Title: | Supplementary Item Response Theory Models |
---|---|
Description: | Supplementary functions for item response models aiming to complement existing R packages. The functionality includes among others multidimensional compensatory and noncompensatory IRT models (Reckase, 2009, <doi:10.1007/978-0-387-89976-3>), MCMC for hierarchical IRT models and testlet models (Fox, 2010, <doi:10.1007/978-1-4419-0742-4>), NOHARM (McDonald, 1982, <doi:10.1177/014662168200600402>), Rasch copula model (Braeken, 2011, <doi:10.1007/s11336-010-9190-4>; Schroeders, Robitzsch & Schipolowski, 2014, <doi:10.1111/jedm.12054>), faceted and hierarchical rater models (DeCarlo, Kim & Johnson, 2011, <doi:10.1111/j.1745-3984.2011.00143.x>), ordinal IRT model (ISOP; Scheiblechner, 1995, <doi:10.1007/BF02301417>), DETECT statistic (Stout, Habing, Douglas & Kim, 1996, <doi:10.1177/014662169602000403>), local structural equation modeling (LSEM; Hildebrandt, Luedtke, Robitzsch, Sommer & Wilhelm, 2016, <doi:10.1080/00273171.2016.1142856>). |
Authors: | Alexander Robitzsch [aut,cre] |
Maintainer: | Alexander Robitzsch <[email protected]> |
License: | GPL (>= 2) |
Version: | 4.1-15 |
Built: | 2025-01-01 07:09:44 UTC |
Source: | CRAN |
Supplementary functions for item response models aiming to complement existing R packages. The functionality includes among others multidimensional compensatory and noncompensatory IRT models (Reckase, 2009, <doi:10.1007/978-0-387-89976-3>), MCMC for hierarchical IRT models and testlet models (Fox, 2010, <doi:10.1007/978-1-4419-0742-4>), NOHARM (McDonald, 1982, <doi:10.1177/014662168200600402>), Rasch copula model (Braeken, 2011, <doi:10.1007/s11336-010-9190-4>; Schroeders, Robitzsch & Schipolowski, 2014, <doi:10.1111/jedm.12054>), faceted and hierarchical rater models (DeCarlo, Kim & Johnson, 2011, <doi:10.1111/j.1745-3984.2011.00143.x>), ordinal IRT model (ISOP; Scheiblechner, 1995, <doi:10.1007/BF02301417>), DETECT statistic (Stout, Habing, Douglas & Kim, 1996, <doi:10.1177/014662169602000403>), local structural equation modeling (LSEM; Hildebrandt, Luedtke, Robitzsch, Sommer & Wilhelm, 2016, <doi:10.1080/00273171.2016.1142856>).
The sirt package enables the estimation of following models:
Multidimensional marginal maximum likelihood estimation (MML)
of generalized logistic Rasch type models using the
generalized logistic link function (Stukel, 1988) can be conducted
with rasch.mml2
and the argument itemtype="raschtype"
.
This model also allows the estimation of the 4PL item
response model (Loken & Rulison, 2010).
Multiple group estimation, latent regression models and
plausible value imputation are supported. In addition, pseudo-likelihood
estimation for fractional item response data can be conducted.
Multidimensional noncompensatory, compensatory and partially compensatory
item response models for dichotomous item responses (Reckase, 2009) can be estimated
with the smirt
function and the options irtmodel="noncomp"
, irtmodel="comp"
and irtmodel="partcomp"
.
The unidimensional quotient model (Ramsay, 1989) can be estimated
using rasch.mml2
with itemtype="ramsay.qm"
.
Unidimensional nonparametric item response models can be estimated
employing MML estimation (Rossi, Wang & Ramsay, 2002) by making use of
rasch.mml2
with itemtype="npirt"
.
Kernel smoothing for item response function estimation (Ramsay, 1991)
is implemented in np.dich
.
The multidimensional IRT copula model (Braeken, 2011) can be applied
for handling local dependencies, see rasch.copula3
.
Unidimensional joint maximum likelihood estimation (JML) of the Rasch model
is possible with the rasch.jml
function. Bias correction methods
for item parameters are included in rasch.jml.jackknife1
and rasch.jml.biascorr
.
The multidimensional latent class Rasch and 2PL model (Bartolucci, 2007)
which employs a discrete trait distribution can be estimated
with rasch.mirtlc
.
The unidimensional 2PL rater facets model (Lincare, 1994) can be estimated
with rm.facets
. A hierarchical rater model based on
signal detection theory (DeCarlo, Kim & Johnson, 2011) can be conducted
with rm.sdt
. A simple latent class model for two exchangeable
raters is implemented in lc.2raters
. See Robitzsch and Steinfeld (2018)
for more details.
The discrete grade of membership model (Erosheva, Fienberg & Joutard, 2007)
and the Rasch grade of membership model can be estimated by gom.em
.
Some hierarchical IRT models and random item models for dichotomous
and normally distributed data (van den Noortgate, de Boeck & Meulders, 2003;
Fox & Verhagen, 2010) can be estimated with mcmc.2pno.ml
.
Unidimensional pairwise conditional likelihood estimation
(PCML; Zwinderman, 1995) is implemented in rasch.pairwise
or
rasch.pairwise.itemcluster
.
Unidimensional pairwise marginal likelihood estimation
(PMML; Renard, Molenberghs & Geys, 2004)
can be conducted using rasch.pml3
. In this function
local dependence can be handled by imposing residual error structure
or omitting item pairs within a dependent item cluster from the
estimation.
The function rasch.evm.pcm
estimates the multiple group
partial credit model based on the pairwise eigenvector approach
which avoids iterative estimation.
Some item response models in sirt can be estimated via
Markov Chain Monte Carlo (MCMC) methods. In mcmc.2pno
the two-parameter normal ogive model can be estimated. A hierarchical
version of this model (Janssen, Tuerlinckx, Meulders & de Boeck, 2000)
is implemented in mcmc.2pnoh
. The 3PNO testlet model
(Wainer, Bradlow & Wang, 2007; Glas, 2012) can be estimated with
mcmc.3pno.testlet
.
Some hierarchical IRT models and random item models
(van den Noortgate, de Boeck & Meulders, 2003) can be estimated
with mcmc.2pno.ml
.
For dichotomous response data, the free NOHARM software
(McDonald, 1982, 1997) estimates the multidimensional compensatory 3PL model and the function
R2noharm
runs NOHARM from within R. Note that NOHARM must be
downloaded from http://noharm.niagararesearch.ca/nh4cldl.html
at first. A pure R implementation of the NOHARM model with some extensions
can be found in noharm.sirt
.
The measurement theoretic founded nonparametric item
response models of Scheiblechner (1995, 1999) – the ISOP
and the ADISOP model – can be estimated with
isop.dich
or isop.poly
.
Item scoring within this theory can be conducted with
isop.scoring
.
The functional unidimensional item response model
(Ip et al., 2013) can be estimated with f1d.irt
.
The Rasch model can be estimated by variational approximation
(Rijmen & Vomlel, 2008) using rasch.va
.
The unidimensional probabilistic Guttman model (Proctor, 1970) can be
specified with prob.guttman
.
A jackknife method for the estimation of standard errors of the
weighted likelihood trait estimate (Warm, 1989) is available in
wle.rasch.jackknife
.
Model based reliability for dichotomous data can be calculated by the method
of Green and Yang (2009) with greenyang.reliability
and the
marginal true score method of Dimitrov (2003) using the function
marginal.truescore.reliability
.
Essential unidimensionality can be assessed by the DETECT
index (Stout, Habing, Douglas & Kim, 1996), see the function
conf.detect
.
Item parameters from several studies can be linked using the Haberman
method (Haberman, 2009) in linking.haberman
. See also
equating.rasch
and linking.robust
.
The alignment procedure (Asparouhov & Muthen, 2013)
invariance.alignment
is originally for comfirmatory factor
analysis and aims at obtaining approximate invariance.
Some person fit statistics in the Rasch model (Meijer & Sijtsma, 2001)
are included in personfit.stat
.
An alternative to the linear logistic test model (LLTM), the
so called least squares distance model for cognitive diagnosis
(LSDM; Dimitrov, 2007), can be estimated with the function
lsdm
.
Local structural equation models (LSEM) can be estimated with the
lsem.estimate
function (Hildebrandt et al., 2016).
Alexander Robitzsch [aut,cre] (<https://orcid.org/0000-0002-8226-3132>)
Maintainer: Alexander Robitzsch <[email protected]>
Asparouhov, T., & Muthen, B. (2014). Multiple-group factor analysis alignment. Structural Equation Modeling, 21(4), 1-14. doi:10.1080/10705511.2014.919210
Bartolucci, F. (2007). A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika, 72, 141-157.
Braeken, J. (2011). A boundary mixture approach to violations of conditional independence. Psychometrika, 76(1), 57-76. doi:10.1007/s11336-010-9190-4
DeCarlo, T., Kim, Y., & Johnson, M. S. (2011). A hierarchical rater model for constructed responses, with a signal detection rater model. Journal of Educational Measurement, 48(3), 333-356. doi:10.1111/j.1745-3984.2011.00143.x
Dimitrov, D. (2003). Marginal true-score measures and reliability for binary items as a function of their IRT parameters. Applied Psychological Measurement, 27, 440-458.
Dimitrov, D. M. (2007). Least squares distance method of cognitive validation and analysis for binary items using their item response theory parameters. Applied Psychological Measurement, 31, 367-387.
Erosheva, E. A., Fienberg, S. E., & Joutard, C. (2007). Describing disability through individual-level mixture models for multivariate binary data. Annals of Applied Statistics, 1, 502-537.
Fox, J.-P. (2010). Bayesian item response modeling. New York: Springer. doi:10.1007/978-1-4419-0742-4
Fox, J.-P., & Verhagen, A.-J. (2010). Random item effects modeling for cross-national survey data. In E. Davidov, P. Schmidt, & J. Billiet (Eds.), Cross-cultural Analysis: Methods and Applications (pp. 467-488), London: Routledge Academic.
Fraser, C., & McDonald, R. P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral Research, 23, 267-269.
Glas, C. A. W. (2012). Estimating and testing the extended testlet model. LSAC Research Report Series, RR 12-03.
Green, S.B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 74, 155-167.
Haberman, S. J. (2009). Linking parameter estimates derived from an item response model through separate calibrations. ETS Research Report ETS RR-09-40. Princeton, ETS. doi:10.1002/j.2333-8504.2009.tb02197.x
Hildebrandt, A., Luedtke, O., Robitzsch, A., Sommer, C., & Wilhelm, O. (2016). Exploring factor model parameters across continuous variables with local structural equation models. Multivariate Behavioral Research, 51(2-3), 257-278. doi:10.1080/00273171.2016.1142856
Ip, E. H., Molenberghs, G., Chen, S. H., Goegebeur, Y., & De Boeck, P. (2013). Functionally unidimensional item response models for multivariate binary data. Multivariate Behavioral Research, 48, 534-562.
Janssen, R., Tuerlinckx, F., Meulders, M., & de Boeck, P. (2000). A hierarchical IRT model for criterion-referenced measurement. Journal of Educational and Behavioral Statistics, 25, 285-306.
Jeon, M., & Rijmen, F. (2016). A modular approach for item response theory modeling with the R package flirt. Behavior Research Methods, 48(2), 742-755. doi:10.3758/s13428-015-0606-z
Linacre, J. M. (1994). Many-Facet Rasch Measurement. Chicago: MESA Press.
Loken, E. & Rulison, K. L. (2010). Estimation of a four-parameter item response theory model. British Journal of Mathematical and Statistical Psychology, 63, 509-525.
McDonald, R. P. (1982). Linear versus nonlinear models in item response theory. Applied Psychological Measurement, 6(4), 379-396. doi:10.1177/014662168200600402
McDonald, R. P. (1997). Normal-ogive multidimensional model. In W. van der Linden & R. K. Hambleton (1997): Handbook of modern item response theory (pp. 257-269). New York: Springer. doi:10.1007/978-1-4757-2691-6_15
Meijer, R. R., & Sijtsma, K. (2001). Methodology review: Evaluating person fit. Applied Psychological Measurement, 25, 107-135.
Proctor, C. H. (1970). A probabilistic formulation and statistical analysis for Guttman scaling. Psychometrika, 35, 73-78.
Ramsay, J. O. (1989). A comparison of three simple test theory models. Psychometrika, 54, 487-499.
Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611-630.
Reckase, M. (2009). Multidimensional item response theory. New York: Springer. doi:10.1007/978-0-387-89976-3
Renard, D., Molenberghs, G., & Geys, H. (2004). A pairwise likelihood approach to estimation in multilevel probit models. Computational Statistics & Data Analysis, 44, 649-667.
Rijmen, F., & Vomlel, J. (2008). Assessing the performance of variational methods for mixed logistic regression models. Journal of Statistical Computation and Simulation, 78, 765-779.
Robitzsch, A., & Steinfeld, J. (2018). Item response models for human ratings: Overview, estimation methods, and implementation in R. Psychological Test and Assessment Modeling, 60(1), 101-139.
Rossi, N., Wang, X. & Ramsay, J. O. (2002). Nonparametric item response function estimates with the EM algorithm. Journal of Educational and Behavioral Statistics, 27, 291-317.
Rusch, T., Mair, P., & Hatzinger, R. (2013). Psychometrics with R: A Review of CRAN Packages for Item Response Theory. http://epub.wu.ac.at/4010/1/resrepIRThandbook.pdf
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60(2), 281-304. doi:10.1007/BF02301417
Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic models (ADISOP). Psychometrika, 64, 295-316.
Schroeders, U., Robitzsch, A., & Schipolowski, S. (2014). A comparison of different psychometric approaches to modeling testlet structures: An example with C-tests. Journal of Educational Measurement, 51(4), 400-418. doi:10.1111/jedm.12054
Stout, W., Habing, B., Douglas, J., & Kim, H. R. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20(4), 331-354. doi:10.1177/014662169602000403
Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Association, 83(402), 426-431. doi:10.1080/01621459.1988.10478613
Uenlue, A., & Yanagida, T. (2011). R you ready for R?: The CRAN psychometrics task view. British Journal of Mathematical and Statistical Psychology, 64(1), 182-186. doi:10.1348/000711010X519320
van den Noortgate, W., De Boeck, P., & Meulders, M. (2003). Cross-classification multilevel logistic models in psychometrics. Journal of Educational and Behavioral Statistics, 28, 369-386.
Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427-450.
Wainer, H., Bradlow, E. T., & Wang, X. (2007). Testlet response theory and its applications. Cambridge: Cambridge University Press.
Zwinderman, A. H. (1995). Pairwise parameter estimation in Rasch models. Applied Psychological Measurement, 19, 369-375.
For estimating multidimensional models for polytomous item responses see the mirt, flirt (Jeon & Rijmen, 2016) and TAM packages.
For conditional maximum likelihood estimation see the eRm package.
For pairwise estimation likelihood methods (also known as composite likelihood methods) see pln or lavaan.
The estimation of cognitive diagnostic models is possible using the CDM package.
For the multidimensional latent class IRT model see the MultiLCIRT package which also allows the estimation IRT models with polytomous item responses.
Latent class analysis can be carried out with covLCA, poLCA, BayesLCA, randomLCA or lcmm packages.
Markov Chain Monte Carlo estimation for item response models can also
be found in the MCMCpack package (see the MCMCirt
functions
therein).
See Rusch, Mair and Hatzinger (2013) and Uenlue and Yanagida (2011) for reviews of psychometrics packages in R.
## ## |-----------------------------------------------------------------| ## | sirt 0.40-4 (2013-11-26) | ## | Supplementary Item Response Theory | ## | Maintainer: Alexander Robitzsch <a.robitzsch at bifie.at > | ## | https://sites.google.com/site/alexanderrobitzsch/software | ## |-----------------------------------------------------------------| ## ## _/ _/ ## _/_/_/ _/ _/_/ _/_/_/_/ ## _/_/ _/ _/_/ _/ ## _/_/ _/ _/ _/ ## _/_/_/ _/ _/ _/_/ ##
## ## |-----------------------------------------------------------------| ## | sirt 0.40-4 (2013-11-26) | ## | Supplementary Item Response Theory | ## | Maintainer: Alexander Robitzsch <a.robitzsch at bifie.at > | ## | https://sites.google.com/site/alexanderrobitzsch/software | ## |-----------------------------------------------------------------| ## ## _/ _/ ## _/_/_/ _/ _/_/ _/_/_/_/ ## _/_/ _/ _/_/ _/ ## _/_/ _/ _/ _/ ## _/_/_/ _/ _/ _/_/ ##
This function calculates keys of a dataset with raw item responses. It starts with setting the most frequent category of an item to 1. Then, in each iteration keys are changed such that the highest item discrimination is found.
automatic.recode(data, exclude=NULL, pstart.min=0.6, allocate=200, maxiter=20, progress=TRUE)
automatic.recode(data, exclude=NULL, pstart.min=0.6, allocate=200, maxiter=20, progress=TRUE)
data |
Dataset with raw item responses |
exclude |
Vector with categories to be excluded for searching the key |
pstart.min |
Minimum probability for an initial solution of keys. |
allocate |
Maximum number of categories per item. This argument is used in
the function |
maxiter |
Maximum number of iterations |
progress |
A logical which indicates if iteration progress should be displayed |
A list with following entries
item.stat |
Data frame with item name, p value, item discrimination and the calculated key |
data.scored |
Scored data frame using calculated keys
in |
categ.stats |
Data frame with statistics for all categories of all items |
## Not run: ############################################################################# # EXAMPLE 1: data.raw1 ############################################################################# data(data.raw1) # recode data.raw1 and exclude keys 8 and 9 (missing codes) and # start with initially setting all categories larger than 50 res1 <- sirt::automatic.recode( data.raw1, exclude=c(8,9), pstart.min=.50 ) # inspect calculated keys res1$item.stat ############################################################################# # EXAMPLE 2: data.timssAusTwn from TAM package ############################################################################# miceadds::library_install("TAM") data(data.timssAusTwn,package="TAM") raw.resp <- data.timssAusTwn[,1:11] res2 <- sirt::automatic.recode( data=raw.resp ) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: data.raw1 ############################################################################# data(data.raw1) # recode data.raw1 and exclude keys 8 and 9 (missing codes) and # start with initially setting all categories larger than 50 res1 <- sirt::automatic.recode( data.raw1, exclude=c(8,9), pstart.min=.50 ) # inspect calculated keys res1$item.stat ############################################################################# # EXAMPLE 2: data.timssAusTwn from TAM package ############################################################################# miceadds::library_install("TAM") data(data.timssAusTwn,package="TAM") raw.resp <- data.timssAusTwn[,1:11] res2 <- sirt::automatic.recode( data=raw.resp ) ## End(Not run)
Functions for simulating and estimating the Beta item response model
(Noel & Dauvier, 2007). brm.sim
can be used for
simulating the model, brm.irf
computes the item response
function. The Beta item response model is estimated as a discrete
version to enable estimation in standard IRT software like
mirt or TAM packages.
# simulating the beta item response model brm.sim(theta, delta, tau, K=NULL) # computing the item response function of the beta item response model brm.irf( Theta, delta, tau, ncat, thdim=1, eps=1E-10 )
# simulating the beta item response model brm.sim(theta, delta, tau, K=NULL) # computing the item response function of the beta item response model brm.irf( Theta, delta, tau, ncat, thdim=1, eps=1E-10 )
theta |
Ability vector of |
delta |
Vector of item difficulty parameters |
tau |
Vector item dispersion parameters |
K |
Number of discretized categories. The default is |
Theta |
Matrix of the ability vector |
ncat |
Number of categories |
thdim |
Theta dimension in the matrix |
eps |
Nuisance parameter which stabilize probabilities. |
The discrete version of the beta item response model is defined as follows.
Assume that for item there are
categories resulting in
values
. Each value
is associated with a
corresponding the transformed value in
, namely
.
The item response model is defined as
This density is a discrete version of a Beta distribution with
shape parameters and
. These parameters are
defined as
The item response function can also be formulated as
The item parameters can be reparameterized as
and
.
Then, the original item parameters can be retrieved by
and
.
Using
, we obtain
This formulation enables the specification of the Beta item response
model as a structured latent class model
(see TAM::tam.mml.3pl
;
Example 1).
See Smithson and Verkuilen (2006) for motivations for treating continuous indicators not as normally distributed variables.
A simulated dataset of item responses if brm.sim
is applied.
A matrix of item response probabilities if brm.irf
is applied.
Gruen, B., Kosmidis, I., & Zeileis, A. (2012). Extended Beta regression in R: Shaken, stirred, mixed, and partitioned. Journal of Statistical Software, 48(11), 1-25. doi:10.18637/jss.v048.i11
Noel, Y., & Dauvier, B. (2007). A beta item response model for continuous bounded responses. Applied Psychological Measurement, 31(1), 47-73. doi:10.1177/0146621605287691
Smithson, M., & Verkuilen, J. (2006). A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychological Methods, 11(1), 54-71. doi: 10.1037/1082-989X.11.1.54
See also the betareg package for fitting Beta regression regression models in R (Gruen, Kosmidis & Zeileis, 2012).
############################################################################# # EXAMPLE 1: Simulated data beta response model ############################################################################# #*** (1) Simulation of the beta response model # Table 3 (p. 65) of Noel and Dauvier (2007) delta <- c( -.942, -.649, -.603, -.398, -.379, .523, .649, .781, .907 ) tau <- c( .382, .166, 1.799, .615, 2.092, 1.988, 1.899, 1.439, 1.057 ) K <- 5 # number of categories for discretization N <- 500 # number of persons I <- length(delta) # number of items set.seed(865) theta <- stats::rnorm( N ) dat <- sirt::brm.sim( theta=theta, delta=delta, tau=tau, K=K) psych::describe(dat) #*** (2) some preliminaries for estimation of the model in mirt #*** define a mirt function library(mirt) Theta <- matrix( seq( -4, 4, len=21), ncol=1 ) # compute item response function ii <- 1 # item ii=1 b1 <- sirt::brm.irf( Theta=Theta, delta=delta[ii], tau=tau[ii], ncat=K ) # plot item response functions graphics::matplot( Theta[,1], b1, type="l" ) #*** defining the beta item response function for estimation in mirt par <- c( 0, 1, 1) names(par) <- c( "delta", "tau","thdim") est <- c( TRUE, TRUE, FALSE ) names(est) <- names(par) brm.icc <- function( par, Theta, ncat ){ delta <- par[1] tau <- par[2] thdim <- par[3] probs <- sirt::brm.irf( Theta=Theta, delta=delta, tau=tau, ncat=ncat, thdim=thdim) return(probs) } name <- "brm" # create item response function brm.itemfct <- mirt::createItem(name, par=par, est=est, P=brm.icc) #*** define model in mirt mirtmodel <- mirt::mirt.model(" F1=1-9 " ) itemtype <- rep("brm", I ) customItems <- list("brm"=brm.itemfct) # define parameters to be estimated mod1.pars <- mirt::mirt(dat, mirtmodel, itemtype=itemtype, customItems=customItems, pars="values") ## Not run: #*** (3) estimate beta item response model in mirt mod1 <- mirt::mirt(dat,mirtmodel, itemtype=itemtype, customItems=customItems, pars=mod1.pars, verbose=TRUE ) # model summaries print(mod1) summary(mod1) coef(mod1) # estimated coefficients and comparison with simulated data cbind( sirt::mirt.wrapper.coef( mod1 )$coef, delta, tau ) mirt.wrapper.itemplot(mod1,ask=TRUE) #--------------------------- # estimate beta item response model in TAM library(TAM) # define the skill space: standard normal distribution TP <- 21 # number of theta points theta.k <- diag(TP) theta.vec <- seq( -6,6, len=TP) d1 <- stats::dnorm(theta.vec) d1 <- d1 / sum(d1) delta.designmatrix <- matrix( log(d1), ncol=1 ) delta.fixed <- cbind( 1, 1, 1 ) # define design matrix E E <- array(0, dim=c(I,K,TP,2*I + 1) ) dimnames(E)[[1]] <- items <- colnames(dat) dimnames(E)[[4]] <- c( paste0( rep( items, each=2 ), rep( c("_a","_b" ), I) ), "one" ) for (ii in 1:I){ for (kk in 1:K){ for (tt in 1:TP){ qk <- (2*(kk-1)+1)/(2*K) gammap <- exp( theta.vec[tt] / 2 ) E[ii, kk, tt, 2*(ii-1) + 1 ] <- gammap * log( qk ) E[ii, kk, tt, 2*(ii-1) + 2 ] <- 1 / gammap * log( 1 - qk ) E[ii, kk, tt, 2*I+1 ] <- - log(qk) - log( 1 - qk ) } } } gammaslope.fixed <- cbind( 2*I+1, 1 ) gammaslope <- exp( rep(0,2*I+1) ) # estimate model in TAM mod2 <- TAM::tam.mml.3pl(resp=dat, E=E,control=list(maxiter=100), skillspace="discrete", delta.designmatrix=delta.designmatrix, delta.fixed=delta.fixed, theta.k=theta.k, gammaslope=gammaslope, gammaslope.fixed=gammaslope.fixed, notA=TRUE ) summary(mod2) # extract original tau and delta parameters m1 <- matrix( mod2$gammaslope[1:(2*I) ], ncol=2, byrow=TRUE ) m1 <- as.data.frame(m1) colnames(m1) <- c("a","b") m1$delta.TAM <- log( m1$b / m1$a) m1$tau.TAM <- log( m1$a * m1$b ) # compare estimated parameter m2 <- cbind( sirt::mirt.wrapper.coef( mod1 )$coef, delta, tau )[,-1] colnames(m2) <- c( "delta.mirt", "tau.mirt", "thdim","delta.true","tau.true" ) m2 <- cbind(m1,m2) round( m2, 3 ) ## End(Not run)
############################################################################# # EXAMPLE 1: Simulated data beta response model ############################################################################# #*** (1) Simulation of the beta response model # Table 3 (p. 65) of Noel and Dauvier (2007) delta <- c( -.942, -.649, -.603, -.398, -.379, .523, .649, .781, .907 ) tau <- c( .382, .166, 1.799, .615, 2.092, 1.988, 1.899, 1.439, 1.057 ) K <- 5 # number of categories for discretization N <- 500 # number of persons I <- length(delta) # number of items set.seed(865) theta <- stats::rnorm( N ) dat <- sirt::brm.sim( theta=theta, delta=delta, tau=tau, K=K) psych::describe(dat) #*** (2) some preliminaries for estimation of the model in mirt #*** define a mirt function library(mirt) Theta <- matrix( seq( -4, 4, len=21), ncol=1 ) # compute item response function ii <- 1 # item ii=1 b1 <- sirt::brm.irf( Theta=Theta, delta=delta[ii], tau=tau[ii], ncat=K ) # plot item response functions graphics::matplot( Theta[,1], b1, type="l" ) #*** defining the beta item response function for estimation in mirt par <- c( 0, 1, 1) names(par) <- c( "delta", "tau","thdim") est <- c( TRUE, TRUE, FALSE ) names(est) <- names(par) brm.icc <- function( par, Theta, ncat ){ delta <- par[1] tau <- par[2] thdim <- par[3] probs <- sirt::brm.irf( Theta=Theta, delta=delta, tau=tau, ncat=ncat, thdim=thdim) return(probs) } name <- "brm" # create item response function brm.itemfct <- mirt::createItem(name, par=par, est=est, P=brm.icc) #*** define model in mirt mirtmodel <- mirt::mirt.model(" F1=1-9 " ) itemtype <- rep("brm", I ) customItems <- list("brm"=brm.itemfct) # define parameters to be estimated mod1.pars <- mirt::mirt(dat, mirtmodel, itemtype=itemtype, customItems=customItems, pars="values") ## Not run: #*** (3) estimate beta item response model in mirt mod1 <- mirt::mirt(dat,mirtmodel, itemtype=itemtype, customItems=customItems, pars=mod1.pars, verbose=TRUE ) # model summaries print(mod1) summary(mod1) coef(mod1) # estimated coefficients and comparison with simulated data cbind( sirt::mirt.wrapper.coef( mod1 )$coef, delta, tau ) mirt.wrapper.itemplot(mod1,ask=TRUE) #--------------------------- # estimate beta item response model in TAM library(TAM) # define the skill space: standard normal distribution TP <- 21 # number of theta points theta.k <- diag(TP) theta.vec <- seq( -6,6, len=TP) d1 <- stats::dnorm(theta.vec) d1 <- d1 / sum(d1) delta.designmatrix <- matrix( log(d1), ncol=1 ) delta.fixed <- cbind( 1, 1, 1 ) # define design matrix E E <- array(0, dim=c(I,K,TP,2*I + 1) ) dimnames(E)[[1]] <- items <- colnames(dat) dimnames(E)[[4]] <- c( paste0( rep( items, each=2 ), rep( c("_a","_b" ), I) ), "one" ) for (ii in 1:I){ for (kk in 1:K){ for (tt in 1:TP){ qk <- (2*(kk-1)+1)/(2*K) gammap <- exp( theta.vec[tt] / 2 ) E[ii, kk, tt, 2*(ii-1) + 1 ] <- gammap * log( qk ) E[ii, kk, tt, 2*(ii-1) + 2 ] <- 1 / gammap * log( 1 - qk ) E[ii, kk, tt, 2*I+1 ] <- - log(qk) - log( 1 - qk ) } } } gammaslope.fixed <- cbind( 2*I+1, 1 ) gammaslope <- exp( rep(0,2*I+1) ) # estimate model in TAM mod2 <- TAM::tam.mml.3pl(resp=dat, E=E,control=list(maxiter=100), skillspace="discrete", delta.designmatrix=delta.designmatrix, delta.fixed=delta.fixed, theta.k=theta.k, gammaslope=gammaslope, gammaslope.fixed=gammaslope.fixed, notA=TRUE ) summary(mod2) # extract original tau and delta parameters m1 <- matrix( mod2$gammaslope[1:(2*I) ], ncol=2, byrow=TRUE ) m1 <- as.data.frame(m1) colnames(m1) <- c("a","b") m1$delta.TAM <- log( m1$b / m1$a) m1$tau.TAM <- log( m1$a * m1$b ) # compare estimated parameter m2 <- cbind( sirt::mirt.wrapper.coef( mod1 )$coef, delta, tau )[,-1] colnames(m2) <- c( "delta.mirt", "tau.mirt", "thdim","delta.true","tau.true" ) m2 <- cbind(m1,m2) round( m2, 3 ) ## End(Not run)
The function btm
estimates an extended Bradley-Terry model (Hunter, 2004; see Details).
Parameter estimation uses a bias corrected joint maximum likelihood
estimation method based on -adjustment (see Bertoli-Barsotti, Lando & Punzo, 2014).
See Details for the algorithm.
The function btm_sim
simulated data from the extended Bradley-Terry model.
btm(data, judge=NULL, ignore.ties=FALSE, fix.eta=NULL, fix.delta=NULL, fix.theta=NULL, maxiter=100, conv=1e-04, eps=0.3, wgt.ties=.5) ## S3 method for class 'btm' summary(object, file=NULL, digits=4,...) ## S3 method for class 'btm' predict(object, data=NULL, ...) btm_sim(theta, eta=0, delta=-99, repeated=FALSE)
btm(data, judge=NULL, ignore.ties=FALSE, fix.eta=NULL, fix.delta=NULL, fix.theta=NULL, maxiter=100, conv=1e-04, eps=0.3, wgt.ties=.5) ## S3 method for class 'btm' summary(object, file=NULL, digits=4,...) ## S3 method for class 'btm' predict(object, data=NULL, ...) btm_sim(theta, eta=0, delta=-99, repeated=FALSE)
data |
Data frame with three columns. The first two columns contain labels from the units in the pair comparison. The third column contains the result of the comparison. "1" means that the first units wins, "0" means that the second unit wins and "0.5" means a draw (a tie). |
judge |
Optional vector of judge identifiers (if multiple judges are available) |
ignore.ties |
Logical indicating whether ties should be ignored. |
fix.eta |
Numeric value for a fixed |
fix.delta |
Numeric value for a fixed |
fix.theta |
A vector with entries for fixed theta values. |
maxiter |
Maximum number of iterations |
conv |
Convergence criterion |
eps |
The |
wgt.ties |
Weighting parameter for ties, see formula in Details. The default is .5 |
object |
Object of class |
file |
Optional file name for sinking the summary into |
digits |
Number of digits after decimal to print |
... |
Further arguments to be passed. |
theta |
Vector of abilities |
eta |
Value of |
delta |
Value of |
repeated |
Logical indicating whether repeated ratings of dyads (for home advantage effect) should be simulated |
The extended Bradley-Terry model for the comparison of individuals
and
is defined as
The parameters denote the abilities,
is the
tendency of the occurrence of ties and
is the home-advantage
effect. The weighting parameter
governs the importance of ties and can be
chosen in the argument
wgt.ties
.
A joint maximum likelihood (JML) estimation is applied for simulataneous
estimation of ,
and all
parameters.
In the Rasch model, it was shown that JML can result in biased parameter
estimates. The
-adjustment approach has been proposed
to reduce the bias in parameter estimates (Bertoli-Bersotti, Lando & Punzo, 2014).
This estimation approach is adapted to the Bradley-Terry model in
the
btm
function. To this end, the likelihood function is
modified for the purpose of bias reduction. It can be easily shown that there
exist sufficient statistics for ,
and all
parameters. In the
-adjustment approach, the sufficient
statistic for the
parameter is modified. In JML estimation
of the Bradley-Terry model,
is
a sufficient statistic for
. Let
the maximum score
for person
which is the number of
terms appearing in
. In the
-adjustment approach, the sufficient statistic
is modified to
and instead of
is used in JML estimation. Hence, original scores
are
linearly transformed for all persons
.
List with following entries
pars |
Parameter summary for |
effects |
Parameter estimates for |
summary.effects |
Summary of |
mle.rel |
MLE reliability, also known as separation reliability |
sepG |
Separation index |
probs |
Estimated probabilities |
data |
Used dataset with integer identifiers |
fit_judges |
Fit statistics (outfit and infit) for judges if |
residuals |
Unstandardized and standardized residuals for each observation |
Bertoli-Barsotti, L., Lando, T., & Punzo, A. (2014). Estimating a Rasch Model via fuzzy empirical probability functions. In D. Vicari, A. Okada, G. Ragozini & C. Weihs (Eds.). Analysis and Modeling of Complex Data in Behavioral and Social Sciences. Springer. doi:10.1007/978-3-319-06692-9_4
Hunter, D. R. (2004). MM algorithms for generalized Bradley-Terry models. Annals of Statistics, 32, 384-406. doi: 10.1214/aos/1079120141
See also the R packages BradleyTerry2, psychotools, psychomix and prefmod.
############################################################################# # EXAMPLE 1: Bradley-Terry model | data.pw01 ############################################################################# data(data.pw01) dat <- data.pw01 dat <- dat[, c("home_team", "away_team", "result") ] # recode results according to needed input dat$result[ dat$result==0 ] <- 1/2 # code for ties dat$result[ dat$result==2 ] <- 0 # code for victory of away team #******************** # Model 1: Estimation with ties and home advantage mod1 <- sirt::btm( dat) summary(mod1) ## Not run: #*** Model 2: Estimation with ties, no epsilon adjustment mod2 <- sirt::btm( dat, eps=0) summary(mod2) #*** Model 3: Estimation with ties, no epsilon adjustment, weight for ties of .333 which # corresponds to the rule of 3 points for a victory and 1 point of a draw in football mod3 <- sirt::btm( dat, eps=0, wgt.ties=1/3) summary(mod3) #*** Model 4: Some fixed abilities fix.theta <- c("Anhalt Dessau"=-1 ) mod4 <- sirt::btm( dat, eps=0, fix.theta=fix.theta) summary(mod4) #*** Model 5: Ignoring ties, no home advantage effect mod5 <- sirt::btm( dat, ignore.ties=TRUE, fix.eta=0) summary(mod5) #*** Model 6: Ignoring ties, no home advantage effect (JML approach and eps=0) mod6 <- sirt::btm( dat, ignore.ties=TRUE, fix.eta=0, eps=0) summary(mod5) ############################################################################# # EXAMPLE 2: Venice chess data ############################################################################# # See http://www.rasch.org/rmt/rmt113o.htm # Linacre, J. M. (1997). Paired Comparisons with Standard Rasch Software. # Rasch Measurement Transactions, 11:3, 584-585. # dataset with chess games -> "D" denotes a draw (tie) chessdata <- scan( what="character") 1D.0..1...1....1.....1......D.......D........1.........1.......... Browne 0.1.D..0...1....1.....1......D.......1........D.........1......... Mariotti .D0..0..1...D....D.....1......1.......1........1.........D........ Tatai ...1D1...D...D....1.....D......D.......D........1.........0....... Hort ......010D....D....D.....1......D.......1........1.........D...... Kavalek ..........00DDD.....D.....D......D.......1........D.........1..... Damjanovic ...............00D0DD......D......1.......1........1.........0.... Gligoric .....................000D0DD.......D.......1........D.........1... Radulov ............................DD0DDD0D........0........0.........1.. Bobotsov ....................................D00D00001.........1.........1. Cosulich .............................................0D000D0D10..........1 Westerinen .......................................................00D1D010000 Zichichi L <- length(chessdata) / 2 games <- matrix( chessdata, nrow=L, ncol=2, byrow=TRUE ) G <- nchar(games[1,1]) # create matrix with results results <- matrix( NA, nrow=G, ncol=3 ) for (gg in 1:G){ games.gg <- substring( games[,1], gg, gg ) ind.gg <- which( games.gg !="." ) results[gg, 1:2 ] <- games[ ind.gg, 2] results[gg, 3 ] <- games.gg[ ind.gg[1] ] } results <- as.data.frame(results) results[,3] <- paste(results[,3] ) results[ results[,3]=="D", 3] <- 1/2 results[,3] <- as.numeric( results[,3] ) # fit model ignoring draws mod1 <- sirt::btm( results, ignore.ties=TRUE, fix.eta=0, eps=0 ) summary(mod1) # fit model with draws mod2 <- sirt::btm( results, fix.eta=0, eps=0 ) summary(mod2) ############################################################################# # EXAMPLE 3: Simulated data from the Bradley-Terry model ############################################################################# set.seed(9098) N <- 22 theta <- seq(2,-2, len=N) #** simulate and estimate data without repeated dyads dat1 <- sirt::btm_sim(theta=theta) mod1 <- sirt::btm( dat1, ignore.ties=TRUE, fix.delta=-99, fix.eta=0) summary(mod1) #*** simulate data with home advantage effect and ties dat2 <- sirt::btm_sim(theta=theta, eta=.8, delta=-.6, repeated=TRUE) mod2 <- sirt::btm(dat2) summary(mod2) ############################################################################# # EXAMPLE 4: Estimating the Bradley-Terry model with multiple judges ############################################################################# #*** simulating data with multiple judges set.seed(987) N <- 26 # number of objects to be rated theta <- seq(2,-2, len=N) s1 <- stats::sd(theta) dat <- NULL # judge discriminations which define tendency to provide reliable ratings discrim <- c( rep(.9,10), rep(.5,2), rep(0,2) ) #=> last four raters provide less reliable ratings RR <- length(discrim) for (rr in 1:RR){ theta1 <- discrim[rr]*theta + stats::rnorm(N, mean=0, sd=s1*sqrt(1-discrim[rr])) dat1 <- sirt::btm_sim(theta1) dat1$judge <- rr dat <- rbind(dat, dat1) } #** estimate the Bradley-Terry model and compute judge-specific fit statistics mod <- sirt::btm( dat[,1:3], judge=paste0("J",100+dat[,4]), fix.eta=0, ignore.ties=TRUE) summary(mod) ## End(Not run)
############################################################################# # EXAMPLE 1: Bradley-Terry model | data.pw01 ############################################################################# data(data.pw01) dat <- data.pw01 dat <- dat[, c("home_team", "away_team", "result") ] # recode results according to needed input dat$result[ dat$result==0 ] <- 1/2 # code for ties dat$result[ dat$result==2 ] <- 0 # code for victory of away team #******************** # Model 1: Estimation with ties and home advantage mod1 <- sirt::btm( dat) summary(mod1) ## Not run: #*** Model 2: Estimation with ties, no epsilon adjustment mod2 <- sirt::btm( dat, eps=0) summary(mod2) #*** Model 3: Estimation with ties, no epsilon adjustment, weight for ties of .333 which # corresponds to the rule of 3 points for a victory and 1 point of a draw in football mod3 <- sirt::btm( dat, eps=0, wgt.ties=1/3) summary(mod3) #*** Model 4: Some fixed abilities fix.theta <- c("Anhalt Dessau"=-1 ) mod4 <- sirt::btm( dat, eps=0, fix.theta=fix.theta) summary(mod4) #*** Model 5: Ignoring ties, no home advantage effect mod5 <- sirt::btm( dat, ignore.ties=TRUE, fix.eta=0) summary(mod5) #*** Model 6: Ignoring ties, no home advantage effect (JML approach and eps=0) mod6 <- sirt::btm( dat, ignore.ties=TRUE, fix.eta=0, eps=0) summary(mod5) ############################################################################# # EXAMPLE 2: Venice chess data ############################################################################# # See http://www.rasch.org/rmt/rmt113o.htm # Linacre, J. M. (1997). Paired Comparisons with Standard Rasch Software. # Rasch Measurement Transactions, 11:3, 584-585. # dataset with chess games -> "D" denotes a draw (tie) chessdata <- scan( what="character") 1D.0..1...1....1.....1......D.......D........1.........1.......... Browne 0.1.D..0...1....1.....1......D.......1........D.........1......... Mariotti .D0..0..1...D....D.....1......1.......1........1.........D........ Tatai ...1D1...D...D....1.....D......D.......D........1.........0....... Hort ......010D....D....D.....1......D.......1........1.........D...... Kavalek ..........00DDD.....D.....D......D.......1........D.........1..... Damjanovic ...............00D0DD......D......1.......1........1.........0.... Gligoric .....................000D0DD.......D.......1........D.........1... Radulov ............................DD0DDD0D........0........0.........1.. Bobotsov ....................................D00D00001.........1.........1. Cosulich .............................................0D000D0D10..........1 Westerinen .......................................................00D1D010000 Zichichi L <- length(chessdata) / 2 games <- matrix( chessdata, nrow=L, ncol=2, byrow=TRUE ) G <- nchar(games[1,1]) # create matrix with results results <- matrix( NA, nrow=G, ncol=3 ) for (gg in 1:G){ games.gg <- substring( games[,1], gg, gg ) ind.gg <- which( games.gg !="." ) results[gg, 1:2 ] <- games[ ind.gg, 2] results[gg, 3 ] <- games.gg[ ind.gg[1] ] } results <- as.data.frame(results) results[,3] <- paste(results[,3] ) results[ results[,3]=="D", 3] <- 1/2 results[,3] <- as.numeric( results[,3] ) # fit model ignoring draws mod1 <- sirt::btm( results, ignore.ties=TRUE, fix.eta=0, eps=0 ) summary(mod1) # fit model with draws mod2 <- sirt::btm( results, fix.eta=0, eps=0 ) summary(mod2) ############################################################################# # EXAMPLE 3: Simulated data from the Bradley-Terry model ############################################################################# set.seed(9098) N <- 22 theta <- seq(2,-2, len=N) #** simulate and estimate data without repeated dyads dat1 <- sirt::btm_sim(theta=theta) mod1 <- sirt::btm( dat1, ignore.ties=TRUE, fix.delta=-99, fix.eta=0) summary(mod1) #*** simulate data with home advantage effect and ties dat2 <- sirt::btm_sim(theta=theta, eta=.8, delta=-.6, repeated=TRUE) mod2 <- sirt::btm(dat2) summary(mod2) ############################################################################# # EXAMPLE 4: Estimating the Bradley-Terry model with multiple judges ############################################################################# #*** simulating data with multiple judges set.seed(987) N <- 26 # number of objects to be rated theta <- seq(2,-2, len=N) s1 <- stats::sd(theta) dat <- NULL # judge discriminations which define tendency to provide reliable ratings discrim <- c( rep(.9,10), rep(.5,2), rep(0,2) ) #=> last four raters provide less reliable ratings RR <- length(discrim) for (rr in 1:RR){ theta1 <- discrim[rr]*theta + stats::rnorm(N, mean=0, sd=s1*sqrt(1-discrim[rr])) dat1 <- sirt::btm_sim(theta1) dat1$judge <- rr dat <- rbind(dat, dat1) } #** estimate the Bradley-Terry model and compute judge-specific fit statistics mod <- sirt::btm( dat[,1:3], judge=paste0("J",100+dat[,4]), fix.eta=0, ignore.ties=TRUE) summary(mod) ## End(Not run)
The function categorize
defines categories for variables in
a data frame, starting with a user-defined index (e.g. 0 or 1).
Continuous variables can be categorized by defining categories by
discretizing the variables in different quantile groups.
