specific information to calculate rate modifying factors (instead of passing them with |
theta |
either vector with model parameters for predefined models or matrix with rows of such parameters. If it is a matrix, each row is expected to represent a stochastic repetition that covers input uncertainties. If uncertainties are defined by another argument, e.g. |
theta_unc |
either number or vector of percentage values. If it is a vector, the same model-specific lengths as described for |
theta_n_unc |
number of stochastic repetitions when model parameters for predefined models should be determined from a random distribution. Only used when the number of stochastic repetitions is not defined by another argument (e.g. |
meas_data |
matrix with a number of rows equal to the number of measurement points. The first column defines the time of measurement, the metric of which is based on simulation time steps. The second row must contain values of measured soil organic carbon stock. The third row must contain values of measured soil organic nitrogen and is only used when |
A_sl |
list with a length of number of sites to simulate. Each list element represents a site and must be in |
C0_sl |
list with a length of number of sites to simulate. Each list element represents a site and must be in |
N0_sl |
list with a length of number of sites to simulate. Each list element represents a site and must be in |
Cin_sl |
list with a length of number of sites to simulate. Each list element represents a site and must be in |
Nin_sl |
list with a length of number of sites to simulate. Each list element represents a site and must be in |
Cin_wood_sl |
list with a length of number of sites to simulate. Each list element represents a site and must be in |
Nin_wood_sl |
list with a length of number of sites to simulate. Each list element represents a site and must be in |
wood_diam_sl |
list with a length of number of sites to simulate. Each list element represents a site and must be in |
xi_sl |
list with a length of number of sites to simulate. Each list element represents a site and must be in |
env_in_sl |
list with a length of number of sites to simulate. Each list element represents a site and must be in |
site_sl |
list with a length of number of sites to simulate. Each list element represents a site and must be in |
sitelist |
list with names of sites to simulate. Only used when |
meas_data_sl |
list with a length of number of sites to simulate. Each list element represents a site and must be in |
calcN |
logical indicating whether soil organic nitrogen should be modeled. |
calcNbalance |
logical indicating whether the balance of nitrogen cycling should be calculated. |
calcN0 |
logical indicating whether |
calcC0 |
logical indicating whether |
calcCN_fast_init |
logical indicating whether to calculate the initial CN ratio for fast pools (using |
CTool_input_raw |
logical defining of which type |
RothC_Cin4C0 |
logical defining whether the SOC input should be used for the calculation of initial SOC. If |
C0_fracts |
numerical vector of a length equal to the number of pools. Contains initial fractions of SOC in pools, the sum of which must be 1. Only used when |
multisite |
logical indicating whether multiple sites should be calculated with one program call. Then, |
pooltypes |
integer vector with a length equal to the number of pools. Contains information necessary for the calculation of |
CN_fast_init |
number that defines the initial CN ratio for fast pools ( |
CN_bio |
number that defines the initial CN ratio for slow pools ( |
CN_spin |
vector with a length equal to the number of pools. Defines the initial CN ratios for spin-up runs. For the case where the spinup starts from bare ground without soil organic components, the CN ratios of the pools must be defined. Since the CN ratios would then only be influenced by external inputs, the CN ratios for slow target pools without input would exceptionally be defined by the CN ratios of fast source pools due to a lack of alternatives. To prevent this, it is necessary to define initial CN ratios for spin-up runs in that case.
Only used when |
CN_fast_init_sl |
list with a length of number of sites to simulate. Each list element represents a site and must be in |
CN_bio_sl |
list with a length of number of sites to simulate. Each list element represents a site and must be in |
CN_spin_sl |
list of vectors that defines the initial CN ratios for spin-up runs. Each list element represents a site and must be in |
init_info |
logical indicating whether additional information about the calculation of initial carbon, initial nitrogen, and CN ratio should be printed out during the simulations. Only used when |
model |
character string specifying a predefined soil organic carbon model to use. Valid options are |
spinup |
logical indicating whether the simulations should run in spin-up mode. Then, from all time-depending input ( |
t_spin |
integer number of spin-up time steps. |
t_spin_sl |
list with a length of number of sites to simulate or integer number of spin-up time steps. If list, each list element represents a site and must be in |
SORCERING
is a general model framework to describe soil organic carbon (SOC) dynamics and soil organic nitrogen (SON) dynamics based on models of first-order kinetics.
It can be applied to any given SOC first-order kinetics model.
The approach has already been successfully tested to describe SOC dynamics of Yasso (Tuomi et al. 2009; Viskari et al. 2020; Viskari et al. 2022), RothC (Coleman and Jenkinson 1996) and
C-Tool (Taghizadeh-Toosi et al. 2014).
Moreover, it additionally offers the possibility of modelling N immobilisation and mineralisation by enhancing given SOC models by an additional N module.
SORCERING
was created using the C++ interface Rcpp
(Eddelbuettel et al. 2021) and can handle multiple sites and multiple stochastic representations with just one function call. This makes SORCERING
a computationally efficient SOC and SON modelling tool.
In the following a description of each output value (see section 'Value') is given.
Detailed mathematical descriptions of the SOC and SON calculation, the optional extensions of the SORCERING
function and the predefined models used can be found in the extended R documentation at
browseVignettes("sorcering")
.
Value C
SORCERING
calculates SOC applying a given SOC model for every simulation time step defined by passing tsteps
and the number of rows of Cin
(or number of rows of matrix elements in Cin_sl
).
SOC models applied here are defined by a number of pools, each characterised by specific decomposition and turnover rates.
The model-specific decomposition kinetics and SOC fluxes among pools are described by a set of partial differential equations represented by the transfer matrix
\(A\) (as passed with A
or provided by model
).
Each row and column of \(A\) represent SOC pools. Off-diagonal elements of \(A\) describe SOC fluxes and diagonal elements describe SOC decomposition.
The differential equations furthermore contain the boundary condition \(Cin(t)\) (as passed with Cin
) and the model-specific generated rate modifying factor series \(xi(t)\)
(as passed with xi
or calculated for a predefined model
).
The change of SOC concentration in time is then defined as:
with \[A_e(t) = A \cdot diag(xi(t))\]
Initial conditions must be defined for every SOC pool by passing C0
or by using the capabilities of SORCERING
to calculate it.
A description of the numerical solution can be found in the extended pdf documentation at browseVignettes("sorcering")
.
For more information on the functioning and possibilities of solving first-order kinetics SOC models see Sierra et al. (2012).
Value N
As an extension to SOC modelling, SORCERING
allows the modelling of SON coupled to the modelling of SOC. Its implementation is based on the following simplifying assumptions:
(1) Nitrogen transfer and turnover rates are equal to carbon rates.
(2) There is no N limitation in the soil, i.e. mineral N is always available for N immobilisation processes.
(3) CN ratios of single pools are only affected by external inputs of N and C. The transfer of organic matter among pools does not affect CN ratios.
As for SOC, the development of SON depends on initial and boundary conditions.
As N decomposition is proportional to C decomposition, SON is calculated based on the results of the SOC calculations and
input conditions (for details see the extended pdf documentation at browseVignettes("sorcering")
).