The function decategorize
does the reverse operation.
categorize(dat, categorical=NULL, quant=NULL, lowest=0) decategorize(dat, categ_design=NULL)
categorize(dat, categorical=NULL, quant=NULL, lowest=0) decategorize(dat, categ_design=NULL)
dat |
Data frame |
categorical |
Vector with variable names which should be converted into categories,
beginning with integer |
quant |
Vector with number of classes for each variables. Variables are categorized among quantiles. The vector must have names containing variable names. |
lowest |
Lowest category index. Default is 0. |
categ_design |
Data frame containing informations about
categorization which is the output of |
For categorize
, it is a list with entries
data |
Converted data frame |
categ_design |
Data frame containing some informations about categorization |
For decategorize
it is a data frame.
## Not run: library(mice) library(miceadds) ############################################################################# # EXAMPLE 1: Categorize questionnaire data ############################################################################# data(data.smallscale, package="miceadds") dat <- data.smallscale # (0) select dataset dat <- dat[, 9:20 ] summary(dat) categorical <- colnames(dat)[2:6] # (1) categorize data res <- sirt::categorize( dat, categorical=categorical ) # (2) multiple imputation using the mice package dat2 <- res$data VV <- ncol(dat2) impMethod <- rep( "sample", VV ) # define random sampling imputation method names(impMethod) <- colnames(dat2) imp <- mice::mice( as.matrix(dat2), impMethod=impMethod, maxit=1, m=1 ) dat3 <- mice::complete(imp,action=1) # (3) decategorize dataset dat3a <- sirt::decategorize( dat3, categ_design=res$categ_design ) ############################################################################# # EXAMPLE 2: Categorize ordinal and continuous data ############################################################################# data(data.ma01,package="miceadds") dat <- data.ma01 summary(dat[,-c(1:2)] ) # define variables to be categorized categorical <- c("books", "paredu" ) # define quantiles quant <- c(6,5,11) names(quant) <- c("math", "read", "hisei") # categorize data res <- sirt::categorize( dat, categorical=categorical, quant=quant) str(res) ## End(Not run)
## Not run: library(mice) library(miceadds) ############################################################################# # EXAMPLE 1: Categorize questionnaire data ############################################################################# data(data.smallscale, package="miceadds") dat <- data.smallscale # (0) select dataset dat <- dat[, 9:20 ] summary(dat) categorical <- colnames(dat)[2:6] # (1) categorize data res <- sirt::categorize( dat, categorical=categorical ) # (2) multiple imputation using the mice package dat2 <- res$data VV <- ncol(dat2) impMethod <- rep( "sample", VV ) # define random sampling imputation method names(impMethod) <- colnames(dat2) imp <- mice::mice( as.matrix(dat2), impMethod=impMethod, maxit=1, m=1 ) dat3 <- mice::complete(imp,action=1) # (3) decategorize dataset dat3a <- sirt::decategorize( dat3, categ_design=res$categ_design ) ############################################################################# # EXAMPLE 2: Categorize ordinal and continuous data ############################################################################# data(data.ma01,package="miceadds") dat <- data.ma01 summary(dat[,-c(1:2)] ) # define variables to be categorized categorical <- c("books", "paredu" ) # define quantiles quant <- c(6,5,11) names(quant) <- c("math", "read", "hisei") # categorize data res <- sirt::categorize( dat, categorical=categorical, quant=quant) str(res) ## End(Not run)
This function estimates conditional covariances of itempairs
(Stout, Habing, Douglas & Kim, 1996; Zhang & Stout,
1999a). The function is used for the estimation of the DETECT index.
The ccov.np
function has the (default) option to smooth item response
functions (argument smooth
) in the computation of conditional covariances
(Douglas, Kim, Habing, & Gao, 1998).
ccov.np(data, score, bwscale=1.1, thetagrid=seq(-3, 3, len=200), progress=TRUE, scale_score=TRUE, adjust_thetagrid=TRUE, smooth=TRUE, use_sum_score=FALSE, bias_corr=TRUE)
ccov.np(data, score, bwscale=1.1, thetagrid=seq(-3, 3, len=200), progress=TRUE, scale_score=TRUE, adjust_thetagrid=TRUE, smooth=TRUE, use_sum_score=FALSE, bias_corr=TRUE)
data |
An |
score |
An ability estimate, e.g. the WLE |
bwscale |
Bandwidth factor for calculation of conditional covariance. The bandwidth
used in the estimation is |
thetagrid |
A vector which contains theta values where conditional covariances are evaluated. |
progress |
Display progress? |
scale_score |
Logical indicating whether |
adjust_thetagrid |
Logical indicating whether |
smooth |
Logical indicating whether smoothing should be applied for conditional covariance estimation |
use_sum_score |
Logical indicating whether sum score should be used. With this option, the bias corrected conditional covariance of Zhang and Stout (1999) is used. |
bias_corr |
Logical indicating whether bias correction (Zhang & Stout, 1999)
should be utilized if |
This function is used in conf.detect
and expl.detect
.
Douglas, J., Kim, H. R., Habing, B., & Gao, F. (1998). Investigating local dependence with conditional covariance functions. Journal of Educational and Behavioral Statistics, 23(2), 129-151. doi:10.3102/10769986023002129
Stout, W., Habing, B., Douglas, J., & Kim, H. R. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20(4), 331-354. doi:10.1177/014662169602000403
Zhang, J., & Stout, W. (1999). Conditional covariance structure of generalized compensatory multidimensional items. Psychometrika, 64(2), 129-152. doi:10.1007/BF02294532
## Not run: ############################################################################# # EXAMPLE 1: data.read | different settings for computing conditional covariance ############################################################################# data(data.read, package="sirt") dat <- data.read #* fit Rasch model mod <- sirt::rasch.mml2(dat) score <- sirt::wle.rasch(dat=dat, b=mod$item$b)$theta #* ccov with smoothing cmod1 <- sirt::ccov.np(data=dat, score=score, bwscale=1.1) #* ccov without smoothing cmod2 <- sirt::ccov.np(data=dat, score=score, smooth=FALSE) #- compare results 100*cbind( cmod1$ccov.table[1:6, "ccov"], cmod2$ccov.table[1:6, "ccov"]) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: data.read | different settings for computing conditional covariance ############################################################################# data(data.read, package="sirt") dat <- data.read #* fit Rasch model mod <- sirt::rasch.mml2(dat) score <- sirt::wle.rasch(dat=dat, b=mod$item$b)$theta #* ccov with smoothing cmod1 <- sirt::ccov.np(data=dat, score=score, bwscale=1.1) #* ccov without smoothing cmod2 <- sirt::ccov.np(data=dat, score=score, smooth=FALSE) #- compare results 100*cbind( cmod1$ccov.table[1:6, "ccov"], cmod2$ccov.table[1:6, "ccov"]) ## End(Not run)
Estimates a unidimensional factor model based on the normal distribution fitting
function under full and partial measurement invariance.
Item loadings and item intercepts are successively freed based on the largest
modification index and a chosen significance level alpha
.
cfa_meas_inv(dat, group, weights=NULL, alpha=0.01, verbose=FALSE, op=c("~1","=~"))
cfa_meas_inv(dat, group, weights=NULL, alpha=0.01, verbose=FALSE, op=c("~1","=~"))
dat |
Data frame containing items |
group |
Vector of group identifiers |
weights |
Optional vector of sampling weights |
alpha |
Significance level |
verbose |
Logical indicating whether progress should be shown |
op |
Operators (intercepts or loadings) for which estimation should be freed |
List with several entries
pars_mi |
Model parameters under full invariance |
pars_pi |
Model parameters under partial invariance |
mod_mi |
Fitted model under full invariance |
mod_pi |
Fitted model under partial invariance |
... |
More output |
See also sirt::invariance.alignment
## Not run: ############################################################################# # EXAMPLE 1: Factor model under full and partial invariance ############################################################################# #--- data simulation set.seed(65) G <- 3 # number of groups I <- 5 # number of items # define lambda and nu parameters lambda <- matrix(1, nrow=G, ncol=I) nu <- matrix(0, nrow=G, ncol=I) err_var <- matrix(1, nrow=G, ncol=I) # define size of noninvariance dif <- 1 #- 1st group: N(0,1) lambda[1,3] <- 1+dif*.4; nu[1,5] <- dif*.5 #- 2nd group: N(0.3,1.5) gg <- 2 ; lambda[gg,5] <- 1-.5*dif; nu[gg,1] <- -.5*dif #- 3nd group: N(.8,1.2) gg <- 3 lambda[gg,4] <- 1-.7*dif; nu[gg,2] <- -.5*dif #- define distributions of groups mu <- c(0,.3,.8) sigma <- sqrt(c(1,1.5,1.2)) N <- rep(1000,3) # sample sizes per group #* use simulation function dat <- sirt::invariance_alignment_simulate(nu, lambda, err_var, mu, sigma, N, exact=TRUE) #--- estimate CFA mod <- sirt::cfa_meas_inv(dat=dat[,-1], group=dat$group, verbose=TRUE, alpha=0.05) mod$pars_mi mod$pars_pi ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Factor model under full and partial invariance ############################################################################# #--- data simulation set.seed(65) G <- 3 # number of groups I <- 5 # number of items # define lambda and nu parameters lambda <- matrix(1, nrow=G, ncol=I) nu <- matrix(0, nrow=G, ncol=I) err_var <- matrix(1, nrow=G, ncol=I) # define size of noninvariance dif <- 1 #- 1st group: N(0,1) lambda[1,3] <- 1+dif*.4; nu[1,5] <- dif*.5 #- 2nd group: N(0.3,1.5) gg <- 2 ; lambda[gg,5] <- 1-.5*dif; nu[gg,1] <- -.5*dif #- 3nd group: N(.8,1.2) gg <- 3 lambda[gg,4] <- 1-.7*dif; nu[gg,2] <- -.5*dif #- define distributions of groups mu <- c(0,.3,.8) sigma <- sqrt(c(1,1.5,1.2)) N <- rep(1000,3) # sample sizes per group #* use simulation function dat <- sirt::invariance_alignment_simulate(nu, lambda, err_var, mu, sigma, N, exact=TRUE) #--- estimate CFA mod <- sirt::cfa_meas_inv(dat=dat[,-1], group=dat$group, verbose=TRUE, alpha=0.05) mod$pars_mi mod$pars_pi ## End(Not run)
This function computes the classification accuracy in the Rasch model for the maximum likelihood (person parameter) estimate according to the method of Rudner (2001).
class.accuracy.rasch(cutscores, b, meantheta, sdtheta, theta.l, n.sims=0)
class.accuracy.rasch(cutscores, b, meantheta, sdtheta, theta.l, n.sims=0)
cutscores |
Vector of cut scores |
b |
Vector of item difficulties |
meantheta |
Mean of the trait distribution |
sdtheta |
Standard deviation of the trait distribution |
theta.l |
Discretized theta distribution |
n.sims |
Number of simulated persons in a data set. The default is 0 which means that no simulation is performed. |
A list with following entries:
class.stats |
Data frame containing classification accuracy statistics. The
column |
class.prob |
Probability table of classification |
Rudner, L.M. (2001). Computing the expected proportions of misclassified examinees. Practical Assessment, Research & Evaluation, 7(14).
Classification accuracy of other IRT models can be obtained with the R package cacIRT.
############################################################################# # EXAMPLE 1: Reading dataset ############################################################################# data( data.read, package="sirt") dat <- data.read # estimate the Rasch model mod <- sirt::rasch.mml2( dat ) # estimate classification accuracy (3 levels) cutscores <- c( -1, .3 ) # cut scores at theta=-1 and theta=.3 sirt::class.accuracy.rasch( cutscores=cutscores, b=mod$item$b, meantheta=0, sdtheta=mod$sd.trait, theta.l=seq(-4,4,len=200), n.sims=3000) ## Cut Scores ## [1] -1.0 0.3 ## ## WLE reliability (by simulation)=0.671 ## WLE consistency (correlation between two parallel forms)=0.649 ## ## Classification accuracy and consistency ## agree0 agree1 kappa consistency ## analytical 0.68 0.990 0.492 NA ## simulated 0.70 0.997 0.489 0.599 ## ## Probability classification table ## Est_Class1 Est_Class2 Est_Class3 ## True_Class1 0.136 0.041 0.001 ## True_Class2 0.081 0.249 0.093 ## True_Class3 0.009 0.095 0.294
############################################################################# # EXAMPLE 1: Reading dataset ############################################################################# data( data.read, package="sirt") dat <- data.read # estimate the Rasch model mod <- sirt::rasch.mml2( dat ) # estimate classification accuracy (3 levels) cutscores <- c( -1, .3 ) # cut scores at theta=-1 and theta=.3 sirt::class.accuracy.rasch( cutscores=cutscores, b=mod$item$b, meantheta=0, sdtheta=mod$sd.trait, theta.l=seq(-4,4,len=200), n.sims=3000) ## Cut Scores ## [1] -1.0 0.3 ## ## WLE reliability (by simulation)=0.671 ## WLE consistency (correlation between two parallel forms)=0.649 ## ## Classification accuracy and consistency ## agree0 agree1 kappa consistency ## analytical 0.68 0.990 0.492 NA ## simulated 0.70 0.997 0.489 0.599 ## ## Probability classification table ## Est_Class1 Est_Class2 Est_Class3 ## True_Class1 0.136 0.041 0.001 ## True_Class2 0.081 0.249 0.093 ## True_Class3 0.009 0.095 0.294
This function computes the DETECT statistics for dichotomous item responses and the polyDETECT statistic for polytomous item responses under a confirmatory specification of item clusters (Stout, Habing, Douglas & Kim, 1996; Zhang & Stout, 1999a, 1999b; Zhang, 2007; Bonifay, Reise, Scheines, & Meijer, 2015).
Item responses in a multi-matrix design are allowed (Zhang, 2013).
An exploratory DETECT analysis can be conducted using the
expl.detect
function.
conf.detect(data, score, itemcluster, bwscale=1.1, progress=TRUE, thetagrid=seq(-3, 3, len=200), smooth=TRUE, use_sum_score=FALSE, bias_corr=TRUE) ## S3 method for class 'conf.detect' summary(object, digits=3, file=NULL, ...)
conf.detect(data, score, itemcluster, bwscale=1.1, progress=TRUE, thetagrid=seq(-3, 3, len=200), smooth=TRUE, use_sum_score=FALSE, bias_corr=TRUE) ## S3 method for class 'conf.detect' summary(object, digits=3, file=NULL, ...)
data |
An |
score |
An ability estimate, e.g. the WLE, sum score or mean score |
itemcluster |
Item cluster for each item. The order of entries must correspond
to the columns in |
bwscale |
Bandwidth factor for calculation of conditional covariance
(see |
progress |
Display progress? |
smooth |
Logical indicating whether smoothing should be applied for conditional covariance estimation |
thetagrid |
A vector which contains theta values where conditional covariances are evaluated. |
use_sum_score |
Logical indicating whether sum score should be used. With this option, the bias corrected conditional covariance of Zhang and Stout (1999) is used. |
bias_corr |
Logical indicating whether bias correction (Zhang & Stout, 1999)
should be utilized if |
object |
Object of class |
digits |
Number of digits for rounding in |
file |
Optional file name to be sunk for |
... |
Further arguments to be passed |
The result of DETECT are the indices DETECT
, ASSI
and RATIO
(see Zhang 2007 for details) calculated
for the options unweighted
and weighted
.
The option unweighted
means that all conditional covariances of
item pairs are equally weighted, weighted
means that
these covariances are weighted by the sample size of item pairs.
In case of multi matrix item designs, both types of indices can
differ.
The classification scheme of these indices are as follows (Jang & Roussos, 2007; Zhang, 2007):
Strong multidimensionality | DETECT > 1.00 |
Moderate multidimensionality | .40 < DETECT < 1.00 |
Weak multidimensionality | .20 < DETECT < .40 |
Essential unidimensionality | DETECT < .20 |
Maximum value under simple structure | ASSI=1 | RATIO=1 |
Essential deviation from unidimensionality | ASSI > .25 | RATIO > .36 |
Essential unidimensionality | ASSI < .25 | RATIO < .36 |
Note that the expected value of a conditional covariance for an item pair
is negative when a unidimensional model holds. In consequence,
the DETECT index can become negative for unidimensional data
(see Example 3). This can be also seen in the statistic
MCOV100
in the value detect
.
A list with following entries:
detect |
Data frame with statistics DETECT, ASSI, RATIO, MADCOV100 and MCOV100 |
ccovtable |
Individual contributions to conditional covariance |
ccov.matrix |
Evaluated conditional covariance |
Bonifay, W. E., Reise, S. P., Scheines, R., & Meijer, R. R. (2015). When are multidimensional data unidimensional enough for structural equation modeling? An evaluation of the DETECT multidimensionality index. Structural Equation Modeling, 22(4), 504-516. doi:10.1080/10705511.2014.938596
Jang, E. E., & Roussos, L. (2007). An investigation into the dimensionality of TOEFL using conditional covariance-based nonparametric approach. Journal of Educational Measurement, 44(1), 1-21. doi:10.1111/j.1745-3984.2007.00024.x
Stout, W., Habing, B., Douglas, J., & Kim, H. R. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20(4), 331-354. doi:10.1177/014662169602000403
Zhang, J. (2007). Conditional covariance theory and DETECT for polytomous items. Psychometrika, 72(1), 69-91. doi:10.1007/s11336-004-1257-7
Zhang, J. (2013). A procedure for dimensionality analyses of response data from various test designs. Psychometrika, 78(1), 37-58. doi:10.1007/s11336-012-9287-z
Zhang, J., & Stout, W. (1999a). Conditional covariance structure of generalized compensatory multidimensional items. Psychometrika, 64(2), 129-152. doi:10.1007/BF02294532
Zhang, J., & Stout, W. (1999b). The theoretical DETECT index of dimensionality and its application to approximate simple structure. Psychometrika, 64(2), 213-249. doi:10.1007/BF02294536
For a download of the free DIM-Pack software (DIMTEST, DETECT) see https://psychometrics.onlinehelp.measuredprogress.org/tools/dim/.
See expl.detect
for exploratory DETECT analysis.
############################################################################# # EXAMPLE 1: TIMSS mathematics data set (dichotomous data) ############################################################################# data(data.timss) # extract data dat <- data.timss$data dat <- dat[, substring( colnames(dat),1,1)=="M" ] # extract item informations iteminfo <- data.timss$item # estimate Rasch model mod1 <- sirt::rasch.mml2( dat ) # estimate WLEs wle1 <- sirt::wle.rasch( dat, b=mod1$item$b )$theta # DETECT for content domains detect1 <- sirt::conf.detect( data=dat, score=wle1, itemcluster=iteminfo$Content.Domain ) ## unweighted weighted ## DETECT 0.316 0.316 ## ASSI 0.273 0.273 ## RATIO 0.355 0.355 ## Not run: # DETECT cognitive domains detect2 <- sirt::conf.detect( data=dat, score=wle1, itemcluster=iteminfo$Cognitive.Domain ) ## unweighted weighted ## DETECT 0.251 0.251 ## ASSI 0.227 0.227 ## RATIO 0.282 0.282 # DETECT for item format detect3 <- sirt::conf.detect( data=dat, score=wle1, itemcluster=iteminfo$Format ) ## unweighted weighted ## DETECT 0.056 0.056 ## ASSI 0.060 0.060 ## RATIO 0.062 0.062 # DETECT for item blocks detect4 <- sirt::conf.detect( data=dat, score=wle1, itemcluster=iteminfo$Block ) ## unweighted weighted ## DETECT 0.301 0.301 ## ASSI 0.193 0.193 ## RATIO 0.339 0.339 ## End(Not run) # Exploratory DETECT: Application of a cluster analysis employing the Ward method detect5 <- sirt::expl.detect( data=dat, score=wle1, nclusters=10, N.est=nrow(dat) ) # Plot cluster solution pl <- graphics::plot( detect5$clusterfit, main="Cluster solution" ) stats::rect.hclust(detect5$clusterfit, k=4, border="red") ## Not run: ############################################################################# # EXAMPLE 2: Big 5 data set (polytomous data) ############################################################################# # attach Big5 Dataset data(data.big5) # select 6 items of each dimension dat <- data.big5 dat <- dat[, 1:30] # estimate person score by simply using a transformed sum score score <- stats::qnorm( ( rowMeans( dat )+.5 ) / ( 30 + 1 ) ) # extract item cluster (Big 5 dimensions) itemcluster <- substring( colnames(dat), 1, 1 ) # DETECT Item cluster detect1 <- sirt::conf.detect( data=dat, score=score, itemcluster=itemcluster ) ## unweighted weighted ## DETECT 1.256 1.256 ## ASSI 0.384 0.384 ## RATIO 0.597 0.597 # Exploratory DETECT detect5 <- sirt::expl.detect( data=dat, score=score, nclusters=9, N.est=nrow(dat) ) ## DETECT (unweighted) ## Optimal Cluster Size is 6 (Maximum of DETECT Index) ## N.Cluster N.items N.est N.val size.cluster DETECT.est ASSI.est RATIO.est ## 1 2 30 500 0 6-24 1.073 0.246 0.510 ## 2 3 30 500 0 6-10-14 1.578 0.457 0.750 ## 3 4 30 500 0 6-10-11-3 1.532 0.444 0.729 ## 4 5 30 500 0 6-8-11-2-3 1.591 0.462 0.757 ## 5 6 30 500 0 6-8-6-2-5-3 1.610 0.499 0.766 ## 6 7 30 500 0 6-3-6-2-5-5-3 1.557 0.476 0.740 ## 7 8 30 500 0 6-3-3-2-3-5-5-3 1.540 0.462 0.732 ## 8 9 30 500 0 6-3-3-2-3-5-3-3-2 1.522 0.444 0.724 # Plot Cluster solution pl <- graphics::plot( detect5$clusterfit, main="Cluster solution" ) stats::rect.hclust(detect5$clusterfit, k=6, border="red") ############################################################################# # EXAMPLE 3: DETECT index for unidimensional data ############################################################################# set.seed(976) N <- 1000 I <- 20 b <- sample( seq( -2, 2, len=I) ) dat <- sirt::sim.raschtype( stats::rnorm(N), b=b ) # estimate Rasch model and corresponding WLEs mod1 <- TAM::tam.mml( dat ) wmod1 <- TAM::tam.wle(mod1)$theta # define item cluster itemcluster <- c( rep(1,5), rep(2,I-5) ) # compute DETECT statistic detect1 <- sirt::conf.detect( data=dat, score=wmod1, itemcluster=itemcluster) ## unweighted weighted ## DETECT -0.184 -0.184 ## ASSI -0.147 -0.147 ## RATIO -0.226 -0.226 ## MADCOV100 0.816 0.816 ## MCOV100 -0.786 -0.786 ## End(Not run)
############################################################################# # EXAMPLE 1: TIMSS mathematics data set (dichotomous data) ############################################################################# data(data.timss) # extract data dat <- data.timss$data dat <- dat[, substring( colnames(dat),1,1)=="M" ] # extract item informations iteminfo <- data.timss$item # estimate Rasch model mod1 <- sirt::rasch.mml2( dat ) # estimate WLEs wle1 <- sirt::wle.rasch( dat, b=mod1$item$b )$theta # DETECT for content domains detect1 <- sirt::conf.detect( data=dat, score=wle1, itemcluster=iteminfo$Content.Domain ) ## unweighted weighted ## DETECT 0.316 0.316 ## ASSI 0.273 0.273 ## RATIO 0.355 0.355 ## Not run: # DETECT cognitive domains detect2 <- sirt::conf.detect( data=dat, score=wle1, itemcluster=iteminfo$Cognitive.Domain ) ## unweighted weighted ## DETECT 0.251 0.251 ## ASSI 0.227 0.227 ## RATIO 0.282 0.282 # DETECT for item format detect3 <- sirt::conf.detect( data=dat, score=wle1, itemcluster=iteminfo$Format ) ## unweighted weighted ## DETECT 0.056 0.056 ## ASSI 0.060 0.060 ## RATIO 0.062 0.062 # DETECT for item blocks detect4 <- sirt::conf.detect( data=dat, score=wle1, itemcluster=iteminfo$Block ) ## unweighted weighted ## DETECT 0.301 0.301 ## ASSI 0.193 0.193 ## RATIO 0.339 0.339 ## End(Not run) # Exploratory DETECT: Application of a cluster analysis employing the Ward method detect5 <- sirt::expl.detect( data=dat, score=wle1, nclusters=10, N.est=nrow(dat) ) # Plot cluster solution pl <- graphics::plot( detect5$clusterfit, main="Cluster solution" ) stats::rect.hclust(detect5$clusterfit, k=4, border="red") ## Not run: ############################################################################# # EXAMPLE 2: Big 5 data set (polytomous data) ############################################################################# # attach Big5 Dataset data(data.big5) # select 6 items of each dimension dat <- data.big5 dat <- dat[, 1:30] # estimate person score by simply using a transformed sum score score <- stats::qnorm( ( rowMeans( dat )+.5 ) / ( 30 + 1 ) ) # extract item cluster (Big 5 dimensions) itemcluster <- substring( colnames(dat), 1, 1 ) # DETECT Item cluster detect1 <- sirt::conf.detect( data=dat, score=score, itemcluster=itemcluster ) ## unweighted weighted ## DETECT 1.256 1.256 ## ASSI 0.384 0.384 ## RATIO 0.597 0.597 # Exploratory DETECT detect5 <- sirt::expl.detect( data=dat, score=score, nclusters=9, N.est=nrow(dat) ) ## DETECT (unweighted) ## Optimal Cluster Size is 6 (Maximum of DETECT Index) ## N.Cluster N.items N.est N.val size.cluster DETECT.est ASSI.est RATIO.est ## 1 2 30 500 0 6-24 1.073 0.246 0.510 ## 2 3 30 500 0 6-10-14 1.578 0.457 0.750 ## 3 4 30 500 0 6-10-11-3 1.532 0.444 0.729 ## 4 5 30 500 0 6-8-11-2-3 1.591 0.462 0.757 ## 5 6 30 500 0 6-8-6-2-5-3 1.610 0.499 0.766 ## 6 7 30 500 0 6-3-6-2-5-5-3 1.557 0.476 0.740 ## 7 8 30 500 0 6-3-3-2-3-5-5-3 1.540 0.462 0.732 ## 8 9 30 500 0 6-3-3-2-3-5-3-3-2 1.522 0.444 0.724 # Plot Cluster solution pl <- graphics::plot( detect5$clusterfit, main="Cluster solution" ) stats::rect.hclust(detect5$clusterfit, k=6, border="red") ############################################################################# # EXAMPLE 3: DETECT index for unidimensional data ############################################################################# set.seed(976) N <- 1000 I <- 20 b <- sample( seq( -2, 2, len=I) ) dat <- sirt::sim.raschtype( stats::rnorm(N), b=b ) # estimate Rasch model and corresponding WLEs mod1 <- TAM::tam.mml( dat ) wmod1 <- TAM::tam.wle(mod1)$theta # define item cluster itemcluster <- c( rep(1,5), rep(2,I-5) ) # compute DETECT statistic detect1 <- sirt::conf.detect( data=dat, score=wmod1, itemcluster=itemcluster) ## unweighted weighted ## DETECT -0.184 -0.184 ## ASSI -0.147 -0.147 ## RATIO -0.226 -0.226 ## MADCOV100 0.816 0.816 ## MCOV100 -0.786 -0.786 ## End(Not run)
List with item parameters for cultural activities of Austrian students for 9 Austrian countries.
data(data.activity.itempars)
data(data.activity.itempars)
The format is a list with number of students per group
(N
), item loadings (lambda
) and
item intercepts (nu
):
List of 3
$ N : 'table' int [1:9(1d)] 2580 5279 15131 14692 5525 11005 7080 ...
..- attr(*, "dimnames")=List of 1
.. ..$ : chr [1:9] "1" "2" "3" "4" ...
$ lambda: num [1:9, 1:5] 0.423 0.485 0.455 0.437 0.502 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:9] "country1" "country2" "country3" "country4" ...
.. ..$ : chr [1:5] "act1" "act2" "act3" "act4" ...
$ nu : num [1:9, 1:5] 1.65 1.53 1.7 1.59 1.7 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:9] "country1" "country2" "country3" "country4" ...
.. ..$ : chr [1:5] "act1" "act2" "act3" "act4" ...
The synthetic dataset is based on the standardization sample of the Berlin Test of Fluid and Crystallized Intelligence (BEFKI, Wilhelm, Schroeders, & Schipolowski, 2014). The underlying sample consists of N=11,756 students from all German federal states (except for the smallest one) and all school types of the general educational system attending Grades 5 to 12. A detailed description of the study, the sample, and the measure is given in Schroeders, Schipolowski, and Wilhelm (2015).
data(data.befki) data(data.befki_resp)
data(data.befki) data(data.befki_resp)
The dataset data.befki
contains 11756 students, nested within
581 classes.
'data.frame': 11756 obs. of 12 variables:
$ idclass: int 1276 1276 1276 1276 1276 1276 1276 1276 1276 1276 ...
$ idstud : int 127601 127602 127603 127604 127605 127606 127607 127608 127609 127610 ...
$ grade : int 5 5 5 5 5 5 5 5 5 5 ...
$ gym : int 0 0 0 0 0 0 0 0 0 0 ...
$ female : int 0 1 0 0 0 0 1 0 0 0 ...
$ age : num 12.2 11.8 11.5 10.8 10.9 ...
$ sci : num -3.14 -3.44 -2.62 -2.16 -1.01 -1.91 -1.01 -4.13 -2.16 -3.44 ...
$ hum : num -1.71 -1.29 -2.29 -2.48 -0.65 -0.92 -1.71 -2.31 -1.99 -2.48 ...
$ soc : num -2.87 -3.35 -3.81 -2.35 -1.32 -1.11 -1.68 -2.96 -2.69 -3.35 ...
$ gfv : num -2.25 -2.19 -2.25 -1.17 -2.19 -3.05 -1.7 -2.19 -3.05 -1.7 ...
$ gfn : num -2.2 -1.85 -1.85 -1.85 -1.85 -0.27 -1.37 -2.58 -1.85 -3.13 ...
$ gff : num -0.91 -0.43 -1.17 -1.45 -0.61 -1.78 -1.17 -1.78 -1.78 -3.87 ...
The dataset data.befki_resp
contains response indicators for observed data points
in the dataset data.befki
.
num [1:11756, 1:12] 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:12] "idclass" "idstud" "grade" "gym" ...
The procedure for generating this dataset is based on a factorization of the joint distribution. All variables are simulated from unidimensional conditional parametric regression models including several interaction and quadratic terms. The multilevel structure is approximated by including cluster means as predictors in the regression models.
Synthetic dataset
Schroeders, U., Schipolowski, S., & Wilhelm, O. (2015). Age-related changes in the mean and covariance structure of fluid and crystallized intelligence in childhood and adolescence. Intelligence, 48, 15-29. doi:10.1016/j.intell.2014.10.006
Wilhelm, O., Schroeders, U., & Schipolowski, S. (2014). Berliner Test zur Erfassung fluider und kristalliner Intelligenz fuer die 8. bis 10. Jahrgangsstufe [Berlin test of fluid and crystallized intelligence for grades 8-10]. Goettingen: Hogrefe.
This is a Big 5 dataset from the qgraph package (Dolan, Oorts, Stoel, Wicherts, 2009). It contains 500 subjects on 240 items.
data(data.big5) data(data.big5.qgraph)
data(data.big5) data(data.big5.qgraph)
The format of data.big5
is: num [1:500, 1:240] 1 0 0 0 0 1 1 2 0 1 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:240] "N1" "E2" "O3" "A4" ...
The format of data.big5.qgraph
is:
num [1:500, 1:240] 2 3 4 4 5 2 2 1 4 2 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:240] "N1" "E2" "O3" "A4" ...
In these datasets, there exist 48 items for each dimension. The Big 5
dimensions are Neuroticism (N
), Extraversion (E
),
Openness (O
), Agreeableness (A
) and
Conscientiousness (C
). Note that the data.big5
differs from
data.big5.qgraph
in a way that original items were recoded into
three categories 0,1 and 2.
See big5
in qgraph package.
Dolan, C. V., Oort, F. J., Stoel, R. D., & Wicherts, J. M. (2009). Testing measurement invariance in the target rotates multigroup exploratory factor model. Structural Equation Modeling, 16, 295-314.
## Not run: # list of needed packages for the following examples packages <- scan(what="character") sirt TAM eRm CDM mirt ltm mokken psychotools psychomix psych # load packages. make an installation if necessary miceadds::library_install(packages) ############################################################################# # EXAMPLE 1: Unidimensional models openness scale ############################################################################# data(data.big5) # extract first 10 openness items items <- which( substring( colnames(data.big5), 1, 1 )=="O" )[1:10] dat <- data.big5[, items ] I <- ncol(dat) summary(dat) ## > colnames(dat) ## [1] "O3" "O8" "O13" "O18" "O23" "O28" "O33" "O38" "O43" "O48" # descriptive statistics psych::describe(dat) #**************** # Model 1: Partial credit model #**************** #-- M1a: rm.facets (in sirt) m1a <- sirt::rm.facets( dat ) summary(m1a) #-- M1b: tam.mml (in TAM) m1b <- TAM::tam.mml( resp=dat ) summary(m1b) #-- M1c: gdm (in CDM) theta.k <- seq(-6,6,len=21) m1c <- CDM::gdm( dat, irtmodel="1PL",theta.k=theta.k, skillspace="normal") summary(m1c) # compare results with loglinear skillspace m1c2 <- CDM::gdm( dat, irtmodel="1PL",theta.k=theta.k, skillspace="loglinear") summary(m1c2) #-- M1d: PCM (in eRm) m1d <- eRm::PCM( dat ) summary(m1d) #-- M1e: gpcm (in ltm) m1e <- ltm::gpcm( dat, constraint="1PL", control=list(verbose=TRUE)) summary(m1e) #-- M1f: mirt (in mirt) m1f <- mirt::mirt( dat, model=1, itemtype="1PL", verbose=TRUE) summary(m1f) coef(m1f) #-- M1g: PCModel.fit (in psychotools) mod1g <- psychotools::PCModel.fit(dat) summary(mod1g) plot(mod1g) #**************** # Model 2: Generalized partial credit model #**************** #-- M2a: rm.facets (in sirt) m2a <- sirt::rm.facets( dat, est.a.item=TRUE) summary(m2a) # Note that in rm.facets the mean of item discriminations is fixed to 1 #-- M2b: tam.mml.2pl (in TAM) m2b <- TAM::tam.mml.2pl( resp=dat, irtmodel="GPCM") summary(m2b) #-- M2c: gdm (in CDM) m2c <- CDM::gdm( dat, irtmodel="2PL",theta.k=seq(-6,6,len=21), skillspace="normal", standardized.latent=TRUE) summary(m2c) #-- M2d: gpcm (in ltm) m2d <- ltm::gpcm( dat, control=list(verbose=TRUE)) summary(m2d) #-- M2e: mirt (in mirt) m2e <- mirt::mirt( dat, model=1, itemtype="GPCM", verbose=TRUE) summary(m2e) coef(m2e) #**************** # Model 3: Nonparametric item response model #**************** #-- M3a: ISOP and ADISOP model - isop.poly (in sirt) m3a <- sirt::isop.poly( dat ) summary(m3a) plot(m3a) #-- M3b: Mokken scale analysis (in mokken) # Scalability coefficients mokken::coefH(dat) # Assumption of monotonicity monotonicity.list <- mokken::check.monotonicity(dat) summary(monotonicity.list) plot(monotonicity.list) # Assumption of non-intersecting ISRFs using method restscore restscore.list <- mokken::check.restscore(dat) summary(restscore.list) plot(restscore.list) #**************** # Model 4: Graded response model #**************** #-- M4a: mirt (in mirt) m4a <- mirt::mirt( dat, model=1, itemtype="graded", verbose=TRUE) print(m4a) mirt.wrapper.coef(m4a) #---- M4b: WLSMV estimation with cfa (in lavaan) lavmodel <- "F=~ O3__O48 F ~~ 1*F " # transform lavaan syntax with lavaanify.IRT lavmodel <- TAM::lavaanify.IRT( lavmodel, items=colnames(dat) )$lavaan.syntax mod4b <- lavaan::cfa( data=as.data.frame(dat), model=lavmodel, std.lv=TRUE, ordered=colnames(dat), parameterization="theta") summary(mod4b, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE) coef(mod4b) #**************** # Model 5: Normally distributed residuals #**************** #---- M5a: cfa (in lavaan) lavmodel <- "F=~ O3__O48 F ~~ 1*F F ~ 0*1 O3__O48 ~ 1 " lavmodel <- TAM::lavaanify.IRT( lavmodel, items=colnames(dat) )$lavaan.syntax mod5a <- lavaan::cfa( data=as.data.frame(dat), model=lavmodel, std.lv=TRUE, estimator="MLR" ) summary(mod5a, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE) #---- M5b: mirt (in mirt) # create user defined function name <- 'normal' par <- c("d"=1, "a1"=0.8, "vy"=1) est <- c(TRUE, TRUE,FALSE) P.normal <- function(par,Theta,ncat){ d <- par[1] a1 <- par[2] vy <- par[3] psi <- vy - a1^2 # expected values given Theta mui <- a1*Theta[,1] + d TP <- nrow(Theta) probs <- matrix( NA, nrow=TP, ncol=ncat ) eps <- .01 for (cc in 1:ncat){ probs[,cc] <- stats::dnorm( cc, mean=mui, sd=sqrt( abs( psi + eps) ) ) } psum <- matrix( rep(rowSums( probs ),each=ncat), nrow=TP, ncol=ncat, byrow=TRUE) probs <- probs / psum return(probs) } # create item response function normal <- mirt::createItem(name, par=par, est=est, P=P.normal) customItems <- list("normal"=normal) itemtype <- rep( "normal",I) # define parameters to be estimated mod5b.pars <- mirt::mirt(dat, 1, itemtype=itemtype, customItems=customItems, pars="values") ind <- which( mod5b.pars$name=="vy") vy <- apply( dat, 2, var, na.rm=TRUE ) mod5b.pars[ ind, "value" ] <- vy ind <- which( mod5b.pars$name=="a1") mod5b.pars[ ind, "value" ] <- .5* sqrt(vy) ind <- which( mod5b.pars$name=="d") mod5b.pars[ ind, "value" ] <- colMeans( dat, na.rm=TRUE ) # estimate model mod5b <- mirt::mirt(dat, 1, itemtype=itemtype, customItems=customItems, pars=mod5b.pars, verbose=TRUE ) sirt::mirt.wrapper.coef(mod5b)$coef # some item plots par(ask=TRUE) plot(mod5b, type='trace', layout=c(1,1)) par(ask=FALSE) # Alternatively: sirt::mirt.wrapper.itemplot(mod5b) ## End(Not run)
## Not run: # list of needed packages for the following examples packages <- scan(what="character") sirt TAM eRm CDM mirt ltm mokken psychotools psychomix psych # load packages. make an installation if necessary miceadds::library_install(packages) ############################################################################# # EXAMPLE 1: Unidimensional models openness scale ############################################################################# data(data.big5) # extract first 10 openness items items <- which( substring( colnames(data.big5), 1, 1 )=="O" )[1:10] dat <- data.big5[, items ] I <- ncol(dat) summary(dat) ## > colnames(dat) ## [1] "O3" "O8" "O13" "O18" "O23" "O28" "O33" "O38" "O43" "O48" # descriptive statistics psych::describe(dat) #**************** # Model 1: Partial credit model #**************** #-- M1a: rm.facets (in sirt) m1a <- sirt::rm.facets( dat ) summary(m1a) #-- M1b: tam.mml (in TAM) m1b <- TAM::tam.mml( resp=dat ) summary(m1b) #-- M1c: gdm (in CDM) theta.k <- seq(-6,6,len=21) m1c <- CDM::gdm( dat, irtmodel="1PL",theta.k=theta.k, skillspace="normal") summary(m1c) # compare results with loglinear skillspace m1c2 <- CDM::gdm( dat, irtmodel="1PL",theta.k=theta.k, skillspace="loglinear") summary(m1c2) #-- M1d: PCM (in eRm) m1d <- eRm::PCM( dat ) summary(m1d) #-- M1e: gpcm (in ltm) m1e <- ltm::gpcm( dat, constraint="1PL", control=list(verbose=TRUE)) summary(m1e) #-- M1f: mirt (in mirt) m1f <- mirt::mirt( dat, model=1, itemtype="1PL", verbose=TRUE) summary(m1f) coef(m1f) #-- M1g: PCModel.fit (in psychotools) mod1g <- psychotools::PCModel.fit(dat) summary(mod1g) plot(mod1g) #**************** # Model 2: Generalized partial credit model #**************** #-- M2a: rm.facets (in sirt) m2a <- sirt::rm.facets( dat, est.a.item=TRUE) summary(m2a) # Note that in rm.facets the mean of item discriminations is fixed to 1 #-- M2b: tam.mml.2pl (in TAM) m2b <- TAM::tam.mml.2pl( resp=dat, irtmodel="GPCM") summary(m2b) #-- M2c: gdm (in CDM) m2c <- CDM::gdm( dat, irtmodel="2PL",theta.k=seq(-6,6,len=21), skillspace="normal", standardized.latent=TRUE) summary(m2c) #-- M2d: gpcm (in ltm) m2d <- ltm::gpcm( dat, control=list(verbose=TRUE)) summary(m2d) #-- M2e: mirt (in mirt) m2e <- mirt::mirt( dat, model=1, itemtype="GPCM", verbose=TRUE) summary(m2e) coef(m2e) #**************** # Model 3: Nonparametric item response model #**************** #-- M3a: ISOP and ADISOP model - isop.poly (in sirt) m3a <- sirt::isop.poly( dat ) summary(m3a) plot(m3a) #-- M3b: Mokken scale analysis (in mokken) # Scalability coefficients mokken::coefH(dat) # Assumption of monotonicity monotonicity.list <- mokken::check.monotonicity(dat) summary(monotonicity.list) plot(monotonicity.list) # Assumption of non-intersecting ISRFs using method restscore restscore.list <- mokken::check.restscore(dat) summary(restscore.list) plot(restscore.list) #**************** # Model 4: Graded response model #**************** #-- M4a: mirt (in mirt) m4a <- mirt::mirt( dat, model=1, itemtype="graded", verbose=TRUE) print(m4a) mirt.wrapper.coef(m4a) #---- M4b: WLSMV estimation with cfa (in lavaan) lavmodel <- "F=~ O3__O48 F ~~ 1*F " # transform lavaan syntax with lavaanify.IRT lavmodel <- TAM::lavaanify.IRT( lavmodel, items=colnames(dat) )$lavaan.syntax mod4b <- lavaan::cfa( data=as.data.frame(dat), model=lavmodel, std.lv=TRUE, ordered=colnames(dat), parameterization="theta") summary(mod4b, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE) coef(mod4b) #**************** # Model 5: Normally distributed residuals #**************** #---- M5a: cfa (in lavaan) lavmodel <- "F=~ O3__O48 F ~~ 1*F F ~ 0*1 O3__O48 ~ 1 " lavmodel <- TAM::lavaanify.IRT( lavmodel, items=colnames(dat) )$lavaan.syntax mod5a <- lavaan::cfa( data=as.data.frame(dat), model=lavmodel, std.lv=TRUE, estimator="MLR" ) summary(mod5a, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE) #---- M5b: mirt (in mirt) # create user defined function name <- 'normal' par <- c("d"=1, "a1"=0.8, "vy"=1) est <- c(TRUE, TRUE,FALSE) P.normal <- function(par,Theta,ncat){ d <- par[1] a1 <- par[2] vy <- par[3] psi <- vy - a1^2 # expected values given Theta mui <- a1*Theta[,1] + d TP <- nrow(Theta) probs <- matrix( NA, nrow=TP, ncol=ncat ) eps <- .01 for (cc in 1:ncat){ probs[,cc] <- stats::dnorm( cc, mean=mui, sd=sqrt( abs( psi + eps) ) ) } psum <- matrix( rep(rowSums( probs ),each=ncat), nrow=TP, ncol=ncat, byrow=TRUE) probs <- probs / psum return(probs) } # create item response function normal <- mirt::createItem(name, par=par, est=est, P=P.normal) customItems <- list("normal"=normal) itemtype <- rep( "normal",I) # define parameters to be estimated mod5b.pars <- mirt::mirt(dat, 1, itemtype=itemtype, customItems=customItems, pars="values") ind <- which( mod5b.pars$name=="vy") vy <- apply( dat, 2, var, na.rm=TRUE ) mod5b.pars[ ind, "value" ] <- vy ind <- which( mod5b.pars$name=="a1") mod5b.pars[ ind, "value" ] <- .5* sqrt(vy) ind <- which( mod5b.pars$name=="d") mod5b.pars[ ind, "value" ] <- colMeans( dat, na.rm=TRUE ) # estimate model mod5b <- mirt::mirt(dat, 1, itemtype=itemtype, customItems=customItems, pars=mod5b.pars, verbose=TRUE ) sirt::mirt.wrapper.coef(mod5b)$coef # some item plots par(ask=TRUE) plot(mod5b, type='trace', layout=c(1,1)) par(ask=FALSE) # Alternatively: sirt::mirt.wrapper.itemplot(mod5b) ## End(Not run)
Datasets of the book of Borg and Staufenbiel (2007) Lehrbuch Theorien and Methoden der Skalierung.
data(data.bs07a)
data(data.bs07a)
The dataset data.bs07a
contains the data
Gefechtsangst (p. 130) and contains 8 of the original 9 items.
The items are symptoms of anxiety in engagement. GF1
: starkes Herzklopfen, GF2
: flaues Gefuehl in der
Magengegend, GF3
: Schwaechegefuehl, GF4
: Uebelkeitsgefuehl,
GF5
: Erbrechen, GF6
: Schuettelfrost,
GF7
: in die Hose urinieren/einkoten, GF9
: Gefuehl der
Gelaehmtheit
The format is
'data.frame': 100 obs. of 9 variables:
$ idpatt: int 44 29 1 3 28 50 50 36 37 25 ...
$ GF1 : int 1 1 1 1 1 0 0 1 1 1 ...
$ GF2 : int 0 1 1 1 1 0 0 1 1 1 ...
$ GF3 : int 0 0 1 1 0 0 0 0 0 1 ...
$ GF4 : int 0 0 1 1 0 0 0 1 0 1 ...
$ GF5 : int 0 0 1 1 0 0 0 0 0 0 ...
$ GF6 : int 1 1 1 1 1 0 0 0 0 0 ...
$ GF7 : num 0 0 1 1 0 0 0 0 0 0 ...
$ GF9 : int 0 0 1 1 1 0 0 0 0 0 ...
MORE DATASETS
Borg, I., & Staufenbiel, T. (2007). Lehrbuch Theorie und Methoden der Skalierung. Bern: Hogrefe.
## Not run: ############################################################################# # EXAMPLE 07a: Dataset Gefechtsangst ############################################################################# data(data.bs07a) dat <- data.bs07a items <- grep( "GF", colnames(dat), value=TRUE ) #************************ # Model 1: Rasch model mod1 <- TAM::tam.mml(dat[,items] ) summary(mod1) IRT.WrightMap(mod1) #************************ # Model 2: 2PL model mod2 <- TAM::tam.mml.2pl(dat[,items] ) summary(mod2) #************************ # Model 3: Latent class analysis (LCA) with two classes tammodel <- " ANALYSIS: TYPE=LCA; NCLASSES(2) NSTARTS(5,10) LAVAAN MODEL: F=~ GF1__GF9 " mod3 <- TAM::tamaan( tammodel, dat ) summary(mod3) #************************ # Model 4: LCA with three classes tammodel <- " ANALYSIS: TYPE=LCA; NCLASSES(3) NSTARTS(5,10) LAVAAN MODEL: F=~ GF1__GF9 " mod4 <- TAM::tamaan( tammodel, dat ) summary(mod4) #************************ # Model 5: Located latent class model (LOCLCA) with two classes tammodel <- " ANALYSIS: TYPE=LOCLCA; NCLASSES(2) NSTARTS(5,10) LAVAAN MODEL: F=~ GF1__GF9 " mod5 <- TAM::tamaan( tammodel, dat ) summary(mod5) #************************ # Model 6: Located latent class model with three classes tammodel <- " ANALYSIS: TYPE=LOCLCA; NCLASSES(3) NSTARTS(5,10) LAVAAN MODEL: F=~ GF1__GF9 " mod6 <- TAM::tamaan( tammodel, dat ) summary(mod6) #************************ # Model 7: Probabilistic Guttman model mod7 <- sirt::prob.guttman( dat[,items] ) summary(mod7) #-- model comparison IRT.compareModels( mod1, mod2, mod3, mod4, mod5, mod6, mod7 ) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 07a: Dataset Gefechtsangst ############################################################################# data(data.bs07a) dat <- data.bs07a items <- grep( "GF", colnames(dat), value=TRUE ) #************************ # Model 1: Rasch model mod1 <- TAM::tam.mml(dat[,items] ) summary(mod1) IRT.WrightMap(mod1) #************************ # Model 2: 2PL model mod2 <- TAM::tam.mml.2pl(dat[,items] ) summary(mod2) #************************ # Model 3: Latent class analysis (LCA) with two classes tammodel <- " ANALYSIS: TYPE=LCA; NCLASSES(2) NSTARTS(5,10) LAVAAN MODEL: F=~ GF1__GF9 " mod3 <- TAM::tamaan( tammodel, dat ) summary(mod3) #************************ # Model 4: LCA with three classes tammodel <- " ANALYSIS: TYPE=LCA; NCLASSES(3) NSTARTS(5,10) LAVAAN MODEL: F=~ GF1__GF9 " mod4 <- TAM::tamaan( tammodel, dat ) summary(mod4) #************************ # Model 5: Located latent class model (LOCLCA) with two classes tammodel <- " ANALYSIS: TYPE=LOCLCA; NCLASSES(2) NSTARTS(5,10) LAVAAN MODEL: F=~ GF1__GF9 " mod5 <- TAM::tamaan( tammodel, dat ) summary(mod5) #************************ # Model 6: Located latent class model with three classes tammodel <- " ANALYSIS: TYPE=LOCLCA; NCLASSES(3) NSTARTS(5,10) LAVAAN MODEL: F=~ GF1__GF9 " mod6 <- TAM::tamaan( tammodel, dat ) summary(mod6) #************************ # Model 7: Probabilistic Guttman model mod7 <- sirt::prob.guttman( dat[,items] ) summary(mod7) #-- model comparison IRT.compareModels( mod1, mod2, mod3, mod4, mod5, mod6, mod7 ) ## End(Not run)
Examples with datasets from Eid and Schmidt (2014), illustrations with several R packages. The examples follow closely the online material of Hosoya (2014). The datasets are completely synthetic datasets which were resimulated from the originally available data.
data(data.eid.kap4) data(data.eid.kap5) data(data.eid.kap6) data(data.eid.kap7)
data(data.eid.kap4) data(data.eid.kap5) data(data.eid.kap6) data(data.eid.kap7)
data.eid.kap4
is the dataset from Chapter 4.
'data.frame': 193 obs. of 11 variables:
$ sex : int 0 0 0 0 0 0 1 0 0 1 ...
$ Freude_1: int 1 1 1 0 1 1 1 1 1 1 ...
$ Wut_1 : int 1 1 1 0 1 1 1 1 1 1 ...
$ Angst_1 : int 1 0 0 0 1 1 1 0 1 0 ...
$ Trauer_1: int 1 1 1 0 1 1 1 1 1 1 ...
$ Ueber_1 : int 1 1 1 0 1 1 0 1 1 1 ...
$ Trauer_2: int 0 1 1 1 1 1 1 1 1 0 ...
$ Angst_2 : int 0 0 1 0 0 1 0 0 0 0 ...
$ Wut_2 : int 1 1 1 1 1 1 1 1 1 1 ...
$ Ueber_2 : int 1 0 1 0 1 1 1 0 1 1 ...
$ Freude_2: int 1 1 1 0 1 1 1 1 1 1 ...
data.eid.kap5
is the dataset from Chapter 5.
'data.frame': 499 obs. of 7 variables:
$ sex : int 0 0 0 0 1 1 1 0 0 0 ...
$ item_1: int 2 3 3 2 4 1 0 0 0 2 ...
$ item_2: int 1 1 4 1 3 3 2 1 2 3 ...
$ item_3: int 1 3 3 2 3 3 0 0 0 1 ...
$ item_4: int 2 4 3 4 3 3 3 2 0 2 ...
$ item_5: int 1 3 2 2 0 0 0 0 1 2 ...
$ item_6: int 4 3 4 3 4 3 2 1 1 3 ...
data.eid.kap6
is the dataset from Chapter 6.
'data.frame': 238 obs. of 7 variables:
$ geschl: int 1 1 0 0 0 1 0 1 1 0 ...
$ item_1: int 3 3 3 3 2 0 1 4 3 3 ...
$ item_2: int 2 2 2 2 2 0 2 3 1 3 ...
$ item_3: int 2 2 1 3 2 0 0 3 1 3 ...
$ item_4: int 2 3 3 3 3 0 2 4 3 4 ...
$ item_5: int 1 2 1 2 2 0 1 2 2 2 ...
$ item_6: int 2 2 2 2 2 0 1 2 1 2 ...
data.eid.kap7
is the dataset Emotionale Klarheit from Chapter 7.
'data.frame': 238 obs. of 9 variables:
$ geschl : int 1 0 1 1 0 1 0 1 0 1 ...
$ reakt_1: num 2.13 1.78 1.28 1.82 1.9 1.63 1.73 1.49 1.43 1.27 ...
$ reakt_2: num 1.2 1.73 0.95 1.5 1.99 1.75 1.58 1.71 1.41 0.96 ...
$ reakt_3: num 1.77 1.42 0.76 1.54 2.36 1.84 2.06 1.21 1.75 0.92 ...
$ reakt_4: num 2.18 1.28 1.39 1.82 2.09 2.15 2.1 1.13 1.71 0.78 ...
$ reakt_5: num 1.47 1.7 1.08 1.77 1.49 1.73 1.96 1.76 1.88 1.1 ...
$ reakt_6: num 1.63 0.9 0.82 1.63 1.79 1.37 1.79 1.11 1.27 1.06 ...
$ kla_th1: int 8 11 11 8 10 11 12 5 6 12 ...
$ kla_th2: int 7 11 12 8 10 11 12 5 8 11 ...
The material and original datasets can be downloaded from http://www.hogrefe.de/buecher/lehrbuecher/psychlehrbuchplus/lehrbuecher/ testtheorie-und-testkonstruktion/zusatzmaterial/.
Eid, M., & Schmidt, K. (2014). Testtheorie und Testkonstruktion. Goettingen, Hogrefe.
Hosoya, G. (2014). Einfuehrung in die Analyse testtheoretischer Modelle mit R. Available at http://www.hogrefe.de/buecher/lehrbuecher/psychlehrbuchplus/lehrbuecher/testtheorie-und-testkonstruktion/zusatzmaterial/.
## Not run: miceadds::library_install("foreign") #---- load some IRT packages in R miceadds::library_install("TAM") # package (a) miceadds::library_install("mirt") # package (b) miceadds::library_install("sirt") # package (c) miceadds::library_install("eRm") # package (d) miceadds::library_install("ltm") # package (e) miceadds::library_install("psychomix") # package (f) ############################################################################# # EXAMPLES Ch. 4: Unidimensional IRT models | dichotomous data ############################################################################# data(data.eid.kap4) data0 <- data.eid.kap4 # load data data0 <- foreign::read.spss( linkname, to.data.frame=TRUE, use.value.labels=FALSE) # extract items dat <- data0[,2:11] #********************************************************* # Model 1: Rasch model #********************************************************* #----------- #-- 1a: estimation with TAM package # estimation with tam.mml mod1a <- TAM::tam.mml(dat) summary(mod1a) # person parameters in TAM pp1a <- TAM::tam.wle(mod1a) # plot item response functions plot(mod1a,export=FALSE,ask=TRUE) # Infit and outfit in TAM itemf1a <- TAM::tam.fit(mod1a) itemf1a # model fit modf1a <- TAM::tam.modelfit(mod1a) summary(modf1a) #----------- #-- 1b: estimation with mirt package # estimation with mirt mod1b <- mirt::mirt( dat, 1, itemtype="Rasch") summary(mod1b) print(mod1b) # person parameters pp1b <- mirt::fscores(mod1b, method="WLE") # extract coefficients sirt::mirt.wrapper.coef(mod1b) # plot item response functions plot(mod1b, type="trace" ) par(mfrow=c(1,1)) # item fit itemf1b <- mirt::itemfit(mod1b) itemf1b # model fit modf1b <- mirt::M2(mod1b) modf1b #----------- #-- 1c: estimation with sirt package # estimation with rasch.mml2 mod1c <- sirt::rasch.mml2(dat) summary(mod1c) # person parameters (EAP) pp1c <- mod1c$person # plot item response functions plot(mod1c, ask=TRUE ) # model fit modf1c <- sirt::modelfit.sirt(mod1c) summary(modf1c) #----------- #-- 1d: estimation with eRm package # estimation with RM mod1d <- eRm::RM(dat) summary(mod1d) # estimation person parameters pp1d <- eRm::person.parameter(mod1d) summary(pp1d) # plot item response functions eRm::plotICC(mod1d) # person-item map eRm::plotPImap(mod1d) # item fit itemf1d <- eRm::itemfit(pp1d) # person fit persf1d <- eRm::personfit(pp1d) #----------- #-- 1e: estimation with ltm package # estimation with rasch mod1e <- ltm::rasch(dat) summary(mod1e) # estimation person parameters pp1e <- ltm::factor.scores(mod1e) # plot item response functions plot(mod1e) # item fit itemf1e <- ltm::item.fit(mod1e) # person fit persf1e <- ltm::person.fit(mod1e) # goodness of fit with Bootstrap modf1e <- ltm::GoF.rasch(mod1e,B=20) # use more bootstrap samples modf1e #********************************************************* # Model 2: 2PL model #********************************************************* #----------- #-- 2a: estimation with TAM package # estimation mod2a <- TAM::tam.mml.2pl(dat) summary(mod2a) # model fit modf2a <- TAM::tam.modelfit(mod2a) summary(modf2a) # item response functions plot(mod2a, export=FALSE, ask=TRUE) # model comparison anova(mod1a,mod2a) #----------- #-- 2b: estimation with mirt package # estimation mod2b <- mirt::mirt(dat,1,itemtype="2PL") summary(mod2b) print(mod2b) sirt::mirt.wrapper.coef(mod2b) # model fit modf2b <- mirt::M2(mod2b) modf2b #----------- #-- 2c: estimation with sirt package I <- ncol(dat) # estimation mod2c <- sirt::rasch.mml2(dat,est.a=1:I) summary(mod2c) # model fit modf2c <- sirt::modelfit.sirt(mod2c) summary(modf2c) #----------- #-- 2e: estimation with ltm package # estimation mod2e <- ltm::ltm(dat ~ z1 ) summary(mod2e) # item response functions plot(mod2e) #********************************************************* # Model 3: Mixture Rasch model #********************************************************* #----------- #-- 3a: estimation with TAM package # avoid "_" in column names if the "__" operator is used in # the tamaan syntax dat1 <- dat colnames(dat1) <- gsub("_", "", colnames(dat1) ) # define tamaan model tammodel <- " ANALYSIS: TYPE=MIXTURE ; NCLASSES(2); NSTARTS(20,25); # 20 random starts with 25 initial iterations each LAVAAN MODEL: F=~ Freude1__Freude2 F ~~ F ITEM TYPE: ALL(Rasch); " mod3a <- TAM::tamaan( tammodel, resp=dat1 ) summary(mod3a) # extract item parameters ipars <- mod2$itempartable_MIXTURE[ 1:10, ] plot( 1:10, ipars[,3], type="o", ylim=range( ipars[,3:4] ), pch=16, xlab="Item", ylab="Item difficulty") lines( 1:10, ipars[,4], type="l", col=2, lty=2) points( 1:10, ipars[,4], col=2, pch=2) #----------- #-- 3f: estimation with psychomix package # estimation mod3f <- psychomix::raschmix( as.matrix(dat), k=2, scores="meanvar") summary(mod3f) # plot class-specific item difficulties plot(mod3f) ############################################################################# # EXAMPLES Ch. 5: Unidimensional IRT models | polytomous data ############################################################################# data(data.eid.kap5) data0 <- data.eid.kap5 # extract items dat <- data0[,2:7] #********************************************************* # Model 1: Partial credit model #********************************************************* #----------- #-- 1a: estimation with TAM package # estimation with tam.mml mod1a <- TAM::tam.mml(dat) summary(mod1a) # person parameters in TAM pp1a <- tam.wle(mod1a) # plot item response functions plot(mod1a,export=FALSE,ask=TRUE) # Infit and outfit in TAM itemf1a <- TAM::tam.fit(mod1a) itemf1a # model fit modf1a <- TAM::tam.modelfit(mod1a) summary(modf1a) #----------- #-- 1b: estimation with mirt package # estimation with tam.mml mod1b <- mirt::mirt( dat, 1, itemtype="Rasch") summary(mod1b) print(mod1b) sirt::mirt.wrapper.coef(mod1b) # plot item response functions plot(mod1b, type="trace" ) par(mfrow=c(1,1)) # item fit itemf1b <- mirt::itemfit(mod1b) itemf1b #----------- #-- 1c: estimation with sirt package # estimation with rm.facets mod1c <- sirt::rm.facets(dat) summary(mod1c) summary(mod1a) #----------- #-- 1d: estimation with eRm package # estimation mod1d <- eRm::PCM(dat) summary(mod1d) # plot item response functions eRm::plotICC(mod1d) # person-item map eRm::plotPImap(mod1d) # item fit itemf1d <- eRm::itemfit(pp1d) #----------- #-- 1e: estimation with ltm package # estimation mod1e <- ltm::gpcm(dat, constraint="1PL") summary(mod1e) # plot item response functions plot(mod1e) #********************************************************* # Model 2: Generalized partial credit model #********************************************************* #----------- #-- 2a: estimation with TAM package # estimation with tam.mml mod2a <- TAM::tam.mml.2pl(dat, irtmodel="GPCM") summary(mod2a) # model fit modf2a <- TAM::tam.modelfit(mod2a) summary(modf2a) #----------- #-- 2b: estimation with mirt package # estimation mod2b <- mirt::mirt( dat, 1, itemtype="gpcm") summary(mod2b) print(mod2b) sirt::mirt.wrapper.coef(mod2b) #----------- #-- 2c: estimation with sirt package # estimation with rm.facets mod2c <- sirt::rm.facets(dat, est.a.item=TRUE) summary(mod2c) #----------- #-- 2e: estimation with ltm package # estimation mod2e <- ltm::gpcm(dat) summary(mod2e) plot(mod2e) ## End(Not run)
## Not run: miceadds::library_install("foreign") #---- load some IRT packages in R miceadds::library_install("TAM") # package (a) miceadds::library_install("mirt") # package (b) miceadds::library_install("sirt") # package (c) miceadds::library_install("eRm") # package (d) miceadds::library_install("ltm") # package (e) miceadds::library_install("psychomix") # package (f) ############################################################################# # EXAMPLES Ch. 4: Unidimensional IRT models | dichotomous data ############################################################################# data(data.eid.kap4) data0 <- data.eid.kap4 # load data data0 <- foreign::read.spss( linkname, to.data.frame=TRUE, use.value.labels=FALSE) # extract items dat <- data0[,2:11] #********************************************************* # Model 1: Rasch model #********************************************************* #----------- #-- 1a: estimation with TAM package # estimation with tam.mml mod1a <- TAM::tam.mml(dat) summary(mod1a) # person parameters in TAM pp1a <- TAM::tam.wle(mod1a) # plot item response functions plot(mod1a,export=FALSE,ask=TRUE) # Infit and outfit in TAM itemf1a <- TAM::tam.fit(mod1a) itemf1a # model fit modf1a <- TAM::tam.modelfit(mod1a) summary(modf1a) #----------- #-- 1b: estimation with mirt package # estimation with mirt mod1b <- mirt::mirt( dat, 1, itemtype="Rasch") summary(mod1b) print(mod1b) # person parameters pp1b <- mirt::fscores(mod1b, method="WLE") # extract coefficients sirt::mirt.wrapper.coef(mod1b) # plot item response functions plot(mod1b, type="trace" ) par(mfrow=c(1,1)) # item fit itemf1b <- mirt::itemfit(mod1b) itemf1b # model fit modf1b <- mirt::M2(mod1b) modf1b #----------- #-- 1c: estimation with sirt package # estimation with rasch.mml2 mod1c <- sirt::rasch.mml2(dat) summary(mod1c) # person parameters (EAP) pp1c <- mod1c$person # plot item response functions plot(mod1c, ask=TRUE ) # model fit modf1c <- sirt::modelfit.sirt(mod1c) summary(modf1c) #----------- #-- 1d: estimation with eRm package # estimation with RM mod1d <- eRm::RM(dat) summary(mod1d) # estimation person parameters pp1d <- eRm::person.parameter(mod1d) summary(pp1d) # plot item response functions eRm::plotICC(mod1d) # person-item map eRm::plotPImap(mod1d) # item fit itemf1d <- eRm::itemfit(pp1d) # person fit persf1d <- eRm::personfit(pp1d) #----------- #-- 1e: estimation with ltm package # estimation with rasch mod1e <- ltm::rasch(dat) summary(mod1e) # estimation person parameters pp1e <- ltm::factor.scores(mod1e) # plot item response functions plot(mod1e) # item fit itemf1e <- ltm::item.fit(mod1e) # person fit persf1e <- ltm::person.fit(mod1e) # goodness of fit with Bootstrap modf1e <- ltm::GoF.rasch(mod1e,B=20) # use more bootstrap samples modf1e #********************************************************* # Model 2: 2PL model #********************************************************* #----------- #-- 2a: estimation with TAM package # estimation mod2a <- TAM::tam.mml.2pl(dat) summary(mod2a) # model fit modf2a <- TAM::tam.modelfit(mod2a) summary(modf2a) # item response functions plot(mod2a, export=FALSE, ask=TRUE) # model comparison anova(mod1a,mod2a) #----------- #-- 2b: estimation with mirt package # estimation mod2b <- mirt::mirt(dat,1,itemtype="2PL") summary(mod2b) print(mod2b) sirt::mirt.wrapper.coef(mod2b) # model fit modf2b <- mirt::M2(mod2b) modf2b #----------- #-- 2c: estimation with sirt package I <- ncol(dat) # estimation mod2c <- sirt::rasch.mml2(dat,est.a=1:I) summary(mod2c) # model fit modf2c <- sirt::modelfit.sirt(mod2c) summary(modf2c) #----------- #-- 2e: estimation with ltm package # estimation mod2e <- ltm::ltm(dat ~ z1 ) summary(mod2e) # item response functions plot(mod2e) #********************************************************* # Model 3: Mixture Rasch model #********************************************************* #----------- #-- 3a: estimation with TAM package # avoid "_" in column names if the "__" operator is used in # the tamaan syntax dat1 <- dat colnames(dat1) <- gsub("_", "", colnames(dat1) ) # define tamaan model tammodel <- " ANALYSIS: TYPE=MIXTURE ; NCLASSES(2); NSTARTS(20,25); # 20 random starts with 25 initial iterations each LAVAAN MODEL: F=~ Freude1__Freude2 F ~~ F ITEM TYPE: ALL(Rasch); " mod3a <- TAM::tamaan( tammodel, resp=dat1 ) summary(mod3a) # extract item parameters ipars <- mod2$itempartable_MIXTURE[ 1:10, ] plot( 1:10, ipars[,3], type="o", ylim=range( ipars[,3:4] ), pch=16, xlab="Item", ylab="Item difficulty") lines( 1:10, ipars[,4], type="l", col=2, lty=2) points( 1:10, ipars[,4], col=2, pch=2) #----------- #-- 3f: estimation with psychomix package # estimation mod3f <- psychomix::raschmix( as.matrix(dat), k=2, scores="meanvar") summary(mod3f) # plot class-specific item difficulties plot(mod3f) ############################################################################# # EXAMPLES Ch. 5: Unidimensional IRT models | polytomous data ############################################################################# data(data.eid.kap5) data0 <- data.eid.kap5 # extract items dat <- data0[,2:7] #********************************************************* # Model 1: Partial credit model #********************************************************* #----------- #-- 1a: estimation with TAM package # estimation with tam.mml mod1a <- TAM::tam.mml(dat) summary(mod1a) # person parameters in TAM pp1a <- tam.wle(mod1a) # plot item response functions plot(mod1a,export=FALSE,ask=TRUE) # Infit and outfit in TAM itemf1a <- TAM::tam.fit(mod1a) itemf1a # model fit modf1a <- TAM::tam.modelfit(mod1a) summary(modf1a) #----------- #-- 1b: estimation with mirt package # estimation with tam.mml mod1b <- mirt::mirt( dat, 1, itemtype="Rasch") summary(mod1b) print(mod1b) sirt::mirt.wrapper.coef(mod1b) # plot item response functions plot(mod1b, type="trace" ) par(mfrow=c(1,1)) # item fit itemf1b <- mirt::itemfit(mod1b) itemf1b #----------- #-- 1c: estimation with sirt package # estimation with rm.facets mod1c <- sirt::rm.facets(dat) summary(mod1c) summary(mod1a) #----------- #-- 1d: estimation with eRm package # estimation mod1d <- eRm::PCM(dat) summary(mod1d) # plot item response functions eRm::plotICC(mod1d) # person-item map eRm::plotPImap(mod1d) # item fit itemf1d <- eRm::itemfit(pp1d) #----------- #-- 1e: estimation with ltm package # estimation mod1e <- ltm::gpcm(dat, constraint="1PL") summary(mod1e) # plot item response functions plot(mod1e) #********************************************************* # Model 2: Generalized partial credit model #********************************************************* #----------- #-- 2a: estimation with TAM package # estimation with tam.mml mod2a <- TAM::tam.mml.2pl(dat, irtmodel="GPCM") summary(mod2a) # model fit modf2a <- TAM::tam.modelfit(mod2a) summary(modf2a) #----------- #-- 2b: estimation with mirt package # estimation mod2b <- mirt::mirt( dat, 1, itemtype="gpcm") summary(mod2b) print(mod2b) sirt::mirt.wrapper.coef(mod2b) #----------- #-- 2c: estimation with sirt package # estimation with rm.facets mod2c <- sirt::rm.facets(dat, est.a.item=TRUE) summary(mod2c) #----------- #-- 2e: estimation with ltm package # estimation mod2e <- ltm::gpcm(dat) summary(mod2e) plot(mod2e) ## End(Not run)
This dataset contains item loadings and intercepts
for 26 countries for the European Social Survey (ESS 2005;
see Asparouhov & Muthen, 2014).
data(data.ess2005)
data(data.ess2005)
The format of the dataset is:
List of 2
$ lambda: num [1:26, 1:4] 0.688 0.721 0.72 0.687 0.625 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:4] "ipfrule" "ipmodst" "ipbhprp" "imptrad"
$ nu : num [1:26, 1:4] 3.26 2.52 3.41 2.84 2.79 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:4] "ipfrule" "ipmodst" "ipbhprp" "imptrad"
Asparouhov, T., & Muthen, B. (2014). Multiple-group factor analysis alignment. Structural Equation Modeling, 21(4), 1-14. doi:10.1080/10705511.2014.919210
Some datasets of C-tests are provided. The dataset data.g308
was used in Schroeders, Robitzsch and Schipolowski (2014).
data(data.g308)
data(data.g308)
The dataset data.g308
is a C-test containing 20 items and is
used in Schroeders, Robitzsch and Schipolowski (2014) and is of the
following format
'data.frame': 747 obs. of 21 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ G30801: int 1 1 1 1 1 0 0 1 1 1 ...
$ G30802: int 1 1 1 1 1 1 1 1 1 1 ...
$ G30803: int 1 1 1 1 1 1 1 1 1 1 ...
$ G30804: int 1 1 1 1 1 0 1 1 1 1 ...
[...]
$ G30817: int 0 0 0 0 1 0 1 0 1 0 ...
$ G30818: int 0 0 1 0 0 0 0 1 1 0 ...
$ G30819: int 1 1 1 1 0 0 1 1 1 0 ...
$ G30820: int 1 1 1 1 0 0 0 1 1 0 ...
Schroeders, U., Robitzsch, A., & Schipolowski, S. (2014). A comparison of different psychometric approaches to modeling testlet structures: An example with C-tests. Journal of Educational Measurement, 51(4), 400-418.
## Not run: ############################################################################# # EXAMPLE 1: Dataset G308 from Schroeders et al. (2014) ############################################################################# data(data.g308) dat <- data.g308 library(TAM) library(sirt) # define testlets testlet <- c(1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6) #**************************************** #*** Model 1: Rasch model mod1 <- TAM::tam.mml(resp=dat, control=list(maxiter=300, snodes=1500)) summary(mod1) #**************************************** #*** Model 2: Rasch testlet model # testlets are dimensions, assign items to Q-matrix TT <- length(unique(testlet)) Q <- matrix(0, nrow=ncol(dat), ncol=TT + 1) Q[,1] <- 1 # First dimension constitutes g-factor for (tt in 1:TT){Q[testlet==tt, tt+1] <- 1} # In a testlet model, all dimensions are uncorrelated among # each other, that is, all pairwise correlations are set to 0, # which can be accomplished with the "variance.fixed" command variance.fixed <- cbind(t( utils::combn(TT+1,2)), 0) mod2 <- TAM::tam.mml(resp=dat, Q=Q, variance.fixed=variance.fixed, control=list(snodes=1500, maxiter=300)) summary(mod2) #**************************************** #*** Model 3: Partial credit model scores <- list() testlet.names <- NULL dat.pcm <- NULL for (tt in 1:max(testlet) ){ scores[[tt]] <- rowSums (dat[, testlet==tt, drop=FALSE]) dat.pcm <- c(dat.pcm, list(c(scores[[tt]]))) testlet.names <- append(testlet.names, paste0("testlet",tt) ) } dat.pcm <- as.data.frame(dat.pcm) colnames(dat.pcm) <- testlet.names mod3 <- TAM::tam.mml(resp=dat.pcm, control=list(snodes=1500, maxiter=300) ) summary(mod3) #**************************************** #*** Model 4: Copula model mod4 <- sirt::rasch.copula2 (dat=dat, itemcluster=testlet) summary(mod4) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Dataset G308 from Schroeders et al. (2014) ############################################################################# data(data.g308) dat <- data.g308 library(TAM) library(sirt) # define testlets testlet <- c(1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6) #**************************************** #*** Model 1: Rasch model mod1 <- TAM::tam.mml(resp=dat, control=list(maxiter=300, snodes=1500)) summary(mod1) #**************************************** #*** Model 2: Rasch testlet model # testlets are dimensions, assign items to Q-matrix TT <- length(unique(testlet)) Q <- matrix(0, nrow=ncol(dat), ncol=TT + 1) Q[,1] <- 1 # First dimension constitutes g-factor for (tt in 1:TT){Q[testlet==tt, tt+1] <- 1} # In a testlet model, all dimensions are uncorrelated among # each other, that is, all pairwise correlations are set to 0, # which can be accomplished with the "variance.fixed" command variance.fixed <- cbind(t( utils::combn(TT+1,2)), 0) mod2 <- TAM::tam.mml(resp=dat, Q=Q, variance.fixed=variance.fixed, control=list(snodes=1500, maxiter=300)) summary(mod2) #**************************************** #*** Model 3: Partial credit model scores <- list() testlet.names <- NULL dat.pcm <- NULL for (tt in 1:max(testlet) ){ scores[[tt]] <- rowSums (dat[, testlet==tt, drop=FALSE]) dat.pcm <- c(dat.pcm, list(c(scores[[tt]]))) testlet.names <- append(testlet.names, paste0("testlet",tt) ) } dat.pcm <- as.data.frame(dat.pcm) colnames(dat.pcm) <- testlet.names mod3 <- TAM::tam.mml(resp=dat.pcm, control=list(snodes=1500, maxiter=300) ) summary(mod3) #**************************************** #*** Model 4: Copula model mod4 <- sirt::rasch.copula2 (dat=dat, itemcluster=testlet) summary(mod4) ## End(Not run)
Dataset for invariance testing with 4 groups.
data(data.inv4gr)
data(data.inv4gr)
A data frame with 4000 observations on the following 12 variables. The first variable is a group identifier, the other variables are items.
group
A group identifier
I01
a numeric vector
I02
a numeric vector
I03
a numeric vector
I04
a numeric vector
I05
a numeric vector
I06
a numeric vector
I07
a numeric vector
I08
a numeric vector
I09
a numeric vector
I10
a numeric vector
I11
a numeric vector
Simulated dataset
Dataset 'Liking for science' published by Wright and Masters (1982).
data(data.liking.science)
data(data.liking.science)
The format is:
num [1:75, 1:24] 1 2 2 1 1 1 2 2 0 2 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:24] "LS01" "LS02" "LS03" "LS04" ...
Wright, B. D., & Masters, G. N. (1982). Rating scale analysis. Chicago: MESA Press.
This dataset contains 200 observations on
12 items. 6 items (I1T1
, ...,I6T1
)
were administered at measurement occasion T1
and 6 items at T2 (I3T2
, ..., I8T2
). There were 4 anchor items
which were presented at both time points.
The first column in the dataset contains the student identifier.
data(data.long)
data(data.long)
The format of the dataset is
'data.frame': 200 obs. of 13 variables:
$ idstud: int 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 ...
$ I1T1 : int 1 1 1 1 1 1 1 0 1 1 ...
$ I2T1 : int 0 0 1 1 1 1 0 1 1 1 ...
$ I3T1 : int 1 0 1 1 0 1 0 0 0 0 ...
$ I4T1 : int 1 0 0 1 0 0 0 0 1 1 ...
$ I5T1 : int 1 0 0 1 0 0 0 0 1 0 ...
$ I6T1 : int 1 0 0 0 0 0 0 0 0 0 ...
$ I3T2 : int 1 1 0 0 1 1 1 1 0 1 ...
$ I4T2 : int 1 1 0 0 1 1 0 0 0 1 ...
$ I5T2 : int 1 0 1 1 1 1 1 0 1 1 ...
$ I6T2 : int 1 1 0 0 0 0 0 0 0 1 ...
$ I7T2 : int 1 0 0 0 0 0 0 0 0 1 ...
$ I8T2 : int 0 0 0 0 1 0 0 0 0 0 ...
## Not run: data(data.long) dat <- data.long dat <- dat[,-1] I <- ncol(dat) #************************************************* # Model 1: 2-dimensional Rasch model #************************************************* # define Q-matrix Q <- matrix(0,I,2) Q[1:6,1] <- 1 Q[7:12,2] <- 1 rownames(Q) <- colnames(dat) colnames(Q) <- c("T1","T2") # vector with same items itemnr <- as.numeric( substring( colnames(dat),2,2) ) # fix mean at T2 to zero mu.fixed <- cbind( 2,0 ) #--- M1a: rasch.mml2 (in sirt) mod1a <- sirt::rasch.mml2(dat, Q=Q, est.b=itemnr, mu.fixed=mu.fixed) summary(mod1a) #--- M1b: smirt (in sirt) mod1b <- sirt::smirt(dat, Qmatrix=Q, irtmodel="comp", est.b=itemnr, mu.fixed=mu.fixed ) #--- M1c: tam.mml (in TAM) # assume equal item difficulty of I3T1 and I3T2, I4T1 and I4T2, ... # create draft design matrix and modify it A <- TAM::designMatrices(resp=dat)$A dimnames(A)[[1]] <- colnames(dat) ## > str(A) ## num [1:12, 1:2, 1:12] 0 0 0 0 0 0 0 0 0 0 ... ## - attr(*, "dimnames")=List of 3 ## ..$ : chr [1:12] "Item01" "Item02" "Item03" "Item04" ... ## ..$ : chr [1:2] "Category0" "Category1" ## ..$ : chr [1:12] "I1T1" "I2T1" "I3T1" "I4T1" ... A1 <- A[,, c(1:6, 11:12 ) ] A1[7,2,3] <- -1 # difficulty(I3T1)=difficulty(I3T2) A1[8,2,4] <- -1 # I4T1=I4T2 A1[9,2,5] <- A1[10,2,6] <- -1 dimnames(A1)[[3]] <- substring( dimnames(A1)[[3]],1,2) ## > A1[,2,] ## I1 I2 I3 I4 I5 I6 I7 I8 ## I1T1 -1 0 0 0 0 0 0 0 ## I2T1 0 -1 0 0 0 0 0 0 ## I3T1 0 0 -1 0 0 0 0 0 ## I4T1 0 0 0 -1 0 0 0 0 ## I5T1 0 0 0 0 -1 0 0 0 ## I6T1 0 0 0 0 0 -1 0 0 ## I3T2 0 0 -1 0 0 0 0 0 ## I4T2 0 0 0 -1 0 0 0 0 ## I5T2 0 0 0 0 -1 0 0 0 ## I6T2 0 0 0 0 0 -1 0 0 ## I7T2 0 0 0 0 0 0 -1 0 ## I8T2 0 0 0 0 0 0 0 -1 # estimate model # set intercept of second dimension (T2) to zero beta.fixed <- cbind( 1, 2, 0 ) mod1c <- TAM::tam.mml( resp=dat, Q=Q, A=A1, beta.fixed=beta.fixed) summary(mod1c) #************************************************* # Model 2: 2-dimensional 2PL model #************************************************* # set variance at T2 to 1 variance.fixed <- cbind(2,2,1) # M2a: rasch.mml2 (in sirt) mod2a <- sirt::rasch.mml2(dat, Q=Q, est.b=itemnr, est.a=itemnr, mu.fixed=mu.fixed, variance.fixed=variance.fixed, mmliter=100) summary(mod2a) #************************************************* # Model 3: Concurrent calibration by assuming invariant item parameters #************************************************* library(mirt) # use mirt for concurrent calibration data(data.long) dat <- data.long[,-1] I <- ncol(dat) # create user defined function for between item dimensionality 4PL model name <- "4PLbw" par <- c("low"=0,"upp"=1,"a"=1,"d"=0,"dimItem"=1) est <- c(TRUE, TRUE,TRUE,TRUE,FALSE) # item response function irf <- function(par,Theta,ncat){ low <- par[1] upp <- par[2] a <- par[3] d <- par[4] dimItem <- par[5] P1 <- low + ( upp - low ) * plogis( a*Theta[,dimItem] + d ) cbind(1-P1, P1) } # create item response function fourPLbetw <- mirt::createItem(name, par=par, est=est, P=irf) head(dat) # create mirt model (use variable names in mirt.model) mirtsyn <- " T1=I1T1,I2T1,I3T1,I4T1,I5T1,I6T1 T2=I3T2,I4T2,I5T2,I6T2,I7T2,I8T2 COV=T1*T2,,T2*T2 MEAN=T1 CONSTRAIN=(I3T1,I3T2,d),(I4T1,I4T2,d),(I5T1,I5T2,d),(I6T1,I6T2,d), (I3T1,I3T2,a),(I4T1,I4T2,a),(I5T1,I5T2,a),(I6T1,I6T2,a) " # create mirt model mirtmodel <- mirt::mirt.model( mirtsyn, itemnames=colnames(dat) ) # define parameters to be estimated mod3.pars <- mirt::mirt(dat, mirtmodel$model, rep( "4PLbw",I), customItems=list("4PLbw"=fourPLbetw), pars="values") # select dimensions ind <- intersect( grep("T2",mod3.pars$item), which( mod3.pars$name=="dimItem" ) ) mod3.pars[ind,"value"] <- 2 # set item parameters low and upp to non-estimated ind <- which( mod3.pars$name %in% c("low","upp") ) mod3.pars[ind,"est"] <- FALSE # estimate 2PL model mod3 <- mirt::mirt(dat, mirtmodel$model, itemtype=rep( "4PLbw",I), customItems=list("4PLbw"=fourPLbetw), pars=mod3.pars, verbose=TRUE, technical=list(NCYCLES=50) ) mirt.wrapper.coef(mod3) #****** estimate model in lavaan library(lavaan) # specify syntax lavmodel <- " #**** T1 F1=~ a1*I1T1+a2*I2T1+a3*I3T1+a4*I4T1+a5*I5T1+a6*I6T1 I1T1 | b1*t1 ; I2T1 | b2*t1 ; I3T1 | b3*t1 ; I4T1 | b4*t1 I5T1 | b5*t1 ; I6T1 | b6*t1 F1 ~~ 1*F1 #**** T2 F2=~ a3*I3T2+a4*I4T2+a5*I5T2+a6*I6T2+a7*I7T2+a8*I8T2 I3T2 | b3*t1 ; I4T2 | b4*t1 ; I5T2 | b5*t1 ; I6T2 | b6*t1 I7T2 | b7*t1 ; I8T2 | b8*t1 F2 ~~ NA*F2 F2 ~ 1 #*** covariance F1 ~~ F2 " # estimate model using theta parameterization mod3lav <- lavaan::cfa( data=dat, model=lavmodel, std.lv=TRUE, ordered=colnames(dat), parameterization="theta") summary(mod3lav, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE) #************************************************* # Model 4: Linking with items of different item slope groups #************************************************* data(data.long) dat <- data.long # dataset for T1 dat1 <- dat[, grep( "T1", colnames(dat) ) ] colnames(dat1) <- gsub("T1","", colnames(dat1) ) # dataset for T2 dat2 <- dat[, grep( "T2", colnames(dat) ) ] colnames(dat2) <- gsub("T2","", colnames(dat2) ) # 2PL model with slope groups T1 mod1 <- sirt::rasch.mml2( dat1, est.a=c( rep(1,2), rep(2,4) ) ) summary(mod1) # 2PL model with slope groups T2 mod2 <- sirt::rasch.mml2( dat2, est.a=c( rep(1,4), rep(2,2) ) ) summary(mod2) #------- Link 1: Haberman Linking # collect item parameters dfr1 <- data.frame( "study1", mod1$item$item, mod1$item$a, mod1$item$b ) dfr2 <- data.frame( "study2", mod2$item$item, mod2$item$a, mod2$item$b ) colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" ) itempars <- rbind( dfr1, dfr2 ) # Linking link1 <- sirt::linking.haberman(itempars=itempars) #------- Link 2: Invariance alignment method # create objects for invariance.alignment nu <- rbind( c(mod1$item$thresh,NA,NA), c(NA,NA,mod2$item$thresh) ) lambda <- rbind( c(mod1$item$a,NA,NA), c(NA,NA,mod2$item$a ) ) colnames(lambda) <- colnames(nu) <- paste0("I",1:8) rownames(lambda) <- rownames(nu) <- c("T1", "T2") # Linking link2a <- sirt::invariance.alignment( lambda, nu ) summary(link2a) ## End(Not run)
## Not run: data(data.long) dat <- data.long dat <- dat[,-1] I <- ncol(dat) #************************************************* # Model 1: 2-dimensional Rasch model #************************************************* # define Q-matrix Q <- matrix(0,I,2) Q[1:6,1] <- 1 Q[7:12,2] <- 1 rownames(Q) <- colnames(dat) colnames(Q) <- c("T1","T2") # vector with same items itemnr <- as.numeric( substring( colnames(dat),2,2) ) # fix mean at T2 to zero mu.fixed <- cbind( 2,0 ) #--- M1a: rasch.mml2 (in sirt) mod1a <- sirt::rasch.mml2(dat, Q=Q, est.b=itemnr, mu.fixed=mu.fixed) summary(mod1a) #--- M1b: smirt (in sirt) mod1b <- sirt::smirt(dat, Qmatrix=Q, irtmodel="comp", est.b=itemnr, mu.fixed=mu.fixed ) #--- M1c: tam.mml (in TAM) # assume equal item difficulty of I3T1 and I3T2, I4T1 and I4T2, ... # create draft design matrix and modify it A <- TAM::designMatrices(resp=dat)$A dimnames(A)[[1]] <- colnames(dat) ## > str(A) ## num [1:12, 1:2, 1:12] 0 0 0 0 0 0 0 0 0 0 ... ## - attr(*, "dimnames")=List of 3 ## ..$ : chr [1:12] "Item01" "Item02" "Item03" "Item04" ... ## ..$ : chr [1:2] "Category0" "Category1" ## ..$ : chr [1:12] "I1T1" "I2T1" "I3T1" "I4T1" ... A1 <- A[,, c(1:6, 11:12 ) ] A1[7,2,3] <- -1 # difficulty(I3T1)=difficulty(I3T2) A1[8,2,4] <- -1 # I4T1=I4T2 A1[9,2,5] <- A1[10,2,6] <- -1 dimnames(A1)[[3]] <- substring( dimnames(A1)[[3]],1,2) ## > A1[,2,] ## I1 I2 I3 I4 I5 I6 I7 I8 ## I1T1 -1 0 0 0 0 0 0 0 ## I2T1 0 -1 0 0 0 0 0 0 ## I3T1 0 0 -1 0 0 0 0 0 ## I4T1 0 0 0 -1 0 0 0 0 ## I5T1 0 0 0 0 -1 0 0 0 ## I6T1 0 0 0 0 0 -1 0 0 ## I3T2 0 0 -1 0 0 0 0 0 ## I4T2 0 0 0 -1 0 0 0 0 ## I5T2 0 0 0 0 -1 0 0 0 ## I6T2 0 0 0 0 0 -1 0 0 ## I7T2 0 0 0 0 0 0 -1 0 ## I8T2 0 0 0 0 0 0 0 -1 # estimate model # set intercept of second dimension (T2) to zero beta.fixed <- cbind( 1, 2, 0 ) mod1c <- TAM::tam.mml( resp=dat, Q=Q, A=A1, beta.fixed=beta.fixed) summary(mod1c) #************************************************* # Model 2: 2-dimensional 2PL model #************************************************* # set variance at T2 to 1 variance.fixed <- cbind(2,2,1) # M2a: rasch.mml2 (in sirt) mod2a <- sirt::rasch.mml2(dat, Q=Q, est.b=itemnr, est.a=itemnr, mu.fixed=mu.fixed, variance.fixed=variance.fixed, mmliter=100) summary(mod2a) #************************************************* # Model 3: Concurrent calibration by assuming invariant item parameters #************************************************* library(mirt) # use mirt for concurrent calibration data(data.long) dat <- data.long[,-1] I <- ncol(dat) # create user defined function for between item dimensionality 4PL model name <- "4PLbw" par <- c("low"=0,"upp"=1,"a"=1,"d"=0,"dimItem"=1) est <- c(TRUE, TRUE,TRUE,TRUE,FALSE) # item response function irf <- function(par,Theta,ncat){ low <- par[1] upp <- par[2] a <- par[3] d <- par[4] dimItem <- par[5] P1 <- low + ( upp - low ) * plogis( a*Theta[,dimItem] + d ) cbind(1-P1, P1) } # create item response function fourPLbetw <- mirt::createItem(name, par=par, est=est, P=irf) head(dat) # create mirt model (use variable names in mirt.model) mirtsyn <- " T1=I1T1,I2T1,I3T1,I4T1,I5T1,I6T1 T2=I3T2,I4T2,I5T2,I6T2,I7T2,I8T2 COV=T1*T2,,T2*T2 MEAN=T1 CONSTRAIN=(I3T1,I3T2,d),(I4T1,I4T2,d),(I5T1,I5T2,d),(I6T1,I6T2,d), (I3T1,I3T2,a),(I4T1,I4T2,a),(I5T1,I5T2,a),(I6T1,I6T2,a) " # create mirt model mirtmodel <- mirt::mirt.model( mirtsyn, itemnames=colnames(dat) ) # define parameters to be estimated mod3.pars <- mirt::mirt(dat, mirtmodel$model, rep( "4PLbw",I), customItems=list("4PLbw"=fourPLbetw), pars="values") # select dimensions ind <- intersect( grep("T2",mod3.pars$item), which( mod3.pars$name=="dimItem" ) ) mod3.pars[ind,"value"] <- 2 # set item parameters low and upp to non-estimated ind <- which( mod3.pars$name %in% c("low","upp") ) mod3.pars[ind,"est"] <- FALSE # estimate 2PL model mod3 <- mirt::mirt(dat, mirtmodel$model, itemtype=rep( "4PLbw",I), customItems=list("4PLbw"=fourPLbetw), pars=mod3.pars, verbose=TRUE, technical=list(NCYCLES=50) ) mirt.wrapper.coef(mod3) #****** estimate model in lavaan library(lavaan) # specify syntax lavmodel <- " #**** T1 F1=~ a1*I1T1+a2*I2T1+a3*I3T1+a4*I4T1+a5*I5T1+a6*I6T1 I1T1 | b1*t1 ; I2T1 | b2*t1 ; I3T1 | b3*t1 ; I4T1 | b4*t1 I5T1 | b5*t1 ; I6T1 | b6*t1 F1 ~~ 1*F1 #**** T2 F2=~ a3*I3T2+a4*I4T2+a5*I5T2+a6*I6T2+a7*I7T2+a8*I8T2 I3T2 | b3*t1 ; I4T2 | b4*t1 ; I5T2 | b5*t1 ; I6T2 | b6*t1 I7T2 | b7*t1 ; I8T2 | b8*t1 F2 ~~ NA*F2 F2 ~ 1 #*** covariance F1 ~~ F2 " # estimate model using theta parameterization mod3lav <- lavaan::cfa( data=dat, model=lavmodel, std.lv=TRUE, ordered=colnames(dat), parameterization="theta") summary(mod3lav, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE) #************************************************* # Model 4: Linking with items of different item slope groups #************************************************* data(data.long) dat <- data.long # dataset for T1 dat1 <- dat[, grep( "T1", colnames(dat) ) ] colnames(dat1) <- gsub("T1","", colnames(dat1) ) # dataset for T2 dat2 <- dat[, grep( "T2", colnames(dat) ) ] colnames(dat2) <- gsub("T2","", colnames(dat2) ) # 2PL model with slope groups T1 mod1 <- sirt::rasch.mml2( dat1, est.a=c( rep(1,2), rep(2,4) ) ) summary(mod1) # 2PL model with slope groups T2 mod2 <- sirt::rasch.mml2( dat2, est.a=c( rep(1,4), rep(2,2) ) ) summary(mod2) #------- Link 1: Haberman Linking # collect item parameters dfr1 <- data.frame( "study1", mod1$item$item, mod1$item$a, mod1$item$b ) dfr2 <- data.frame( "study2", mod2$item$item, mod2$item$a, mod2$item$b ) colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" ) itempars <- rbind( dfr1, dfr2 ) # Linking link1 <- sirt::linking.haberman(itempars=itempars) #------- Link 2: Invariance alignment method # create objects for invariance.alignment nu <- rbind( c(mod1$item$thresh,NA,NA), c(NA,NA,mod2$item$thresh) ) lambda <- rbind( c(mod1$item$a,NA,NA), c(NA,NA,mod2$item$a ) ) colnames(lambda) <- colnames(nu) <- paste0("I",1:8) rownames(lambda) <- rownames(nu) <- c("T1", "T2") # Linking link2a <- sirt::invariance.alignment( lambda, nu ) summary(link2a) ## End(Not run)
Datasets for local structural equation models or moderated factor analysis.
data(data.lsem01) data(data.lsem02) data(data.lsem03)
data(data.lsem01) data(data.lsem02) data(data.lsem03)
The dataset data.lsem01
has the following structure
'data.frame': 989 obs. of 6 variables:
$ age: num 4 4 4 4 4 4 4 4 4 4 ...