Values Nloss, Nmin, Nmin.sink<1>, ..., Nmin.sink<n>
Along with modelling SON, further quantities are determined. Nitrogen losses are calculated as:
\[ Nloss(t) = N(t-1) + Nin(t-1) - N(t) \]In contrast, mineralisation rates contain information about sources and sinks of SON.
They are calculated based on the CN ratios in the pools and the turnover rates (for details see the extended pdf documentation at browseVignettes("sorcering")
).
Pool-specific N mineralisation \(Nmin.sink\left\langle 1 \right\rangle, ..., Nmin.sink\left\langle n \right\rangle\) and N mineralisation \(Nmin\) are related as follows:
for each simulation time point \(t\), each pool \(j = 1, ..., n\) and each pool \(p = 1, ..., n\) and \(n\) total pools. Or in other words, the row sum of \(Nmin.sink\left\langle j \right\rangle\) at one simulation time point equals the jth column of \(Nmin\) at that time point.
As changes in SON must match the sums of all mineralisation paths, the sums over soil pools of Nloss
and Nmin
, respectively, must be approximately equal for all simulation time points:
A verification of this relation is given by "Nbalance"
(see below).
Value Nbalance
The overall N change between two time steps is calculated as: \[ \Delta N (t) = \sum_{p=1}^{n} N_p(t-1) - \sum_{p=1}^{n} N_p(t) \]
The total system N balance serves as a verification output. Both of the following equations should always give results close to zero: \[ N_{bal1}(t) = \sum_{p=1}^{n} Nin_p(t-1) + \Delta N (t) - \sum_{p=1}^{n} Nloss_p(t) \approx 0 \]
\[ N_{bal2}(t) = \sum_{p=1}^{n} Nin_p(t-1) + \Delta N (t) - \sum_{p=1}^{n} Nmin_p(t) \approx 0 \]\(\Delta N (t)\) is saved in the first column, \(N_{bal1}(t)\) in the second and \(N_{bal2}(t)\) in the third column of "Nbalance"
.
Model parameters
If a predefined model has been specified (model is not NULL
) the following standard parameters are used.
They can be changed using theta
within the program call.
RothC | |||||
k_dpm | 10 | Decomposition rate for DPM pool [yr-1] | |||
k_rpm | 0.3 | Decomposition rate for RPM pool [yr-1] | |||
k_bio | 0.66 | Decomposition rate for BIO pool [yr-1] | |||
k_hum | 0.02 | Decomposition rate for HUM pool [yr-1] | |||
k_iom | 0 | Decomposition rate for IOM pool [yr-1] | |||
R_W_max | 1 | Maximum rate modifying factor for soil moisture | |||
R_W_min | 0.2 | Minimum rate modifying factor for soil moisture | |||
C-Tool | |||||
C-Tool | C-Tool-org | ||||
k_fom_t | 1.44 | 1.44 | Decomposition rate for FOM pool (topsoil) [yr-1] | ||
k_hum_t | 0.0336 | 0.0336 | Decomposition rate for HUM pool (topsoil) [yr-1] | ||
k_rom_t | 0.000463 | 0 | Decomposition rate for ROM pool (topsoil) [yr-1] | ||
k_fom_s | 1.44 | 1.44 | Decomposition rate for FOM pool (subsoil) [yr-1] | ||
k_hum_s | 0.0336 | 0.0336 | Decomposition rate for HUM pool (subsoil) [yr-1] | ||
k_rom_s | 0.000463 | 0 | Decomposition rate for ROM pool (subsoil) [yr-1] | ||
tf | 0.03 | 0 | Fraction going to downward transport | ||
f_co2 | 0.628 | 0.628 | Fraction of CO2 released | ||
f_rom | 0.012 | 0 | Fraction of fresh organic matter going to ROM pool | ||
f_hum | 0 | 0.358 | Fraction of input going to HUM pool | ||
Yasso | |||||
Yasso07 | Yasso15 | Yasso20 | |||
kA | 0.66 | 0.49 | 0.51 | Base decomposition rate for pool A [yr-1] | |
kW | 4.3 | 4.9 | 5.19 | Base decomposition rate for pool W [yr-1] | |
kE | 0.35 | 0.25 | 0.13 | Base decomposition rate for pool E [yr-1] | |
kN | 0.22 | 0.095 | 0.1 | Base decomposition rate for pool N [yr-1] | |
kH | 0.0033 | 0.0013 | 0.0015 | Base decomposition rate for pool H [yr-1] | |
p1 | 0.32 | 0.44 | 0.5 | Transference fraction from pool A to pool W | |
p2 | 0.01 | 0.25 | 0 | Transference fraction from pool A to pool E | |
p3 | 0.93 | 0.92 | 1 | Transference fraction from pool A to pool N | |
p4 | 0.34 | 0.99 | 1 | Transference fraction from pool W to pool A | |
p5 | 0 | 0.084 | 0.99 | Transference fraction from pool W to pool E | |
p6 | 0 | 0.011 | 0 | Transference fraction from pool W to pool N | |
p7 | 0 | 0.00061 | 0 | Transference fraction from pool E to pool A | |
p8 | 0 | 0.00048 | 0 | Transference fraction from pool E to pool W | |
p9 | 0.01 | 0.066 | 0 | Transference fraction from pool E to pool N | |
p10 | 0 | 0.00077 | 0 | Transference fraction from pool N to pool A | |
p11 | 0 | 0.1 | 0.163 | Transference fraction from pool N to pool W | |
p12 | 0.02 | 0.65 | 0 | Transference fraction from pool N to pool E | |
pH | 0.04 | 0.0046 | 0.0015 | Transference fraction from AWEN pools to pool H | |
beta_1 | 0.076 | 0.091 | 0.158 | 1st-order temperature parameter for AWE pools [degrees C-1] | |
beta_2 | -0.00089 | -0.00021 | -0.002 | 2nd-order temperature parameter for AWE pools [degrees C-2] | |
beta_N1 | - | 0.049 | 0.17 | 1st-order temperature parameter for N pool [degrees C-1] | |
beta_N2 | - | -0.000079 | -0.005 | 2nd-order temperature parameter for N pool [degrees C-2] | |
beta_H1 | - | 0.035 | 0.067 | 1st-order temperature parameter for H pool [degrees C-1] | |
beta_H2 | - | -0.00021 | 0 | 2nd-order temperature parameter for H pool [degrees C-2] | |
gamma | -1.27 | -1.8 | -1.44 | Precipitation impact parameter for AWE pools [yr mm-1] | |
gamma_N | - | -1.2 | -2 | Precipitation impact parameter for N pool [yr mm-1] | |
gamma_H | - | -13 | -6.9 | Precipitation impact parameter for H pool [yr mm-1] | |
theta_1 | - | -0.44 | -2.55 | 1st-order impact parameter for wood size [cm-1] | |
theta_2 | - | 1.3 | 1.24 | 2nd-order impact parameter for wood size [cm-2] | |
r | - | 0.26 | 0.25 | Exponent parameter for wood size |
SORCERING
returns either a list of carbon and nitrogen output values or, when multisite = TRUE
, a list broken down by site with result lists for each site.
When modelling uncertainties (as can be defined by passing e.g. Cin
, Nin
, xi
or theta
),
the output is even extended to include another list dimension that covers these uncertainties.