$ v1 : num 1.83 2.38 1.85 4.53 -0.04 4.35 2.38 1.83 4.81 2.82 ...
$ v2 : num 6.06 9.08 7.41 8.24 6.18 7.4 6.54 4.28 6.43 7.6 ...
$ v3 : num 1.42 3.05 6.42 -1.05 -1.79 4.06 -0.17 -2.64 0.84 6.42 ...
$ v4 : num 3.84 4.24 3.24 3.36 2.31 6.07 4 5.93 4.4 3.49 ...
$ v5 : num 7.84 7.51 6.62 8.02 7.12 7.99 7.25 7.62 7.66 7.03 ...
The dataset data.lsem02
is a slightly perturbed dataset of the
Woodcock-Johnson III (WJ-III) Tests of Cognitive Abilities used in Hildebrandt et al.
(2016) and has the following structure
'data.frame': 1129 obs. of 8 variables:
$ age : int 4 4 4 4 4 4 4 4 4 4 ...
$ gcw : num -3.53 -3.73 -3.77 -3.84 -4.26 -4.6 -3.66 -4.31 -4.46 -3.64 ...
$ gvw : num -1.98 -1.35 -1.66 -3.24 -1.17 -2.78 -2.97 -3.88 -3.22 -0.68 ...
$ gfw : num -2.49 -2.41 -4.48 -4.17 -4.43 -5.06 -3.94 -3.66 -3.7 -2.74 ...
$ gsw : num -4.85 -5.05 -5.66 -4.3 -5.23 -5.63 -4.91 -5.75 -6.29 -5.47 ...
$ gsmw: num -2.99 -1.13 -4.21 -3.59 -3.79 -4.77 -2.98 -4.48 -2.99 -3.83 ...
$ glrw: num -2.49 -2.91 -3.45 -2.91 -3.31 -3.78 -3.5 -3.96 -2.97 -3.14 ...
$ gaw : num -3.22 -3.77 -3.54 -3.6 -3.22 -3.5 -1.27 -2.08 -2.23 -3.25 ...
The dataset data.lsem03
is a synthetic dataset of the SON-R application
used in Hueluer et al. (2011) has the following structure
'data.frame': 1027 obs. of 10 variables:
$ id : num 10001 10002 10003 10004 10005 ...
$ female : int 0 0 0 0 0 0 0 0 0 0 ...
$ age : num 2.62 2.65 2.66 2.67 2.68 2.68 2.68 2.69 2.71 2.71 ...
$ age_group: int 1 1 1 1 1 1 1 1 1 1 ...
$ p1 : num -1.98 -1.98 -1.67 -2.29 -1.67 -1.98 -2.29 -1.98 -2.6 -1.67 ...
$ p2 : num -1.51 -1.51 -0.55 -1.84 -1.51 -1.84 -2.16 -1.84 -2.48 -1.84 ...
$ p3 : num -1.4 -2.31 -1.1 -2 -1.4 -1.7 -2.31 -1.4 -2.31 -0.79 ...
$ r1 : num -1.46 -1.14 -0.49 -2.11 -1.46 -1.46 -2.11 -1.46 -2.75 -1.78 ...
$ r2 : num -2.67 -1.74 0.74 -1.74 -0.81 -1.43 -2.05 -1.43 -1.74 -1.12 ...
$ r3 : num -1.64 -1.64 -1.64 -0.9 -1.27 -3.11 -2.74 -1.64 -2.37 -1.27 ...
The subtests Mosaics (p1
), Puzzles (p1
), and Patterns (p3
)
constitute the performance subscale;
the subtests Categories (r1
), Analogies (r2
), and
Situations (r3
) constitute the reasoning subscale.
Hildebrandt, A., Luedtke, O., Robitzsch, A., Sommer, C., & Wilhelm, O. (2016). Exploring factor model parameters across continuous variables with local structural equation models. Multivariate Behavioral Research, 51(2-3), 257-278. doi:10.1080/00273171.2016.1142856
Hueluer, G., Wilhelm, O., & Robitzsch, A. (2011). Intelligence differentiation in early childhood. Journal of Individual Differences, 32(3), 170-179. doi:10.1027/1614-0001/a000049
This is an example dataset involving Mathematics items for German fourth graders. Items are classified into several domains and subdomains (see Section Format). The dataset contains 664 students on 30 items.
data(data.math)
data(data.math)
The dataset is a list. The list element data
contains the dataset with the demographic variables
student ID (idstud
) and a dummy variable
for female students (female
). The remaining
variables (starting with M
in the name) are
the mathematics items.
The item metadata are included in the list element
item
which contains item name (item
) and the
testlet label (testlet
). An item not included
in a testlet is indicated by NA
.
Each item is allocated to one and only competence domain (domain
).
The format is:
List of 2
$ data:'data.frame':
..$ idstud: int [1:664] 1001 1002 1003 ...
..$ female: int [1:664] 1 1 0 0 1 1 1 0 0 1 ...
..$ MA1 : int [1:664] 1 1 1 0 0 1 1 1 1 1 ...
..$ MA2 : int [1:664] 1 1 1 1 1 0 0 0 0 1 ...
..$ MA3 : int [1:664] 1 1 0 0 0 0 0 1 0 0 ...
..$ MA4 : int [1:664] 0 1 1 1 0 0 1 0 0 0 ...
..$ MB1 : int [1:664] 0 1 0 1 0 0 0 0 0 1 ...
..$ MB2 : int [1:664] 1 1 1 1 0 1 0 1 0 0 ...
..$ MB3 : int [1:664] 1 1 1 1 0 0 0 1 0 1 ...
[...]
..$ MH3 : int [1:664] 1 1 0 1 0 0 1 0 1 0 ...
..$ MH4 : int [1:664] 0 1 1 1 0 0 0 0 1 0 ...
..$ MI1 : int [1:664] 1 1 0 1 0 1 0 0 1 0 ...
..$ MI2 : int [1:664] 1 1 0 0 0 1 1 0 1 1 ...
..$ MI3 : int [1:664] 0 1 0 1 0 0 0 0 0 0 ...
$ item:'data.frame':
..$ item : Factor w/ 30 levels "MA1","MA2","MA3",..: 1 2 3 4 5 ...
..$ testlet : Factor w/ 9 levels "","MA","MB","MC",..: 2 2 2 2 3 3 ...
..$ domain : Factor w/ 3 levels "arithmetic","geometry",..: 1 1 1 ...
..$ subdomain: Factor w/ 9 levels "","addition",..: 2 2 2 2 7 7 ...
Some datasets from McDonald (1999), especially related to using NOHARM for item response modeling. See Examples below.
data(data.mcdonald.act15) data(data.mcdonald.LSAT6) data(data.mcdonald.rape)
data(data.mcdonald.act15) data(data.mcdonald.LSAT6) data(data.mcdonald.rape)
The format of the ACT15 data data.mcdonald.act15
is:
num [1:15, 1:15] 0.49 0.44 0.38 0.3 0.29 0.13 0.23 0.16 0.16 0.23 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:15] "A01" "A02" "A03" "A04" ...
..$ : chr [1:15] "A01" "A02" "A03" "A04" ...
The dataset (which is the product-moment covariance matrix)
is obtained from Ch. 12 in McDonald (1999).
The format of the LSAT6 data data.mcdonald.LSAT6
is:
'data.frame': 1004 obs. of 5 variables:
$ L1: int 0 0 0 0 0 0 0 0 0 0 ...
$ L2: int 0 0 0 0 0 0 0 0 0 0 ...
$ L3: int 0 0 0 0 0 0 0 0 0 0 ...
$ L4: int 0 0 0 0 0 0 0 0 0 1 ...
$ L5: int 0 0 0 1 1 1 1 1 1 0 ...
The dataset is obtained from Ch. 6 in McDonald (1999).
The format of the rape myth scale data data.mcdonald.rape
is
List of 2
$ lambda: num [1:2, 1:19] 1.13 0.88 0.85 0.77 0.79 0.55 1.12 1.01 0.99 0.79 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:2] "male" "female"
.. ..$ : chr [1:19] "I1" "I2" "I3" "I4" ...
$ nu : num [1:2, 1:19] 2.88 1.87 3.12 2.32 2.13 1.43 3.79 2.6 3.01 2.11 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:2] "male" "female"
.. ..$ : chr [1:19] "I1" "I2" "I3" "I4" ...
The dataset is obtained from Ch. 15 in McDonald (1999).
Tables in McDonald (1999)
McDonald, R. P. (1999). Test theory: A unified treatment. Psychology Press.
## Not run: ############################################################################# # EXAMPLE 1: LSAT6 data | Chapter 12 McDonald (1999) ############################################################################# data(data.mcdonald.act15) #************ # Model 1: 2-parameter normal ogive model #++ NOHARM estimation I <- ncol(dat) # covariance structure P.pattern <- matrix( 0, ncol=1, nrow=1 ) P.init <- 1+0*P.pattern # fix all entries in the loading matrix to 1 F.pattern <- matrix( 1, nrow=I, ncol=1 ) F.init <- F.pattern # estimate model mod1a <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="LSAT6__1dim_2pno", noharm.path=noharm.path, dec="," ) summary(mod1a, logfile="LSAT6__1dim_2pno__SUMMARY") #++ pairwise marginal maximum likelihood estimation using the probit link mod1b <- sirt::rasch.pml3( dat, est.a=1:I, est.sigma=FALSE) #************ # Model 2: 1-parameter normal ogive model #++ NOHARM estimation # covariance structure P.pattern <- matrix( 0, ncol=1, nrow=1 ) P.init <- 1+0*P.pattern # fix all entries in the loading matrix to 1 F.pattern <- matrix( 2, nrow=I, ncol=1 ) F.init <- 1+0*F.pattern # estimate model mod2a <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="LSAT6__1dim_1pno", noharm.path=noharm.path, dec="," ) summary(mod2a, logfile="LSAT6__1dim_1pno__SUMMARY") # PMML estimation mod2b <- sirt::rasch.pml3( dat, est.a=rep(1,I), est.sigma=FALSE ) summary(mod2b) #************ # Model 3: 3-parameter normal ogive model with fixed guessing parameters #++ NOHARM estimation # covariance structure P.pattern <- matrix( 0, ncol=1, nrow=1 ) P.init <- 1+0*P.pattern # fix all entries in the loading matrix to 1 F.pattern <- matrix( 1, nrow=I, ncol=1 ) F.init <- 1+0*F.pattern # estimate model mod <- sirt::R2noharm( dat=dat, model.type="CFA", guesses=rep(.2,I), F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="LSAT6__1dim_3pno", noharm.path=noharm.path, dec="," ) summary(mod, logfile="LSAT6__1dim_3pno__SUMMARY") #++ logistic link function employed in smirt function mod1d <- sirt::smirt(dat, Qmatrix=F.pattern, est.a=matrix(1:I,I,1), c.init=rep(.2,I)) summary(mod1d) ############################################################################# # EXAMPLE 2: ACT15 data | Chapter 6 McDonald (1999) ############################################################################# data(data.mcdonald.act15) pm <- data.mcdonald.act15 #************ # Model 1: 2-dimensional exploratory factor analysis mod1 <- sirt::R2noharm( pm=pm, n=1000, model.type="EFA", dimensions=2, writename="ACT15__efa_2dim", noharm.path=noharm.path, dec="," ) summary(mod1) #************ # Model 2: 2-dimensional independent clusters basis solution P.pattern <- matrix(1,2,2) diag(P.pattern) <- 0 P.init <- 1+0*P.pattern F.pattern <- matrix(0,15,2) F.pattern[ c(1:5,11:15),1] <- 1 F.pattern[ c(6:10,11:15),2] <- 1 F.init <- F.pattern # estimate model mod2 <- sirt::R2noharm( pm=pm, n=1000, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern,P.init=P.init, writename="ACT15_indep_clusters", noharm.path=noharm.path, dec="," ) summary(mod2) #************ # Model 3: Hierarchical model P.pattern <- matrix(0,3,3) P.init <- P.pattern diag(P.init) <- 1 F.pattern <- matrix(0,15,3) F.pattern[,1] <- 1 # all items load on g factor F.pattern[ c(1:5,11:15),2] <- 1 # Items 1-5 and 11-15 load on first nested factor F.pattern[ c(6:10,11:15),3] <- 1 # Items 6-10 and 11-15 load on second nested factor F.init <- F.pattern # estimate model mod3 <- sirt::R2noharm( pm=pm, n=1000, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ACT15_hierarch_model", noharm.path=noharm.path, dec="," ) summary(mod3) ############################################################################# # EXAMPLE 3: Rape myth scale | Chapter 15 McDonald (1999) ############################################################################# data(data.mcdonald.rape) lambda <- data.mcdonald.rape$lambda nu <- data.mcdonald.rape$nu # obtain multiplier for factor loadings (Formula 15.5) k <- sum( lambda[1,] * lambda[2,] ) / sum( lambda[2,]^2 ) ## [1] 1.263243 # additive parameter (Formula 15.7) c <- sum( lambda[2,]*(nu[1,]-nu[2,]) ) / sum( lambda[2,]^2 ) ## [1] 1.247697 # SD in the female group 1/k ## [1] 0.7916132 # M in the female group - c/k ## [1] -0.9876932 # Burt's coefficient of factorial congruence (Formula 15.10a) sum( lambda[1,] * lambda[2,] ) / sqrt( sum( lambda[1,]^2 ) * sum( lambda[2,]^2 ) ) ## [1] 0.9727831 # congruence for mean parameters sum( (nu[1,]-nu[2,]) * lambda[2,] ) / sqrt( sum( (nu[1,]-nu[2,])^2 ) * sum( lambda[2,]^2 ) ) ## [1] 0.968176 ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: LSAT6 data | Chapter 12 McDonald (1999) ############################################################################# data(data.mcdonald.act15) #************ # Model 1: 2-parameter normal ogive model #++ NOHARM estimation I <- ncol(dat) # covariance structure P.pattern <- matrix( 0, ncol=1, nrow=1 ) P.init <- 1+0*P.pattern # fix all entries in the loading matrix to 1 F.pattern <- matrix( 1, nrow=I, ncol=1 ) F.init <- F.pattern # estimate model mod1a <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="LSAT6__1dim_2pno", noharm.path=noharm.path, dec="," ) summary(mod1a, logfile="LSAT6__1dim_2pno__SUMMARY") #++ pairwise marginal maximum likelihood estimation using the probit link mod1b <- sirt::rasch.pml3( dat, est.a=1:I, est.sigma=FALSE) #************ # Model 2: 1-parameter normal ogive model #++ NOHARM estimation # covariance structure P.pattern <- matrix( 0, ncol=1, nrow=1 ) P.init <- 1+0*P.pattern # fix all entries in the loading matrix to 1 F.pattern <- matrix( 2, nrow=I, ncol=1 ) F.init <- 1+0*F.pattern # estimate model mod2a <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="LSAT6__1dim_1pno", noharm.path=noharm.path, dec="," ) summary(mod2a, logfile="LSAT6__1dim_1pno__SUMMARY") # PMML estimation mod2b <- sirt::rasch.pml3( dat, est.a=rep(1,I), est.sigma=FALSE ) summary(mod2b) #************ # Model 3: 3-parameter normal ogive model with fixed guessing parameters #++ NOHARM estimation # covariance structure P.pattern <- matrix( 0, ncol=1, nrow=1 ) P.init <- 1+0*P.pattern # fix all entries in the loading matrix to 1 F.pattern <- matrix( 1, nrow=I, ncol=1 ) F.init <- 1+0*F.pattern # estimate model mod <- sirt::R2noharm( dat=dat, model.type="CFA", guesses=rep(.2,I), F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="LSAT6__1dim_3pno", noharm.path=noharm.path, dec="," ) summary(mod, logfile="LSAT6__1dim_3pno__SUMMARY") #++ logistic link function employed in smirt function mod1d <- sirt::smirt(dat, Qmatrix=F.pattern, est.a=matrix(1:I,I,1), c.init=rep(.2,I)) summary(mod1d) ############################################################################# # EXAMPLE 2: ACT15 data | Chapter 6 McDonald (1999) ############################################################################# data(data.mcdonald.act15) pm <- data.mcdonald.act15 #************ # Model 1: 2-dimensional exploratory factor analysis mod1 <- sirt::R2noharm( pm=pm, n=1000, model.type="EFA", dimensions=2, writename="ACT15__efa_2dim", noharm.path=noharm.path, dec="," ) summary(mod1) #************ # Model 2: 2-dimensional independent clusters basis solution P.pattern <- matrix(1,2,2) diag(P.pattern) <- 0 P.init <- 1+0*P.pattern F.pattern <- matrix(0,15,2) F.pattern[ c(1:5,11:15),1] <- 1 F.pattern[ c(6:10,11:15),2] <- 1 F.init <- F.pattern # estimate model mod2 <- sirt::R2noharm( pm=pm, n=1000, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern,P.init=P.init, writename="ACT15_indep_clusters", noharm.path=noharm.path, dec="," ) summary(mod2) #************ # Model 3: Hierarchical model P.pattern <- matrix(0,3,3) P.init <- P.pattern diag(P.init) <- 1 F.pattern <- matrix(0,15,3) F.pattern[,1] <- 1 # all items load on g factor F.pattern[ c(1:5,11:15),2] <- 1 # Items 1-5 and 11-15 load on first nested factor F.pattern[ c(6:10,11:15),3] <- 1 # Items 6-10 and 11-15 load on second nested factor F.init <- F.pattern # estimate model mod3 <- sirt::R2noharm( pm=pm, n=1000, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ACT15_hierarch_model", noharm.path=noharm.path, dec="," ) summary(mod3) ############################################################################# # EXAMPLE 3: Rape myth scale | Chapter 15 McDonald (1999) ############################################################################# data(data.mcdonald.rape) lambda <- data.mcdonald.rape$lambda nu <- data.mcdonald.rape$nu # obtain multiplier for factor loadings (Formula 15.5) k <- sum( lambda[1,] * lambda[2,] ) / sum( lambda[2,]^2 ) ## [1] 1.263243 # additive parameter (Formula 15.7) c <- sum( lambda[2,]*(nu[1,]-nu[2,]) ) / sum( lambda[2,]^2 ) ## [1] 1.247697 # SD in the female group 1/k ## [1] 0.7916132 # M in the female group - c/k ## [1] -0.9876932 # Burt's coefficient of factorial congruence (Formula 15.10a) sum( lambda[1,] * lambda[2,] ) / sqrt( sum( lambda[1,]^2 ) * sum( lambda[2,]^2 ) ) ## [1] 0.9727831 # congruence for mean parameters sum( (nu[1,]-nu[2,]) * lambda[2,] ) / sqrt( sum( (nu[1,]-nu[2,])^2 ) * sum( lambda[2,]^2 ) ) ## [1] 0.968176 ## End(Not run)
Dataset with mixed dichotomous and polytomous item responses.
data(data.mixed1)
data(data.mixed1)
A data frame with 1000 observations on the following 37 variables.
'data.frame': 1000 obs. of 37 variables:
$ I01: num 1 1 1 1 1 1 1 0 1 1 ...
$ I02: num 1 1 1 1 1 1 1 1 0 1 ...
[...]
$ I36: num 1 1 1 1 0 0 0 0 1 1 ...
$ I37: num 0 1 1 1 0 1 0 0 1 1 ...
data(data.mixed1) apply( data.mixed1, 2, max ) ## I01 I02 I03 I04 I05 I06 I07 I08 I09 I10 I11 I12 I13 I14 I15 I16 ## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ## I17 I18 I19 I20 I21 I22 I23 I24 I25 I26 I27 I28 I29 I30 I31 I32 ## 1 1 1 1 4 4 1 1 1 1 1 1 1 1 1 1 ## I33 I34 I35 I36 I37 ## 1 1 1 1 1
data(data.mixed1) apply( data.mixed1, 2, max ) ## I01 I02 I03 I04 I05 I06 I07 I08 I09 I10 I11 I12 I13 I14 I15 I16 ## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ## I17 I18 I19 I20 I21 I22 I23 I24 I25 I26 I27 I28 I29 I30 I31 I32 ## 1 1 1 1 4 4 1 1 1 1 1 1 1 1 1 1 ## I33 I34 I35 I36 I37 ## 1 1 1 1 1
Datasets for conducting multilevel IRT analysis. This dataset is used
in the examples of the function mcmc.2pno.ml
.
data(data.ml1) data(data.ml2)
data(data.ml1) data(data.ml2)
data.ml1
A data frame with 2000 student observations in 100 classes on 17 variables.
The first variable group
contains the class identifier.
The remaining 16 variables are dichotomous test items.
'data.frame': 2000 obs. of 17 variables:
$ group: num 1001 1001 1001 1001 1001 ...
$ X1 : num 1 1 1 1 1 1 1 1 1 1 ...
$ X2 : num 1 1 1 0 1 1 1 1 1 1 ...
$ X3 : num 0 1 1 0 1 0 1 0 1 0 ...
$ X4 : num 1 1 1 0 0 1 1 1 1 1 ...
$ X5 : num 0 0 0 1 1 1 0 0 1 1 ...
[...]
$ X16 : num 0 0 1 0 0 0 1 0 0 0 ...
data.ml2
A data frame with 2000 student observations in 100 classes on 6 variables.
The first variable group
contains the class identifier.
The remaining 5 variables are polytomous test items.
'data.frame': 2000 obs. of 6 variables:
$ group: num 1 1 1 1 1 1 1 1 1 1 ...
$ X1 : num 2 3 4 3 3 3 1 4 4 3 ...
$ X2 : num 2 2 4 3 3 2 2 3 4 3 ...
$ X3 : num 3 4 5 4 2 3 3 4 4 2 ...
$ X4 : num 2 3 3 2 1 3 1 4 4 3 ...
$ X5 : num 2 3 3 2 3 3 1 3 2 2 ...
Datasets for analyses in NOHARM (see R2noharm
).
data(data.noharmExC) data(data.noharm18)
data(data.noharmExC) data(data.noharm18)
data.noharmExC
The format of this dataset is
'data.frame': 300 obs. of 8 variables:
$ C1: int 1 1 1 1 1 0 1 1 1 1 ...
$ C2: int 1 1 1 1 0 1 1 1 1 1 ...
$ C3: int 1 1 1 1 1 0 0 0 1 1 ...
$ C4: int 0 0 1 1 1 1 1 0 1 0 ...
$ C5: int 1 1 1 1 1 0 0 1 1 0 ...
$ C6: int 1 0 0 0 1 0 1 1 0 1 ...
$ C7: int 1 1 0 0 1 1 0 0 0 1 ...
$ C8: int 1 0 1 0 1 0 1 0 1 1 ...
data.noharm18
A data frame with 200 observations on the following 18 variables I01
,
..., I18
. The format is
'data.frame': 200 obs. of 18 variables:
$ I01: int 1 1 1 1 1 0 1 1 0 1 ...
$ I02: int 1 1 0 1 1 0 1 1 1 1 ...
$ I03: int 1 0 0 1 0 0 1 1 0 1 ...
$ I04: int 0 1 0 1 0 0 0 1 1 1 ...
$ I05: int 1 0 0 0 1 0 1 1 0 1 ...
$ I06: int 1 1 0 1 0 0 1 1 0 1 ...
$ I07: int 1 1 1 1 0 1 1 1 1 1 ...
$ I08: int 1 1 1 1 1 1 1 1 0 1 ...
$ I09: int 1 1 1 1 0 0 1 1 0 1 ...
$ I10: int 1 0 0 1 1 0 1 1 0 1 ...
$ I11: int 1 1 1 1 0 0 1 1 0 1 ...
$ I12: int 0 0 0 0 0 1 0 0 0 0 ...
$ I13: int 1 1 1 1 0 1 1 0 1 1 ...
$ I14: int 1 1 1 0 1 0 1 1 0 1 ...
$ I15: int 1 1 1 0 0 1 1 1 0 1 ...
$ I16: int 1 1 0 1 1 0 1 0 1 1 ...
$ I17: int 0 1 0 0 0 0 1 1 0 1 ...
$ I18: int 0 0 0 0 0 0 0 0 1 0 ...
The datasets contain item parameters to be prepared for linking
using the function linking.haberman
.
data(data.pars1.rasch) data(data.pars1.2pl)
data(data.pars1.rasch) data(data.pars1.2pl)
The format of data.pars1.rasch
is:
'data.frame': 22 obs. of 4 variables:
$ study: chr "study1" "study1" "study1" "study1" ...
$ item : Factor w/ 12 levels "M133","M176",..: 1 2 3 4 5 1 6 7 3 8 ...
$ a : num 1 1 1 1 1 1 1 1 1 1 ...
$ b : num -1.5862 0.40762 1.78031 2.00382 0.00862 ...
Item slopes a
are fixed to 1 in 1PL estimation. Item difficulties
are denoted by b
.
The format of data.pars1.2pl
is:
'data.frame': 22 obs. of 4 variables:
$ study: chr "study1" "study1" "study1" "study1" ...
$ item : Factor w/ 12 levels "M133","M176",..: 1 2 3 4 5 1 6 7 3 8 ...
$ a : num 1.238 0.957 1.83 1.927 2.298 ...
$ b : num -1.16607 0.35844 1.06571 1.17159 0.00792 ...
This is a dataset of the PIRLS 2011 study for 4th graders for the reading booklet 13 (the 'PIRLS reader') and 4 countries (Austria, Germany, France, Netherlands). Missing responses (missing by intention and not reached) are coded by 9.
data(data.pirlsmissing)
data(data.pirlsmissing)
A data frame with 3480 observations on the following 38 variables.
The format is:
'data.frame': 3480 obs. of 38 variables:
$ idstud : int 1000001 1000002 1000003 1000004 1000005 ...
$ country : Factor w/ 4 levels "AUT","DEU","FRA",..: 1 1 1 1 1 1 1 1 1 1 ...
$ studwgt : num 1.06 1.06 1.06 1.06 1.06 ...
$ R31G01M : int 1 1 1 1 1 1 0 1 1 0 ...
$ R31G02C : int 0 9 0 1 0 0 0 0 1 0 ...
$ R31G03M : int 1 1 1 1 0 1 0 0 1 1 ...
[...]
$ R31P15C : int 1 9 0 1 0 0 0 0 1 0 ...
$ R31P16C : int 0 0 0 0 0 0 0 9 0 1 ...
data(data.pirlsmissing) # inspect missing rates round( colMeans( data.pirlsmissing==9 ), 3 ) ## idstud country studwgt R31G01M R31G02C R31G03M R31G04C R31G05M ## 0.000 0.000 0.000 0.009 0.076 0.012 0.203 0.018 ## R31G06M R31G07M R31G08CZ R31G08CA R31G08CB R31G09M R31G10C R31G11M ## 0.010 0.020 0.189 0.225 0.252 0.019 0.126 0.023 ## R31G12C R31G13CZ R31G13CA R31G13CB R31G13CC R31G14M R31P01M R31P02C ## 0.202 0.170 0.198 0.220 0.223 0.074 0.013 0.039 ## R31P03C R31P04M R31P05C R31P06C R31P07C R31P08M R31P09C R31P10M ## 0.056 0.012 0.075 0.043 0.074 0.024 0.062 0.025 ## R31P11M R31P12M R31P13M R31P14C R31P15C R31P16C ## 0.027 0.030 0.030 0.126 0.130 0.127
data(data.pirlsmissing) # inspect missing rates round( colMeans( data.pirlsmissing==9 ), 3 ) ## idstud country studwgt R31G01M R31G02C R31G03M R31G04C R31G05M ## 0.000 0.000 0.000 0.009 0.076 0.012 0.203 0.018 ## R31G06M R31G07M R31G08CZ R31G08CA R31G08CB R31G09M R31G10C R31G11M ## 0.010 0.020 0.189 0.225 0.252 0.019 0.126 0.023 ## R31G12C R31G13CZ R31G13CA R31G13CB R31G13CC R31G14M R31P01M R31P02C ## 0.202 0.170 0.198 0.220 0.223 0.074 0.013 0.039 ## R31P03C R31P04M R31P05C R31P06C R31P07C R31P08M R31P09C R31P10M ## 0.056 0.012 0.075 0.043 0.074 0.024 0.062 0.025 ## R31P11M R31P12M R31P13M R31P14C R31P15C R31P16C ## 0.027 0.030 0.030 0.126 0.130 0.127
This is an example PISA dataset of reading items from the PISA 2009 study of students from Austria. The dataset contains 565 students who worked on the 11 reading items from item cluster M3.
data(data.pisaMath)
data(data.pisaMath)
The dataset is a list. The list element data
contains the dataset with the demographical variables
student ID (idstud
), school ID (idschool
), a dummy variable for female
students (female
), socioeconomic status (hisei
)
and migration background (migra
). The remaining
variables (starting with M
in the name) are
the mathematics items.
The item metadata are included in the list element
item
which contains item name (item
) and the
testlet label (testlet
). An item not included
in a testlet is indicated by NA
.
The format is:
List of 2
$ data:'data.frame':
..$ idstud : num [1:565] 9e+10 9e+10 9e+10 9e+10 9e+10 ...
..$ idschool: int [1:565] 900015 900015 900015 900015 ...
..$ female : int [1:565] 0 0 0 0 0 0 0 0 0 0 ...
..$ hisei : num [1:565] -1.16 -1.099 -1.588 -0.365 -1.588 ...
..$ migra : int [1:565] 0 0 0 0 0 0 0 0 0 1 ...
..$ M192Q01 : int [1:565] 1 0 1 1 1 1 1 0 0 0 ...
..$ M406Q01 : int [1:565] 1 1 1 0 1 0 0 0 1 0 ...
..$ M406Q02 : int [1:565] 1 0 0 0 1 0 0 0 1 0 ...
..$ M423Q01 : int [1:565] 0 1 0 1 1 1 1 1 1 0 ...
..$ M496Q01 : int [1:565] 1 0 0 0 0 0 0 0 1 0 ...
..$ M496Q02 : int [1:565] 1 0 0 1 0 1 0 1 1 0 ...
..$ M564Q01 : int [1:565] 1 1 1 1 1 1 0 0 1 0 ...
..$ M564Q02 : int [1:565] 1 0 1 1 1 0 0 0 0 0 ...
..$ M571Q01 : int [1:565] 1 0 0 0 1 0 0 0 0 0 ...
..$ M603Q01 : int [1:565] 1 0 0 0 1 0 0 0 0 0 ...
..$ M603Q02 : int [1:565] 1 0 0 0 1 0 0 0 1 0 ...
$ item:'data.frame':
..$ item : Factor w/ 11 levels "M192Q01","M406Q01",..: 1 2 3 4 ...
..$ testlet: chr [1:11] NA "M406" "M406" NA ...
This data frame contains item parameters from two PISA studies. Because the Rasch model is used, only item difficulties are considered.
data(data.pisaPars)
data(data.pisaPars)
A data frame with 25 observations on the following 4 variables.
item
Item names
testlet
Items are arranged in corresponding testlets. These names are located in this column.
study1
Item difficulties of study 1
study2
Item difficulties of study 2
This is an example PISA dataset of reading items from the PISA 2009 study of students from Austria. The dataset contains 623 students who worked on the 12 reading items from item cluster R7.
data(data.pisaRead)
data(data.pisaRead)
The dataset is a list. The list element data
contains the dataset with the demographical variables
student ID (idstud
), school ID (idschool
), a dummy variable for female
students (female
), socioeconomic status (hisei
)
and migration background (migra
). The remaining
variables (starting with R
in the name) are
the reading items.
The item metadata are included in the list element
item
which contains item name (item
),
testlet label (testlet
), item format (ItemFormat
),
text type (TextType
) and text aspect (Aspect
).
The format is:
List of 2
$ data:'data.frame':
..$ idstud : num [1:623] 9e+10 9e+10 9e+10 9e+10 9e+10 ...
..$ idschool: int [1:623] 900003 900003 900003 900003 ...
..$ female : int [1:623] 1 0 1 0 0 0 1 0 1 0 ...
..$ hisei : num [1:623] -1.16 -0.671 1.286 0.185 1.225 ...
..$ migra : int [1:623] 0 0 0 0 0 0 0 0 0 0 ...
..$ R432Q01 : int [1:623] 1 1 1 1 1 1 1 1 1 1 ...
..$ R432Q05 : int [1:623] 1 1 1 1 1 0 1 1 1 0 ...
..$ R432Q06 : int [1:623] 0 0 0 0 0 0 0 0 0 0 ...
..$ R456Q01 : int [1:623] 1 1 1 1 1 1 1 1 1 1 ...
..$ R456Q02 : int [1:623] 1 1 1 1 1 1 1 1 1 1 ...
..$ R456Q06 : int [1:623] 1 1 1 1 1 1 0 0 1 1 ...
..$ R460Q01 : int [1:623] 1 1 0 0 0 0 0 1 1 1 ...
..$ R460Q05 : int [1:623] 1 1 1 1 1 1 1 1 1 1 ...
..$ R460Q06 : int [1:623] 0 1 1 1 1 1 0 0 1 1 ...
..$ R466Q02 : int [1:623] 0 1 0 1 1 0 1 0 0 1 ...
..$ R466Q03 : int [1:623] 0 0 0 1 0 0 0 1 0 1 ...
..$ R466Q06 : int [1:623] 0 1 1 1 1 1 0 1 1 1 ...
$ item:'data.frame':
..$ item : Factor w/ 12 levels "R432Q01","R432Q05",..: 1 2 3 4 ...
..$ testlet : Factor w/ 4 levels "R432","R456",..: 1 1 1 2 ...
..$ ItemFormat: Factor w/ 2 levels "CR","MC": 1 1 2 2 1 1 1 2 2 1 ...
..$ TextType : Factor w/ 3 levels "Argumentation",..: 1 1 1 3 ...
..$ Aspect : Factor w/ 3 levels "Access_and_retrieve",..: 2 3 2 1 ...
Some datasets for pairwise comparisons.
data(data.pw01)
data(data.pw01)
The dataset data.pw01
contains results of a German football league
from the season 2000/01.
Some rating datasets.
data(data.ratings1) data(data.ratings2) data(data.ratings3)
data(data.ratings1) data(data.ratings2) data(data.ratings3)
Dataset data.ratings1
:
Data frame with 274 observations containing 5 criteria (k1
, ..., k5
),
135 students and 7 raters.
'data.frame': 274 obs. of 7 variables:
$ idstud: int 100020106 100020106 100070101 100070101 100100109 ...
$ rater : Factor w/ 16 levels "db01","db02",..: 3 15 5 10 2 1 5 4 1 5 ...
$ k1 : int 1 1 0 1 2 0 1 3 0 0 ...
$ k2 : int 1 1 1 1 1 0 0 3 0 0 ...
$ k3 : int 1 1 1 1 2 0 0 3 1 0 ...
$ k4 : int 1 1 1 2 1 0 0 2 0 1 ...
$ k5 : int 2 2 1 2 0 1 0 3 1 0 ...
Data from a 2009 Austrian survey of national educational
standards for 8th graders in German language writing.
Variables k1
to k5
denote several rating
criteria of writing competency.
Dataset data.ratings2
:
Data frame with 615 observations containing 5 criteria (k1
, ..., k5
),
178 students and 16 raters.
'data.frame': 615 obs. of 7 variables:
$ idstud: num 1001 1001 1002 1002 1003 ...
$ rater : chr "R03" "R15" "R05" "R10" ...
$ k1 : int 1 1 0 1 2 0 1 3 3 0 ...
$ k2 : int 1 1 1 1 1 0 0 3 3 0 ...
$ k3 : int 1 1 1 1 2 0 0 3 3 1 ...
$ k4 : int 1 1 1 2 1 0 0 2 2 0 ...
$ k5 : int 2 2 1 2 0 1 0 3 2 1 ...
Dataset data.ratings3
:
Data frame with 3169 observations containing 4 criteria (crit2
, ..., crit6
),
561 students and 52 raters.
'data.frame': 3169 obs. of 6 variables:
$ idstud: num 10001 10001 10002 10002 10003 ...
$ rater : num 840 838 842 808 830 845 813 849 809 802 ...
$ crit2 : int 1 3 3 1 2 2 2 2 3 3 ...
$ crit3 : int 2 2 2 2 2 2 2 2 3 3 ...
$ crit4 : int 1 2 2 2 1 1 1 2 2 2 ...
$ crit6 : num 4 4 4 3 4 4 4 4 4 4 ...
Dataset with raw item responses
data(data.raw1)
data(data.raw1)
A data frame with raw item responses of 1200 persons on the following 77 items:
'data.frame': 1200 obs. of 77 variables:
$ I101: num 0 0 0 2 0 0 0 0 0 0 ...
$ I102: int NA NA 2 1 2 1 3 2 NA NA ...
$ I103: int 1 1 NA NA NA NA NA NA 1 1 ...
...
$ I179: chr "E" "C" "D" "E" ...
This dataset contains students and
items measuring reading
competence. All 12 items are arranged into 3 testlets (items with common
text stimulus) labeled as
A, B and C. The allocation of items to testlets is indicated by their
variable names.
data(data.read)
data(data.read)
A data frame with 328 persons on the following 12 variables.
Rows correspond to persons and columns to items. The following items are
included in data.read
:
Testlet A: A1
, A2
, A3
, A4
Testlet B: B1
, B2
, B3
, B4
Testlet C: C1
, C2
, C3
, C4
## Not run: data(data.read) dat <- data.read I <- ncol(dat) # list of needed packages for the following examples packages <- scan(what="character") eRm ltm TAM mRm CDM mirt psychotools IsingFit igraph qgraph pcalg poLCA randomLCA psychomix MplusAutomation lavaan # load packages. make an installation if necessary miceadds::library_install(packages) #***************************************************** # Model 1: Rasch model #***************************************************** #---- M1a: rasch.mml2 (in sirt) mod1a <- sirt::rasch.mml2(dat) summary(mod1a) #---- M1b: smirt (in sirt) Qmatrix <- matrix(1,nrow=I, ncol=1) mod1b <- sirt::smirt(dat,Qmatrix=Qmatrix) summary(mod1b) #---- M1c: gdm (in CDM) theta.k <- seq(-6,6,len=21) mod1c <- CDM::gdm(dat,theta.k=theta.k,irtmodel="1PL", skillspace="normal") summary(mod1c) #---- M1d: tam.mml (in TAM) mod1d <- TAM::tam.mml( resp=dat ) summary(mod1d) #---- M1e: RM (in eRm) mod1e <- eRm::RM( dat ) # eRm uses Conditional Maximum Likelihood (CML) as the estimation method. summary(mod1e) eRm::plotPImap(mod1e) #---- M1f: mrm (in mRm) mod1f <- mRm::mrm( dat, cl=1) # CML estimation mod1f$beta # item parameters #---- M1g: mirt (in mirt) mod1g <- mirt::mirt( dat, model=1, itemtype="Rasch", verbose=TRUE ) print(mod1g) summary(mod1g) coef(mod1g) # arrange coefficients in nicer layout sirt::mirt.wrapper.coef(mod1g)$coef #---- M1h: rasch (in ltm) mod1h <- ltm::rasch( dat, control=list(verbose=TRUE ) ) summary(mod1h) coef(mod1h) #---- M1i: RaschModel.fit (in psychotools) mod1i <- psychotools::RaschModel.fit(dat) # CML estimation summary(mod1i) plot(mod1i) #---- M1j: noharm.sirt (in sirt) Fpatt <- matrix( 0, I, 1 ) Fval <- 1 + 0*Fpatt Ppatt <- Pval <- matrix(1,1,1) mod1j <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt, Fpatt=Fpatt, Fval=Fval, Pval=Pval) summary(mod1j) # Normal-ogive model, multiply item discriminations with constant D=1.7. # The same holds for other examples with noharm.sirt and R2noharm. plot(mod1j) #---- M1k: rasch.pml3 (in sirt) mod1k <- sirt::rasch.pml3( dat=dat) # pairwise marginal maximum likelihood estimation summary(mod1k) #---- M1l: running Mplus (using MplusAutomation package) mplus_path <- "c:/Mplus7/Mplus.exe" # locate Mplus executable #**************** # specify Mplus object mplusmod <- MplusAutomation::mplusObject( TITLE="1PL in Mplus ;", VARIABLE=paste0( "CATEGORICAL ARE ", paste0(colnames(dat),collapse=" ") ), MODEL=" ! fix all item loadings to 1 F1 BY A1@1 A2@1 A3@1 A4@1 ; F1 BY B1@1 B2@1 B3@1 B4@1 ; F1 BY C1@1 C2@1 C3@1 C4@1 ; ! estimate variance F1 ; ", ANALYSIS="ESTIMATOR=MLR;", OUTPUT="stand;", usevariables=colnames(dat), rdata=dat ) #**************** # write Mplus syntax filename <- "mod1u" # specify file name # create Mplus syntaxes res2 <- MplusAutomation::mplusModeler(object=mplusmod, dataout=paste0(filename,".dat"), modelout=paste0(filename,".inp"), run=0 ) # run Mplus model MplusAutomation::runModels( filefilter=paste0(filename,".inp"), Mplus_command=mplus_path) # alternatively, the system() command can also be used # get results mod1l <- MplusAutomation::readModels(target=getwd(), filefilter=filename ) mod1l$summaries # summaries mod1l$parameters$unstandardized # parameter estimates #***************************************************** # Model 2: 2PL model #***************************************************** #---- M2a: rasch.mml2 (in sirt) mod2a <- sirt::rasch.mml2(dat, est.a=1:I) summary(mod2a) #---- M2b: smirt (in sirt) mod2b <- sirt::smirt(dat,Qmatrix=Qmatrix,est.a="2PL") summary(mod2b) #---- M2c: gdm (in CDM) mod2c <- CDM::gdm(dat,theta.k=theta.k,irtmodel="2PL", skillspace="normal") summary(mod2c) #---- M2d: tam.mml (in TAM) mod2d <- TAM::tam.mml.2pl( resp=dat ) summary(mod2d) #---- M2e: mirt (in mirt) mod2e <- mirt::mirt( dat, model=1, itemtype="2PL" ) print(mod2e) summary(mod2e) sirt::mirt.wrapper.coef(mod1g)$coef #---- M2f: ltm (in ltm) mod2f <- ltm::ltm( dat ~ z1, control=list(verbose=TRUE ) ) summary(mod2f) coef(mod2f) plot(mod2f) #---- M2g: R2noharm (in NOHARM, running from within R using sirt package) # define noharm.path where 'NoharmCL.exe' is located noharm.path <- "c:/NOHARM" # covariance matrix P.pattern <- matrix( 1, ncol=1, nrow=1 ) P.init <- P.pattern P.init[1,1] <- 1 # loading matrix F.pattern <- matrix(1,I,1) F.init <- F.pattern # estimate model mod2g <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex2g", noharm.path=noharm.path, dec="," ) summary(mod2g) #---- M2h: noharm.sirt (in sirt) mod2h <- sirt::noharm.sirt( dat=dat, Ppatt=P.pattern,Fpatt=F.pattern, Fval=F.init, Pval=P.init ) summary(mod2h) plot(mod2h) #---- M2i: rasch.pml2 (in sirt) mod2i <- sirt::rasch.pml2(dat, est.a=1:I) summary(mod2i) #---- M2j: WLSMV estimation with cfa (in lavaan) lavmodel <- "F=~ A1+A2+A3+A4+B1+B2+B3+B4+ C1+C2+C3+C4" mod2j <- lavaan::cfa( data=dat, model=lavmodel, std.lv=TRUE, ordered=colnames(dat)) summary(mod2j, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE) #***************************************************** # Model 3: 3PL model (note that results can be quite unstable!) #***************************************************** #---- M3a: rasch.mml2 (in sirt) mod3a <- sirt::rasch.mml2(dat, est.a=1:I, est.c=1:I) summary(mod3a) #---- M3b: smirt (in sirt) mod3b <- sirt::smirt(dat,Qmatrix=Qmatrix,est.a="2PL", est.c=1:I) summary(mod3b) #---- M3c: mirt (in mirt) mod3c <- mirt::mirt( dat, model=1, itemtype="3PL", verbose=TRUE) summary(mod3c) coef(mod3c) # stabilize parameter estimating using informative priors for guessing parameters mirtmodel <- mirt::mirt.model(" F=1-12 PRIOR=(1-12, g, norm, -1.38, 0.25) ") # a prior N(-1.38,.25) is specified for transformed guessing parameters: qlogis(g) # simulate values from this prior for illustration N <- 100000 logit.g <- stats::rnorm(N, mean=-1.38, sd=sqrt(.5) ) graphics::plot( stats::density(logit.g) ) # transformed qlogis(g) graphics::plot( stats::density( stats::plogis(logit.g)) ) # g parameters # estimate 3PL with priors mod3c1 <- mirt::mirt(dat, mirtmodel, itemtype="3PL",verbose=TRUE) coef(mod3c1) # In addition, set upper bounds for g parameters of .35 mirt.pars <- mirt::mirt( dat, mirtmodel, itemtype="3PL", pars="values") ind <- which( mirt.pars$name=="g" ) mirt.pars[ ind, "value" ] <- stats::plogis(-1.38) mirt.pars[ ind, "ubound" ] <- .35 # prior distribution for slopes ind <- which( mirt.pars$name=="a1" ) mirt.pars[ ind, "prior_1" ] <- 1.3 mirt.pars[ ind, "prior_2" ] <- 2 mod3c2 <- mirt::mirt(dat, mirtmodel, itemtype="3PL", pars=mirt.pars,verbose=TRUE, technical=list(NCYCLES=100) ) coef(mod3c2) sirt::mirt.wrapper.coef(mod3c2) #---- M3d: ltm (in ltm) mod3d <- ltm::tpm( dat, control=list(verbose=TRUE), max.guessing=.3) summary(mod3d) coef(mod3d) #=> numerical instabilities #***************************************************** # Model 4: 3-dimensional Rasch model #***************************************************** # define Q-matrix Q <- matrix( 0, nrow=12, ncol=3 ) Q[ cbind(1:12, rep(1:3,each=4) ) ] <- 1 rownames(Q) <- colnames(dat) colnames(Q) <- c("A","B","C") # define nodes theta.k <- seq(-6,6,len=13) #---- M4a: smirt (in sirt) mod4a <- sirt::smirt(dat,Qmatrix=Q,irtmodel="comp", theta.k=theta.k, maxiter=30) summary(mod4a) #---- M4b: rasch.mml2 (in sirt) mod4b <- sirt::rasch.mml2(dat,Q=Q,theta.k=theta.k, mmliter=30) summary(mod4b) #---- M4c: gdm (in CDM) mod4c <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, skillspace="normal", Qmatrix=Q, maxiter=30, centered.latent=TRUE ) summary(mod4c) #---- M4d: tam.mml (in TAM) mod4d <- TAM::tam.mml( resp=dat, Q=Q, control=list(nodes=theta.k, maxiter=30) ) summary(mod4d) #---- M4e: R2noharm (in NOHARM, running from within R using sirt package) noharm.path <- "c:/NOHARM" # covariance matrix P.pattern <- matrix( 1, ncol=3, nrow=3 ) P.init <- 0.8+0*P.pattern diag(P.init) <- 1 # loading matrix F.pattern <- 0*Q F.init <- Q # estimate model mod4e <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex4e", noharm.path=noharm.path, dec="," ) summary(mod4e) #---- M4f: mirt (in mirt) cmodel <- mirt::mirt.model(" F1=1-4 F2=5-8 F3=9-12 # equal item slopes correspond to the Rasch model CONSTRAIN=(1-4, a1), (5-8, a2), (9-12,a3) COV=F1*F2, F1*F3, F2*F3 " ) mod4f <- mirt::mirt(dat, cmodel, verbose=TRUE) summary(mod4f) #***************************************************** # Model 5: 3-dimensional 2PL model #***************************************************** #---- M5a: smirt (in sirt) mod5a <- sirt::smirt(dat,Qmatrix=Q,irtmodel="comp", est.a="2PL", theta.k=theta.k, maxiter=30) summary(mod5a) #---- M5b: rasch.mml2 (in sirt) mod5b <- sirt::rasch.mml2(dat,Q=Q,theta.k=theta.k,est.a=1:12, mmliter=30) summary(mod5b) #---- M5c: gdm (in CDM) mod5c <- CDM::gdm( dat, irtmodel="2PL", theta.k=theta.k, skillspace="loglinear", Qmatrix=Q, maxiter=30, centered.latent=TRUE, standardized.latent=TRUE) summary(mod5c) #---- M5d: tam.mml (in TAM) mod5d <- TAM::tam.mml.2pl( resp=dat, Q=Q, control=list(nodes=theta.k, maxiter=30) ) summary(mod5d) #---- M5e: R2noharm (in NOHARM, running from within R using sirt package) noharm.path <- "c:/NOHARM" # covariance matrix P.pattern <- matrix( 1, ncol=3, nrow=3 ) diag(P.pattern) <- 0 P.init <- 0.8+0*P.pattern diag(P.init) <- 1 # loading matrix F.pattern <- Q F.init <- Q # estimate model mod5e <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex5e", noharm.path=noharm.path, dec="," ) summary(mod5e) #---- M5f: mirt (in mirt) cmodel <- mirt::mirt.model(" F1=1-4 F2=5-8 F3=9-12 COV=F1*F2, F1*F3, F2*F3 " ) mod5f <- mirt::mirt(dat, cmodel, verbose=TRUE) summary(mod5f) #***************************************************** # Model 6: Network models (Graphical models) #***************************************************** #---- M6a: Ising model using the IsingFit package (undirected graph) # - fit Ising model using the "OR rule" (AND=FALSE) mod6a <- IsingFit::IsingFit(x=dat, family="binomial", AND=FALSE) summary(mod6a) ## Network Density: 0.29 ## Gamma: 0.25 ## Rule used: Or-rule # plot results qgraph::qgraph(mod6a$weiadj,fade=FALSE) #**-- graph estimation using pcalg package # some packages from Bioconductor must be downloaded at first (if not yet done) if (FALSE){ # set 'if (TRUE)' if packages should be downloaded source("http://bioconductor.org/biocLite.R") biocLite("RBGL") biocLite("Rgraphviz") } #---- M6b: graph estimation based on Pearson correlations V <- colnames(dat) n <- nrow(dat) mod6b <- pcalg::pc(suffStat=list(C=stats::cor(dat), n=n ), indepTest=gaussCItest, ## indep.test: partial correlations alpha=0.05, labels=V, verbose=TRUE) plot(mod6b) # plot in qgraph package qgraph::qgraph(mod6b, label.color=rep( c( "red", "blue","darkgreen" ), each=4 ), edge.color="black") summary(mod6b) #---- M6c: graph estimation based on tetrachoric correlations mod6c <- pcalg::pc(suffStat=list(C=sirt::tetrachoric2(dat)$rho, n=n ), indepTest=gaussCItest, alpha=0.05, labels=V, verbose=TRUE) plot(mod6c) summary(mod6c) #---- M6d: Statistical implicative analysis (in sirt) mod6d <- sirt::sia.sirt(dat, significance=.85 ) # plot results with igraph and qgraph package plot( mod6d$igraph.obj, vertex.shape="rectangle", vertex.size=30 ) qgraph::qgraph( mod6d$adj.matrix ) #***************************************************** # Model 7: Latent class analysis with 3 classes #***************************************************** #---- M7a: randomLCA (in randomLCA) # - use two trials of starting values mod7a <- randomLCA::randomLCA(dat,nclass=3, notrials=2, verbose=TRUE) summary(mod7a) plot(mod7a,type="l", xlab="Item") #---- M7b: rasch.mirtlc (in sirt) mod7b <- sirt::rasch.mirtlc( dat, Nclasses=3,seed=-30, nstarts=2 ) summary(mod7b) matplot( t(mod7b$pjk), type="l", xlab="Item" ) #---- M7c: poLCA (in poLCA) # define formula for outcomes f7c <- paste0( "cbind(", paste0(colnames(dat),collapse=","), ") ~ 1 " ) dat1 <- as.data.frame( dat + 1 ) # poLCA needs integer values from 1,2,.. mod7c <- poLCA::poLCA( stats::as.formula(f7c),dat1,nclass=3, verbose=TRUE) plot(mod7c) #---- M7d: gom.em (in sirt) # - the latent class model is a special grade of membership model mod7d <- sirt::gom.em( dat, K=3, problevels=c(0,1), model="GOM" ) summary(mod7d) #---- - M7e: mirt (in mirt) # define three latent classes Theta <- diag(3) # define mirt model I <- ncol(dat) # I=12 mirtmodel <- mirt::mirt.model(" C1=1-12 C2=1-12 C3=1-12 ") # get initial parameter values mod.pars <- mirt::mirt(dat, model=mirtmodel, pars="values") # modify parameters: only slopes refer to item-class probabilities set.seed(9976) # set starting values for class specific item probabilities mod.pars[ mod.pars$name=="d","value" ] <- 0 mod.pars[ mod.pars$name=="d","est" ] <- FALSE b1 <- stats::qnorm( colMeans( dat ) ) mod.pars[ mod.pars$name=="a1","value" ] <- b1 # random starting values for other classes mod.pars[ mod.pars$name %in% c("a2","a3"),"value" ] <- b1 + stats::runif(12*2,-1,1) mod.pars #** define prior for latent class analysis lca_prior <- function(Theta,Etable){ # number of latent Theta classes TP <- nrow(Theta) # prior in initial iteration if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) } # process Etable (this is correct for datasets without missing data) if ( ! is.null(Etable) ){ # sum over correct and incorrect expected responses prior <- ( rowSums(Etable[, seq(1,2*I,2)]) + rowSums(Etable[,seq(2,2*I,2)]) )/I } prior <- prior / sum(prior) return(prior) } #** estimate model mod7e <- mirt::mirt(dat, mirtmodel, pars=mod.pars, verbose=TRUE, technical=list( customTheta=Theta, customPriorFun=lca_prior) ) # compare estimated results print(mod7e) summary(mod7b) # The number of estimated parameters is incorrect because mirt does not correctly count # estimated parameters from the user customized prior distribution. mod7e@nest <- as.integer(sum(mod.pars$est) + 2) # two additional class probabilities # extract log-likelihood mod7e@logLik # compute AIC and BIC ( AIC <- -2*mod7e@logLik+2*mod7e@nest ) ( BIC <- -2*mod7e@logLik+log(mod7e@Data$N)*mod7e@nest ) # RMSEA and SRMSR fit statistic mirt::M2(mod7e) # TLI and CFI does not make sense in this example #** extract item parameters sirt::mirt.wrapper.coef(mod7e) #** extract class-specific item-probabilities probs <- apply( coef1[, c("a1","a2","a3") ], 2, stats::plogis ) matplot( probs, type="l", xlab="Item", main="mirt::mirt") #** inspect estimated distribution mod7e@Theta mod7e@Prior[[1]] #***************************************************** # Model 8: Mixed Rasch model with two classes #***************************************************** #---- M8a: raschmix (in psychomix) mod8a <- psychomix::raschmix(data=as.matrix(dat), k=2, scores="saturated") summary(mod8a) #---- M8b: mrm (in mRm) mod8b <- mRm::mrm(data.matrix=dat, cl=2) mod8b$conv.to.bound plot(mod8b) print(mod8b) #---- M8c: mirt (in mirt) #* define theta grid theta.k <- seq( -5, 5, len=9 ) TP <- length(theta.k) Theta <- matrix( 0, nrow=2*TP, ncol=4) Theta[1:TP,1:2] <- cbind(theta.k, 1 ) Theta[1:TP + TP,3:4] <- cbind(theta.k, 1 ) Theta # define model I <- ncol(dat) # I=12 mirtmodel <- mirt::mirt.model(" F1a=1-12 # slope Class 1 F1b=1-12 # difficulty Class 1 F2a=1-12 # slope Class 2 F2b=1-12 # difficulty Class 2 CONSTRAIN=(1-12,a1),(1-12,a3) ") # get initial parameter values mod.pars <- mirt::mirt(dat, model=mirtmodel, pars="values") # set starting values for class specific item probabilities mod.pars[ mod.pars$name=="d","value" ] <- 0 mod.pars[ mod.pars$name=="d","est" ] <- FALSE mod.pars[ mod.pars$name=="a1","value" ] <- 1 mod.pars[ mod.pars$name=="a3","value" ] <- 1 # initial values difficulties b1 <- stats::qlogis( colMeans(dat) ) mod.pars[ mod.pars$name=="a2","value" ] <- b1 mod.pars[ mod.pars$name=="a4","value" ] <- b1 + stats::runif(I, -1, 1) #* define prior for mixed Rasch analysis mixed_prior <- function(Theta,Etable){ NC <- 2 # number of theta classes TP <- nrow(Theta) / NC prior1 <- stats::dnorm( Theta[1:TP,1] ) prior1 <- prior1 / sum(prior1) if ( is.null(Etable) ){ prior <- c( prior1, prior1 ) } if ( ! is.null(Etable) ){ prior <- ( rowSums( Etable[, seq(1,2*I,2)] ) + rowSums( Etable[,seq(2,2*I,2)]) )/I a1 <- stats::aggregate( prior, list( rep(1:NC, each=TP) ), sum ) a1[,2] <- a1[,2] / sum( a1[,2]) # print some information during estimation cat( paste0( " Class proportions: ", paste0( round(a1[,2], 3 ), collapse=" " ) ), "\n") a1 <- rep( a1[,2], each=TP ) # specify mixture of two normal distributions prior <- a1*c(prior1,prior1) } prior <- prior / sum(prior) return(prior) } #* estimate model mod8c <- mirt::mirt(dat, mirtmodel, pars=mod.pars, verbose=TRUE, technical=list( customTheta=Theta, customPriorFun=mixed_prior ) ) # Like in Model 7e, the number of estimated parameters must be included. mod8c@nest <- as.integer(sum(mod.pars$est) + 1) # two class proportions and therefore one probability is freely estimated. #* extract item parameters sirt::mirt.wrapper.coef(mod8c) #* estimated distribution mod8c@Theta mod8c@Prior #---- M8d: tamaan (in TAM) tammodel <- " ANALYSIS: TYPE=MIXTURE ; NCLASSES(2); NSTARTS(7,20); LAVAAN MODEL: F=~ A1__C4 F ~~ F ITEM TYPE: ALL(Rasch); " mod8d <- TAM::tamaan( tammodel, resp=dat ) summary(mod8d) # plot item parameters I <- 12 ipars <- mod8d$itempartable_MIXTURE[ 1:I, ] plot( 1:I, ipars[,3], type="o", ylim=range( ipars[,3:4] ), pch=16, xlab="Item", ylab="Item difficulty") lines( 1:I, ipars[,4], type="l", col=2, lty=2) points( 1:I, ipars[,4], col=2, pch=2) #***************************************************** # Model 9: Mixed 2PL model with two classes #***************************************************** #---- M9a: tamaan (in TAM) tammodel <- " ANALYSIS: TYPE=MIXTURE ; NCLASSES(2); NSTARTS(10,30); LAVAAN MODEL: F=~ A1__C4 F ~~ F ITEM TYPE: ALL(2PL); " mod9a <- TAM::tamaan( tammodel, resp=dat ) summary(mod9a) #***************************************************** # Model 10: Rasch testlet model #***************************************************** #---- M10a: tam.fa (in TAM) dims <- substring( colnames(dat),1,1 ) # define dimensions mod10a <- TAM::tam.fa( resp=dat, irtmodel="bifactor1", dims=dims, control=list(maxiter=60) ) summary(mod10a) #---- M10b: mirt (in mirt) cmodel <- mirt::mirt.model(" G=1-12 A=1-4 B=5-8 C=9-12 CONSTRAIN=(1-12,a1), (1-4, a2), (5-8, a3), (9-12,a4) ") mod10b <- mirt::mirt(dat, model=cmodel, verbose=TRUE) summary(mod10b) coef(mod10b) mod10b@logLik # equivalent is slot( mod10b, "logLik") #alternatively, using a dimensional reduction approach (faster and better accuracy) cmodel <- mirt::mirt.model(" G=1-12 CONSTRAIN=(1-12,a1), (1-4, a2), (5-8, a3), (9-12,a4) ") item_bundles <- rep(c(1,2,3), each=4) mod10b1 <- mirt::bfactor(dat, model=item_bundles, model2=cmodel, verbose=TRUE) coef(mod10b1) #---- M10c: smirt (in sirt) # define Q-matrix Qmatrix <- matrix(0,12,4) Qmatrix[,1] <- 1 Qmatrix[ cbind( 1:12, match( dims, unique(dims)) +1 ) ] <- 1 # uncorrelated factors variance.fixed <- cbind( c(1,1,1,2,2,3), c(2,3,4,3,4,4), 0 ) # estimate model mod10c <- sirt::smirt( dat, Qmatrix=Qmatrix, irtmodel="comp", variance.fixed=variance.fixed, qmcnodes=1000, maxiter=60) summary(mod10c) #***************************************************** # Model 11: Bifactor model #***************************************************** #---- M11a: tam.fa (in TAM) dims <- substring( colnames(dat),1,1 ) # define dimensions mod11a <- TAM::tam.fa( resp=dat, irtmodel="bifactor2", dims=dims, control=list(maxiter=60) ) summary(mod11a) #---- M11b: bfactor (in mirt) dims1 <- match( dims, unique(dims) ) mod11b <- mirt::bfactor(dat, model=dims1, verbose=TRUE) summary(mod11b) coef(mod11b) mod11b@logLik #---- M11c: smirt (in sirt) # define Q-matrix Qmatrix <- matrix(0,12,4) Qmatrix[,1] <- 1 Qmatrix[ cbind( 1:12, match( dims, unique(dims)) +1 ) ] <- 1 # uncorrelated factors variance.fixed <- cbind( c(1,1,1,2,2,3), c(2,3,4,3,4,4), 0 ) # estimate model mod11c <- sirt::smirt( dat, Qmatrix=Qmatrix, irtmodel="comp", est.a="2PL", variance.fixed=variance.fixed, qmcnodes=1000, maxiter=60) summary(mod11c) #***************************************************** # Model 12: Located latent class model: Rasch model with three theta classes #***************************************************** # use 10th item as the reference item ref.item <- 10 # ability grid theta.k <- seq(-4,4,len=9) #---- M12a: rasch.mirtlc (in sirt) mod12a <- sirt::rasch.mirtlc(dat, Nclasses=3, modeltype="MLC1", ref.item=ref.item) summary(mod12a) #---- M12b: gdm (in CDM) theta.k <- seq(-1, 1, len=3) # initial matrix b.constraint <- matrix( c(10,1,0), nrow=1,ncol=3) # estimate model mod12b <- CDM::gdm( dat, theta.k=theta.k, skillspace="est", irtmodel="1PL", b.constraint=b.constraint, maxiter=200) summary(mod12b) #---- M12c: mirt (in mirt) items <- colnames(dat) # define three latent classes Theta <- diag(3) # define mirt model I <- ncol(dat) # I=12 mirtmodel <- mirt::mirt.model(" C1=1-12 C2=1-12 C3=1-12 CONSTRAIN=(1-12,a1),(1-12,a2),(1-12,a3) ") # get parameters mod.pars <- mirt(dat, model=mirtmodel, pars="values") # set starting values for class specific item probabilities mod.pars[ mod.pars$name=="d","value" ] <- stats::qlogis( colMeans(dat,na.rm=TRUE) ) # set item difficulty of reference item to zero ind <- which( ( paste(mod.pars$item)==items[ref.item] ) & ( ( paste(mod.pars$name)=="d" ) ) ) mod.pars[ ind,"value" ] <- 0 mod.pars[ ind,"est" ] <- FALSE # initial values for a1, a2 and a3 mod.pars[ mod.pars$name %in% c("a1","a2","a3"),"value" ] <- c(-1,0,1) mod.pars #* define prior for latent class analysis lca_prior <- function(Theta,Etable){ # number of latent Theta classes TP <- nrow(Theta) # prior in initial iteration if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) } # process Etable (this is correct for datasets without missing data) if ( ! is.null(Etable) ){ # sum over correct and incorrect expected responses prior <- ( rowSums( Etable[, seq(1,2*I,2)] ) + rowSums( Etable[, seq(2,2*I,2)] ) )/I } prior <- prior / sum(prior) return(prior) } #* estimate model mod12c <- mirt(dat, mirtmodel, technical=list( customTheta=Theta, customPriorFun=lca_prior), pars=mod.pars, verbose=TRUE ) # estimated parameters from the user customized prior distribution. mod12c@nest <- as.integer(sum(mod.pars$est) + 2) #* extract item parameters coef1 <- sirt::mirt.wrapper.coef(mod12c) #* inspect estimated distribution mod12c@Theta coef1$coef[1,c("a1","a2","a3")] mod12c@Prior[[1]] #***************************************************** # Model 13: Multidimensional model with discrete traits #***************************************************** # define Q-Matrix Q <- matrix( 0, nrow=12,ncol=3) Q[1:4,1] <- 1 Q[5:8,2] <- 1 Q[9:12,3] <- 1 # define discrete theta distribution with 3 dimensions Theta <- scan(what="character",nlines=1) 000 100 010 001 110 101 011 111 Theta <- as.numeric( unlist( lapply( Theta, strsplit, split="") ) ) Theta <- matrix(Theta, 8, 3, byrow=TRUE ) Theta #---- Model 13a: din (in CDM) mod13a <- CDM::din( dat, q.matrix=Q, rule="DINA") summary(mod13a) # compare used Theta distributions cbind( Theta, mod13a$attribute.patt.splitted) #---- Model 13b: gdm (in CDM) mod13b <- CDM::gdm( dat, Qmatrix=Q, theta.k=Theta, skillspace="full") summary(mod13b) #---- Model 13c: mirt (in mirt) # define mirt model I <- ncol(dat) # I=12 mirtmodel <- mirt::mirt.model(" F1=1-4 F2=5-8 F3=9-12 ") # get parameters mod.pars <- mirt(dat, model=mirtmodel, pars="values") # starting values d parameters (transformed guessing parameters) ind <- which( mod.pars$name=="d" ) mod.pars[ind,"value"] <- stats::qlogis(.2) # starting values transformed slipping parameters ind <- which( ( mod.pars$name %in% paste0("a",1:3) ) & ( mod.pars$est ) ) mod.pars[ind,"value"] <- stats::qlogis(.8) - stats::qlogis(.2) mod.pars #* define prior for latent class analysis lca_prior <- function(Theta,Etable){ TP <- nrow(Theta) if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) } if ( ! is.null(Etable) ){ prior <- ( rowSums( Etable[, seq(1,2*I,2)] ) + rowSums( Etable[, seq(2,2*I,2)] ) )/I } prior <- prior / sum(prior) return(prior) } #* estimate model mod13c <- mirt(dat, mirtmodel, technical=list( customTheta=Theta, customPriorFun=lca_prior), pars=mod.pars, verbose=TRUE ) # estimated parameters from the user customized prior distribution. mod13c@nest <- as.integer(sum(mod.pars$est) + 2) #* extract item parameters coef13c <- sirt::mirt.wrapper.coef(mod13c)$coef #* inspect estimated distribution mod13c@Theta mod13c@Prior[[1]] #-* comparisons of estimated parameters # extract guessing and slipping parameters from din dfr <- coef(mod13a)[, c("guess","slip") ] colnames(dfr) <- paste0("din.",c("guess","slip") ) # estimated parameters from gdm dfr$gdm.guess <- stats::plogis(mod13b$item$b) dfr$gdm.slip <- 1 - stats::plogis( rowSums(mod13b$item[,c("b.Cat1","a.F1","a.F2","a.F3")] ) ) # estimated parameters from mirt dfr$mirt.guess <- stats::plogis( coef13c$d ) dfr$mirt.slip <- 1 - stats::plogis( rowSums(coef13c[,c("d","a1","a2","a3")]) ) # comparison round(dfr[, c(1,3,5,2,4,6)],3) ## din.guess gdm.guess mirt.guess din.slip gdm.slip mirt.slip ## A1 0.691 0.684 0.686 0.000 0.000 0.000 ## A2 0.491 0.489 0.489 0.031 0.038 0.036 ## A3 0.302 0.300 0.300 0.184 0.193 0.190 ## A4 0.244 0.239 0.240 0.337 0.340 0.339 ## B1 0.568 0.579 0.577 0.163 0.148 0.151 ## B2 0.329 0.344 0.340 0.344 0.326 0.329 ## B3 0.817 0.827 0.825 0.014 0.007 0.009 ## B4 0.431 0.463 0.456 0.104 0.089 0.092 ## C1 0.188 0.191 0.189 0.013 0.013 0.013 ## C2 0.050 0.050 0.050 0.239 0.238 0.239 ## C3 0.000 0.002 0.001 0.065 0.065 0.065 ## C4 0.000 0.004 0.000 0.212 0.212 0.212 # estimated class sizes dfr <- data.frame( "Theta"=Theta, "din"=mod13a$attribute.patt$class.prob, "gdm"=mod13b$pi.k, "mirt"=mod13c@Prior[[1]]) # comparison round(dfr,3) ## Theta.1 Theta.2 Theta.3 din gdm mirt ## 1 0 0 0 0.039 0.041 0.040 ## 2 1 0 0 0.008 0.009 0.009 ## 3 0 1 0 0.009 0.007 0.008 ## 4 0 0 1 0.394 0.417 0.412 ## 5 1 1 0 0.011 0.011 0.011 ## 6 1 0 1 0.017 0.042 0.037 ## 7 0 1 1 0.042 0.008 0.016 ## 8 1 1 1 0.480 0.465 0.467 #***************************************************** # Model 14: DINA model with two skills #***************************************************** # define some simple Q-Matrix (does not really make in this application) Q <- matrix( 0, nrow=12,ncol=2) Q[1:4,1] <- 1 Q[5:8,2] <- 1 Q[9:12,1:2] <- 1 # define discrete theta distribution with 3 dimensions Theta <- scan(what="character",nlines=1) 00 10 01 11 Theta <- as.numeric( unlist( lapply( Theta, strsplit, split="") ) ) Theta <- matrix(Theta, 4, 2, byrow=TRUE ) Theta #---- Model 14a: din (in CDM) mod14a <- CDM::din( dat, q.matrix=Q, rule="DINA") summary(mod14a) # compare used Theta distributions cbind( Theta, mod14a$attribute.patt.splitted) #---- Model 14b: mirt (in mirt) # define mirt model I <- ncol(dat) # I=12 mirtmodel <- mirt::mirt.model(" F1=1-4 F2=5-8 (F1*F2)=9-12 ") #-> constructions like (F1*F2*F3) are also allowed in mirt.model # get parameters mod.pars <- mirt(dat, model=mirtmodel, pars="values") # starting values d parameters (transformed guessing parameters) ind <- which( mod.pars$name=="d" ) mod.pars[ind,"value"] <- stats::qlogis(.2) # starting values transformed slipping parameters ind <- which( ( mod.pars$name %in% paste0("a",1:3) ) & ( mod.pars$est ) ) mod.pars[ind,"value"] <- stats::qlogis(.8) - stats::qlogis(.2) mod.pars #* use above defined prior lca_prior # lca_prior <- function(prior,Etable) ... #* estimate model mod14b <- mirt(dat, mirtmodel, technical=list( customTheta=Theta, customPriorFun=lca_prior), pars=mod.pars, verbose=TRUE ) # estimated parameters from the user customized prior distribution. mod14b@nest <- as.integer(sum(mod.pars$est) + 2) #* extract item parameters coef14b <- sirt::mirt.wrapper.coef(mod14b)$coef #-* comparisons of estimated parameters # extract guessing and slipping parameters from din dfr <- coef(mod14a)[, c("guess","slip") ] colnames(dfr) <- paste0("din.",c("guess","slip") ) # estimated parameters from mirt dfr$mirt.guess <- stats::plogis( coef14b$d ) dfr$mirt.slip <- 1 - stats::plogis( rowSums(coef14b[,c("d","a1","a2","a3")]) ) # comparison round(dfr[, c(1,3,2,4)],3) ## din.guess mirt.guess din.slip mirt.slip ## A1 0.674 0.671 0.030 0.030 ## A2 0.423 0.420 0.049 0.050 ## A3 0.258 0.255 0.224 0.225 ## A4 0.245 0.243 0.394 0.395 ## B1 0.534 0.543 0.166 0.164 ## B2 0.338 0.347 0.382 0.380 ## B3 0.796 0.802 0.016 0.015 ## B4 0.421 0.436 0.142 0.140 ## C1 0.850 0.851 0.000 0.000 ## C2 0.480 0.480 0.097 0.097 ## C3 0.746 0.746 0.026 0.026 ## C4 0.575 0.577 0.136 0.137 # estimated class sizes dfr <- data.frame( "Theta"=Theta, "din"=mod13a$attribute.patt$class.prob, "mirt"=mod14b@Prior[[1]]) # comparison round(dfr,3) ## Theta.1 Theta.2 din mirt ## 1 0 0 0.357 0.369 ## 2 1 0 0.044 0.049 ## 3 0 1 0.047 0.031 ## 4 1 1 0.553 0.551 #***************************************************** # Model 15: Rasch model with non-normal distribution #***************************************************** # A non-normal theta distributed is specified by log-linear smoothing # the distribution as described in # Xu, X., & von Davier, M. (2008). Fitting the structured general diagnostic model # to NAEP data. ETS Research Report ETS RR-08-27. Princeton, ETS. # define theta grid theta.k <- matrix( seq(-4,4,len=15), ncol=1 ) # define design matrix for smoothing (up to cubic moments) delta.designmatrix <- cbind( 1, theta.k, theta.k^2, theta.k^3 ) # constrain item difficulty of fifth item (item B1) to zero b.constraint <- matrix( c(5,1,0), ncol=3 ) #---- Model 15a: gdm (in CDM) mod15a <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, b.constraint=b.constraint ) summary(mod15a) # plot estimated distribution graphics::barplot( mod15a$pi.k[,1], space=0, names.arg=round(theta.k[,1],2), main="Estimated Skewed Distribution (gdm function)") #---- Model 15b: mirt (in mirt) # define mirt model mirtmodel <- mirt::mirt.model(" F=1-12 ") # get parameters mod.pars <- mirt::mirt(dat, model=mirtmodel, pars="values", itemtype="Rasch") # fix variance (just for correct counting of parameters) mod.pars[ mod.pars$name=="COV_11", "est"] <- FALSE # fix item difficulty ind <- which( ( mod.pars$item=="B1" ) & ( mod.pars$name=="d" ) ) mod.pars[ ind, "value"] <- 0 mod.pars[ ind, "est"] <- FALSE # define prior loglinear_prior <- function(Theta,Etable){ TP <- nrow(Theta) if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) } # process Etable (this is correct for datasets without missing data) if ( ! is.null(Etable) ){ # sum over correct and incorrect expected responses prior <- ( rowSums( Etable[, seq(1,2*I,2)] ) + rowSums( Etable[, seq(2,2*I,2)] ) )/I # smooth prior using the above design matrix and a log-linear model # see Xu & von Davier (2008). y <- log( prior + 1E-15 ) lm1 <- lm( y ~ 0 + delta.designmatrix, weights=prior ) prior <- exp(fitted(lm1)) # smoothed prior } prior <- prior / sum(prior) return(prior) } #* estimate model mod15b <- mirt::mirt(dat, mirtmodel, technical=list( customTheta=theta.k, customPriorFun=loglinear_prior ), pars=mod.pars, verbose=TRUE ) # estimated parameters from the user customized prior distribution. mod15b@nest <- as.integer(sum(mod.pars$est) + 3) #* extract item parameters coef1 <- sirt::mirt.wrapper.coef(mod15b)$coef #** compare estimated item parameters dfr <- data.frame( "gdm"=mod15a$item$b.Cat1, "mirt"=coef1$d ) rownames(dfr) <- colnames(dat) round(t(dfr),4) ## A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 ## gdm 0.9818 0.1538 -0.7837 -1.3197 0 -1.0902 1.6088 -0.170 1.9778 0.006 1.1859 0.135 ## mirt 0.9829 0.1548 -0.7826 -1.3186 0 -1.0892 1.6099 -0.169 1.9790 0.007 1.1870 0.136 # compare estimated theta distribution dfr <- data.frame( "gdm"=mod15a$pi.k, "mirt"=mod15b@Prior[[1]] ) round(t(dfr),4) ## 1 2 3 4 5 6 7 8 9 10 11 12 13 ## gdm 0 0 1e-04 9e-04 0.0056 0.0231 0.0652 0.1299 0.1881 0.2038 0.1702 0.1129 0.0612 ## mirt 0 0 1e-04 9e-04 0.0056 0.0232 0.0653 0.1300 0.1881 0.2038 0.1702 0.1128 0.0611 ## 14 15 ## gdm 0.0279 0.011 ## mirt 0.0278 0.011 ## End(Not run)
## Not run: data(data.read) dat <- data.read I <- ncol(dat) # list of needed packages for the following examples packages <- scan(what="character") eRm ltm TAM mRm CDM mirt psychotools IsingFit igraph qgraph pcalg poLCA randomLCA psychomix MplusAutomation lavaan # load packages. make an installation if necessary miceadds::library_install(packages) #***************************************************** # Model 1: Rasch model #***************************************************** #---- M1a: rasch.mml2 (in sirt) mod1a <- sirt::rasch.mml2(dat) summary(mod1a) #---- M1b: smirt (in sirt) Qmatrix <- matrix(1,nrow=I, ncol=1) mod1b <- sirt::smirt(dat,Qmatrix=Qmatrix) summary(mod1b) #---- M1c: gdm (in CDM) theta.k <- seq(-6,6,len=21) mod1c <- CDM::gdm(dat,theta.k=theta.k,irtmodel="1PL", skillspace="normal") summary(mod1c) #---- M1d: tam.mml (in TAM) mod1d <- TAM::tam.mml( resp=dat ) summary(mod1d) #---- M1e: RM (in eRm) mod1e <- eRm::RM( dat ) # eRm uses Conditional Maximum Likelihood (CML) as the estimation method. summary(mod1e) eRm::plotPImap(mod1e) #---- M1f: mrm (in mRm) mod1f <- mRm::mrm( dat, cl=1) # CML estimation mod1f$beta # item parameters #---- M1g: mirt (in mirt) mod1g <- mirt::mirt( dat, model=1, itemtype="Rasch", verbose=TRUE ) print(mod1g) summary(mod1g) coef(mod1g) # arrange coefficients in nicer layout sirt::mirt.wrapper.coef(mod1g)$coef #---- M1h: rasch (in ltm) mod1h <- ltm::rasch( dat, control=list(verbose=TRUE ) ) summary(mod1h) coef(mod1h) #---- M1i: RaschModel.fit (in psychotools) mod1i <- psychotools::RaschModel.fit(dat) # CML estimation summary(mod1i) plot(mod1i) #---- M1j: noharm.sirt (in sirt) Fpatt <- matrix( 0, I, 1 ) Fval <- 1 + 0*Fpatt Ppatt <- Pval <- matrix(1,1,1) mod1j <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt, Fpatt=Fpatt, Fval=Fval, Pval=Pval) summary(mod1j) # Normal-ogive model, multiply item discriminations with constant D=1.7. # The same holds for other examples with noharm.sirt and R2noharm. plot(mod1j) #---- M1k: rasch.pml3 (in sirt) mod1k <- sirt::rasch.pml3( dat=dat) # pairwise marginal maximum likelihood estimation summary(mod1k) #---- M1l: running Mplus (using MplusAutomation package) mplus_path <- "c:/Mplus7/Mplus.exe" # locate Mplus executable #**************** # specify Mplus object mplusmod <- MplusAutomation::mplusObject( TITLE="1PL in Mplus ;", VARIABLE=paste0( "CATEGORICAL ARE ", paste0(colnames(dat),collapse=" ") ), MODEL=" ! fix all item loadings to 1 F1 BY A1@1 A2@1 A3@1 A4@1 ; F1 BY B1@1 B2@1 B3@1 B4@1 ; F1 BY C1@1 C2@1 C3@1 C4@1 ; ! estimate variance F1 ; ", ANALYSIS="ESTIMATOR=MLR;", OUTPUT="stand;", usevariables=colnames(dat), rdata=dat ) #**************** # write Mplus syntax filename <- "mod1u" # specify file name # create Mplus syntaxes res2 <- MplusAutomation::mplusModeler(object=mplusmod, dataout=paste0(filename,".dat"), modelout=paste0(filename,".inp"), run=0 ) # run Mplus model MplusAutomation::runModels( filefilter=paste0(filename,".inp"), Mplus_command=mplus_path) # alternatively, the system() command can also be used # get results mod1l <- MplusAutomation::readModels(target=getwd(), filefilter=filename ) mod1l$summaries # summaries mod1l$parameters$unstandardized # parameter estimates #***************************************************** # Model 2: 2PL model #***************************************************** #---- M2a: rasch.mml2 (in sirt) mod2a <- sirt::rasch.mml2(dat, est.a=1:I) summary(mod2a) #---- M2b: smirt (in sirt) mod2b <- sirt::smirt(dat,Qmatrix=Qmatrix,est.a="2PL") summary(mod2b) #---- M2c: gdm (in CDM) mod2c <- CDM::gdm(dat,theta.k=theta.k,irtmodel="2PL", skillspace="normal") summary(mod2c) #---- M2d: tam.mml (in TAM) mod2d <- TAM::tam.mml.2pl( resp=dat ) summary(mod2d) #---- M2e: mirt (in mirt) mod2e <- mirt::mirt( dat, model=1, itemtype="2PL" ) print(mod2e) summary(mod2e) sirt::mirt.wrapper.coef(mod1g)$coef #---- M2f: ltm (in ltm) mod2f <- ltm::ltm( dat ~ z1, control=list(verbose=TRUE ) ) summary(mod2f) coef(mod2f) plot(mod2f) #---- M2g: R2noharm (in NOHARM, running from within R using sirt package) # define noharm.path where 'NoharmCL.exe' is located noharm.path <- "c:/NOHARM" # covariance matrix P.pattern <- matrix( 1, ncol=1, nrow=1 ) P.init <- P.pattern P.init[1,1] <- 1 # loading matrix F.pattern <- matrix(1,I,1) F.init <- F.pattern # estimate model mod2g <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex2g", noharm.path=noharm.path, dec="," ) summary(mod2g) #---- M2h: noharm.sirt (in sirt) mod2h <- sirt::noharm.sirt( dat=dat, Ppatt=P.pattern,Fpatt=F.pattern, Fval=F.init, Pval=P.init ) summary(mod2h) plot(mod2h) #---- M2i: rasch.pml2 (in sirt) mod2i <- sirt::rasch.pml2(dat, est.a=1:I) summary(mod2i) #---- M2j: WLSMV estimation with cfa (in lavaan) lavmodel <- "F=~ A1+A2+A3+A4+B1+B2+B3+B4+ C1+C2+C3+C4" mod2j <- lavaan::cfa( data=dat, model=lavmodel, std.lv=TRUE, ordered=colnames(dat)) summary(mod2j, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE) #***************************************************** # Model 3: 3PL model (note that results can be quite unstable!) #***************************************************** #---- M3a: rasch.mml2 (in sirt) mod3a <- sirt::rasch.mml2(dat, est.a=1:I, est.c=1:I) summary(mod3a) #---- M3b: smirt (in sirt) mod3b <- sirt::smirt(dat,Qmatrix=Qmatrix,est.a="2PL", est.c=1:I) summary(mod3b) #---- M3c: mirt (in mirt) mod3c <- mirt::mirt( dat, model=1, itemtype="3PL", verbose=TRUE) summary(mod3c) coef(mod3c) # stabilize parameter estimating using informative priors for guessing parameters mirtmodel <- mirt::mirt.model(" F=1-12 PRIOR=(1-12, g, norm, -1.38, 0.25) ") # a prior N(-1.38,.25) is specified for transformed guessing parameters: qlogis(g) # simulate values from this prior for illustration N <- 100000 logit.g <- stats::rnorm(N, mean=-1.38, sd=sqrt(.5) ) graphics::plot( stats::density(logit.g) ) # transformed qlogis(g) graphics::plot( stats::density( stats::plogis(logit.g)) ) # g parameters # estimate 3PL with priors mod3c1 <- mirt::mirt(dat, mirtmodel, itemtype="3PL",verbose=TRUE) coef(mod3c1) # In addition, set upper bounds for g parameters of .35 mirt.pars <- mirt::mirt( dat, mirtmodel, itemtype="3PL", pars="values") ind <- which( mirt.pars$name=="g" ) mirt.pars[ ind, "value" ] <- stats::plogis(-1.38) mirt.pars[ ind, "ubound" ] <- .35 # prior distribution for slopes ind <- which( mirt.pars$name=="a1" ) mirt.pars[ ind, "prior_1" ] <- 1.3 mirt.pars[ ind, "prior_2" ] <- 2 mod3c2 <- mirt::mirt(dat, mirtmodel, itemtype="3PL", pars=mirt.pars,verbose=TRUE, technical=list(NCYCLES=100) ) coef(mod3c2) sirt::mirt.wrapper.coef(mod3c2) #---- M3d: ltm (in ltm) mod3d <- ltm::tpm( dat, control=list(verbose=TRUE), max.guessing=.3) summary(mod3d) coef(mod3d) #=> numerical instabilities #***************************************************** # Model 4: 3-dimensional Rasch model #***************************************************** # define Q-matrix Q <- matrix( 0, nrow=12, ncol=3 ) Q[ cbind(1:12, rep(1:3,each=4) ) ] <- 1 rownames(Q) <- colnames(dat) colnames(Q) <- c("A","B","C") # define nodes theta.k <- seq(-6,6,len=13) #---- M4a: smirt (in sirt) mod4a <- sirt::smirt(dat,Qmatrix=Q,irtmodel="comp", theta.k=theta.k, maxiter=30) summary(mod4a) #---- M4b: rasch.mml2 (in sirt) mod4b <- sirt::rasch.mml2(dat,Q=Q,theta.k=theta.k, mmliter=30) summary(mod4b) #---- M4c: gdm (in CDM) mod4c <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, skillspace="normal", Qmatrix=Q, maxiter=30, centered.latent=TRUE ) summary(mod4c) #---- M4d: tam.mml (in TAM) mod4d <- TAM::tam.mml( resp=dat, Q=Q, control=list(nodes=theta.k, maxiter=30) ) summary(mod4d) #---- M4e: R2noharm (in NOHARM, running from within R using sirt package) noharm.path <- "c:/NOHARM" # covariance matrix P.pattern <- matrix( 1, ncol=3, nrow=3 ) P.init <- 0.8+0*P.pattern diag(P.init) <- 1 # loading matrix F.pattern <- 0*Q F.init <- Q # estimate model mod4e <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex4e", noharm.path=noharm.path, dec="," ) summary(mod4e) #---- M4f: mirt (in mirt) cmodel <- mirt::mirt.model(" F1=1-4 F2=5-8 F3=9-12 # equal item slopes correspond to the Rasch model CONSTRAIN=(1-4, a1), (5-8, a2), (9-12,a3) COV=F1*F2, F1*F3, F2*F3 " ) mod4f <- mirt::mirt(dat, cmodel, verbose=TRUE) summary(mod4f) #***************************************************** # Model 5: 3-dimensional 2PL model #***************************************************** #---- M5a: smirt (in sirt) mod5a <- sirt::smirt(dat,Qmatrix=Q,irtmodel="comp", est.a="2PL", theta.k=theta.k, maxiter=30) summary(mod5a) #---- M5b: rasch.mml2 (in sirt) mod5b <- sirt::rasch.mml2(dat,Q=Q,theta.k=theta.k,est.a=1:12, mmliter=30) summary(mod5b) #---- M5c: gdm (in CDM) mod5c <- CDM::gdm( dat, irtmodel="2PL", theta.k=theta.k, skillspace="loglinear", Qmatrix=Q, maxiter=30, centered.latent=TRUE, standardized.latent=TRUE) summary(mod5c) #---- M5d: tam.mml (in TAM) mod5d <- TAM::tam.mml.2pl( resp=dat, Q=Q, control=list(nodes=theta.k, maxiter=30) ) summary(mod5d) #---- M5e: R2noharm (in NOHARM, running from within R using sirt package) noharm.path <- "c:/NOHARM" # covariance matrix P.pattern <- matrix( 1, ncol=3, nrow=3 ) diag(P.pattern) <- 0 P.init <- 0.8+0*P.pattern diag(P.init) <- 1 # loading matrix F.pattern <- Q F.init <- Q # estimate model mod5e <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex5e", noharm.path=noharm.path, dec="," ) summary(mod5e) #---- M5f: mirt (in mirt) cmodel <- mirt::mirt.model(" F1=1-4 F2=5-8 F3=9-12 COV=F1*F2, F1*F3, F2*F3 " ) mod5f <- mirt::mirt(dat, cmodel, verbose=TRUE) summary(mod5f) #***************************************************** # Model 6: Network models (Graphical models) #***************************************************** #---- M6a: Ising model using the IsingFit package (undirected graph) # - fit Ising model using the "OR rule" (AND=FALSE) mod6a <- IsingFit::IsingFit(x=dat, family="binomial", AND=FALSE) summary(mod6a) ## Network Density: 0.29 ## Gamma: 0.25 ## Rule used: Or-rule # plot results qgraph::qgraph(mod6a$weiadj,fade=FALSE) #**-- graph estimation using pcalg package # some packages from Bioconductor must be downloaded at first (if not yet done) if (FALSE){ # set 'if (TRUE)' if packages should be downloaded source("http://bioconductor.org/biocLite.R") biocLite("RBGL") biocLite("Rgraphviz") } #---- M6b: graph estimation based on Pearson correlations V <- colnames(dat) n <- nrow(dat) mod6b <- pcalg::pc(suffStat=list(C=stats::cor(dat), n=n ), indepTest=gaussCItest, ## indep.test: partial correlations alpha=0.05, labels=V, verbose=TRUE) plot(mod6b) # plot in qgraph package qgraph::qgraph(mod6b, label.color=rep( c( "red", "blue","darkgreen" ), each=4 ), edge.color="black") summary(mod6b) #---- M6c: graph estimation based on tetrachoric correlations mod6c <- pcalg::pc(suffStat=list(C=sirt::tetrachoric2(dat)$rho, n=n ), indepTest=gaussCItest, alpha=0.05, labels=V, verbose=TRUE) plot(mod6c) summary(mod6c) #---- M6d: Statistical implicative analysis (in sirt) mod6d <- sirt::sia.sirt(dat, significance=.85 ) # plot results with igraph and qgraph package plot( mod6d$igraph.obj, vertex.shape="rectangle", vertex.size=30 ) qgraph::qgraph( mod6d$adj.matrix ) #***************************************************** # Model 7: Latent class analysis with 3 classes #***************************************************** #---- M7a: randomLCA (in randomLCA) # - use two trials of starting values mod7a <- randomLCA::randomLCA(dat,nclass=3, notrials=2, verbose=TRUE) summary(mod7a) plot(mod7a,type="l", xlab="Item") #---- M7b: rasch.mirtlc (in sirt) mod7b <- sirt::rasch.mirtlc( dat, Nclasses=3,seed=-30, nstarts=2 ) summary(mod7b) matplot( t(mod7b$pjk), type="l", xlab="Item" ) #---- M7c: poLCA (in poLCA) # define formula for outcomes f7c <- paste0( "cbind(", paste0(colnames(dat),collapse=","), ") ~ 1 " ) dat1 <- as.data.frame( dat + 1 ) # poLCA needs integer values from 1,2,.. mod7c <- poLCA::poLCA( stats::as.formula(f7c),dat1,nclass=3, verbose=TRUE) plot(mod7c) #---- M7d: gom.em (in sirt) # - the latent class model is a special grade of membership model mod7d <- sirt::gom.em( dat, K=3, problevels=c(0,1), model="GOM" ) summary(mod7d) #---- - M7e: mirt (in mirt) # define three latent classes Theta <- diag(3) # define mirt model I <- ncol(dat) # I=12 mirtmodel <- mirt::mirt.model(" C1=1-12 C2=1-12 C3=1-12 ") # get initial parameter values mod.pars <- mirt::mirt(dat, model=mirtmodel, pars="values") # modify parameters: only slopes refer to item-class probabilities set.seed(9976) # set starting values for class specific item probabilities mod.pars[ mod.pars$name=="d","value" ] <- 0 mod.pars[ mod.pars$name=="d","est" ] <- FALSE b1 <- stats::qnorm( colMeans( dat ) ) mod.pars[ mod.pars$name=="a1","value" ] <- b1 # random starting values for other classes mod.pars[ mod.pars$name %in% c("a2","a3"),"value" ] <- b1 + stats::runif(12*2,-1,1) mod.pars #** define prior for latent class analysis lca_prior <- function(Theta,Etable){ # number of latent Theta classes TP <- nrow(Theta) # prior in initial iteration if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) } # process Etable (this is correct for datasets without missing data) if ( ! is.null(Etable) ){ # sum over correct and incorrect expected responses prior <- ( rowSums(Etable[, seq(1,2*I,2)]) + rowSums(Etable[,seq(2,2*I,2)]) )/I } prior <- prior / sum(prior) return(prior) } #** estimate model mod7e <- mirt::mirt(dat, mirtmodel, pars=mod.pars, verbose=TRUE, technical=list( customTheta=Theta, customPriorFun=lca_prior) ) # compare estimated results print(mod7e) summary(mod7b) # The number of estimated parameters is incorrect because mirt does not correctly count # estimated parameters from the user customized prior distribution. mod7e@nest <- as.integer(sum(mod.pars$est) + 2) # two additional class probabilities # extract log-likelihood mod7e@logLik # compute AIC and BIC ( AIC <- -2*mod7e@logLik+2*mod7e@nest ) ( BIC <- -2*mod7e@logLik+log(mod7e@Data$N)*mod7e@nest ) # RMSEA and SRMSR fit statistic mirt::M2(mod7e) # TLI and CFI does not make sense in this example #** extract item parameters sirt::mirt.wrapper.coef(mod7e) #** extract class-specific item-probabilities probs <- apply( coef1[, c("a1","a2","a3") ], 2, stats::plogis ) matplot( probs, type="l", xlab="Item", main="mirt::mirt") #** inspect estimated distribution mod7e@Theta mod7e@Prior[[1]] #***************************************************** # Model 8: Mixed Rasch model with two classes #***************************************************** #---- M8a: raschmix (in psychomix) mod8a <- psychomix::raschmix(data=as.matrix(dat), k=2, scores="saturated") summary(mod8a) #---- M8b: mrm (in mRm) mod8b <- mRm::mrm(data.matrix=dat, cl=2) mod8b$conv.to.bound plot(mod8b) print(mod8b) #---- M8c: mirt (in mirt) #* define theta grid theta.k <- seq( -5, 5, len=9 ) TP <- length(theta.k) Theta <- matrix( 0, nrow=2*TP, ncol=4) Theta[1:TP,1:2] <- cbind(theta.k, 1 ) Theta[1:TP + TP,3:4] <- cbind(theta.k, 1 ) Theta # define model I <- ncol(dat) # I=12 mirtmodel <- mirt::mirt.model(" F1a=1-12 # slope Class 1 F1b=1-12 # difficulty Class 1 F2a=1-12 # slope Class 2 F2b=1-12 # difficulty Class 2 CONSTRAIN=(1-12,a1),(1-12,a3) ") # get initial parameter values mod.pars <- mirt::mirt(dat, model=mirtmodel, pars="values") # set starting values for class specific item probabilities mod.pars[ mod.pars$name=="d","value" ] <- 0 mod.pars[ mod.pars$name=="d","est" ] <- FALSE mod.pars[ mod.pars$name=="a1","value" ] <- 1 mod.pars[ mod.pars$name=="a3","value" ] <- 1 # initial values difficulties b1 <- stats::qlogis( colMeans(dat) ) mod.pars[ mod.pars$name=="a2","value" ] <- b1 mod.pars[ mod.pars$name=="a4","value" ] <- b1 + stats::runif(I, -1, 1) #* define prior for mixed Rasch analysis mixed_prior <- function(Theta,Etable){ NC <- 2 # number of theta classes TP <- nrow(Theta) / NC prior1 <- stats::dnorm( Theta[1:TP,1] ) prior1 <- prior1 / sum(prior1) if ( is.null(Etable) ){ prior <- c( prior1, prior1 ) } if ( ! is.null(Etable) ){ prior <- ( rowSums( Etable[, seq(1,2*I,2)] ) + rowSums( Etable[,seq(2,2*I,2)]) )/I a1 <- stats::aggregate( prior, list( rep(1:NC, each=TP) ), sum ) a1[,2] <- a1[,2] / sum( a1[,2]) # print some information during estimation cat( paste0( " Class proportions: ", paste0( round(a1[,2], 3 ), collapse=" " ) ), "\n") a1 <- rep( a1[,2], each=TP ) # specify mixture of two normal distributions prior <- a1*c(prior1,prior1) } prior <- prior / sum(prior) return(prior) } #* estimate model mod8c <- mirt::mirt(dat, mirtmodel, pars=mod.pars, verbose=TRUE, technical=list( customTheta=Theta, customPriorFun=mixed_prior ) ) # Like in Model 7e, the number of estimated parameters must be included. mod8c@nest <- as.integer(sum(mod.pars$est) + 1) # two class proportions and therefore one probability is freely estimated. #* extract item parameters sirt::mirt.wrapper.coef(mod8c) #* estimated distribution mod8c@Theta mod8c@Prior #---- M8d: tamaan (in TAM) tammodel <- " ANALYSIS: TYPE=MIXTURE ; NCLASSES(2); NSTARTS(7,20); LAVAAN MODEL: F=~ A1__C4 F ~~ F ITEM TYPE: ALL(Rasch); " mod8d <- TAM::tamaan( tammodel, resp=dat ) summary(mod8d) # plot item parameters I <- 12 ipars <- mod8d$itempartable_MIXTURE[ 1:I, ] plot( 1:I, ipars[,3], type="o", ylim=range( ipars[,3:4] ), pch=16, xlab="Item", ylab="Item difficulty") lines( 1:I, ipars[,4], type="l", col=2, lty=2) points( 1:I, ipars[,4], col=2, pch=2) #***************************************************** # Model 9: Mixed 2PL model with two classes #***************************************************** #---- M9a: tamaan (in TAM) tammodel <- " ANALYSIS: TYPE=MIXTURE ; NCLASSES(2); NSTARTS(10,30); LAVAAN MODEL: F=~ A1__C4 F ~~ F ITEM TYPE: ALL(2PL); " mod9a <- TAM::tamaan( tammodel, resp=dat ) summary(mod9a) #***************************************************** # Model 10: Rasch testlet model #***************************************************** #---- M10a: tam.fa (in TAM) dims <- substring( colnames(dat),1,1 ) # define dimensions mod10a <- TAM::tam.fa( resp=dat, irtmodel="bifactor1", dims=dims, control=list(maxiter=60) ) summary(mod10a) #---- M10b: mirt (in mirt) cmodel <- mirt::mirt.model(" G=1-12 A=1-4 B=5-8 C=9-12 CONSTRAIN=(1-12,a1), (1-4, a2), (5-8, a3), (9-12,a4) ") mod10b <- mirt::mirt(dat, model=cmodel, verbose=TRUE) summary(mod10b) coef(mod10b) mod10b@logLik # equivalent is slot( mod10b, "logLik") #alternatively, using a dimensional reduction approach (faster and better accuracy) cmodel <- mirt::mirt.model(" G=1-12 CONSTRAIN=(1-12,a1), (1-4, a2), (5-8, a3), (9-12,a4) ") item_bundles <- rep(c(1,2,3), each=4) mod10b1 <- mirt::bfactor(dat, model=item_bundles, model2=cmodel, verbose=TRUE) coef(mod10b1) #---- M10c: smirt (in sirt) # define Q-matrix Qmatrix <- matrix(0,12,4) Qmatrix[,1] <- 1 Qmatrix[ cbind( 1:12, match( dims, unique(dims)) +1 ) ] <- 1 # uncorrelated factors variance.fixed <- cbind( c(1,1,1,2,2,3), c(2,3,4,3,4,4), 0 ) # estimate model mod10c <- sirt::smirt( dat, Qmatrix=Qmatrix, irtmodel="comp", variance.fixed=variance.fixed, qmcnodes=1000, maxiter=60) summary(mod10c) #***************************************************** # Model 11: Bifactor model #***************************************************** #---- M11a: tam.fa (in TAM) dims <- substring( colnames(dat),1,1 ) # define dimensions mod11a <- TAM::tam.fa( resp=dat, irtmodel="bifactor2", dims=dims, control=list(maxiter=60) ) summary(mod11a) #---- M11b: bfactor (in mirt) dims1 <- match( dims, unique(dims) ) mod11b <- mirt::bfactor(dat, model=dims1, verbose=TRUE) summary(mod11b) coef(mod11b) mod11b@logLik #---- M11c: smirt (in sirt) # define Q-matrix Qmatrix <- matrix(0,12,4) Qmatrix[,1] <- 1 Qmatrix[ cbind( 1:12, match( dims, unique(dims)) +1 ) ] <- 1 # uncorrelated factors variance.fixed <- cbind( c(1,1,1,2,2,3), c(2,3,4,3,4,4), 0 ) # estimate model mod11c <- sirt::smirt( dat, Qmatrix=Qmatrix, irtmodel="comp", est.a="2PL", variance.fixed=variance.fixed, qmcnodes=1000, maxiter=60) summary(mod11c) #***************************************************** # Model 12: Located latent class model: Rasch model with three theta classes #***************************************************** # use 10th item as the reference item ref.item <- 10 # ability grid theta.k <- seq(-4,4,len=9) #---- M12a: rasch.mirtlc (in sirt) mod12a <- sirt::rasch.mirtlc(dat, Nclasses=3, modeltype="MLC1", ref.item=ref.item) summary(mod12a) #---- M12b: gdm (in CDM) theta.k <- seq(-1, 1, len=3) # initial matrix b.constraint <- matrix( c(10,1,0), nrow=1,ncol=3) # estimate model mod12b <- CDM::gdm( dat, theta.k=theta.k, skillspace="est", irtmodel="1PL", b.constraint=b.constraint, maxiter=200) summary(mod12b) #---- M12c: mirt (in mirt) items <- colnames(dat) # define three latent classes Theta <- diag(3) # define mirt model I <- ncol(dat) # I=12 mirtmodel <- mirt::mirt.model(" C1=1-12 C2=1-12 C3=1-12 CONSTRAIN=(1-12,a1),(1-12,a2),(1-12,a3) ") # get parameters mod.pars <- mirt(dat, model=mirtmodel, pars="values") # set starting values for class specific item probabilities mod.pars[ mod.pars$name=="d","value" ] <- stats::qlogis( colMeans(dat,na.rm=TRUE) ) # set item difficulty of reference item to zero ind <- which( ( paste(mod.pars$item)==items[ref.item] ) & ( ( paste(mod.pars$name)=="d" ) ) ) mod.pars[ ind,"value" ] <- 0 mod.pars[ ind,"est" ] <- FALSE # initial values for a1, a2 and a3 mod.pars[ mod.pars$name %in% c("a1","a2","a3"),"value" ] <- c(-1,0,1) mod.pars #* define prior for latent class analysis lca_prior <- function(Theta,Etable){ # number of latent Theta classes TP <- nrow(Theta) # prior in initial iteration if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) } # process Etable (this is correct for datasets without missing data) if ( ! is.null(Etable) ){ # sum over correct and incorrect expected responses prior <- ( rowSums( Etable[, seq(1,2*I,2)] ) + rowSums( Etable[, seq(2,2*I,2)] ) )/I } prior <- prior / sum(prior) return(prior) } #* estimate model mod12c <- mirt(dat, mirtmodel, technical=list( customTheta=Theta, customPriorFun=lca_prior), pars=mod.pars, verbose=TRUE ) # estimated parameters from the user customized prior distribution. mod12c@nest <- as.integer(sum(mod.pars$est) + 2) #* extract item parameters coef1 <- sirt::mirt.wrapper.coef(mod12c) #* inspect estimated distribution mod12c@Theta coef1$coef[1,c("a1","a2","a3")] mod12c@Prior[[1]] #***************************************************** # Model 13: Multidimensional model with discrete traits #***************************************************** # define Q-Matrix Q <- matrix( 0, nrow=12,ncol=3) Q[1:4,1] <- 1 Q[5:8,2] <- 1 Q[9:12,3] <- 1 # define discrete theta distribution with 3 dimensions Theta <- scan(what="character",nlines=1) 000 100 010 001 110 101 011 111 Theta <- as.numeric( unlist( lapply( Theta, strsplit, split="") ) ) Theta <- matrix(Theta, 8, 3, byrow=TRUE ) Theta #---- Model 13a: din (in CDM) mod13a <- CDM::din( dat, q.matrix=Q, rule="DINA") summary(mod13a) # compare used Theta distributions cbind( Theta, mod13a$attribute.patt.splitted) #---- Model 13b: gdm (in CDM) mod13b <- CDM::gdm( dat, Qmatrix=Q, theta.k=Theta, skillspace="full") summary(mod13b) #---- Model 13c: mirt (in mirt) # define mirt model I <- ncol(dat) # I=12 mirtmodel <- mirt::mirt.model(" F1=1-4 F2=5-8 F3=9-12 ") # get parameters mod.pars <- mirt(dat, model=mirtmodel, pars="values") # starting values d parameters (transformed guessing parameters) ind <- which( mod.pars$name=="d" ) mod.pars[ind,"value"] <- stats::qlogis(.2) # starting values transformed slipping parameters ind <- which( ( mod.pars$name %in% paste0("a",1:3) ) & ( mod.pars$est ) ) mod.pars[ind,"value"] <- stats::qlogis(.8) - stats::qlogis(.2) mod.pars #* define prior for latent class analysis lca_prior <- function(Theta,Etable){ TP <- nrow(Theta) if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) } if ( ! is.null(Etable) ){ prior <- ( rowSums( Etable[, seq(1,2*I,2)] ) + rowSums( Etable[, seq(2,2*I,2)] ) )/I } prior <- prior / sum(prior) return(prior) } #* estimate model mod13c <- mirt(dat, mirtmodel, technical=list( customTheta=Theta, customPriorFun=lca_prior), pars=mod.pars, verbose=TRUE ) # estimated parameters from the user customized prior distribution. mod13c@nest <- as.integer(sum(mod.pars$est) + 2) #* extract item parameters coef13c <- sirt::mirt.wrapper.coef(mod13c)$coef #* inspect estimated distribution mod13c@Theta mod13c@Prior[[1]] #-* comparisons of estimated parameters # extract guessing and slipping parameters from din dfr <- coef(mod13a)[, c("guess","slip") ] colnames(dfr) <- paste0("din.",c("guess","slip") ) # estimated parameters from gdm dfr$gdm.guess <- stats::plogis(mod13b$item$b) dfr$gdm.slip <- 1 - stats::plogis( rowSums(mod13b$item[,c("b.Cat1","a.F1","a.F2","a.F3")] ) ) # estimated parameters from mirt dfr$mirt.guess <- stats::plogis( coef13c$d ) dfr$mirt.slip <- 1 - stats::plogis( rowSums(coef13c[,c("d","a1","a2","a3")]) ) # comparison round(dfr[, c(1,3,5,2,4,6)],3) ## din.guess gdm.guess mirt.guess din.slip gdm.slip mirt.slip ## A1 0.691 0.684 0.686 0.000 0.000 0.000 ## A2 0.491 0.489 0.489 0.031 0.038 0.036 ## A3 0.302 0.300 0.300 0.184 0.193 0.190 ## A4 0.244 0.239 0.240 0.337 0.340 0.339 ## B1 0.568 0.579 0.577 0.163 0.148 0.151 ## B2 0.329 0.344 0.340 0.344 0.326 0.329 ## B3 0.817 0.827 0.825 0.014 0.007 0.009 ## B4 0.431 0.463 0.456 0.104 0.089 0.092 ## C1 0.188 0.191 0.189 0.013 0.013 0.013 ## C2 0.050 0.050 0.050 0.239 0.238 0.239 ## C3 0.000 0.002 0.001 0.065 0.065 0.065 ## C4 0.000 0.004 0.000 0.212 0.212 0.212 # estimated class sizes dfr <- data.frame( "Theta"=Theta, "din"=mod13a$attribute.patt$class.prob, "gdm"=mod13b$pi.k, "mirt"=mod13c@Prior[[1]]) # comparison round(dfr,3) ## Theta.1 Theta.2 Theta.3 din gdm mirt ## 1 0 0 0 0.039 0.041 0.040 ## 2 1 0 0 0.008 0.009 0.009 ## 3 0 1 0 0.009 0.007 0.008 ## 4 0 0 1 0.394 0.417 0.412 ## 5 1 1 0 0.011 0.011 0.011 ## 6 1 0 1 0.017 0.042 0.037 ## 7 0 1 1 0.042 0.008 0.016 ## 8 1 1 1 0.480 0.465 0.467 #***************************************************** # Model 14: DINA model with two skills #***************************************************** # define some simple Q-Matrix (does not really make in this application) Q <- matrix( 0, nrow=12,ncol=2) Q[1:4,1] <- 1 Q[5:8,2] <- 1 Q[9:12,1:2] <- 1 # define discrete theta distribution with 3 dimensions Theta <- scan(what="character",nlines=1) 00 10 01 11 Theta <- as.numeric( unlist( lapply( Theta, strsplit, split="") ) ) Theta <- matrix(Theta, 4, 2, byrow=TRUE ) Theta #---- Model 14a: din (in CDM) mod14a <- CDM::din( dat, q.matrix=Q, rule="DINA") summary(mod14a) # compare used Theta distributions cbind( Theta, mod14a$attribute.patt.splitted) #---- Model 14b: mirt (in mirt) # define mirt model I <- ncol(dat) # I=12 mirtmodel <- mirt::mirt.model(" F1=1-4 F2=5-8 (F1*F2)=9-12 ") #-> constructions like (F1*F2*F3) are also allowed in mirt.model # get parameters mod.pars <- mirt(dat, model=mirtmodel, pars="values") # starting values d parameters (transformed guessing parameters) ind <- which( mod.pars$name=="d" ) mod.pars[ind,"value"] <- stats::qlogis(.2) # starting values transformed slipping parameters ind <- which( ( mod.pars$name %in% paste0("a",1:3) ) & ( mod.pars$est ) ) mod.pars[ind,"value"] <- stats::qlogis(.8) - stats::qlogis(.2) mod.pars #* use above defined prior lca_prior # lca_prior <- function(prior,Etable) ... #* estimate model mod14b <- mirt(dat, mirtmodel, technical=list( customTheta=Theta, customPriorFun=lca_prior), pars=mod.pars, verbose=TRUE ) # estimated parameters from the user customized prior distribution. mod14b@nest <- as.integer(sum(mod.pars$est) + 2) #* extract item parameters coef14b <- sirt::mirt.wrapper.coef(mod14b)$coef #-* comparisons of estimated parameters # extract guessing and slipping parameters from din dfr <- coef(mod14a)[, c("guess","slip") ] colnames(dfr) <- paste0("din.",c("guess","slip") ) # estimated parameters from mirt dfr$mirt.guess <- stats::plogis( coef14b$d ) dfr$mirt.slip <- 1 - stats::plogis( rowSums(coef14b[,c("d","a1","a2","a3")]) ) # comparison round(dfr[, c(1,3,2,4)],3) ## din.guess mirt.guess din.slip mirt.slip ## A1 0.674 0.671 0.030 0.030 ## A2 0.423 0.420 0.049 0.050 ## A3 0.258 0.255 0.224 0.225 ## A4 0.245 0.243 0.394 0.395 ## B1 0.534 0.543 0.166 0.164 ## B2 0.338 0.347 0.382 0.380 ## B3 0.796 0.802 0.016 0.015 ## B4 0.421 0.436 0.142 0.140 ## C1 0.850 0.851 0.000 0.000 ## C2 0.480 0.480 0.097 0.097 ## C3 0.746 0.746 0.026 0.026 ## C4 0.575 0.577 0.136 0.137 # estimated class sizes dfr <- data.frame( "Theta"=Theta, "din"=mod13a$attribute.patt$class.prob, "mirt"=mod14b@Prior[[1]]) # comparison round(dfr,3) ## Theta.1 Theta.2 din mirt ## 1 0 0 0.357 0.369 ## 2 1 0 0.044 0.049 ## 3 0 1 0.047 0.031 ## 4 1 1 0.553 0.551 #***************************************************** # Model 15: Rasch model with non-normal distribution #***************************************************** # A non-normal theta distributed is specified by log-linear smoothing # the distribution as described in # Xu, X., & von Davier, M. (2008). Fitting the structured general diagnostic model # to NAEP data. ETS Research Report ETS RR-08-27. Princeton, ETS. # define theta grid theta.k <- matrix( seq(-4,4,len=15), ncol=1 ) # define design matrix for smoothing (up to cubic moments) delta.designmatrix <- cbind( 1, theta.k, theta.k^2, theta.k^3 ) # constrain item difficulty of fifth item (item B1) to zero b.constraint <- matrix( c(5,1,0), ncol=3 ) #---- Model 15a: gdm (in CDM) mod15a <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, b.constraint=b.constraint ) summary(mod15a) # plot estimated distribution graphics::barplot( mod15a$pi.k[,1], space=0, names.arg=round(theta.k[,1],2), main="Estimated Skewed Distribution (gdm function)") #---- Model 15b: mirt (in mirt) # define mirt model mirtmodel <- mirt::mirt.model(" F=1-12 ") # get parameters mod.pars <- mirt::mirt(dat, model=mirtmodel, pars="values", itemtype="Rasch") # fix variance (just for correct counting of parameters) mod.pars[ mod.pars$name=="COV_11", "est"] <- FALSE # fix item difficulty ind <- which( ( mod.pars$item=="B1" ) & ( mod.pars$name=="d" ) ) mod.pars[ ind, "value"] <- 0 mod.pars[ ind, "est"] <- FALSE # define prior loglinear_prior <- function(Theta,Etable){ TP <- nrow(Theta) if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) } # process Etable (this is correct for datasets without missing data) if ( ! is.null(Etable) ){ # sum over correct and incorrect expected responses prior <- ( rowSums( Etable[, seq(1,2*I,2)] ) + rowSums( Etable[, seq(2,2*I,2)] ) )/I # smooth prior using the above design matrix and a log-linear model # see Xu & von Davier (2008). y <- log( prior + 1E-15 ) lm1 <- lm( y ~ 0 + delta.designmatrix, weights=prior ) prior <- exp(fitted(lm1)) # smoothed prior } prior <- prior / sum(prior) return(prior) } #* estimate model mod15b <- mirt::mirt(dat, mirtmodel, technical=list( customTheta=theta.k, customPriorFun=loglinear_prior ), pars=mod.pars, verbose=TRUE ) # estimated parameters from the user customized prior distribution. mod15b@nest <- as.integer(sum(mod.pars$est) + 3) #* extract item parameters coef1 <- sirt::mirt.wrapper.coef(mod15b)$coef #** compare estimated item parameters dfr <- data.frame( "gdm"=mod15a$item$b.Cat1, "mirt"=coef1$d ) rownames(dfr) <- colnames(dat) round(t(dfr),4) ## A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 ## gdm 0.9818 0.1538 -0.7837 -1.3197 0 -1.0902 1.6088 -0.170 1.9778 0.006 1.1859 0.135 ## mirt 0.9829 0.1548 -0.7826 -1.3186 0 -1.0892 1.6099 -0.169 1.9790 0.007 1.1870 0.136 # compare estimated theta distribution dfr <- data.frame( "gdm"=mod15a$pi.k, "mirt"=mod15b@Prior[[1]] ) round(t(dfr),4) ## 1 2 3 4 5 6 7 8 9 10 11 12 13 ## gdm 0 0 1e-04 9e-04 0.0056 0.0231 0.0652 0.1299 0.1881 0.2038 0.1702 0.1129 0.0612 ## mirt 0 0 1e-04 9e-04 0.0056 0.0232 0.0653 0.1300 0.1881 0.2038 0.1702 0.1128 0.0611 ## 14 15 ## gdm 0.0279 0.011 ## mirt 0.0278 0.011 ## End(Not run)
Some simulated datasets from Reckase (2009).
data(data.reck21) data(data.reck61DAT1) data(data.reck61DAT2) data(data.reck73C1a) data(data.reck73C1b) data(data.reck75C2) data(data.reck78ExA) data(data.reck79ExB)
data(data.reck21) data(data.reck61DAT1) data(data.reck61DAT2) data(data.reck73C1a) data(data.reck73C1b) data(data.reck75C2) data(data.reck78ExA) data(data.reck79ExB)
The format of the data.reck21
(Table 2.1, p. 45) is:
List of 2
$ data: num [1:2500, 1:50] 0 0 0 1 1 0 0 0 1 0 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:50] "I0001" "I0002" "I0003" "I0004" ...
$ pars:'data.frame':
..$ a: num [1:50] 1.83 1.38 1.47 1.53 0.88 0.82 1.02 1.19 1.15 0.18 ...
..$ b: num [1:50] 0.91 0.81 0.06 -0.8 0.24 0.99 1.23 -0.47 2.78 -3.85 ...
..$ c: num [1:50] 0 0 0 0.25 0.21 0.29 0.26 0.19 0 0.21 ...
The format of the datasets data.reck61DAT1
and
data.reck61DAT2
(Table 6.1, p. 153) is
List of 4
$ data : num [1:2500, 1:30] 1 0 0 1 1 0 0 1 1 0 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:30] "A01" "A02" "A03" "A04" ...
$ pars :'data.frame':
..$ a1: num [1:30] 0.747 0.46 0.861 1.014 0.552 ...
..$ a2: num [1:30] 0.025 0.0097 0.0067 0.008 0.0204 0.0064 0.0861 ...
..$ a3: num [1:30] 0.1428 0.0692 0.404 0.047 0.1482 ...
..$ d : num [1:30] 0.183 -0.192 -0.466 -0.434 -0.443 ...
$ mu : num [1:3] -0.4 -0.7 0.1
$ sigma: num [1:3, 1:3] 1.21 0.297 1.232 0.297 0.81 ...
The dataset data.reck61DAT2
has correlated dimensions while
data.reck61DAT1
has uncorrelated dimensions.
Datasets data.reck73C1a
and data.reck73C1b
use item parameters
from Table 7.3 (p. 188). The dataset C1a
has uncorrelated dimensions,
while C1b
has perfectly correlated dimensions. The items are sensitive to
3 dimensions. The format of the datasets is
List of 4
$ data : num [1:2500, 1:30] 1 0 1 1 1 0 1 1 1 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:30] "A01" "A02" "A03" "A04" ...
$ pars :'data.frame': 30 obs. of 4 variables:
..$ a1: num [1:30] 0.747 0.46 0.861 1.014 0.552 ...
..$ a2: num [1:30] 0.025 0.0097 0.0067 0.008 0.0204 0.0064 ...
..$ a3: num [1:30] 0.1428 0.0692 0.404 0.047 0.1482 ...
..$ d : num [1:30] 0.183 -0.192 -0.466 -0.434 -0.443 ...
$ mu : num [1:3] 0 0 0
$ sigma: num [1:3, 1:3] 0.167 0.236 0.289 0.236 0.334 ...
The dataset data.reck75C2
is simulated using item parameters
from Table 7.5 (p. 191). It contains items which are sensitive to only
one dimension but individuals which have abilities in three
uncorrelated dimensions. The format is
List of 4
$ data : num [1:2500, 1:30] 0 0 1 1 1 0 0 1 1 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:30] "A01" "A02" "A03" "A04" ...
$ pars :'data.frame': 30 obs. of 4 variables:
..$ a1: num [1:30] 0.56 0.48 0.67 0.57 0.54 0.74 0.7 0.59 0.63 0.64 ...
..$ a2: num [1:30] 0.62 0.53 0.63 0.69 0.58 0.69 0.75 0.63 0.64 0.64 ...
..$ a3: num [1:30] 0.46 0.42 0.43 0.51 0.41 0.48 0.46 0.5 0.51 0.46 ...
..$ d : num [1:30] 0.1 0.06 -0.38 0.46 0.14 0.31 0.06 -1.23 0.47 1.06 ...
$ mu : num [1:3] 0 0 0
$ sigma: num [1:3, 1:3] 1 0 0 0 1 0 0 0 1
The dataset data.reck78ExA
contains simulated item responses
from Table 7.8 (p. 204 ff.). There are three item clusters and
two ability dimensions. The format is
List of 4
$ data : num [1:2500, 1:50] 0 1 1 0 1 0 0 0 0 0 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:50] "A01" "A02" "A03" "A04" ...
$ pars :'data.frame': 50 obs. of 3 variables:
..$ a1: num [1:50] 0.889 1.057 1.047 1.178 1.029 ...
..$ a2: num [1:50] 0.1399 0.0432 0.016 0.0231 0.2347 ...
..$ d : num [1:50] 0.2724 1.2335 -0.0918 -0.2372 0.8471 ...
$ mu : num [1:2] 0 0
$ sigma: num [1:2, 1:2] 1 0 0 1
The dataset data.reck79ExB
contains simulated item responses
from Table 7.9 (p. 207 ff.). There are three item clusters and
three ability dimensions. The format is
List of 4
$ data : num [1:2500, 1:50] 1 1 0 1 0 0 0 1 1 0 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:50] "A01" "A02" "A03" "A04" ...
$ pars :'data.frame': 50 obs. of 4 variables:
..$ a1: num [1:50] 0.895 1.032 1.036 1.163 1.022 ...
..$ a2: num [1:50] 0.052 0.132 0.144 0.13 0.165 ...
..$ a3: num [1:50] 0.0722 0.1923 0.0482 0.1321 0.204 ...
..$ d : num [1:50] 0.2724 1.2335 -0.0918 -0.2372 0.8471 ...