The lowest output list-level contains the following components:
C |
matrix with a number of rows corresponding to simulation time steps (number of rows of |
N |
matrix with a number of rows corresponding to simulation time steps (number of rows of |
Nloss |
matrix with a number of rows corresponding to simulation time steps (number of rows of |
Nmin |
matrix with a number of rows corresponding to simulation time steps (number of rows of |
Nmin.sink.1 , ... , Nmin.sink.n
|
matrices with a number of rows corresponding to simulation time steps (number of rows of |
Nbalance |
matrix with a number of rows corresponding to simulation time steps (number of rows of |
The SORCERING
code was written in C++ using the R packages Rcpp
(Eddelbuettel et al. 2021)
and RcppArmadillo
(Eddelbuettel et al. 2021).
This documentation was built with the help of the R packages mathjaxr
(Viechtbauer 2021)
and Rdpack
(Boshnakov 2021).
Marc Scherstjanoi [email protected], Rene Dechow
Boshnakov GN (2021).
Rdpack: Update and Manipulate Rd Documentation Objects.
R package version 2.1.1, https://CRAN.R-project.org/package=Rdpack.
Coleman K, Jenkinson DS (1996).
“RothC-26.3 - A Model for the turnover of carbon in soil.”
In Powlson DS, Smith P, Smith JU (eds.), Evaluation of Soil Organic Matter Models, 237–246.
ISBN 978-3-642-61094-3.
Eddelbuettel D, Francois R, Allaire JJ, Ushey K, Kou Q, Russell N, Bates D, Chambers J (2021).
Rcpp: Seamless R and C++ Integration.
R package version 1.0.6, https://CRAN.R-project.org/package=Rcpp.
Eddelbuettel D, Francois R, Bates D, Ni B (2021).
RcppArmadillo: 'Rcpp' Integration for the 'Armadillo' Templated Linear Algebra Library.
R package version 0.10.4.0.0, https://CRAN.R-project.org/package=RcppArmadillo.
Sierra CA, Mueller M, Trumbore SE (2012).
“Models of soil organic matter decomposition: the SoilR package, version 1.0.”
Geoscientific Model Development, 5(4), 1045–1060.
doi:10.5194/gmd-5-1045-2012, https://gmd.copernicus.org/articles/5/1045/2012/.
Taghizadeh-Toosi A, Christensen BT, Hutchings NJ, Vejlin J, Kaetterer T, Glendining M, Olesen JE (2014).
“C-TOOL: A simple model for simulating whole-profile carbon storage in temperate agricultural soils.”
Ecological Modelling, 292, 11 - 25.
ISSN 0304-3800, doi:10.1016/j.ecolmodel.2014.08.016.
Tuomi M, Thum T, Jaervinen H, Fronzek S, Berg B, Harmon M, Trofymow JA, Sevanto S, Liski J (2009).
“Leaf litter decomposition-Estimates of global variability based on Yasso07 model.”
Ecological Modelling, 220(23), 3362 - 3371.
ISSN 0304-3800, doi:10.1016/j.ecolmodel.2009.05.016.
Viechtbauer W (2021).
mathjaxr: Using 'Mathjax' in Rd Files.
R package version 1.4-0, https://CRAN.R-project.org/package=mathjaxr.
Viskari T, Laine M, Kulmala L, Maekelae J, Fer I, Liski J (2020).
“Improving Yasso15 soil carbon model estimates with ensemble adjustment Kalman filter state data assimilation.”
Geoscientific Model Development, 13(12), 5959–5971.
doi:10.5194/gmd-13-5959-2020, https://gmd.copernicus.org/articles/13/5959/2020/.
Viskari T, Pusa J, Fer I, Repo A, Vira J, Liski J (2022).
“Calibrating the soil organic carbon model Yasso20 with multiple datasets.”
Geoscientific Model Development, 15(4), 1735–1752.
doi:10.5194/gmd-15-1735-2022, https://gmd.copernicus.org/articles/15/1735/2022/.
#1 RothC application with fictional input for a single site #1.1 Input data(RothC_Cin_ex, RothC_Nin_ex, RothC_N0_ex, RothC_C0_ex, RothC_xi_ex, RothC_site_ex, RothC_env_in_ex) #fictional data #1.2 Simulations #In the following two methods are presented, one with a RothC as a predefined #model (1.2.1), one where the RothC rate modifying factors must be calculated #beforehand (1.2.2). Both methods lead to the same results. #1.2.1 Simulation with predefined model out_rothC <- sorcering( model="RothC", site=RothC_site_ex, env_in=RothC_env_in_ex, Cin=RothC_Cin_ex, Nin=RothC_Nin_ex, N0=RothC_N0_ex, C0=RothC_C0_ex, calcN=TRUE, tsteps="monthly") #1.2.2 Simulation with own model definition and rate modifying factor definition A_RothC <- fget_A_RothC(clay=30) #create transfer matrix for RothC out_rothC_own <- sorcering(A=A_RothC , xi=RothC_xi_ex, Cin=RothC_Cin_ex, Nin=RothC_Nin_ex, N0=RothC_N0_ex, C0=RothC_C0_ex, calcN=TRUE, tsteps="monthly") #Note that RothC_xi_ex contains site and model specific rate modifying factors that #are only valid in this specific example. Generally, xi must be calculated by the #user for different environmental conditions and SOC models used. #1.3 Results #output structure summary summary(out_rothC) #show that results of 1.2.1 and 1.2.2 differ negligibly all( abs(out_rothC$C-out_rothC_own$C) < 1e-14) all( abs(out_rothC$N-out_rothC_own$N) < 1e-14) #example plot oldpar <- par(no.readonly=TRUE) #save old par par(mfrow=c(1,1),mar=c(4,4,1,4)) plot(rowSums(out_rothC$N),axes=FALSE, col=1, cex.lab=2,xlab="",ylab="",ylim=c(0,9), pch=20) par(new=TRUE) plot(rowSums(RothC_Cin_ex)/rowSums(RothC_Nin_ex), axes=FALSE,col=2, cex.lab=2,xlab="",ylab="",ylim=c(0,60),pch=20) axis(side=2, pos=0, labels=(0:6)*1.5, at=(0:6)*10, hadj=0.7, padj=0.5, cex.axis=2,las=1,col.axis=1) axis(side=4, pos=60, labels=(0:6)*10, at=(0:6)*10, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2) axis(side=1, pos=0, labels= (0:6)*10 , at=(0:6)*10, hadj=0.5, padj=0, cex.axis=2) title(ylab=expression("total N [t ha"^-1*"]"), line=2, cex.lab=2) mtext("C input / N input", side=4, line=2, cex=2,col=2) title(xlab="time", line=2, cex.lab=2) par(oldpar) #back to old par #2 RothC application with fictional input for a multiple site application #2.1 Input data(RothC_Cin_ex_sl, RothC_Nin_ex_sl, RothC_N0_ex, RothC_C0_ex, RothC_site_ex, RothC_env_in_ex) #fictional data #2.2. Simulation out_multi_rothC <- sorcering( model="RothC", site_sl=rep(list(RothC_site_ex),3), env_in_sl=rep(list(RothC_env_in_ex),3), Cin_sl=RothC_Cin_ex_sl, Nin_sl=RothC_Nin_ex_sl, N0_sl=rep(list(RothC_N0_ex),3),C0_sl=rep(list(RothC_C0_ex),3), calcN=TRUE, tsteps="monthly", multisite=TRUE, sitelist=list("normal","half_input","double_Cin")) #2.3 Results #output structure summary summary(out_multi_rothC$normal) summary(out_multi_rothC$half_input) summary(out_multi_rothC$double_Cin) #example plot oldpar <- par(no.readonly=TRUE) #save old par par(mfrow=c(1,1),mar=c(4,4,1,4)) for (listelement in c(1:3)) { lwidth<-1 if (listelement==2)lwidth<-3 plot(rowSums(out_multi_rothC[[listelement]]$N),axes=FALSE, col=1,type="l", lwd=lwidth, lty=listelement+2,cex.lab=2,xlab="",ylab="",ylim=c(0,18)) par(new=TRUE) plot(rowSums(RothC_Cin_ex_sl[[listelement]])/rowSums(RothC_Nin_ex_sl[[listelement]]), type="l", lwd=lwidth, lty=listelement+2,axes=FALSE,col=2, cex.lab=2,xlab="", ylab="",ylim=c(0,120)) par(new=TRUE) } axis(side=2, pos=0, labels=(0:6)*3, at=(0:6)*20, hadj=0.7, padj=0.5, cex.axis=2,las=1,col.axis=1) axis(side=4, pos=60, labels=(0:6)*20, at=(0:6)*20, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2) axis(side=1, pos=0, labels= (0:6)*10 , at=(0:6)*10, hadj=0.5, padj=0, cex.axis=2) title(ylab=expression("total N [t ha"^-1*"]"), line=2, cex.lab=2) mtext("C input / N input", side=4, line=2, cex=2,col=2) title(xlab="time", line=2, cex.lab=2) legend(x=40,y=100,legend=c("normal","half_input","double_Cin"),lty=c(3,4,5), lwd=c(1,3,1)) par(oldpar) #back to old par #3 RothC application with fictional input #and fictional measurement data to calculate C0 and N0 #3.1 Input #fictional data data(RothC_Cin_ex_sl, RothC_Nin_ex_sl, RothC_site_ex, RothC_env_in_ex, meas_data_ex) #3.2. Simulation out_rothC_C0<-sorcering( model="RothC", site=RothC_site_ex, env_in=RothC_env_in_ex, Cin=RothC_Cin_ex, Nin=RothC_Nin_ex, calcC0=TRUE, calcN=TRUE, calcN0=TRUE, tsteps="monthly", meas_data=meas_data_ex) #3.3 Results #output structure summary summary(out_rothC_C0) #example plot oldpar <- par(no.readonly=TRUE) #save old par par(mfrow=c(1,1),mar=c(4,4,1,4)) plot(rowSums(out_rothC_C0$N),axes=FALSE, col=1, cex.lab=2,xlab="",ylab="",ylim=c(0,9), type="l",lwd=1) par(new=TRUE) plot(rowSums(out_rothC_C0$C),axes=FALSE, col=2, cex.lab=2,xlab="",ylab="",ylim=c(0,90), type="l",lwd=1) par(new=TRUE) plot(x=meas_data_ex[,1],y=meas_data_ex[,3],axes=FALSE, col=1, cex.lab=2,xlab="",ylab="", xlim=c(0,length(rowSums(out_rothC_C0$N))),ylim=c(0,9),pch=4,cex=3) par(new=TRUE) plot(x=meas_data_ex[,1],y=meas_data_ex[,2],axes=FALSE, col=2, cex.lab=2,xlab="",ylab="", xlim=c(0,length(rowSums(out_rothC_C0$N))),ylim=c(0,90),pch=4,cex=3) par(new=TRUE) axis(side=2, pos=0, labels=(0:8)*1, at=(0:8)*10, hadj=1, padj=0.5, cex.axis=2,las=1,col.axis=1) axis(side=4, pos=60, labels=(0:8)*10, at=(0:8)*10, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2) axis(side=1, pos=0, labels= (0:8)*10 , at=(0:8)*10, hadj=0.5, padj=0, cex.axis=2) title(ylab=expression("SON [t ha"^-1*"]"), line=2, cex.lab=2) mtext(expression("SOC [t ha"^-1*"]"), side=4, line=3, cex=2,col=2) title(xlab="time", line=2, cex.lab=2) legend(x=30,y=30,legend=c("model result","measurement"),lwd=c(1,0)) legend(x=31,y=30,legend=c("",""),pch=4,pt.cex=c(0,3),bty="n") par(oldpar) #back to old par #4 Yasso15 application using multiple sites and #input values of different wood diameters which take uncertainties into account #4.1 Input data(Yasso_Cin_ex_wood_u_sl, Yasso_Nin_ex_wood_u_sl, Yasso_C0_ex_sl, Yasso_N0_ex_sl, RothC_env_in_ex) #fictional data #show last entries of C input for 3rd site, 2nd wood layer, 4th uncertainty layer tail(Yasso_Cin_ex_wood_u_sl[[3]][[2]][[4]]) #diameter of wood input: 2 classes of 0 cm and 10 cm for each of the 3 sites wood_diam_ex_sl<-list(c(0,10),c(0,10),c(0,10)) #environmental variables Yasso_env_in_ex<-RothC_env_in_ex[,1:2] #4.2 Simulation out_multi_yasso_wood_unc <- sorcering( model="Yasso15", C0_sl=Yasso_C0_ex_sl, env_in_sl=rep(list(Yasso_env_in_ex),3), wood_diam_sl=wood_diam_ex_sl, Cin_wood_sl=Yasso_Cin_ex_wood_u_sl,Nin_wood_sl=Yasso_Nin_ex_wood_u_sl, N0_sl=Yasso_N0_ex_sl, calcN=TRUE, tsteps="monthly", multisite=TRUE, sitelist=list("a","b","c")) #4.3 Results #show the last C results for 3rd site, 4th uncertainty layer tail(out_multi_yasso_wood_unc[[3]][[4]]$C) #5 RothC application using stochastically varying parameters #and multiple sites #5.1 fictional data data(RothC_Cin_ex_sl, RothC_Nin_ex_sl, RothC_C0_ex, RothC_N0_ex, RothC_site_ex, RothC_env_in_ex) #standard deviations [%] used for each of the 7 RothC theta parameters RothC_theta_unc <- c(0,0,1,1,1,1,2) #5.2 Simulation out_sl <- sorcering( model="RothC", site_sl=rep(list(RothC_site_ex),3), env_in_sl=rep(list(RothC_env_in_ex),3), Cin_sl=RothC_Cin_ex_sl, Nin_sl=RothC_Nin_ex_sl, C0_sl=rep(list(RothC_C0_ex),3), N0_sl=rep(list(RothC_N0_ex),3),calcN=TRUE,theta_n_unc=10, theta_unc=RothC_theta_unc, multisite=TRUE, sitelist=list("normal","half_input","double_Cin")) #5.3 