$ mu : num [1:3] 0 0 0
$ sigma: num [1:3, 1:3] 1 0 0 0 1 0 0 0 1
Simulated datasets
Reckase, M. (2009). Multidimensional item response theory. New York: Springer. doi:10.1007/978-0-387-89976-3
## Not run: ############################################################################# # EXAMPLE 1: data.reck21 dataset, Table 2.1, p. 45 ############################################################################# data(data.reck21) dat <- data.reck21$dat # extract dataset # items with zero guessing parameters guess0 <- c( 1, 2, 3, 9,11,27,30,35,45,49,50 ) I <- ncol(dat) #*** # Model 1: 3PL estimation using rasch.mml2 est.c <- est.a <- 1:I est.c[ guess0 ] <- 0 mod1 <- sirt::rasch.mml2( dat, est.a=est.a, est.c=est.c, mmliter=300 ) summary(mod1) #*** # Model 2: 3PL estimation using smirt Q <- matrix(1,I,1) mod2 <- sirt::smirt( dat, Qmatrix=Q, est.a="2PL", est.c=est.c, increment.factor=1.01) summary(mod2) #*** # Model 3: estimation in mirt package library(mirt) itemtype <- rep("3PL", I ) itemtype[ guess0 ] <- "2PL" mod3 <- mirt::mirt(dat, 1, itemtype=itemtype, verbose=TRUE) summary(mod3) c3 <- unlist( coef(mod3) )[ 1:(4*I) ] c3 <- matrix( c3, I, 4, byrow=TRUE ) # compare estimates of rasch.mml2, smirt and true parameters round( cbind( mod1$item$c, mod2$item$c,c3[,3],data.reck21$pars$c ), 2 ) round( cbind( mod1$item$a, mod2$item$a.Dim1,c3[,1], data.reck21$pars$a ), 2 ) round( cbind( mod1$item$b, mod2$item$b.Dim1 / mod2$item$a.Dim1, - c3[,2] / c3[,1], data.reck21$pars$b ), 2 ) ############################################################################# # EXAMPLE 2: data.reck61 dataset, Table 6.1, p. 153 ############################################################################# data(data.reck61DAT1) dat <- data.reck61DAT1$data #*** # Model 1: Exploratory factor analysis #-- Model 1a: tam.fa in TAM library(TAM) mod1a <- TAM::tam.fa( dat, irtmodel="efa", nfactors=3 ) # varimax rotation varimax(mod1a$B.stand) # Model 1b: EFA in NOHARM (Promax rotation) mod1b <- sirt::R2noharm( dat=dat, model.type="EFA", dimensions=3, writename="reck61__3dim_efa", noharm.path="c:/NOHARM",dec=",") summary(mod1b) # Model 1c: EFA with noharm.sirt mod1c <- sirt::noharm.sirt( dat=dat, dimensions=3 ) summary(mod1c) plot(mod1c) # Model 1d: EFA with 2 dimensions in noharm.sirt mod1d <- sirt::noharm.sirt( dat=dat, dimensions=2 ) summary(mod1d) plot(mod1d, efa.load.min=.2) # plot loadings of at least .20 #*** # Model 2: Confirmatory factor analysis #-- Model 2a: tam.fa in TAM dims <- c( rep(1,10), rep(3,10), rep(2,10) ) Qmatrix <- matrix( 0, nrow=30, ncol=3 ) Qmatrix[ cbind( 1:30, dims) ] <- 1 mod2a <- TAM::tam.mml.2pl( dat,Q=Qmatrix, control=list( snodes=1000, QMC=TRUE, maxiter=200) ) summary(mod2a) #-- Model 2b: smirt in sirt mod2b <- sirt::smirt( dat,Qmatrix=Qmatrix, est.a="2PL", maxiter=20, qmcnodes=1000 ) summary(mod2b) #-- Model 2c: rasch.mml2 in sirt mod2c <- sirt::rasch.mml2( dat,Qmatrix=Qmatrix, est.a=1:30, mmliter=200, theta.k=seq(-5,5,len=11) ) summary(mod2c) #-- Model 2d: mirt in mirt cmodel <- mirt::mirt.model(" F1=1-10 F2=21-30 F3=11-20 COV=F1*F2, F1*F3, F2*F3 " ) mod2d <- mirt::mirt(dat, cmodel, verbose=TRUE) summary(mod2d) coef(mod2d) #-- Model 2e: CFA in NOHARM # specify covariance pattern P.pattern <- matrix( 1, ncol=3, nrow=3 ) P.init <- .4*P.pattern diag(P.pattern) <- 0 diag(P.init) <- 1 # fix all entries in the loading matrix to 1 F.pattern <- matrix( 0, nrow=30, ncol=3 ) F.pattern[1:10,1] <- 1 F.pattern[21:30,2] <- 1 F.pattern[11:20,3] <- 1 F.init <- F.pattern # estimate model mod2e <- sirt::R2noharm( dat=dat, model.type="CFA", P.pattern=P.pattern, P.init=P.init, F.pattern=F.pattern, F.init=F.init, writename="reck61__3dim_cfa", noharm.path="c:/NOHARM",dec=",") summary(mod2e) #-- Model 2f: CFA with noharm.sirt mod2f <- sirt::noharm.sirt( dat=dat, Fval=F.init, Fpatt=F.pattern, Pval=P.init, Ppatt=P.pattern ) summary(mod2f) ############################################################################# # EXAMPLE 3: DETECT analysis data.reck78ExA and data.reck79ExB ############################################################################# data(data.reck78ExA) data(data.reck79ExB) #************************ # Example A dat <- data.reck78ExA$data #- estimate person score score <- stats::qnorm( ( rowMeans( dat )+.5 ) / ( ncol(dat) + 1 ) ) #- extract item cluster itemcluster <- substring( colnames(dat), 1, 1 ) #- confirmatory DETECT Item cluster detectA <- sirt::conf.detect( data=dat, score=score, itemcluster=itemcluster ) ## unweighted weighted ## DETECT 0.571 0.571 ## ASSI 0.523 0.523 ## RATIO 0.757 0.757 #- exploratory DETECT analysis detect_explA <- sirt::expl.detect(data=dat, score, nclusters=10, N.est=nrow(dat)/2 ) ## Optimal Cluster Size is 5 (Maximum of DETECT Index) ## N.Cluster N.items N.est N.val size.cluster DETECT.est ASSI.est ## 1 2 50 1250 1250 31-19 0.531 0.404 ## 2 3 50 1250 1250 10-19-21 0.554 0.407 ## 3 4 50 1250 1250 10-19-14-7 0.630 0.509 ## 4 5 50 1250 1250 10-19-3-7-11 0.653 0.546 ## 5 6 50 1250 1250 10-12-7-3-7-11 0.593 0.458 ## 6 7 50 1250 1250 10-12-7-3-7-9-2 0.604 0.474 ## 7 8 50 1250 1250 10-12-7-3-3-9-4-2 0.608 0.481 ## 8 9 50 1250 1250 10-12-7-3-3-5-4-2-4 0.617 0.494 ## 9 10 50 1250 1250 10-5-7-7-3-3-5-4-2-4 0.592 0.460 # cluster membership cluster_membership <- detect_explA$itemcluster$cluster3 # Cluster 1: colnames(dat)[ cluster_membership==1 ] ## [1] "A01" "A02" "A03" "A04" "A05" "A06" "A07" "A08" "A09" "A10" # Cluster 2: colnames(dat)[ cluster_membership==2 ] ## [1] "B11" "B12" "B13" "B14" "B15" "B16" "B17" "B18" "B19" "B20" "B21" "B22" ## [13] "B23" "B25" "B26" "B27" "B28" "B29" "B30" # Cluster 3: colnames(dat)[ cluster_membership==3 ] ## [1] "B24" "C31" "C32" "C33" "C34" "C35" "C36" "C37" "C38" "C39" "C40" "C41" ## [13] "C42" "C43" "C44" "C45" "C46" "C47" "C48" "C49" "C50" #************************ # Example B dat <- data.reck79ExB$data #- estimate person score score <- stats::qnorm( ( rowMeans( dat )+.5 ) / ( ncol(dat) + 1 ) ) #- extract item cluster itemcluster <- substring( colnames(dat), 1, 1 ) #- confirmatory DETECT Item cluster detectB <- sirt::conf.detect( data=dat, score=score, itemcluster=itemcluster ) ## unweighted weighted ## DETECT 0.715 0.715 ## ASSI 0.624 0.624 ## RATIO 0.855 0.855 #- exploratory DETECT analysis detect_explB <- sirt::expl.detect(data=dat, score, nclusters=10, N.est=nrow(dat)/2 ) ## Optimal Cluster Size is 4 (Maximum of DETECT Index) ## ## N.Cluster N.items N.est N.val size.cluster DETECT.est ASSI.est ## 1 2 50 1250 1250 30-20 0.665 0.546 ## 2 3 50 1250 1250 10-20-20 0.686 0.585 ## 3 4 50 1250 1250 10-20-8-12 0.728 0.644 ## 4 5 50 1250 1250 10-6-14-8-12 0.654 0.553 ## 5 6 50 1250 1250 10-6-14-3-12-5 0.659 0.561 ## 6 7 50 1250 1250 10-6-14-3-7-5-5 0.664 0.576 ## 7 8 50 1250 1250 10-6-7-7-3-7-5-5 0.616 0.518 ## 8 9 50 1250 1250 10-6-7-7-3-5-5-5-2 0.612 0.512 ## 9 10 50 1250 1250 10-6-7-7-3-5-3-5-2-2 0.613 0.512 ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: data.reck21 dataset, Table 2.1, p. 45 ############################################################################# data(data.reck21) dat <- data.reck21$dat # extract dataset # items with zero guessing parameters guess0 <- c( 1, 2, 3, 9,11,27,30,35,45,49,50 ) I <- ncol(dat) #*** # Model 1: 3PL estimation using rasch.mml2 est.c <- est.a <- 1:I est.c[ guess0 ] <- 0 mod1 <- sirt::rasch.mml2( dat, est.a=est.a, est.c=est.c, mmliter=300 ) summary(mod1) #*** # Model 2: 3PL estimation using smirt Q <- matrix(1,I,1) mod2 <- sirt::smirt( dat, Qmatrix=Q, est.a="2PL", est.c=est.c, increment.factor=1.01) summary(mod2) #*** # Model 3: estimation in mirt package library(mirt) itemtype <- rep("3PL", I ) itemtype[ guess0 ] <- "2PL" mod3 <- mirt::mirt(dat, 1, itemtype=itemtype, verbose=TRUE) summary(mod3) c3 <- unlist( coef(mod3) )[ 1:(4*I) ] c3 <- matrix( c3, I, 4, byrow=TRUE ) # compare estimates of rasch.mml2, smirt and true parameters round( cbind( mod1$item$c, mod2$item$c,c3[,3],data.reck21$pars$c ), 2 ) round( cbind( mod1$item$a, mod2$item$a.Dim1,c3[,1], data.reck21$pars$a ), 2 ) round( cbind( mod1$item$b, mod2$item$b.Dim1 / mod2$item$a.Dim1, - c3[,2] / c3[,1], data.reck21$pars$b ), 2 ) ############################################################################# # EXAMPLE 2: data.reck61 dataset, Table 6.1, p. 153 ############################################################################# data(data.reck61DAT1) dat <- data.reck61DAT1$data #*** # Model 1: Exploratory factor analysis #-- Model 1a: tam.fa in TAM library(TAM) mod1a <- TAM::tam.fa( dat, irtmodel="efa", nfactors=3 ) # varimax rotation varimax(mod1a$B.stand) # Model 1b: EFA in NOHARM (Promax rotation) mod1b <- sirt::R2noharm( dat=dat, model.type="EFA", dimensions=3, writename="reck61__3dim_efa", noharm.path="c:/NOHARM",dec=",") summary(mod1b) # Model 1c: EFA with noharm.sirt mod1c <- sirt::noharm.sirt( dat=dat, dimensions=3 ) summary(mod1c) plot(mod1c) # Model 1d: EFA with 2 dimensions in noharm.sirt mod1d <- sirt::noharm.sirt( dat=dat, dimensions=2 ) summary(mod1d) plot(mod1d, efa.load.min=.2) # plot loadings of at least .20 #*** # Model 2: Confirmatory factor analysis #-- Model 2a: tam.fa in TAM dims <- c( rep(1,10), rep(3,10), rep(2,10) ) Qmatrix <- matrix( 0, nrow=30, ncol=3 ) Qmatrix[ cbind( 1:30, dims) ] <- 1 mod2a <- TAM::tam.mml.2pl( dat,Q=Qmatrix, control=list( snodes=1000, QMC=TRUE, maxiter=200) ) summary(mod2a) #-- Model 2b: smirt in sirt mod2b <- sirt::smirt( dat,Qmatrix=Qmatrix, est.a="2PL", maxiter=20, qmcnodes=1000 ) summary(mod2b) #-- Model 2c: rasch.mml2 in sirt mod2c <- sirt::rasch.mml2( dat,Qmatrix=Qmatrix, est.a=1:30, mmliter=200, theta.k=seq(-5,5,len=11) ) summary(mod2c) #-- Model 2d: mirt in mirt cmodel <- mirt::mirt.model(" F1=1-10 F2=21-30 F3=11-20 COV=F1*F2, F1*F3, F2*F3 " ) mod2d <- mirt::mirt(dat, cmodel, verbose=TRUE) summary(mod2d) coef(mod2d) #-- Model 2e: CFA in NOHARM # specify covariance pattern P.pattern <- matrix( 1, ncol=3, nrow=3 ) P.init <- .4*P.pattern diag(P.pattern) <- 0 diag(P.init) <- 1 # fix all entries in the loading matrix to 1 F.pattern <- matrix( 0, nrow=30, ncol=3 ) F.pattern[1:10,1] <- 1 F.pattern[21:30,2] <- 1 F.pattern[11:20,3] <- 1 F.init <- F.pattern # estimate model mod2e <- sirt::R2noharm( dat=dat, model.type="CFA", P.pattern=P.pattern, P.init=P.init, F.pattern=F.pattern, F.init=F.init, writename="reck61__3dim_cfa", noharm.path="c:/NOHARM",dec=",") summary(mod2e) #-- Model 2f: CFA with noharm.sirt mod2f <- sirt::noharm.sirt( dat=dat, Fval=F.init, Fpatt=F.pattern, Pval=P.init, Ppatt=P.pattern ) summary(mod2f) ############################################################################# # EXAMPLE 3: DETECT analysis data.reck78ExA and data.reck79ExB ############################################################################# data(data.reck78ExA) data(data.reck79ExB) #************************ # Example A dat <- data.reck78ExA$data #- estimate person score score <- stats::qnorm( ( rowMeans( dat )+.5 ) / ( ncol(dat) + 1 ) ) #- extract item cluster itemcluster <- substring( colnames(dat), 1, 1 ) #- confirmatory DETECT Item cluster detectA <- sirt::conf.detect( data=dat, score=score, itemcluster=itemcluster ) ## unweighted weighted ## DETECT 0.571 0.571 ## ASSI 0.523 0.523 ## RATIO 0.757 0.757 #- exploratory DETECT analysis detect_explA <- sirt::expl.detect(data=dat, score, nclusters=10, N.est=nrow(dat)/2 ) ## Optimal Cluster Size is 5 (Maximum of DETECT Index) ## N.Cluster N.items N.est N.val size.cluster DETECT.est ASSI.est ## 1 2 50 1250 1250 31-19 0.531 0.404 ## 2 3 50 1250 1250 10-19-21 0.554 0.407 ## 3 4 50 1250 1250 10-19-14-7 0.630 0.509 ## 4 5 50 1250 1250 10-19-3-7-11 0.653 0.546 ## 5 6 50 1250 1250 10-12-7-3-7-11 0.593 0.458 ## 6 7 50 1250 1250 10-12-7-3-7-9-2 0.604 0.474 ## 7 8 50 1250 1250 10-12-7-3-3-9-4-2 0.608 0.481 ## 8 9 50 1250 1250 10-12-7-3-3-5-4-2-4 0.617 0.494 ## 9 10 50 1250 1250 10-5-7-7-3-3-5-4-2-4 0.592 0.460 # cluster membership cluster_membership <- detect_explA$itemcluster$cluster3 # Cluster 1: colnames(dat)[ cluster_membership==1 ] ## [1] "A01" "A02" "A03" "A04" "A05" "A06" "A07" "A08" "A09" "A10" # Cluster 2: colnames(dat)[ cluster_membership==2 ] ## [1] "B11" "B12" "B13" "B14" "B15" "B16" "B17" "B18" "B19" "B20" "B21" "B22" ## [13] "B23" "B25" "B26" "B27" "B28" "B29" "B30" # Cluster 3: colnames(dat)[ cluster_membership==3 ] ## [1] "B24" "C31" "C32" "C33" "C34" "C35" "C36" "C37" "C38" "C39" "C40" "C41" ## [13] "C42" "C43" "C44" "C45" "C46" "C47" "C48" "C49" "C50" #************************ # Example B dat <- data.reck79ExB$data #- estimate person score score <- stats::qnorm( ( rowMeans( dat )+.5 ) / ( ncol(dat) + 1 ) ) #- extract item cluster itemcluster <- substring( colnames(dat), 1, 1 ) #- confirmatory DETECT Item cluster detectB <- sirt::conf.detect( data=dat, score=score, itemcluster=itemcluster ) ## unweighted weighted ## DETECT 0.715 0.715 ## ASSI 0.624 0.624 ## RATIO 0.855 0.855 #- exploratory DETECT analysis detect_explB <- sirt::expl.detect(data=dat, score, nclusters=10, N.est=nrow(dat)/2 ) ## Optimal Cluster Size is 4 (Maximum of DETECT Index) ## ## N.Cluster N.items N.est N.val size.cluster DETECT.est ASSI.est ## 1 2 50 1250 1250 30-20 0.665 0.546 ## 2 3 50 1250 1250 10-20-20 0.686 0.585 ## 3 4 50 1250 1250 10-20-8-12 0.728 0.644 ## 4 5 50 1250 1250 10-6-14-8-12 0.654 0.553 ## 5 6 50 1250 1250 10-6-14-3-12-5 0.659 0.561 ## 6 7 50 1250 1250 10-6-14-3-7-5-5 0.664 0.576 ## 7 8 50 1250 1250 10-6-7-7-3-7-5-5 0.616 0.518 ## 8 9 50 1250 1250 10-6-7-7-3-5-5-5-2 0.612 0.512 ## 9 10 50 1250 1250 10-6-7-7-3-5-3-5-2-2 0.613 0.512 ## End(Not run)
sirt
Package
Some example datasets for the sirt
package.
data(data.si01) data(data.si02) data(data.si03) data(data.si04) data(data.si05) data(data.si06) data(data.si07) data(data.si08) data(data.si09) data(data.si10)
data(data.si01) data(data.si02) data(data.si03) data(data.si04) data(data.si05) data(data.si06) data(data.si07) data(data.si08) data(data.si09) data(data.si10)
The format of the dataset data.si01
is:
'data.frame': 1857 obs. of 3 variables:
$ idgroup: int 1 1 1 1 1 1 1 1 1 1 ...
$ item1 : int NA NA NA NA NA NA NA NA NA NA ...
$ item2 : int 4 4 4 4 4 4 4 2 4 4 ...
The dataset data.si02
is the Stouffer-Toby-dataset published
in Lindsay, Clogg and Grego (1991; Table 1, p.97, Cross-classification A):
List of 2
$ data : num [1:16, 1:4] 1 0 1 0 1 0 1 0 1 0 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:4] "I1" "I2" "I3" "I4"
$ weights: num [1:16] 42 1 6 2 6 1 7 2 23 4 ...
The format of the dataset data.si03
(containing item
parameters of two studies) is:
'data.frame': 27 obs. of 3 variables:
$ item : Factor w/ 27 levels "M1","M10","M11",..: 1 12 21 22 ...
$ b_study1: num 0.297 1.163 0.151 -0.855 -1.653 ...
$ b_study2: num 0.72 1.118 0.351 -0.861 -1.593 ...
The dataset data.si04
is adapted from Bartolucci, Montanari
and Pandolfi (2012; Table 4, Table 7). The data contains 4999 persons,
79 items on 5 dimensions. See rasch.mirtlc
for using the
data in an analysis.
List of 3
$ data : num [1:4999, 1:79] 0 1 1 0 1 1 0 0 1 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:79] "A01" "A02" "A03" "A04" ...
$ itempars :'data.frame': 79 obs. of 4 variables:
..$ item : Factor w/ 79 levels "A01","A02","A03",..: 1 2 3 4 5 6 7 8 9 10 ...
..$ dim : num [1:79] 1 1 1 1 1 1 1 1 1 1 ...
..$ gamma : num [1:79] 1 1 1 1 1 1 1 1 1 1 ...
..$ gamma.beta: num [1:79] -0.189 0.25 0.758 1.695 1.022 ...
$ distribution: num [1:9, 1:7] 1 2 3 4 5 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:7] "class" "A" "B" "C" ...
The dataset data.si05
contains double ratings of two
exchangeable raters for three items which are in Ex1
, Ex2
and Ex3
, respectively.
List of 3
$ Ex1:'data.frame': 199 obs. of 2 variables:
..$ C7040: num [1:199] NA 1 0 1 1 0 0 0 1 0 ...
..$ C7041: num [1:199] 1 1 0 0 0 0 0 0 1 0 ...
$ Ex2:'data.frame': 2000 obs. of 2 variables:
..$ rater1: num [1:2000] 2 0 3 1 2 2 0 0 0 0 ...
..$ rater2: num [1:2000] 4 1 3 2 1 0 0 0 0 2 ...
$ Ex3:'data.frame': 2000 obs. of 2 variables:
..$ rater1: num [1:2000] 5 1 6 2 3 3 0 0 0 0 ...
..$ rater2: num [1:2000] 7 2 6 3 2 1 0 1 0 3 ...
The dataset data.si06
contains multiple choice item
responses. The correct alternative is denoted as 0, distractors
are indicated by the codes 1, 2 or 3.
'data.frame': 4441 obs. of 14 variables:
$ WV01: num 0 0 0 0 0 0 0 0 0 3 ...
$ WV02: num 0 0 0 3 0 0 0 0 0 1 ...
$ WV03: num 0 1 0 0 0 0 0 0 0 0 ...
$ WV04: num 0 0 0 0 0 0 0 0 0 1 ...
$ WV05: num 3 1 1 1 0 0 1 1 0 2 ...
$ WV06: num 0 1 3 0 0 0 2 0 0 1 ...
$ WV07: num 0 0 0 0 0 0 0 0 0 0 ...
$ WV08: num 0 1 1 0 0 0 0 0 0 0 ...
$ WV09: num 0 0 0 0 0 0 0 0 0 2 ...
$ WV10: num 1 1 3 0 0 2 0 0 0 0 ...
$ WV11: num 0 0 0 0 0 0 0 0 0 0 ...
$ WV12: num 0 0 0 2 0 0 2 0 0 0 ...
$ WV13: num 3 1 1 3 0 0 3 0 0 0 ...
$ WV14: num 3 1 2 3 0 3 1 3 3 0 ...
The dataset data.si07
contains parameters of the empirical illustration
of DeCarlo (2020). The simulation function sim_fun
can be used for
simulating data from the IRSDT model (see DeCarlo, 2020)
List of 3
$ pars :'data.frame': 16 obs. of 3 variables:
..$ item: Factor w/ 16 levels "I01","I02","I03",..: 1 2 3 4 5 6 7 8 9 10 ...
..$ b : num [1:16] -1.1 -0.18 1.44 1.78 -1.19 0.45 -1.12 0.33 0.82 -0.43 ...
..$ d : num [1:16] 2.69 4.6 6.1 3.11 3.2 ...
$ trait :'data.frame': 20 obs. of 2 variables:
..$ x : num [1:20] 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 ...
..$ prob: num [1:20] 0.0238 0.1267 0.105 0.0594 0.0548 ...
$ sim_fun:function (lambda, b, d, items)
The dataset data.si08
contains 5 items with respect to knowledge
about lung cancer and the kind of information acquisition (Goodman, 1970;
see also Rasch, Kubinger & Yanagida, 2011).
L1
: reading newspapers, L2
: listening radio,
L3
: reading books and magazines,
L4
: attending talks, L5
: knowledge about lung cancer
'data.frame': 32 obs. of 6 variables:
$ L1 : num 1 1 1 1 1 1 1 1 1 1 ...
$ L2 : num 1 1 1 1 1 1 1 1 0 0 ...
$ L3 : num 1 1 1 1 0 0 0 0 1 1 ...
$ L4 : num 1 1 0 0 1 1 0 0 1 1 ...
$ L5 : num 1 0 1 0 1 0 1 0 1 0 ...
$ wgt: num 23 8 102 67 8 4 35 59 27 18 ...
The dataset data.si09
was used in Fischer and Karl (2019) and they
asked employees in a eight countries, to report whether they typically help
other employees (helping behavior, seven items, help
) and whether
they make suggestions to improve work conditions and products
(voice behavior, five items, voice
). Individuals responded to these items
on a 1-7 Likert-type scale. The dataset was downloaded from https://osf.io/wkx8c/.
'data.frame': 5201 obs. of 13 variables:
$ country: Factor w/ 8 levels "BRA","CAN","KEN",..: 5 5 5 5 5 5 5 5 5 5 ...
$ help1 : int 6 6 5 5 5 6 6 6 4 6 ...
$ help2 : int 3 6 5 6 6 6 6 6 6 7 ...
$ help3 : int 5 6 6 7 7 6 5 6 6 7 ...
$ help4 : int 7 6 5 6 6 7 7 6 6 7 ...
$ help5 : int 5 5 5 6 6 6 6 6 6 7 ...
$ help6 : int 3 4 5 6 6 7 7 6 6 5 ...
$ help7 : int 5 4 4 5 5 7 7 6 6 6 ...
$ voice1 : int 3 6 5 6 4 7 6 6 5 7 ...
$ voice2 : int 3 6 4 7 6 5 6 6 4 7 ...
$ voice3 : int 6 6 5 7 6 5 6 6 6 5 ...
$ voice4 : int 6 6 6 5 5 7 5 6 6 6 ...
$ voice5 : int 6 7 4 7 6 6 6 6 5 7 ...
The dataset data.si10
contains votes of 435 members of the U.S. House of
Representatives, 267 Democrates and 168 Republicans. The dataset was
used by Fop and Murphy (2017).
'data.frame': 435 obs. of 17 variables:
$ party : Factor w/ 2 levels "democrat","republican": 2 2 1 1 1 1 1 2 2 1 ...
$ vote01: num 0 0 NA 0 1 0 0 0 0 1 ...
$ vote02: num 1 1 1 1 1 1 1 1 1 1 ...
$ vote03: num 0 0 1 1 1 1 0 0 0 1 ...
$ vote04: num 1 1 NA 0 0 0 1 1 1 0 ...
$ vote05: num 1 1 1 NA 1 1 1 1 1 0 ...
$ vote06: num 1 1 1 1 1 1 1 1 1 0 ...
$ vote07: num 0 0 0 0 0 0 0 0 0 1 ...
$ vote08: num 0 0 0 0 0 0 0 0 0 1 ...
$ vote09: num 0 0 0 0 0 0 0 0 0 1 ...
$ vote10: num 1 0 0 0 0 0 0 0 0 0 ...
$ vote11: num NA 0 1 1 1 0 0 0 0 0 ...
$ vote12: num 1 1 0 0 NA 0 0 0 1 0 ...
$ vote13: num 1 1 1 1 1 1 NA 1 1 0 ...
$ vote14: num 1 1 1 0 1 1 1 1 1 0 ...
$ vote15: num 0 0 0 0 1 1 1 NA 0 NA ...
$ vote16: num 1 NA 0 1 1 1 1 1 1 NA ...
Bartolucci, F., Montanari, G. E., & Pandolfi, S. (2012). Dimensionality of the latent structure and item selection via latent class multidimensional IRT models. Psychometrika, 77(4), 782-802. doi:10.1007/s11336-012-9278-0
DeCarlo, L. T. (2020). An item response model for true-false exams based on signal detection theory. Applied Psychological Measurement, 34(3). 234-248. doi:10.1177/0146621619843823
Fischer, R., & Karl, J. A. (2019). A primer to (cross-cultural) multi-group invariance testing possibilities in R. Frontiers in Psychology | Cultural Psychology, 10:1507. doi:10.3389/fpsyg.2019.01507
Fop, M., & Murphy, T. B. (2018). Variable selection methods for model-based clustering. Statistics Surveys, 12, 18-65. https://doi.org/10.1214/18-SS119
Goodman, L. A. (1970). The multivariate analysis of qualitative data: Interactions among multiple classifications. Journal of the American Statistical Association, 65(329), 226-256. doi:10.1080/01621459.1970.10481076
Lindsay, B., Clogg, C. C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86(413), 96-107. doi:10.1080/01621459.1991.10475008
Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology using R and SPSS. New York: Wiley. doi:10.1002/9781119979630
Some free datasets can be obtained from
Psychological questionnaires: http://personality-testing.info/_rawdata/
PISA 2012: http://pisa2012.acer.edu.au/downloads.php
PIAAC: http://www.oecd.org/site/piaac/publicdataandanalysis.htm
TIMSS 2011: http://timssandpirls.bc.edu/timss2011/international-database.html
ALLBUS: http://www.gesis.org/allbus/allbus-home/
## Not run: ############################################################################# # EXAMPLE 1: Nested logit model multiple choice dataset data.si06 ############################################################################# data(data.si06, package="sirt") dat <- data.si06 #** estimate 2PL nested logit model library(mirt) mod1 <- mirt::mirt( dat, model=1, itemtype="2PLNRM", key=rep(0,ncol(dat) ), verbose=TRUE ) summary(mod1) cmod1 <- sirt::mirt.wrapper.coef(mod1)$coef cmod1[,-1] <- round( cmod1[,-1], 3) #** normalize item parameters according Suh and Bolt (2010) cmod2 <- cmod1 # slope parameters ind <- grep("ak",colnames(cmod2)) h1 <- cmod2[,ind ] cmod2[,ind] <- t( apply( h1, 1, FUN=function(ll){ ll - mean(ll) } ) ) # item intercepts ind <- paste0( "d", 0:9 ) ind <- which( colnames(cmod2) %in% ind ) h1 <- cmod2[,ind ] cmod2[,ind] <- t( apply( h1, 1, FUN=function(ll){ ll - mean(ll) } ) ) cmod2[,-1] <- round( cmod2[,-1], 3) ############################################################################# # EXAMPLE 2: Item response modle based on signal detection theory (IRSDT model) ############################################################################# data(data.si07, package="sirt") data <- data.si07 #-- simulate data set.seed(98) N <- 2000 # define sample size # generate membership scores lambda <- sample(size=N, x=data$trait$x, prob=data$trait$prob, replace=TRUE) b <- data$pars$b d <- data$pars$d items <- data$pars$item dat <- data$sim_fun(lambda=lambda, b=b, d=d, items=items) #- estimate IRSDT model as a grade of membership model with two classes problevels <- seq( 0.025, 0.975, length=20 ) mod1 <- sirt::gom.em( dat, K=2, problevels=problevels ) summary(mod1) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Nested logit model multiple choice dataset data.si06 ############################################################################# data(data.si06, package="sirt") dat <- data.si06 #** estimate 2PL nested logit model library(mirt) mod1 <- mirt::mirt( dat, model=1, itemtype="2PLNRM", key=rep(0,ncol(dat) ), verbose=TRUE ) summary(mod1) cmod1 <- sirt::mirt.wrapper.coef(mod1)$coef cmod1[,-1] <- round( cmod1[,-1], 3) #** normalize item parameters according Suh and Bolt (2010) cmod2 <- cmod1 # slope parameters ind <- grep("ak",colnames(cmod2)) h1 <- cmod2[,ind ] cmod2[,ind] <- t( apply( h1, 1, FUN=function(ll){ ll - mean(ll) } ) ) # item intercepts ind <- paste0( "d", 0:9 ) ind <- which( colnames(cmod2) %in% ind ) h1 <- cmod2[,ind ] cmod2[,ind] <- t( apply( h1, 1, FUN=function(ll){ ll - mean(ll) } ) ) cmod2[,-1] <- round( cmod2[,-1], 3) ############################################################################# # EXAMPLE 2: Item response modle based on signal detection theory (IRSDT model) ############################################################################# data(data.si07, package="sirt") data <- data.si07 #-- simulate data set.seed(98) N <- 2000 # define sample size # generate membership scores lambda <- sample(size=N, x=data$trait$x, prob=data$trait$prob, replace=TRUE) b <- data$pars$b d <- data$pars$d items <- data$pars$item dat <- data$sim_fun(lambda=lambda, b=b, d=d, items=items) #- estimate IRSDT model as a grade of membership model with two classes problevels <- seq( 0.025, 0.975, length=20 ) mod1 <- sirt::gom.em( dat, K=2, problevels=problevels ) summary(mod1) ## End(Not run)
This datasets contains TIMSS mathematics data from 345 students on 25 items.
data(data.timss)
data(data.timss)
This dataset is a list. data
is the dataset containing
student ID (idstud
), a dummy variable for female (girl
)
and student age (age
). The following variables (starting with
M
in the variable name are items.
The format is:
List of 2
$ data:'data.frame':
..$ idstud : num [1:345] 4e+09 4e+09 4e+09 4e+09 4e+09 ...
..$ girl : int [1:345] 0 0 0 0 0 0 0 0 1 0 ...
..$ age : num [1:345] 10.5 10 10.25 10.25 9.92 ...
..$ M031286 : int [1:345] 0 0 0 1 1 0 1 0 1 0 ...
..$ M031106 : int [1:345] 0 0 0 1 1 0 1 1 0 0 ...
..$ M031282 : int [1:345] 0 0 0 1 1 0 1 1 0 0 ...
..$ M031227 : int [1:345] 0 0 0 0 1 0 0 0 0 0 ...
[...]
..$ M041203 : int [1:345] 0 0 0 1 1 0 0 0 0 1 ...
$ item:'data.frame':
..$ item : Factor w/ 25 levels "M031045","M031068",..: ...
..$ Block : Factor w/ 2 levels "M01","M02": 1 1 1 1 1 1 ..
..$ Format : Factor w/ 2 levels "CR","MC": 1 1 1 1 2 ...
..$ Content.Domain : Factor w/ 3 levels "Data Display",..: 3 3 3 3 ...
..$ Cognitive.Domain: Factor w/ 3 levels "Applying","Knowing",..: 2 3 3 ..
This TIMSS 2007 dataset contains item responses of 4472 eigth grade Russian students in Mathematics and Science.
data(data.timss07.G8.RUS)
data(data.timss07.G8.RUS)
The datasets contains raw responses (raw
), scored responses
(scored
) and item informations (iteminfo
).
The format of the dataset is:
List of 3
$ raw :'data.frame':
..$ idstud : num [1:4472] 3010101 3010102 3010104 3010105 3010106 ...
..$ M022043 : atomic [1:4472] NA 1 4 NA NA NA NA NA NA NA ...
.. ..- attr(*, "value.labels")=Named num [1:7] 9 6 5 4 3 2 1
.. .. ..- attr(*, "names")=chr [1:7] "OMITTED" "NOT REACHED" "E" "D*" ...
[...]
..$ M032698 : atomic [1:4472] NA NA NA NA NA NA NA 2 1 NA ...
.. ..- attr(*, "value.labels")=Named num [1:6] 9 6 4 3 2 1
.. .. ..- attr(*, "names")=chr [1:6] "OMITTED" "NOT REACHED" "D" "C" ...
..$ M032097 : atomic [1:4472] NA NA NA NA NA NA NA 2 3 NA ...
.. ..- attr(*, "value.labels")=Named num [1:6] 9 6 4 3 2 1
.. .. ..- attr(*, "names")=chr [1:6] "OMITTED" "NOT REACHED" "D" "C*" ...
.. [list output truncated]
$ scored : num [1:4472, 1:443] 3010101 3010102 3010104 3010105 3010106 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:443] "idstud" "M022043" "M022046" "M022049" ...
$ iteminfo:'data.frame':
..$ item : Factor w/ 442 levels "M022043","M022046",..: 1 2 3 4 5 6 21 7 8 17 ...
..$ content : Factor w/ 8 levels "Algebra","Biology",..: 7 7 6 1 6 7 4 6 7 7 ...
..$ topic : Factor w/ 49 levels "Algebraic Expression",..: 32 32 41 29 ...
..$ cognitive : Factor w/ 3 levels "Applying","Knowing",..: 2 1 3 2 1 1 1 1 2 1 ...
..$ item.type : Factor w/ 2 levels "CR","MC": 2 1 2 2 1 2 2 2 2 1 ...
..$ N.options : Factor w/ 4 levels "-"," -","4","5": 4 1 3 4 1 4 4 4 3 1 ...
..$ key : Factor w/ 7 levels "-"," -","A","B",..: 6 1 6 7 1 5 5 4 6 1 ...
..$ max.points: int [1:442] 1 1 1 1 1 1 1 1 1 2 ...
..$ item.label: Factor w/ 432 levels "1 teacher for every 12 students ",..: 58 351 ...
TIMSS 2007 8th Grade, Russian Sample
Dataset used in Stoyan, Pommerening and Wuensche (2018; see also Pommerening et al., 2018). In the dataset, 15 forest managers classify 387 trees either as trees to be maintained or as trees to be removed. They assign tree marks, either 0 or 1, where mark 1 means remove.
data(data.trees)
data(data.trees)
The dataset has the following structure.
'data.frame': 387 obs. of 16 variables:
$ Number: int 142 184 9 300 374 42 382 108 125 201 ...
$ FM1 : int 1 1 1 1 1 1 1 1 1 0 ...
$ FM2 : int 1 1 1 0 1 1 1 1 1 1 ...
$ FM3 : int 1 0 1 1 1 1 1 1 1 1 ...
$ FM4 : int 1 1 1 1 1 1 0 1 1 1 ...
$ FM5 : int 1 1 1 1 1 1 0 0 0 1 ...
$ FM6 : int 1 1 1 1 0 1 1 1 1 0 ...
$ FM7 : int 1 0 1 1 0 0 1 0 1 1 ...
$ FM8 : int 1 1 1 1 1 0 0 1 0 1 ...
$ FM9 : int 1 1 0 1 1 1 1 0 1 1 ...
$ FM10 : int 0 1 1 0 1 1 1 1 0 0 ...
$ FM11 : int 1 1 1 1 0 1 1 0 1 0 ...
$ FM12 : int 1 1 1 1 1 1 0 1 0 0 ...
$ FM13 : int 0 1 0 0 1 1 1 1 1 1 ...
$ FM14 : int 1 1 1 1 1 0 1 1 1 1 ...
$ FM15 : int 1 1 0 1 1 0 1 0 0 1 ...
https://www.pommerening.org/wiki/images/d/dc/CoedyBreninSortedforPublication.txt
Pommerening, A., Ramos, C. P., Kedziora, W., Haufe, J., & Stoyan, D. (2018). Rating experiments in forestry: How much agreement is there in tree marking? PloS ONE, 13(3), e0194747. doi:10.1371/journal.pone.0194747
Stoyan, D., Pommerening, A., & Wuensche, A. (2018). Rater classification by means of set-theoretic methods applied to forestry data. Journal of Environmental Statistics, 8(2), 1-17.
## Not run: ############################################################################# # EXAMPLE 1: Latent class models, latent trait models, mixed membership models ############################################################################# data(data.trees, package="sirt") dat <- data.trees[,-1] I <- ncol(dat) #** latent class models with 2, 3, and 4 classes problevels <- seq( 0, 1, len=2 ) mod02 <- sirt::gom.em(dat, K=2, problevels, model="GOM") mod03 <- sirt::gom.em(dat, K=3, problevels, model="GOM") mod04 <- sirt::gom.em(dat, K=4, problevels, model="GOM") #** grade of membership models mod11 <- sirt::gom.em(dat, K=2, theta0.k=10*seq(-1,1,len=11), model="GOMnormal") problevels <- seq( 0, 1, len=3 ) mod12 <- sirt::gom.em(dat, K=2, problevels, model="GOM") mod13 <- sirt::gom.em(dat, K=3, problevels, model="GOM") mod14 <- sirt::gom.em(dat, K=4, problevels, model="GOM") problevels <- seq( 0, 1, len=4 ) mod22 <- sirt::gom.em(dat, K=2, problevels, model="GOM") mod23 <- sirt::gom.em(dat, K=3, problevels, model="GOM") mod24 <- sirt::gom.em(dat, K=4, problevels, model="GOM") #** latent trait models #- 1PL mod31 <- sirt::rasch.mml2(dat) #- 2PL mod32 <- sirt::rasch.mml2(dat, est.a=1:I) #- model comparison IRT.compareModels(mod02, mod03, mod04, mod11, mod12, mod13, mod14, mod22, mod23, mod24, mod31, mod32) #-- inspect model results summary(mod12) round( cbind( mod12$theta.k, mod12$pi.k ),3) summary(mod13) round(cbind( mod13$theta.k, mod13$pi.k ),3) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Latent class models, latent trait models, mixed membership models ############################################################################# data(data.trees, package="sirt") dat <- data.trees[,-1] I <- ncol(dat) #** latent class models with 2, 3, and 4 classes problevels <- seq( 0, 1, len=2 ) mod02 <- sirt::gom.em(dat, K=2, problevels, model="GOM") mod03 <- sirt::gom.em(dat, K=3, problevels, model="GOM") mod04 <- sirt::gom.em(dat, K=4, problevels, model="GOM") #** grade of membership models mod11 <- sirt::gom.em(dat, K=2, theta0.k=10*seq(-1,1,len=11), model="GOMnormal") problevels <- seq( 0, 1, len=3 ) mod12 <- sirt::gom.em(dat, K=2, problevels, model="GOM") mod13 <- sirt::gom.em(dat, K=3, problevels, model="GOM") mod14 <- sirt::gom.em(dat, K=4, problevels, model="GOM") problevels <- seq( 0, 1, len=4 ) mod22 <- sirt::gom.em(dat, K=2, problevels, model="GOM") mod23 <- sirt::gom.em(dat, K=3, problevels, model="GOM") mod24 <- sirt::gom.em(dat, K=4, problevels, model="GOM") #** latent trait models #- 1PL mod31 <- sirt::rasch.mml2(dat) #- 2PL mod32 <- sirt::rasch.mml2(dat, est.a=1:I) #- model comparison IRT.compareModels(mod02, mod03, mod04, mod11, mod12, mod13, mod14, mod22, mod23, mod24, mod31, mod32) #-- inspect model results summary(mod12) round( cbind( mod12$theta.k, mod12$pi.k ),3) summary(mod13) round(cbind( mod13$theta.k, mod13$pi.k ),3) ## End(Not run)
Converts a data frame in wide format into long format.
data.wide2long(dat, id=NULL, X=NULL, Q=NULL)
data.wide2long(dat, id=NULL, X=NULL, Q=NULL)
dat |
Data frame with item responses and a person identifier if
|
id |
An optional string with the variable name of the person identifier. |
X |
Data frame with person covariates for inclusion in the data frame of long format |
Q |
Data frame with item predictors. Item labels must be included
as a column named by |
Data frame in long format
## Not run: ############################################################################# # EXAMPLE 1: data.pisaRead ############################################################################# miceadds::library_install("lme4") data(data.pisaRead) dat <- data.pisaRead$data Q <- data.pisaRead$item # item predictors # define items items <- colnames(dat)[ substring( colnames(dat), 1, 1 )=="R" ] dat1 <- dat[, c( "idstud", items ) ] # matrix with person predictors X <- dat[, c("idschool", "hisei", "female", "migra") ] # create dataset in long format dat.long <- sirt::data.wide2long( dat=dat1, id="idstud", X=X, Q=Q ) #*** # Model 1: Rasch model mod1 <- lme4::glmer( resp ~ 0 + ( 1 | idstud ) + as.factor(item), data=dat.long, family="binomial", verbose=TRUE) summary(mod1) #*** # Model 2: Rasch model and inclusion of person predictors mod2 <- lme4::glmer( resp ~ 0 + ( 1 | idstud ) + as.factor(item) + female + hisei + migra, data=dat.long, family="binomial", verbose=TRUE) summary(mod2) #*** # Model 3: LLTM mod3 <- lme4::glmer(resp ~ (1|idstud) + as.factor(ItemFormat) + as.factor(TextType), data=dat.long, family="binomial", verbose=TRUE) summary(mod3) ############################################################################# # EXAMPLE 2: Rasch model in lme4 ############################################################################# set.seed(765) N <- 1000 # number of persons I <- 10 # number of items b <- seq(-2,2,length=I) dat <- sirt::sim.raschtype( stats::rnorm(N,sd=1.2), b=b ) dat.long <- sirt::data.wide2long( dat=dat ) #*** # estimate Rasch model with lmer library(lme4) mod1 <- lme4::glmer( resp ~ 0 + as.factor( item ) + ( 1 | id_index), data=dat.long, verbose=TRUE, family="binomial") summary(mod1) ## Random effects: ## Groups Name Variance Std.Dev. ## id_index (Intercept) 1.454 1.206 ## Number of obs: 10000, groups: id_index, 1000 ## ## Fixed effects: ## Estimate Std. Error z value Pr(>|z|) ## as.factor(item)I0001 2.16365 0.10541 20.527 < 2e-16 *** ## as.factor(item)I0002 1.66437 0.09400 17.706 < 2e-16 *** ## as.factor(item)I0003 1.21816 0.08700 14.002 < 2e-16 *** ## as.factor(item)I0004 0.68611 0.08184 8.383 < 2e-16 *** ## [...] ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: data.pisaRead ############################################################################# miceadds::library_install("lme4") data(data.pisaRead) dat <- data.pisaRead$data Q <- data.pisaRead$item # item predictors # define items items <- colnames(dat)[ substring( colnames(dat), 1, 1 )=="R" ] dat1 <- dat[, c( "idstud", items ) ] # matrix with person predictors X <- dat[, c("idschool", "hisei", "female", "migra") ] # create dataset in long format dat.long <- sirt::data.wide2long( dat=dat1, id="idstud", X=X, Q=Q ) #*** # Model 1: Rasch model mod1 <- lme4::glmer( resp ~ 0 + ( 1 | idstud ) + as.factor(item), data=dat.long, family="binomial", verbose=TRUE) summary(mod1) #*** # Model 2: Rasch model and inclusion of person predictors mod2 <- lme4::glmer( resp ~ 0 + ( 1 | idstud ) + as.factor(item) + female + hisei + migra, data=dat.long, family="binomial", verbose=TRUE) summary(mod2) #*** # Model 3: LLTM mod3 <- lme4::glmer(resp ~ (1|idstud) + as.factor(ItemFormat) + as.factor(TextType), data=dat.long, family="binomial", verbose=TRUE) summary(mod3) ############################################################################# # EXAMPLE 2: Rasch model in lme4 ############################################################################# set.seed(765) N <- 1000 # number of persons I <- 10 # number of items b <- seq(-2,2,length=I) dat <- sirt::sim.raschtype( stats::rnorm(N,sd=1.2), b=b ) dat.long <- sirt::data.wide2long( dat=dat ) #*** # estimate Rasch model with lmer library(lme4) mod1 <- lme4::glmer( resp ~ 0 + as.factor( item ) + ( 1 | id_index), data=dat.long, verbose=TRUE, family="binomial") summary(mod1) ## Random effects: ## Groups Name Variance Std.Dev. ## id_index (Intercept) 1.454 1.206 ## Number of obs: 10000, groups: id_index, 1000 ## ## Fixed effects: ## Estimate Std. Error z value Pr(>|z|) ## as.factor(item)I0001 2.16365 0.10541 20.527 < 2e-16 *** ## as.factor(item)I0002 1.66437 0.09400 17.706 < 2e-16 *** ## as.factor(item)I0003 1.21816 0.08700 14.002 < 2e-16 *** ## as.factor(item)I0004 0.68611 0.08184 8.383 < 2e-16 *** ## [...] ## End(Not run)
This function calculated the DETECT and polyDETECT index (Stout, Habing, Douglas
& Kim, 1996; Zhang & Stout, 1999a; Zhang, 2007). At first,
conditional covariances have to be estimated
using the ccov.np
function.
detect.index(ccovtable, itemcluster)
detect.index(ccovtable, itemcluster)
ccovtable |
A value of |
itemcluster |
Item cluster for each item. The order of entries must correspond
to the columns in |
Stout, W., Habing, B., Douglas, J., & Kim, H. R. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20, 331-354.
Zhang, J., & Stout, W. (1999a). Conditional covariance structure of generalized compensatory multidimensional items. Psychometrika, 64, 129-152.
Zhang, J., & Stout, W. (1999b). The theoretical DETECT index of dimensionality and its application to approximate simple structure. Psychometrika, 64, 213-249.
Zhang, J. (2007). Conditional covariance theory and DETECT for polytomous items. Psychometrika, 72, 69-91.
For examples see conf.detect
.
This function assesses differential item functioning using logistic regression analysis (Zumbo, 1999).
dif.logistic.regression(dat, group, score,quant=1.645)
dif.logistic.regression(dat, group, score,quant=1.645)
dat |
Data frame with dichotomous item responses |
group |
Group identifier |
score |
Ability estimate, e.g. the WLE. |
quant |
Used quantile of the normal distribution for assessing statistical significance |
Items are classified into A (negligible DIF), B (moderate DIF) and C (large DIF) levels according to the ETS classification system (Longford, Holland & Thayer, 1993, p. 175). See also Monahan, McHorney, Stump and Perkins (2007) for further DIF effect size classifications.
A data frame with following variables:
itemnr |
Numeric index of the item |
sortDIFindex |
Rank of item with respect to the uniform DIF (from negative to positive values) |
item |
Item name |
N |
Sample size per item |
R |
Value of |
F |
Value of |
nR |
Sample size per item in reference group |
nF |
Sample size per item in focal group |
p |
Item |
pR |
Item |
pF |
Item |
pdiff |
Item |
pdiff.adj |
Adjusted |
uniformDIF |
Uniform DIF estimate |
se.uniformDIF |
Standard error of uniform DIF |
t.uniformDIF |
The |
sig.uniformDIF |
Significance label for uniform DIF |
DIF.ETS |
DIF classification according to the ETS classification system (see Details) |
uniform.EBDIF |
Empirical Bayes estimate of uniform DIF (Longford, Holland & Thayer, 1993) which takes degree of DIF standard error into account |
DIF.SD |
Value of the DIF standard deviation |
nonuniformDIF |
Nonuniform DIF estimate |
se.nonuniformDIF |
Standard error of nonuniform DIF |
t.nonuniformDIF |
The |
sig.nonuniformDIF |
Significance label for nonuniform DIF |
Longford, N. T., Holland, P. W., & Thayer, D. T. (1993). Stability of the MH D-DIF statistics across populations. In P. W. Holland & H. Wainer (Eds.). Differential Item Functioning (pp. 171-196). Hillsdale, NJ: Erlbaum.
Magis, D., Beland, S., Tuerlinckx, F., & De Boeck, P. (2010). A general framework and an R package for the detection of dichotomous differential item functioning. Behavior Research Methods, 42(3), 847-862. doi:10.3758/BRM.42.3.847
Monahan, P. O., McHorney, C. A., Stump, T. E., & Perkins, A. J. (2007). Odds ratio, delta, ETS classification, and standardization measures of DIF magnitude for binary logistic regression. Journal of Educational and Behavioral Statistics, 32(1), 92-109. doi:10.3102/1076998606298035
Zumbo, B. D. (1999). A handbook on the theory and methods of differential item functioning (DIF): Logistic regression modeling as a unitary framework for binary and Likert-type (ordinal) item scores. Ottawa ON: Directorate of Human Resources Research and Evaluation, Department of National Defense.