Means and standard deviation #60 time steps, 5 pools, 9 output types, 10 theta_n_unc, 3 sites out_sl_arr <- array(unlist(out_sl),c(60,5,9,10,3)) out_sl_arr_N <- out_sl_arr[,,2,,] #only output type 2: N #mean over all uncerts out_sl_arr_N_mean <- apply( out_sl_arr_N , c(1,2,4), na.rm=TRUE, FUN=mean ) #standard deviation out_sl_arr_N_sd<- array(0, dim=c(dim(out_sl_arr_N)[1],dim(out_sl_arr_N)[2],dim(out_sl_arr_N)[4])) for (dim3 in c(1:dim(out_sl_arr_N)[4])) out_sl_arr_N_sd[,,dim3]<-apply(out_sl_arr_N[,,,dim3],c(1:2),sd) #5.4 Results #show the last N means for stand 1 tail(out_sl_arr_N_mean[,,1]) #show the last N standard deviations for stand 1 tail(out_sl_arr_N_sd[,,1]) #6 How to create input lists for a RothC application using stochastically #varying inputs and input scenarios #6.1 Input #fictional data data(RothC_Cin_ex_sl, RothC_C0_ex, RothC_site_ex, RothC_env_in_ex) #create input list of 3 scenarios, 100 uncertainties each set.seed(17) #to make 'random' results reproducible f1<-1 for (no in c(1:3)) #loop over 3 input scenarios { #normal, half and double input Cin <- switch (no, RothC_Cin_ex, RothC_Cin_ex/2, RothC_Cin_ex*2) f2 <- 1 #create fictional uncertainties for (unc in c(1:100)) #loop over 100 uncertainties { randnum<-max(0,rnorm(1,1,0.5)) #out of normal dist. with 50% sd. if (f2==1) Cin_u <- list(Cin*randnum) else Cin_u[[length(Cin_u)+1]] <- Cin*randnum f2 <- 0 } if (f1==1) Cin_u_sl <- list(Cin_u) else Cin_u_sl[[length(Cin_u_sl)+1]] <- Cin_u f1 <- 0 } #show input of scenario 3, uncertainty 51 head(Cin_u_sl[[3]][[51]]) #6.2 Simulation out_sl <- sorcering( model="RothC", site_sl=rep(list(RothC_site_ex),3), env_in_sl=rep(list(RothC_env_in_ex),3),Cin_sl=Cin_u_sl, C0_sl=list(RothC_C0_ex,RothC_C0_ex,RothC_C0_ex), tsteps="monthly", multisite=TRUE, sitelist=list("normal","half_input","double_Cin")) #6.3 Means and standard deviation #60 time steps, 5 pools, 1000 uncertainties, 3 sites out_sl_arr <- array(unlist(out_sl),c(60,5,100,3)) #means out_sl_arr_mean <- apply( out_sl_arr , c(1,2,4), na.rm=TRUE, FUN=mean ) #standard deviation out_sl_arr_sd<- array(0, dim=c(dim(out_sl_arr)[1],dim(out_sl_arr)[2],dim(out_sl_arr)[4])) for (dim3 in c(1:dim(out_sl_arr)[4])) out_sl_arr_sd[,,dim3]<-apply(out_sl_arr[,,,dim3],c(1:2),sd) #6.4 Results #C-pool sums of means for the 3 scenarios totalC_m1<-rowSums(out_sl_arr_mean[,,1]) totalC_m2<-rowSums(out_sl_arr_mean[,,2]) totalC_m3<-rowSums(out_sl_arr_mean[,,3]) #C-pool sums of standard deviations for the 3 scenarios totalC_s1<-rowSums(out_sl_arr_sd[,,1]) totalC_s2<-rowSums(out_sl_arr_sd[,,2]) totalC_s3<-rowSums(out_sl_arr_sd[,,3]) #example plot oldpar <- par(no.readonly=TRUE) #save old par par(mfrow=c(1,1),mar=c(4,4,1,4)) plot(totalC_m1,axes=FALSE, col=2, cex.lab=2,xlab="",ylab="",ylim=c(0,100), type="l",lwd=1) par(new=TRUE) plot(totalC_m2,axes=FALSE, col=3, cex.lab=2,xlab="",ylab="",ylim=c(0,100), type="l",lwd=1) par(new=TRUE) plot(totalC_m3,axes=FALSE, col=4, cex.lab=2,xlab="",ylab="",ylim=c(0,100), type="l",lwd=1) par(new=TRUE) polygon(c(1:60,60:1),c(totalC_m1+totalC_s1, rev(totalC_m1-totalC_s1)), border=NA,col=rgb(1,0,0,0.27),density=40,angle=180,xlab="",ylab="") par(new=TRUE) polygon(c(1:60,60:1),c(totalC_m2+totalC_s2, rev(totalC_m2-totalC_s2)), border=NA,col=rgb(0,1,0,0.27),density=30,xlab="",ylab="") par(new=TRUE) polygon(c(1:60,60:1),c(totalC_m3+totalC_s3, rev(totalC_m3-totalC_s3)), border=NA,col=rgb(0,0,1,0.27),density=25,angle=90,xlab="",ylab="") par(new=TRUE) axis(side=2, pos=0, labels=(0:10)*1, at=(0:10)*10, hadj=1, padj=0.5, cex.axis=2,las=1,col.axis=1) axis(side=1, pos=0, labels= (0:6)*10 , at=(0:6)*10, hadj=0.5, padj=0, cex.axis=2) title(ylab=expression("SOC [t ha"^-1*"]"), line=2, cex.lab=2) title(xlab="time", line=2, cex.lab=2) legend(x=20,y=30,fill=c(0,0,0,4,2,3),density=c(0,0,0,25,40,30),angle=c(0,0,0,90,0,45), border=c(0,0,0,1,1,1),legend=c("mean double input scenario", "mean regular input scenario", "mean half input scneario", "uncertainty range double input scenario", "uncertainty range regular input scenario", "uncertainty range half input scenario")) legend(x=20,y=30,lty=c(1,1,1,0,0,0),seg.len=c(1,1,1,0,0,0), col=c(4,2,3,0,0,0), legend=c("","","","","",""),bty="n") par(oldpar) #back to old par #7 RothC application with fictional input for a spin-up application #7.1 Input #fictional data data(RothC_Cin_ex_sl_spin, RothC_Nin_ex_sl_spin, RothC_site_ex, RothC_env_in_ex) #7.2. Simulation out_multi_rothC <- sorcering( model="RothC", site_sl=rep(list(RothC_site_ex),3), env_in_sl=rep(list(RothC_env_in_ex[1:12,]),3), Cin_sl=RothC_Cin_ex_sl_spin, Nin_sl=RothC_Nin_ex_sl_spin, calcN=TRUE, tsteps="monthly", multisite=TRUE, sitelist=list("normal","half_input","double_Cin"), spinup=TRUE, t_spin_sl=36000, C0=c(0,0,0,0,20), N0=c(0,0,0,0,2), CN_spin=c(100,100,50,50,10)) #7.3 Results #example plot oldpar <- par(no.readonly=TRUE) #save old par par(mfrow=c(1,1),mar=c(4,4,1,4)) for (listelement in c(1:3)) { lwidth<-1 if (listelement==2)lwidth<-3 printN<-rowSums(out_multi_rothC[[listelement]]$N) printseq<-seq.int(1L,length(printN),100L) printC<-rowSums(out_multi_rothC[[listelement]]$C) plot(printN[printseq],axes=FALSE, col=1,type="l", lwd=lwidth, lty=listelement+2,cex.lab=2,xlab="",ylab="",ylim=c(0,30)) par(new=TRUE) plot(printC[printseq],axes=FALSE, col=2,type="l", lwd=lwidth, lty=listelement+2,cex.lab=2,xlab="",ylab="",ylim=c(0,180)) par(new=TRUE) } axis(side=2, pos=0, labels=(0:6)*5, at=(0:6)*30, hadj=0.7, padj=0.5, cex.axis=2,las=1,col.axis=1) axis(side=4, pos=360, labels=(0:6)*30, at=(0:6)*30, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2) axis(side=1, pos=0, labels= (0:6)*6000 , at=(0:6)*60, hadj=0.5, padj=0, cex.axis=2) title(ylab=expression("total N [t ha"^-1*"]"), line=2, cex.lab=2) mtext(expression("total C [t ha"^-1*"]"), side=4, line=2, cex=2,col=2) title(xlab="time", line=2, cex.lab=2) legend(x=120,y=140,legend=c("normal","half_input","double_Cin"),lty=c(3,4,5), lwd=c(1,3,1)) par(oldpar) #back to old par
#1 RothC application with fictional input for a single site #1.1 Input data(RothC_Cin_ex, RothC_Nin_ex, RothC_N0_ex, RothC_C0_ex, RothC_xi_ex, RothC_site_ex, RothC_env_in_ex) #fictional data #1.2 Simulations #In the following two methods are presented, one with a RothC as a predefined #model (1.2.1), one where the RothC rate modifying factors must be calculated #beforehand (1.2.2). Both methods lead to the same results. #1.2.1 Simulation with predefined model out_rothC <- sorcering( model="RothC", site=RothC_site_ex, env_in=RothC_env_in_ex, Cin=RothC_Cin_ex, Nin=RothC_Nin_ex, N0=RothC_N0_ex, C0=RothC_C0_ex, calcN=TRUE, tsteps="monthly") #1.2.2 Simulation with own model definition and rate modifying factor definition A_RothC <- fget_A_RothC(clay=30) #create transfer matrix for RothC out_rothC_own <- sorcering(A=A_RothC , xi=RothC_xi_ex, Cin=RothC_Cin_ex, Nin=RothC_Nin_ex, N0=RothC_N0_ex, C0=RothC_C0_ex, calcN=TRUE, tsteps="monthly") #Note that RothC_xi_ex contains site and model specific rate modifying factors that #are only valid in this specific example. Generally, xi must be calculated by the #user for different environmental conditions and SOC models used. #1.3 Results #output structure summary summary(out_rothC) #show that results of 1.2.1 and 1.2.2 differ negligibly all( abs(out_rothC$C-out_rothC_own$C) < 1e-14) all( abs(out_rothC$N-out_rothC_own$N) < 1e-14) #example plot oldpar <- par(no.readonly=TRUE) #save old par par(mfrow=c(1,1),mar=c(4,4,1,4)) plot(rowSums(out_rothC$N),axes=FALSE, col=1, cex.lab=2,xlab="",ylab="",ylim=c(0,9), pch=20) par(new=TRUE) plot(rowSums(RothC_Cin_ex)/rowSums(RothC_Nin_ex), axes=FALSE,col=2, cex.lab=2,xlab="",ylab="",ylim=c(0,60),pch=20) axis(side=2, pos=0, labels=(0:6)*1.5, at=(0:6)*10, hadj=0.7, padj=0.5, cex.axis=2,las=1,col.axis=1) axis(side=4, pos=60, labels=(0:6)*10, at=(0:6)*10, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2) axis(side=1, pos=0, labels= (0:6)*10 , at=(0:6)*10, hadj=0.5, padj=0, cex.axis=2) title(ylab=expression("total N [t ha"^-1*"]"), line=2, cex.lab=2) mtext("C input / N input", side=4, line=2, cex=2,col=2) title(xlab="time", line=2, cex.lab=2) par(oldpar) #back to old par #2 RothC application with fictional input for a multiple site application #2.1 Input data(RothC_Cin_ex_sl, RothC_Nin_ex_sl, RothC_N0_ex, RothC_C0_ex, RothC_site_ex, RothC_env_in_ex) #fictional data #2.2. Simulation out_multi_rothC <- sorcering( model="RothC", site_sl=rep(list(RothC_site_ex),3), env_in_sl=rep(list(RothC_env_in_ex),3), Cin_sl=RothC_Cin_ex_sl, Nin_sl=RothC_Nin_ex_sl, N0_sl=rep(list(RothC_N0_ex),3),C0_sl=rep(list(RothC_C0_ex),3), calcN=TRUE, tsteps="monthly", multisite=TRUE, sitelist=list("normal","half_input","double_Cin")) #2.3 Results #output structure summary summary(out_multi_rothC$normal) summary(out_multi_rothC$half_input) summary(out_multi_rothC$double_Cin) #example plot oldpar <- par(no.readonly=TRUE) #save old par par(mfrow=c(1,1),mar=c(4,4,1,4)) for (listelement in c(1:3)) { lwidth<-1 if (listelement==2)lwidth<-3 plot(rowSums(out_multi_rothC[[listelement]]$N),axes=FALSE, col=1,type="l", lwd=lwidth, lty=listelement+2,cex.lab=2,xlab="",ylab="",ylim=c(0,18)) par(new=TRUE) plot(rowSums(RothC_Cin_ex_sl[[listelement]])/rowSums(RothC_Nin_ex_sl[[listelement]]), type="l", lwd=lwidth, lty=listelement+2,axes=FALSE,col=2, cex.lab=2,xlab="", ylab="",ylim=c(0,120)) par(new=TRUE) } axis(side=2, pos=0, labels=(0:6)*3, at=(0:6)*20, hadj=0.7, padj=0.5, cex.axis=2,las=1,col.axis=1) axis(side=4, pos=60, labels=(0:6)*20, at=(0:6)*20, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2) axis(side=1, pos=0, labels= (0:6)*10 , at=(0:6)*10, hadj=0.5, padj=0, cex.axis=2) title(ylab=expression("total N [t ha"^-1*"]"), line=2, cex.lab=2) mtext("C input / N input", side=4, line=2, cex=2,col=2) title(xlab="time", line=2, cex.lab=2) legend(x=40,y=100,legend=c("normal","half_input","double_Cin"),lty=c(3,4,5), lwd=c(1,3,1)) par(oldpar) #back to old par #3 RothC application with fictional input #and fictional measurement data to calculate C0 and N0 #3.1 Input #fictional data data(RothC_Cin_ex_sl, RothC_Nin_ex_sl, RothC_site_ex, RothC_env_in_ex, meas_data_ex) #3.2. Simulation out_rothC_C0<-sorcering( model="RothC", site=RothC_site_ex, env_in=RothC_env_in_ex, Cin=RothC_Cin_ex, Nin=RothC_Nin_ex, calcC0=TRUE, calcN=TRUE, calcN0=TRUE, tsteps="monthly", meas_data=meas_data_ex) #3.3 Results #output structure summary summary(out_rothC_C0) #example plot oldpar <- par(no.readonly=TRUE) #save old par par(mfrow=c(1,1),mar=c(4,4,1,4)) plot(rowSums(out_rothC_C0$N),axes=FALSE, col=1, cex.lab=2,xlab="",ylab="",ylim=c(0,9), type="l",lwd=1) par(new=TRUE) plot(rowSums(out_rothC_C0$C),axes=FALSE, col=2, cex.lab=2,xlab="",ylab="",ylim=c(0,90), type="l",lwd=1) par(new=TRUE) plot(x=meas_data_ex[,1],y=meas_data_ex[,3],axes=FALSE, col=1, cex.lab=2,xlab="",ylab="", xlim=c(0,length(rowSums(out_rothC_C0$N))),ylim=c(0,9),pch=4,cex=3) par(new=TRUE) plot(x=meas_data_ex[,1],y=meas_data_ex[,2],axes=FALSE, col=2, cex.lab=2,xlab="",ylab="", xlim=c(0,length(rowSums(out_rothC_C0$N))),ylim=c(0,90),pch=4,cex=3) par(new=TRUE) axis(side=2, pos=0, labels=(0:8)*1, at=(0:8)*10, hadj=1, padj=0.5, cex.axis=2,las=1,col.axis=1) axis(side=4, pos=60, labels=(0:8)*10, at=(0:8)*10, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2) axis(side=1, pos=0, labels= (0:8)*10 , at=(0:8)*10, hadj=0.5, padj=0, cex.axis=2) title(ylab=expression("SON [t ha"^-1*"]"), line=2, cex.lab=2) mtext(expression("SOC [t ha"^-1*"]"), side=4, line=3, cex=2,col=2) title(xlab="time", line=2, cex.lab=2) legend(x=30,y=30,legend=c("model result","measurement"),lwd=c(1,0)) legend(x=31,y=30,legend=c("",""),pch=4,pt.cex=c(0,3),bty="n") par(oldpar) #back to old par #4 Yasso15 application using multiple sites and #input values of different wood diameters which take uncertainties into account #4.1 Input data(Yasso_Cin_ex_wood_u_sl, Yasso_Nin_ex_wood_u_sl, Yasso_C0_ex_sl, Yasso_N0_ex_sl, RothC_env_in_ex) #fictional data #show last entries of C input for 3rd site, 2nd wood layer, 4th uncertainty layer tail(Yasso_Cin_ex_wood_u_sl[[3]][[2]][[4]]) #diameter of wood input: 2 classes of 0 cm and 10 cm for each of the 3 sites wood_diam_ex_sl<-list(c(0,10),c(0,10),c(0,10)) #environmental variables Yasso_env_in_ex<-RothC_env_in_ex[,1:2] #4.2 Simulation out_multi_yasso_wood_unc <- sorcering( model="Yasso15", C0_sl=Yasso_C0_ex_sl, env_in_sl=rep(list(Yasso_env_in_ex),3), wood_diam_sl=wood_diam_ex_sl, Cin_wood_sl=Yasso_Cin_ex_wood_u_sl,Nin_wood_sl=Yasso_Nin_ex_wood_u_sl, N0_sl=Yasso_N0_ex_sl, calcN=TRUE, tsteps="monthly", multisite=TRUE, sitelist=list("a","b","c")) #4.3 Results #show the last C results for 3rd site, 4th uncertainty layer tail(out_multi_yasso_wood_unc[[3]][[4]]$C) #5 RothC application using stochastically varying parameters #and multiple sites #5.1 fictional data data(RothC_Cin_ex_sl, RothC_Nin_ex_sl, RothC_C0_ex, RothC_N0_ex, RothC_site_ex, RothC_env_in_ex) #standard deviations [%] used for each of the 7 RothC theta parameters RothC_theta_unc <- c(0,0,1,1,1,1,2) #5.2 Simulation out_sl <- sorcering( model="RothC", site_sl=rep(list(RothC_site_ex),3), env_in_sl=rep(list(RothC_env_in_ex),3), Cin_sl=RothC_Cin_ex_sl, Nin_sl=RothC_Nin_ex_sl, C0_sl=rep(list(RothC_C0_ex),3), N0_sl=rep(list(RothC_N0_ex),3),calcN=TRUE,theta_n_unc=10, theta_unc=RothC_theta_unc, multisite=TRUE, sitelist=list("normal","half_input","double_Cin")) #5.3 Means and standard deviation #60 time steps, 5 pools, 9 output types, 10 theta_n_unc, 3 sites out_sl_arr <- array(unlist(out_sl),c(60,5,9,10,3)) out_sl_arr_N <- out_sl_arr[,,2,,] #only output type 2: N #mean over all uncerts out_sl_arr_N_mean <- apply( out_sl_arr_N , c(1,2,4), na.rm=TRUE, FUN=mean ) #standard deviation out_sl_arr_N_sd<- array(0, dim=c(dim(out_sl_arr_N)[1],dim(out_sl_arr_N)[2],dim(out_sl_arr_N)[4])) for (dim3 in c(1:dim(out_sl_arr_N)[4])) out_sl_arr_N_sd[,,dim3]<-apply(out_sl_arr_N[,,,dim3],c(1:2),sd) #5.4 Results #show the last N means for stand 1 tail(out_sl_arr_N_mean[,,1]) #show the last N standard deviations for stand 1 tail(out_sl_arr_N_sd[,,1]) #6 How to create input lists for a RothC application using stochastically #varying inputs and input scenarios #6.1 Input #fictional data data(RothC_Cin_ex_sl, RothC_C0_ex, RothC_site_ex, RothC_env_in_ex) #create input list of 3 scenarios, 100 uncertainties each set.seed(17) #to make 'random' results reproducible f1<-1 for (no in c(1:3)) #loop over 3 input scenarios { #normal, half and double input Cin <- switch (no, RothC_Cin_ex, RothC_Cin_ex/2, RothC_Cin_ex*2) f2 <- 1 #create fictional uncertainties for (unc in c(1:100)) #loop over 100 uncertainties { randnum<-max(0,rnorm(1,1,0.5)) #out of normal dist. with 50% sd. if (f2==1) Cin_u <- list(Cin*randnum) else Cin_u[[length(Cin_u)+1]] <- Cin*randnum f2 <- 0 } if (f1==1) Cin_u_sl <- list(Cin_u) else Cin_u_sl[[length(Cin_u_sl)+1]] <- Cin_u f1 <- 0 } #show input of scenario 3, uncertainty 51 head(Cin_u_sl[[3]][[51]]) #6.2 Simulation out_sl <- sorcering( model="RothC", site_sl=rep(list(RothC_site_ex),3), env_in_sl=rep(list(RothC_env_in_ex),3),Cin_sl=Cin_u_sl, C0_sl=list(RothC_C0_ex,RothC_C0_ex,RothC_C0_ex), tsteps="monthly", multisite=TRUE, sitelist=list("normal","half_input","double_Cin")) #6.3 Means and standard deviation #60 time steps, 5 pools, 1000 uncertainties, 3 sites out_sl_arr <- array(unlist(out_sl),c(60,5,100,3)) #means out_sl_arr_mean <- apply( out_sl_arr , c(1,2,4), na.rm=TRUE, FUN=mean ) #standard deviation out_sl_arr_sd<- array(0, dim=c(dim(out_sl_arr)[1],dim(out_sl_arr)[2],dim(out_sl_arr)[4])) for (dim3 in c(1:dim(out_sl_arr)[4])) out_sl_arr_sd[,,dim3]<-apply(out_sl_arr[,,,dim3],c(1:2),sd) #6.4 Results #C-pool sums of means for the 3 scenarios totalC_m1<-rowSums(out_sl_arr_mean[,,1]) totalC_m2<-rowSums(out_sl_arr_mean[,,2]) totalC_m3<-rowSums(out_sl_arr_mean[,,3]) #C-pool sums of standard deviations for the 3 scenarios totalC_s1<-rowSums(out_sl_arr_sd[,,1]) totalC_s2<-rowSums(out_sl_arr_sd[,,2]) totalC_s3<-rowSums(out_sl_arr_sd[,,3]) #example plot oldpar <- par(no.readonly=TRUE) #save old par par(mfrow=c(1,1),mar=c(4,4,1,4)) plot(totalC_m1,axes=FALSE, col=2, cex.lab=2,xlab="",ylab="",ylim=c(0,100), type="l",lwd=1) par(new=TRUE) plot(totalC_m2,axes=FALSE, col=3, cex.lab=2,xlab="",ylab="",ylim=c(0,100), type="l",lwd=1) par(new=TRUE) plot(totalC_m3,axes=FALSE, col=4, cex.lab=2,xlab="",ylab="",ylim=c(0,100), type="l",lwd=1) par(new=TRUE) polygon(c(1:60,60:1),c(totalC_m1+totalC_s1, rev(totalC_m1-totalC_s1)), border=NA,col=rgb(1,0,0,0.27),density=40,angle=180,xlab="",ylab="") par(new=TRUE) polygon(c(1:60,60:1),c(totalC_m2+totalC_s2, rev(totalC_m2-totalC_s2)), border=NA,col=rgb(0,1,0,0.27),density=30,xlab="",ylab="") par(new=TRUE) polygon(c(1:60,60:1),c(totalC_m3+totalC_s3, rev(totalC_m3-totalC_s3)), border=NA,col=rgb(0,0,1,0.27),density=25,angle=90,xlab="",ylab="") par(new=TRUE) axis(side=2, pos=0, labels=(0:10)*1, at=(0:10)*10, hadj=1, padj=0.5, cex.axis=2,las=1,col.axis=1) axis(side=1, pos=0, labels= (0:6)*10 , at=(0:6)*10, hadj=0.5, padj=0, cex.axis=2) title(ylab=expression("SOC [t ha"^-1*"]"), line=2, cex.lab=2) title(xlab="time", line=2, cex.lab=2) legend(x=20,y=30,fill=c(0,0,0,4,2,3),density=c(0,0,0,25,40,30),angle=c(0,0,0,90,0,45), border=c(0,0,0,1,1,1),legend=c("mean double input scenario", "mean regular input scenario", "mean half input scneario", "uncertainty range double input scenario", "uncertainty range regular input scenario", "uncertainty range half input scenario")) legend(x=20,y=30,lty=c(1,1,1,0,0,0),seg.len=c(1,1,1,0,0,0), col=c(4,2,3,0,0,0), legend=c("","","","","",""),bty="n") par(oldpar) #back to old par #7 RothC application with fictional input for a spin-up application #7.1 Input #fictional data data(RothC_Cin_ex_sl_spin, RothC_Nin_ex_sl_spin, RothC_site_ex, RothC_env_in_ex) #7.2. Simulation out_multi_rothC <- sorcering( model="RothC", site_sl=rep(list(RothC_site_ex),3), env_in_sl=rep(list(RothC_env_in_ex[1:12,]),3), Cin_sl=RothC_Cin_ex_sl_spin, Nin_sl=RothC_Nin_ex_sl_spin, calcN=TRUE, tsteps="monthly", multisite=TRUE, sitelist=list("normal","half_input","double_Cin"), spinup=TRUE, t_spin_sl=36000, C0=c(0,0,0,0,20), N0=c(0,0,0,0,2), CN_spin=c(100,100,50,50,10)) #7.3 Results #example plot oldpar <- par(no.readonly=TRUE) #save old par par(mfrow=c(1,1),mar=c(4,4,1,4)) for (listelement in c(1:3)) { lwidth<-1 if (listelement==2)lwidth<-3 printN<-rowSums(out_multi_rothC[[listelement]]$N) printseq<-seq.int(1L,length(printN),100L) printC<-rowSums(out_multi_rothC[[listelement]]$C) plot(printN[printseq],axes=FALSE, col=1,type="l", lwd=lwidth, lty=listelement+2,cex.lab=2,xlab="",ylab="",ylim=c(0,30)) par(new=TRUE) plot(printC[printseq],axes=FALSE, col=2,type="l", lwd=lwidth, lty=listelement+2,cex.lab=2,xlab="",ylab="",ylim=c(0,180)) par(new=TRUE) } axis(side=2, pos=0, labels=(0:6)*5, at=(0:6)*30, hadj=0.7, padj=0.5, cex.axis=2,las=1,col.axis=1) axis(side=4, pos=360, labels=(0:6)*30, at=(0:6)*30, hadj=0, padj=0.5, cex.axis=2, las=1,col.axis=2) axis(side=1, pos=0, labels= (0:6)*6000 , at=(0:6)*60, hadj=0.5, padj=0, cex.axis=2) title(ylab=expression("total N [t ha"^-1*"]"), line=2, cex.lab=2) mtext(expression("total C [t ha"^-1*"]"), side=4, line=2, cex=2,col=2) title(xlab="time", line=2, cex.lab=2) legend(x=120,y=140,legend=c("normal","half_input","double_Cin"),lty=c(3,4,5), lwd=c(1,3,1)) par(oldpar) #back to old par
Fictional initial soil organic carbon for the Yasso SOC model (any Yasso version). The initial data constists of a list of 3 vectors, each containing five numeric entries, one for each model pool.
Yasso_C0_ex_sl
Yasso_C0_ex_sl
A list of 3 vectors, each containing five numeric entries
Fictional carbon input for the Yasso SOC model (Yasso15 or Yasso20). The input data constists of a list of 3 lists, each representing a site and containing 2 sublists. Each sublist represents a wood input layer and contains 4 matrices. Each matrix represents an uncertainty repetition and has 5 columns and 60 rows. Columns stand for pools and rows for simulation time steps.
Yasso_Cin_ex_wood_u_sl
Yasso_Cin_ex_wood_u_sl
A list of 3 lists with 2 sublists each, each sublist containing 4 matrices with 5 columns and 60 rows
Fictional initial soil organic nitrogen for the Yasso SOC model (any Yasso version). The initial data constists of a list of 3 vectors, each containing five numeric entries, one for each model pool.
Yasso_N0_ex_sl
Yasso_N0_ex_sl
A list of 3 vectors, each containing five numeric entries
Fictional nitrogen input for the Yasso SOC model (Yasso15 or Yasso20). The input data constists of a list of 3 lists, each representing a site and containing 2 sublists. Each sublist represents a wood input layer and contains 4 matrices. Each matrix represents an uncertainty repetition and has 5 columns and 60 rows. Columns stand for pools and rows for simulation time steps.
Yasso_Nin_ex_wood_u_sl
Yasso_Nin_ex_wood_u_sl
A list of 3 lists with 2 sublists each, each sublist containing 4 matrices with 5 columns and 60 rows