For assessing DIF variance see dif.variance
and
dif.strata.variance
See also rasch.evm.pcm
for assessing differential item
functioning in the partial credit model.
See the difR package for a large collection of DIF detection methods (Magis, Beland, Tuerlinckx, & De Boeck, 2010).
For a download of the free DIF-Pack software (SIBTEST, ...) see http://psychometrictools.measuredprogress.org/home.
############################################################################# # EXAMPLE 1: Mathematics data | Gender DIF ############################################################################# data( data.math ) dat <- data.math$data items <- grep( "M", colnames(dat)) # estimate item parameters and WLEs mod <- sirt::rasch.mml2( dat[,items] ) wle <- sirt::wle.rasch( dat[,items], b=mod$item$b )$theta # assess DIF by logistic regression mod1 <- sirt::dif.logistic.regression( dat=dat[,items], score=wle, group=dat$female) # calculate DIF variance dif1 <- sirt::dif.variance( dif=mod1$uniformDIF, se.dif=mod1$se.uniformDIF ) dif1$unweighted.DIFSD ## > dif1$unweighted.DIFSD ## [1] 0.1963958 # calculate stratified DIF variance # stratification based on domains dif2 <- sirt::dif.strata.variance( dif=mod1$uniformDIF, se.dif=mod1$se.uniformDIF, itemcluster=data.math$item$domain ) ## $unweighted.DIFSD ## [1] 0.1455916 ## Not run: #**** # Likelihood ratio test and graphical model test in eRm package miceadds::library_install("eRm") # estimate Rasch model res <- eRm::RM( dat[,items] ) summary(res) # LR-test with respect to female lrres <- eRm::LRtest(res, splitcr=dat$female) summary(lrres) # graphical model test eRm::plotGOF(lrres) ############################################################################# # EXAMPLE 2: Comparison with Mantel-Haenszel test ############################################################################# library(TAM) library(difR) #*** (1) simulate data set.seed(776) N <- 1500 # number of persons per group I <- 12 # number of items mu2 <- .5 # impact (group difference) sd2 <- 1.3 # standard deviation group 2 # define item difficulties b <- seq( -1.5, 1.5, length=I) # simulate DIF effects bdif <- scale( stats::rnorm(I, sd=.6 ), scale=FALSE )[,1] # item difficulties per group b1 <- b + 1/2 * bdif b2 <- b - 1/2 * bdif # simulate item responses dat1 <- sirt::sim.raschtype( theta=stats::rnorm(N, mean=0, sd=1 ), b=b1 ) dat2 <- sirt::sim.raschtype( theta=stats::rnorm(N, mean=mu2, sd=sd2 ), b=b2 ) dat <- rbind( dat1, dat2 ) group <- rep( c(1,2), each=N ) # define group indicator #*** (2) scale data mod <- TAM::tam.mml( dat, group=group ) summary(mod) #*** (3) extract person parameter estimates mod_eap <- mod$person$EAP mod_wle <- tam.wle( mod )$theta #********************************* # (4) techniques for assessing differential item functioning # Model 1: assess DIF by logistic regression and WLEs dif1 <- sirt::dif.logistic.regression( dat=dat, score=mod_wle, group=group) # Model 2: assess DIF by logistic regression and EAPs dif2 <- sirt::dif.logistic.regression( dat=dat, score=mod_eap, group=group) # Model 3: assess DIF by Mantel-Haenszel statistic dif3 <- difR::difMH(Data=dat, group=group, focal.name="1", purify=FALSE ) print(dif3) ## Mantel-Haenszel Chi-square statistic: ## ## Stat. P-value ## I0001 14.5655 0.0001 *** ## I0002 300.3225 0.0000 *** ## I0003 2.7160 0.0993 . ## I0004 191.6925 0.0000 *** ## I0005 0.0011 0.9740 ## [...] ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## Detection threshold: 3.8415 (significance level: 0.05) ## ## Effect size (ETS Delta scale): ## ## Effect size code: ## 'A': negligible effect ## 'B': moderate effect ## 'C': large effect ## ## alphaMH deltaMH ## I0001 1.3908 -0.7752 A ## I0002 0.2339 3.4147 C ## I0003 1.1407 -0.3093 A ## I0004 2.8515 -2.4625 C ## I0005 1.0050 -0.0118 A ## [...] ## ## Effect size codes: 0 'A' 1.0 'B' 1.5 'C' ## (for absolute values of 'deltaMH') # recompute DIF parameter from alphaMH uniformDIF3 <- log(dif3$alphaMH) # compare different DIF statistics dfr <- data.frame( "bdif"=bdif, "LR_wle"=dif1$uniformDIF, "LR_eap"=dif2$uniformDIF, "MH"=uniformDIF3 ) round( dfr, 3 ) ## bdif LR_wle LR_eap MH ## 1 0.236 0.319 0.278 0.330 ## 2 -1.149 -1.473 -1.523 -1.453 ## 3 0.140 0.122 0.038 0.132 ## 4 0.957 1.048 0.938 1.048 ## [...] colMeans( abs( dfr[,-1] - bdif )) ## LR_wle LR_eap MH ## 0.07759187 0.19085743 0.07501708 ## End(Not run)
############################################################################# # EXAMPLE 1: Mathematics data | Gender DIF ############################################################################# data( data.math ) dat <- data.math$data items <- grep( "M", colnames(dat)) # estimate item parameters and WLEs mod <- sirt::rasch.mml2( dat[,items] ) wle <- sirt::wle.rasch( dat[,items], b=mod$item$b )$theta # assess DIF by logistic regression mod1 <- sirt::dif.logistic.regression( dat=dat[,items], score=wle, group=dat$female) # calculate DIF variance dif1 <- sirt::dif.variance( dif=mod1$uniformDIF, se.dif=mod1$se.uniformDIF ) dif1$unweighted.DIFSD ## > dif1$unweighted.DIFSD ## [1] 0.1963958 # calculate stratified DIF variance # stratification based on domains dif2 <- sirt::dif.strata.variance( dif=mod1$uniformDIF, se.dif=mod1$se.uniformDIF, itemcluster=data.math$item$domain ) ## $unweighted.DIFSD ## [1] 0.1455916 ## Not run: #**** # Likelihood ratio test and graphical model test in eRm package miceadds::library_install("eRm") # estimate Rasch model res <- eRm::RM( dat[,items] ) summary(res) # LR-test with respect to female lrres <- eRm::LRtest(res, splitcr=dat$female) summary(lrres) # graphical model test eRm::plotGOF(lrres) ############################################################################# # EXAMPLE 2: Comparison with Mantel-Haenszel test ############################################################################# library(TAM) library(difR) #*** (1) simulate data set.seed(776) N <- 1500 # number of persons per group I <- 12 # number of items mu2 <- .5 # impact (group difference) sd2 <- 1.3 # standard deviation group 2 # define item difficulties b <- seq( -1.5, 1.5, length=I) # simulate DIF effects bdif <- scale( stats::rnorm(I, sd=.6 ), scale=FALSE )[,1] # item difficulties per group b1 <- b + 1/2 * bdif b2 <- b - 1/2 * bdif # simulate item responses dat1 <- sirt::sim.raschtype( theta=stats::rnorm(N, mean=0, sd=1 ), b=b1 ) dat2 <- sirt::sim.raschtype( theta=stats::rnorm(N, mean=mu2, sd=sd2 ), b=b2 ) dat <- rbind( dat1, dat2 ) group <- rep( c(1,2), each=N ) # define group indicator #*** (2) scale data mod <- TAM::tam.mml( dat, group=group ) summary(mod) #*** (3) extract person parameter estimates mod_eap <- mod$person$EAP mod_wle <- tam.wle( mod )$theta #********************************* # (4) techniques for assessing differential item functioning # Model 1: assess DIF by logistic regression and WLEs dif1 <- sirt::dif.logistic.regression( dat=dat, score=mod_wle, group=group) # Model 2: assess DIF by logistic regression and EAPs dif2 <- sirt::dif.logistic.regression( dat=dat, score=mod_eap, group=group) # Model 3: assess DIF by Mantel-Haenszel statistic dif3 <- difR::difMH(Data=dat, group=group, focal.name="1", purify=FALSE ) print(dif3) ## Mantel-Haenszel Chi-square statistic: ## ## Stat. P-value ## I0001 14.5655 0.0001 *** ## I0002 300.3225 0.0000 *** ## I0003 2.7160 0.0993 . ## I0004 191.6925 0.0000 *** ## I0005 0.0011 0.9740 ## [...] ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## Detection threshold: 3.8415 (significance level: 0.05) ## ## Effect size (ETS Delta scale): ## ## Effect size code: ## 'A': negligible effect ## 'B': moderate effect ## 'C': large effect ## ## alphaMH deltaMH ## I0001 1.3908 -0.7752 A ## I0002 0.2339 3.4147 C ## I0003 1.1407 -0.3093 A ## I0004 2.8515 -2.4625 C ## I0005 1.0050 -0.0118 A ## [...] ## ## Effect size codes: 0 'A' 1.0 'B' 1.5 'C' ## (for absolute values of 'deltaMH') # recompute DIF parameter from alphaMH uniformDIF3 <- log(dif3$alphaMH) # compare different DIF statistics dfr <- data.frame( "bdif"=bdif, "LR_wle"=dif1$uniformDIF, "LR_eap"=dif2$uniformDIF, "MH"=uniformDIF3 ) round( dfr, 3 ) ## bdif LR_wle LR_eap MH ## 1 0.236 0.319 0.278 0.330 ## 2 -1.149 -1.473 -1.523 -1.453 ## 3 0.140 0.122 0.038 0.132 ## 4 0.957 1.048 0.938 1.048 ## [...] colMeans( abs( dfr[,-1] - bdif )) ## LR_wle LR_eap MH ## 0.07759187 0.19085743 0.07501708 ## End(Not run)
Calculation of stratified DIF variance
dif.strata.variance(dif, se.dif, itemcluster)
dif.strata.variance(dif, se.dif, itemcluster)
dif |
Vector of uniform DIF effects |
se.dif |
Standard error of uniform DIF effects |
itemcluster |
Vector of item strata |
A list with following entries:
stratadif |
Summary statistics of DIF effects within item strata |
weighted.DIFSD |
Weighted DIF standard deviation |
unweigted.DIFSD |
DIF standard deviation |
Longford, N. T., Holland, P. W., & Thayer, D. T. (1993). Stability of the MH D-DIF statistics across populations. In P. W. Holland & H. Wainer (Eds.). Differential Item Functioning (pp. 171-196). Hillsdale, NJ: Erlbaum.
See dif.logistic.regression
for examples.
This function calculates the variance of DIF effects, the so called DIF variance (Longford, Holland & Thayer, 1993).
dif.variance(dif, se.dif, items=paste("item", 1:length(dif), sep="") )
dif.variance(dif, se.dif, items=paste("item", 1:length(dif), sep="") )
dif |
Vector of uniform DIF effects |
se.dif |
Standard error of uniform DIF effects |
items |
Optional vector of item names |
A list with following entries
weighted.DIFSD |
Weighted DIF standard deviation |
unweigted.DIFSD |
DIF standard deviation |
mean.se.dif |
Mean of standard errors of DIF effects |
eb.dif |
Empirical Bayes estimates of DIF effects |
Longford, N. T., Holland, P. W., & Thayer, D. T. (1993). Stability of the MH D-DIF statistics across populations. In P. W. Holland & H. Wainer (Eds.). Differential Item Functioning (pp. 171-196). Hillsdale, NJ: Erlbaum.
See dif.logistic.regression
for examples.
Maximum likelihood estimation of the parameters of the Dirichlet distribution
dirichlet.mle(x, weights=NULL, eps=10^(-5), convcrit=1e-05, maxit=1000, oldfac=.3, progress=FALSE)
dirichlet.mle(x, weights=NULL, eps=10^(-5), convcrit=1e-05, maxit=1000, oldfac=.3, progress=FALSE)
x |
Data frame with |
weights |
Optional vector of frequency weights |
eps |
Tolerance number which is added to prevent from logarithms of zero |
convcrit |
Convergence criterion |
maxit |
Maximum number of iterations |
oldfac |
Convergence acceleration factor. It must be a parameter between 0 and 1. |
progress |
Display iteration progress? |
A list with following entries
alpha |
Vector of |
alpha0 |
The concentration parameter |
xsi |
Vector of proportions |
Minka, T. P. (2012). Estimating a Dirichlet distribution. Technical Report.
For simulating Dirichlet vectors with matrix-wise
parameters see
dirichlet.simul
.
For a variety of functions concerning the Dirichlet distribution see the DirichletReg package.
############################################################################# # EXAMPLE 1: Simulate and estimate Dirichlet distribution ############################################################################# # (1) simulate data set.seed(789) N <- 200 probs <- c(.5, .3, .2 ) alpha0 <- .5 alpha <- alpha0*probs alpha <- matrix( alpha, nrow=N, ncol=length(alpha), byrow=TRUE ) x <- sirt::dirichlet.simul( alpha ) # (2) estimate Dirichlet parameters dirichlet.mle(x) ## $alpha ## [1] 0.24507708 0.14470944 0.09590745 ## $alpha0 ## [1] 0.485694 ## $xsi ## [1] 0.5045916 0.2979437 0.1974648 ## Not run: ############################################################################# # EXAMPLE 2: Fitting Dirichlet distribution with frequency weights ############################################################################# # define observed data x <- scan( nlines=1) 1 0 0 1 .5 .5 x <- matrix( x, nrow=3, ncol=2, byrow=TRUE) # transform observations x into (0,1) eps <- .01 x <- ( x + eps ) / ( 1 + 2 * eps ) # compare results with likelihood fitting package maxLik miceadds::library_install("maxLik") # define likelihood function dirichlet.ll <- function(param) { ll <- sum( weights * log( ddirichlet( x, param ) ) ) ll } #*** weights 10-10-1 weights <- c(10, 10, 1 ) mod1a <- sirt::dirichlet.mle( x, weights=weights ) mod1a # estimation in maxLik mod1b <- maxLik::maxLik(loglik, start=c(.5,.5)) print( mod1b ) coef( mod1b ) #*** weights 10-10-10 weights <- c(10, 10, 10 ) mod2a <- sirt::dirichlet.mle( x, weights=weights ) mod2a # estimation in maxLik mod2b <- maxLik::maxLik(loglik, start=c(.5,.5)) print( mod2b ) coef( mod2b ) #*** weights 30-10-2 weights <- c(30, 10, 2 ) mod3a <- sirt::dirichlet.mle( x, weights=weights ) mod3a # estimation in maxLik mod3b <- maxLik::maxLik(loglik, start=c(.25,.25)) print( mod3b ) coef( mod3b ) ## End(Not run)
############################################################################# # EXAMPLE 1: Simulate and estimate Dirichlet distribution ############################################################################# # (1) simulate data set.seed(789) N <- 200 probs <- c(.5, .3, .2 ) alpha0 <- .5 alpha <- alpha0*probs alpha <- matrix( alpha, nrow=N, ncol=length(alpha), byrow=TRUE ) x <- sirt::dirichlet.simul( alpha ) # (2) estimate Dirichlet parameters dirichlet.mle(x) ## $alpha ## [1] 0.24507708 0.14470944 0.09590745 ## $alpha0 ## [1] 0.485694 ## $xsi ## [1] 0.5045916 0.2979437 0.1974648 ## Not run: ############################################################################# # EXAMPLE 2: Fitting Dirichlet distribution with frequency weights ############################################################################# # define observed data x <- scan( nlines=1) 1 0 0 1 .5 .5 x <- matrix( x, nrow=3, ncol=2, byrow=TRUE) # transform observations x into (0,1) eps <- .01 x <- ( x + eps ) / ( 1 + 2 * eps ) # compare results with likelihood fitting package maxLik miceadds::library_install("maxLik") # define likelihood function dirichlet.ll <- function(param) { ll <- sum( weights * log( ddirichlet( x, param ) ) ) ll } #*** weights 10-10-1 weights <- c(10, 10, 1 ) mod1a <- sirt::dirichlet.mle( x, weights=weights ) mod1a # estimation in maxLik mod1b <- maxLik::maxLik(loglik, start=c(.5,.5)) print( mod1b ) coef( mod1b ) #*** weights 10-10-10 weights <- c(10, 10, 10 ) mod2a <- sirt::dirichlet.mle( x, weights=weights ) mod2a # estimation in maxLik mod2b <- maxLik::maxLik(loglik, start=c(.5,.5)) print( mod2b ) coef( mod2b ) #*** weights 30-10-2 weights <- c(30, 10, 2 ) mod3a <- sirt::dirichlet.mle( x, weights=weights ) mod3a # estimation in maxLik mod3b <- maxLik::maxLik(loglik, start=c(.25,.25)) print( mod3b ) coef( mod3b ) ## End(Not run)
This function makes random draws from a Dirichlet distribution.
dirichlet.simul(alpha)
dirichlet.simul(alpha)
alpha |
A matrix with |
A data frame with Dirichlet distributed responses
############################################################################# # EXAMPLE 1: Simulation with two components ############################################################################# set.seed(789) N <- 2000 probs <- c(.7, .3) # define (extremal) class probabilities #*** alpha0=.2 -> nearly crisp latent classes alpha0 <- .2 alpha <- alpha0*probs alpha <- matrix( alpha, nrow=N, ncol=length(alpha), byrow=TRUE ) x <- sirt::dirichlet.simul( alpha ) htitle <- expression(paste( alpha[0], "=.2, ", p[1], "=.7" ) ) hist( x[,1], breaks=seq(0,1,len=20), main=htitle) #*** alpha0=3 -> strong deviation from crisp membership alpha0 <- 3 alpha <- alpha0*probs alpha <- matrix( alpha, nrow=N, ncol=length(alpha), byrow=TRUE ) x <- sirt::dirichlet.simul( alpha ) htitle <- expression(paste( alpha[0], "=3, ", p[1], "=.7" ) ) hist( x[,1], breaks=seq(0,1,len=20), main=htitle) ## Not run: ############################################################################# # EXAMPLE 2: Simulation with three components ############################################################################# set.seed(986) N <- 2000 probs <- c( .5, .35, .15 ) #*** alpha0=.2 alpha0 <- .2 alpha <- alpha0*probs alpha <- matrix( alpha, nrow=N, ncol=length(alpha), byrow=TRUE ) x <- sirt::dirichlet.simul( alpha ) htitle <- expression(paste( alpha[0], "=.2, ", p[1], "=.7" ) ) miceadds::library_install("ade4") ade4::triangle.plot(x, label=NULL, clabel=1) #*** alpha0=3 alpha0 <- 3 alpha <- alpha0*probs alpha <- matrix( alpha, nrow=N, ncol=length(alpha), byrow=TRUE ) x <- sirt::dirichlet.simul( alpha ) htitle <- expression(paste( alpha[0], "=3, ", p[1], "=.7" ) ) ade4::triangle.plot(x, label=NULL, clabel=1) ## End(Not run)
############################################################################# # EXAMPLE 1: Simulation with two components ############################################################################# set.seed(789) N <- 2000 probs <- c(.7, .3) # define (extremal) class probabilities #*** alpha0=.2 -> nearly crisp latent classes alpha0 <- .2 alpha <- alpha0*probs alpha <- matrix( alpha, nrow=N, ncol=length(alpha), byrow=TRUE ) x <- sirt::dirichlet.simul( alpha ) htitle <- expression(paste( alpha[0], "=.2, ", p[1], "=.7" ) ) hist( x[,1], breaks=seq(0,1,len=20), main=htitle) #*** alpha0=3 -> strong deviation from crisp membership alpha0 <- 3 alpha <- alpha0*probs alpha <- matrix( alpha, nrow=N, ncol=length(alpha), byrow=TRUE ) x <- sirt::dirichlet.simul( alpha ) htitle <- expression(paste( alpha[0], "=3, ", p[1], "=.7" ) ) hist( x[,1], breaks=seq(0,1,len=20), main=htitle) ## Not run: ############################################################################# # EXAMPLE 2: Simulation with three components ############################################################################# set.seed(986) N <- 2000 probs <- c( .5, .35, .15 ) #*** alpha0=.2 alpha0 <- .2 alpha <- alpha0*probs alpha <- matrix( alpha, nrow=N, ncol=length(alpha), byrow=TRUE ) x <- sirt::dirichlet.simul( alpha ) htitle <- expression(paste( alpha[0], "=.2, ", p[1], "=.7" ) ) miceadds::library_install("ade4") ade4::triangle.plot(x, label=NULL, clabel=1) #*** alpha0=3 alpha0 <- 3 alpha <- alpha0*probs alpha <- matrix( alpha, nrow=N, ncol=length(alpha), byrow=TRUE ) x <- sirt::dirichlet.simul( alpha ) htitle <- expression(paste( alpha[0], "=3, ", p[1], "=.7" ) ) ade4::triangle.plot(x, label=NULL, clabel=1) ## End(Not run)
The function dmlavaan
compares model parameters from different lavaan
models fitted to the same dataset. This leads to dependent coefficients.
Statistical inference is either conducted by M-estimation (i.e., robust
sandwich method; method="bootstrap"
) or bootstrap (method="bootstrap"
).
See Mize et al. (2019) or Weesie (1999) for more details.
dmlavaan(fun1, args1, fun2, args2, method="sandwich", R=50)
dmlavaan(fun1, args1, fun2, args2, method="sandwich", R=50)
fun1 |
lavaan function of the first model (e.g., |
args1 |
arguments for lavaan function in the first model |
fun2 |
lavaan function of the second model (e.g., |
args2 |
arguments for lavaan function in the second model |
method |
estimation method for standard errors |
R |
Number of bootstrap samples |
In bootstrap estimation, a normal approximation is applied in the
computation of confidence intervals. Hence, R
could be chosen
relatively small.
TO DO (not yet implemented):
1) | inclusion of sampling weights |
2) | cluster robust standard errors in hierarchical sampling |
3) | stratification |
A list with following entries
coef |
Model parameters of both models |
vcov |
Covariance matrix of model parameters of both models |
partable |
Parameter table containing all univariate model parameters |
... |
More entries |
Mize, T.D., Doan, L., & Long, J.S. (2019). A general framework for comparing predictions and marginal effects across models. Sociological Methodology, 49(1), 152-189. doi:10.1177/0081175019852763
Weesie, J. (1999) Seemingly unrelated estimation and the cluster-adjusted sandwich estimator. Stata Technical Bulletin, 9, 231-248.
## Not run: ############################################################################ # EXAMPLE 1: Confirmatory factor analysis with and without fourth item ############################################################################# #**** simulate data N <- 200 # number of persons I <- 4 # number of items # loadings and error correlations lam <- seq(.7,.4, len=I) PSI <- diag( 1-lam^2 ) # define some model misspecification sd_error <- .1 S1 <- matrix( c( -1.84, 0.39,-0.68, 0.13, 0.39,-1.31,-0.07,-0.27, -0.68,-0.07, 0.90, 1.91, 0.13,-0.27, 1.91,-0.56 ), nrow=4, ncol=4, byrow=TRUE) S1 <- ( S1 - mean(S1) ) / sd(S1) * sd_error Sigma <- lam %*% t(lam) + PSI + S1 dat <- MASS::mvrnorm(n=N, mu=rep(0,I), Sigma=Sigma) colnames(dat) <- paste0("X",1:4) dat <- as.data.frame(dat) rownames(Sigma) <- colnames(Sigma) <- colnames(dat) #*** define two lavaan models lavmodel1 <- "F=~ X1 + X2 + X3 + X4" lavmodel2 <- "F=~ X1 + X2 + X3" #*** define lavaan estimation arguments and functions fun2 <- fun1 <- "cfa" args1 <- list( model=lavmodel1, data=dat, std.lv=TRUE, estimator="MLR") args2 <- args1 args2$model <- lavmodel2 #* run model comparison res1 <- sirt::dmlavaan( fun1=fun1, args1=args1, fun2=fun2, args2=args2) # inspect results sirt:::print_digits(res1$partable, digits=3) ## End(Not run)
## Not run: ############################################################################ # EXAMPLE 1: Confirmatory factor analysis with and without fourth item ############################################################################# #**** simulate data N <- 200 # number of persons I <- 4 # number of items # loadings and error correlations lam <- seq(.7,.4, len=I) PSI <- diag( 1-lam^2 ) # define some model misspecification sd_error <- .1 S1 <- matrix( c( -1.84, 0.39,-0.68, 0.13, 0.39,-1.31,-0.07,-0.27, -0.68,-0.07, 0.90, 1.91, 0.13,-0.27, 1.91,-0.56 ), nrow=4, ncol=4, byrow=TRUE) S1 <- ( S1 - mean(S1) ) / sd(S1) * sd_error Sigma <- lam %*% t(lam) + PSI + S1 dat <- MASS::mvrnorm(n=N, mu=rep(0,I), Sigma=Sigma) colnames(dat) <- paste0("X",1:4) dat <- as.data.frame(dat) rownames(Sigma) <- colnames(Sigma) <- colnames(dat) #*** define two lavaan models lavmodel1 <- "F=~ X1 + X2 + X3 + X4" lavmodel2 <- "F=~ X1 + X2 + X3" #*** define lavaan estimation arguments and functions fun2 <- fun1 <- "cfa" args1 <- list( model=lavmodel1, data=dat, std.lv=TRUE, estimator="MLR") args2 <- args1 args2$model <- lavmodel2 #* run model comparison res1 <- sirt::dmlavaan( fun1=fun1, args1=args1, fun2=fun2, args2=args2) # inspect results sirt:::print_digits(res1$partable, digits=3) ## End(Not run)
This function computes the eigenvalue decomposition of
symmetric positive definite matrices. The eigenvalues are computed
by the Rayleigh quotient method (Lange, 2010, p. 120). In addition,
the inverse matrix can be calculated.
eigenvalues.manymatrices(Sigma.all, itermax=10, maxconv=0.001, inverse=FALSE )
eigenvalues.manymatrices(Sigma.all, itermax=10, maxconv=0.001, inverse=FALSE )
Sigma.all |
An |
itermax |
Maximum number of iterations |
maxconv |
Convergence criterion for convergence of eigenvectors |
inverse |
A logical which indicates if the inverse matrix shall be calculated |
A list with following entries
lambda |
Matrix with eigenvalues |
U |
An |
logdet |
Vector of logarithm of determinants |
det |
Vector of determinants |
Sigma.inv |
Inverse matrix if |
Lange, K. (2010). Numerical Analysis for Statisticians. New York: Springer.
# define matrices Sigma <- diag(1,3) Sigma[ lower.tri(Sigma) ] <- Sigma[ upper.tri(Sigma) ] <- c(.4,.6,.8 ) Sigma1 <- Sigma Sigma <- diag(1,3) Sigma[ lower.tri(Sigma) ] <- Sigma[ upper.tri(Sigma) ] <- c(.2,.1,.99 ) Sigma2 <- Sigma # collect matrices in a "super-matrix" Sigma.all <- rbind( matrix( Sigma1, nrow=1, byrow=TRUE), matrix( Sigma2, nrow=1, byrow=TRUE) ) Sigma.all <- Sigma.all[ c(1,1,2,2,1 ), ] # eigenvalue decomposition m1 <- sirt::eigenvalues.manymatrices( Sigma.all ) m1 # eigenvalue decomposition for Sigma1 s1 <- svd(Sigma1) s1
# define matrices Sigma <- diag(1,3) Sigma[ lower.tri(Sigma) ] <- Sigma[ upper.tri(Sigma) ] <- c(.4,.6,.8 ) Sigma1 <- Sigma Sigma <- diag(1,3) Sigma[ lower.tri(Sigma) ] <- Sigma[ upper.tri(Sigma) ] <- c(.2,.1,.99 ) Sigma2 <- Sigma # collect matrices in a "super-matrix" Sigma.all <- rbind( matrix( Sigma1, nrow=1, byrow=TRUE), matrix( Sigma2, nrow=1, byrow=TRUE) ) Sigma.all <- Sigma.all[ c(1,1,2,2,1 ), ] # eigenvalue decomposition m1 <- sirt::eigenvalues.manymatrices( Sigma.all ) m1 # eigenvalue decomposition for Sigma1 s1 <- svd(Sigma1) s1
This function does the linking in the generalized
logistic item response model. Only item difficulties (
item parameters) are allowed. Mean-mean linking and the methods
of Haebara and Stocking-Lord are implemented (Kolen & Brennan, 2004).
equating.rasch(x, y, theta=seq(-4, 4, len=100), alpha1=0, alpha2=0)
equating.rasch(x, y, theta=seq(-4, 4, len=100), alpha1=0, alpha2=0)
x |
Matrix with two columns: First column items, second column item difficulties |
y |
Matrix with two columns: First columns item, second column item difficulties |
theta |
Vector of theta values at which the linking functions
should be evaluated. If a weighting according to a prespecified normal
distribution |
alpha1 |
Fixed |
alpha2 |
Fixed |
B.est |
Estimated linking constants according to the methods
|
descriptives |
Descriptives of the linking. The linking error
( |
anchor |
Original and transformed item parameters of anchor items |
transf.par |
Original and transformed item parameters of all items |
Kolen, M. J., & Brennan, R. L. (2004). Test Equating, Scaling, and Linking: Methods and Practices. New York: Springer.
For estimating standard errors (due to inference with respect to
the item domain) of this procedure see equating.rasch.jackknife
.
For linking several studies see linking.haberman
or
invariance.alignment
.
A robust alternative to mean-mean linking is implemented in
linking.robust
.
For linking under more general item response models see the plink package.
############################################################################# # EXAMPLE 1: Linking item parameters of the PISA study ############################################################################# data(data.pisaPars) pars <- data.pisaPars # linking the two studies with the Rasch model mod <- sirt::equating.rasch(x=pars[,c("item","study1")], y=pars[,c("item","study2")]) ## Mean.Mean Haebara Stocking.Lord ## 1 0.08828 0.08896269 0.09292838 ## Not run: #*** linking using the plink package # The plink package is not available on CRAN anymore. # You can download the package with # utils::install.packages("plink", repos="http://www2.uaem.mx/r-mirror") library(plink) I <- nrow(pars) pm <- plink::as.poly.mod(I) # linking parameters plink.pars1 <- list( "study1"=data.frame( 1, pars$study1, 0 ), "study2"=data.frame( 1, pars$study2, 0 ) ) # the parameters are arranged in the columns: # Discrimination, Difficulty, Guessing Parameter # common items common.items <- cbind("study1"=1:I,"study2"=1:I) # number of categories per item cats.item <- list( "study1"=rep(2,I), "study2"=rep(2,I)) # convert into plink object x <- plink::as.irt.pars( plink.pars1, common.items, cat=cats.item, poly.mod=list(pm,pm)) # linking using plink: first group is reference group out <- plink::plink(x, rescale="MS", base.grp=1, D=1.7) # summary for linking summary(out) ## ------- group2/group1* ------- ## Linking Constants ## ## A B ## Mean/Mean 1.000000 -0.088280 ## Mean/Sigma 1.000000 -0.088280 ## Haebara 1.000000 -0.088515 ## Stocking-Lord 1.000000 -0.096610 # extract linked parameters pars.out <- plink::link.pars(out) ## End(Not run)
############################################################################# # EXAMPLE 1: Linking item parameters of the PISA study ############################################################################# data(data.pisaPars) pars <- data.pisaPars # linking the two studies with the Rasch model mod <- sirt::equating.rasch(x=pars[,c("item","study1")], y=pars[,c("item","study2")]) ## Mean.Mean Haebara Stocking.Lord ## 1 0.08828 0.08896269 0.09292838 ## Not run: #*** linking using the plink package # The plink package is not available on CRAN anymore. # You can download the package with # utils::install.packages("plink", repos="http://www2.uaem.mx/r-mirror") library(plink) I <- nrow(pars) pm <- plink::as.poly.mod(I) # linking parameters plink.pars1 <- list( "study1"=data.frame( 1, pars$study1, 0 ), "study2"=data.frame( 1, pars$study2, 0 ) ) # the parameters are arranged in the columns: # Discrimination, Difficulty, Guessing Parameter # common items common.items <- cbind("study1"=1:I,"study2"=1:I) # number of categories per item cats.item <- list( "study1"=rep(2,I), "study2"=rep(2,I)) # convert into plink object x <- plink::as.irt.pars( plink.pars1, common.items, cat=cats.item, poly.mod=list(pm,pm)) # linking using plink: first group is reference group out <- plink::plink(x, rescale="MS", base.grp=1, D=1.7) # summary for linking summary(out) ## ------- group2/group1* ------- ## Linking Constants ## ## A B ## Mean/Mean 1.000000 -0.088280 ## Mean/Sigma 1.000000 -0.088280 ## Haebara 1.000000 -0.088515 ## Stocking-Lord 1.000000 -0.096610 # extract linked parameters pars.out <- plink::link.pars(out) ## End(Not run)
This function estimates the linking error in linking based on Jackknife (Monseur & Berezner, 2007).
equating.rasch.jackknife(pars.data, display=TRUE, se.linkerror=FALSE, alpha1=0, alpha2=0)
equating.rasch.jackknife(pars.data, display=TRUE, se.linkerror=FALSE, alpha1=0, alpha2=0)
pars.data |
Data frame with four columns: jackknife unit (1st column), item parameter study 1 (2nd column), item parameter study 2 (3rd column), item (4th column) |
display |
Display progress? |
se.linkerror |
Compute standard error of the linking error |
alpha1 |
Fixed |
alpha2 |
Fixed |
A list with following entries:
pars.data |
Used item parameters |
itemunits |
Used units for jackknife |
descriptives |
Descriptives for Jackknife.
|
Monseur, C., & Berezner, A. (2007). The computation of equating errors in international surveys in education. Journal of Applied Measurement, 8, 323-335.
For more details on linking methods see equating.rasch
.
############################################################################# # EXAMPLE 1: Linking errors PISA study ############################################################################# data(data.pisaPars) pars <- data.pisaPars # Linking error: Jackknife unit is the testlet vars <- c("testlet","study1","study2","item") res1 <- sirt::equating.rasch.jackknife(pars[, vars]) res1$descriptives ## N.items N.units shift SD linkerror.jackknife SE.SD.jackknife ## 1 25 8 0.09292838 0.1487387 0.04491197 0.03466309 # Linking error: Jackknife unit is the item res2 <- sirt::equating.rasch.jackknife(pars[, vars ] ) res2$descriptives ## N.items N.units shift SD linkerror.jackknife SE.SD.jackknife ## 1 25 25 0.09292838 0.1487387 0.02682839 0.02533327
############################################################################# # EXAMPLE 1: Linking errors PISA study ############################################################################# data(data.pisaPars) pars <- data.pisaPars # Linking error: Jackknife unit is the testlet vars <- c("testlet","study1","study2","item") res1 <- sirt::equating.rasch.jackknife(pars[, vars]) res1$descriptives ## N.items N.units shift SD linkerror.jackknife SE.SD.jackknife ## 1 25 8 0.09292838 0.1487387 0.04491197 0.03466309 # Linking error: Jackknife unit is the item res2 <- sirt::equating.rasch.jackknife(pars[, vars ] ) res2$descriptives ## N.items N.units shift SD linkerror.jackknife SE.SD.jackknife ## 1 25 25 0.09292838 0.1487387 0.02682839 0.02533327
This function estimates the DETECT index (Stout, Habing, Douglas & Kim, 1996; Zhang & Stout, 1999a, 1999b) in an exploratory way. Conditional covariances of itempairs are transformed into a distance matrix such that items are clustered by the hierarchical Ward algorithm (Roussos, Stout & Marden, 1998). Note that the function will not provide the same output as the original DETECT software.
expl.detect(data, score, nclusters, N.est=NULL, seed=NULL, bwscale=1.1, smooth=TRUE, use_sum_score=FALSE, hclust_method="ward.D", estsample=NULL)
expl.detect(data, score, nclusters, N.est=NULL, seed=NULL, bwscale=1.1, smooth=TRUE, use_sum_score=FALSE, hclust_method="ward.D", estsample=NULL)
data |
An |
score |
An ability estimate, e.g. the WLE, sum score or mean score |
nclusters |
Maximum number of clusters used in the exploratory analysis |
N.est |
Number of students in a (possible) validation of the DETECT index.
|
seed |
Random seed |
bwscale |
Bandwidth scale factor |
smooth |
Logical indicating whether smoothing should be applied for conditional covariance estimation |
use_sum_score |
Logical indicating whether sum score should be used. With this option, the bias corrected conditional covariance of Zhang and Stout (1999) is used. |
hclust_method |
Clustering method used as the argument
|
estsample |
Optional vector of subject indices that defines the estimation sample |
A list with following entries
detect.unweighted |
Unweighted DETECT statistics |
detect.weighted |
Weighted DETECT statistics. Weighting is done proportionally to sample sizes of item pairs. |
clusterfit |
Fit of the cluster method |
itemcluster |
Cluster allocations |
use_sum_score
Roussos, L. A., Stout, W. F., & Marden, J. I. (1998). Using new proximity measures with hierarchical cluster analysis to detect multidimensionality. Journal of Educational Measurement, 35, 1-30.
Stout, W., Habing, B., Douglas, J., & Kim, H. R. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20, 331-354.
Zhang, J., & Stout, W. (1999a). Conditional covariance structure of generalized compensatory multidimensional items, Psychometrika, 64, 129-152.
Zhang, J., & Stout, W. (1999b). The theoretical DETECT index of dimensionality and its application to approximate simple structure, Psychometrika, 64, 213-249.
For examples see conf.detect
.
Estimates the functional unidimensional item response model for dichotomous data (Ip, Molenberghs, Chen, Goegebeur & De Boeck, 2013). Either the IRT model is estimated using a probit link and employing tetrachoric correlations or item discriminations and intercepts of a pre-estimated multidimensional IRT model are provided as input.
f1d.irt(dat=NULL, nnormal=1000, nfactors=3, A=NULL, intercept=NULL, mu=NULL, Sigma=NULL, maxiter=100, conv=10^(-5), progress=TRUE)
f1d.irt(dat=NULL, nnormal=1000, nfactors=3, A=NULL, intercept=NULL, mu=NULL, Sigma=NULL, maxiter=100, conv=10^(-5), progress=TRUE)
dat |
Data frame with dichotomous item responses |
nnormal |
Number of |
nfactors |
Number of dimensions to be estimated |
A |
Matrix of item discriminations (if the IRT model is already estimated) |
intercept |
Vector of item intercepts (if the IRT model is already estimated) |
mu |
Vector of estimated means. In the default it is assumed that all means are zero. |
Sigma |
Estimated covariance matrix. In the default it is the identity matrix. |
maxiter |
Maximum number of iterations |
conv |
Convergence criterion |
progress |
Display progress? The default is |
The functional unidimensional item response model (F1D model)
for dichotomous item responses is based on a multidimensional model with a
link function (probit or logit):
It is assumed that is multivariate normally
distribution with a zero mean vector and identity covariance matrix.
The F1D model estimates unidimensional item response functions such that
The optimization function minimizes the deviations of
the approximation equations
The optimization function is defined by
All items are equally weighted whereas the ability
distribution of persons
are weighted according to the
multivariate normal distribution (using weights
).
The estimation is conducted using an alternating least squares algorithm
(see Ip et al. 2013 for a different algorithm). The ability distribution
of the functional unidimensional model is assumed
to be standardized, i.e. does have a zero mean and a standard deviation of one.
A list with following entries:
item |
Data frame with estimated item parameters: Item intercepts
for the functional unidimensional |
person |
Data frame with estimated |
A |
Estimated or provided item discriminations |
intercept |
Estimated or provided intercepts |
dat |
Used dataset |
tetra |
Object generated by |
Ip, E. H., Molenberghs, G., Chen, S. H., Goegebeur, Y., & De Boeck, P. (2013). Functionally unidimensional item response models for multivariate binary data. Multivariate Behavioral Research, 48, 534-562.
For estimation of bifactor models and Green-Yang reliability
based on tetrachoric correlations see greenyang.reliability
.
For estimation of bifactor models based on marginal maximum likelihood
(i.e. full information maximum likelihood) see the
TAM::tam.fa
function in the TAM package.
############################################################################# # EXAMPLE 1: Dataset Mathematics data.math | Exploratory multidimensional model ############################################################################# data(data.math) dat <- ( data.math$data )[, -c(1,2) ] # select Mathematics items #**** # Model 1: Functional unidimensional model based on original data #++ (1) estimate model with 3 factors mod1 <- sirt::f1d.irt( dat=dat, nfactors=3) #++ (2) plot results par(mfrow=c(1,2)) # Intercepts plot( mod1$item$di0, mod1$item$di.ast, pch=16, main="Item Intercepts", xlab=expression( paste( d[i], " (Unidimensional Model)" )), ylab=expression( paste( d[i], " (Functional Unidimensional Model)" ))) abline( lm(mod1$item$di.ast ~ mod1$item$di0), col=2, lty=2 ) # Discriminations plot( mod1$item$ai0, mod1$item$ai.ast, pch=16, main="Item Discriminations", xlab=expression( paste( a[i], " (Unidimensional Model)" )), ylab=expression( paste( a[i], " (Functional Unidimensional Model)" ))) abline( lm(mod1$item$ai.ast ~ mod1$item$ai0), col=2, lty=2 ) par(mfrow=c(1,1)) #++ (3) estimate bifactor model and Green-Yang reliability gy1 <- sirt::greenyang.reliability( mod1$tetra, nfactors=3 ) ## Not run: #**** # Model 2: Functional unidimensional model based on estimated multidimensional # item response model #++ (1) estimate 2-dimensional exploratory factor analysis with 'smirt' I <- ncol(dat) Q <- matrix( 1, I,2 ) Q[1,2] <- 0 variance.fixed <- cbind( 1,2,0 ) mod2a <- sirt::smirt( dat, Qmatrix=Q, irtmodel="comp", est.a="2PL", variance.fixed=variance.fixed, maxiter=50) #++ (2) input estimated discriminations and intercepts for # functional unidimensional model mod2b <- sirt::f1d.irt( A=mod2a$a, intercept=mod2a$b ) ############################################################################# # EXAMPLE 2: Dataset Mathematics data.math | Confirmatory multidimensional model ############################################################################# data(data.math) library(TAM) # dataset dat <- data.math$data dat <- dat[, grep("M", colnames(dat) ) ] # extract item informations iteminfo <- data.math$item I <- ncol(dat) # define Q-matrix Q <- matrix( 0, nrow=I, ncol=3 ) Q[ grep( "arith", iteminfo$domain ), 1 ] <- 1 Q[ grep( "Meas", iteminfo$domain ), 2 ] <- 1 Q[ grep( "geom", iteminfo$domain ), 3 ] <- 1 # fit three-dimensional model in TAM mod1 <- TAM::tam.mml.2pl( dat, Q=Q, control=list(maxiter=40, snodes=1000) ) summary(mod1) # specify functional unidimensional model intercept <- mod1$xsi[, c("xsi") ] names(intercept) <- rownames(mod1$xsi) fumod1 <- sirt::f1d.irt( A=mod1$B[,2,], intercept=intercept, Sigma=mod1$variance) fumod1$item ## End(Not run)
############################################################################# # EXAMPLE 1: Dataset Mathematics data.math | Exploratory multidimensional model ############################################################################# data(data.math) dat <- ( data.math$data )[, -c(1,2) ] # select Mathematics items #**** # Model 1: Functional unidimensional model based on original data #++ (1) estimate model with 3 factors mod1 <- sirt::f1d.irt( dat=dat, nfactors=3) #++ (2) plot results par(mfrow=c(1,2)) # Intercepts plot( mod1$item$di0, mod1$item$di.ast, pch=16, main="Item Intercepts", xlab=expression( paste( d[i], " (Unidimensional Model)" )), ylab=expression( paste( d[i], " (Functional Unidimensional Model)" ))) abline( lm(mod1$item$di.ast ~ mod1$item$di0), col=2, lty=2 ) # Discriminations plot( mod1$item$ai0, mod1$item$ai.ast, pch=16, main="Item Discriminations", xlab=expression( paste( a[i], " (Unidimensional Model)" )), ylab=expression( paste( a[i], " (Functional Unidimensional Model)" ))) abline( lm(mod1$item$ai.ast ~ mod1$item$ai0), col=2, lty=2 ) par(mfrow=c(1,1)) #++ (3) estimate bifactor model and Green-Yang reliability gy1 <- sirt::greenyang.reliability( mod1$tetra, nfactors=3 ) ## Not run: #**** # Model 2: Functional unidimensional model based on estimated multidimensional # item response model #++ (1) estimate 2-dimensional exploratory factor analysis with 'smirt' I <- ncol(dat) Q <- matrix( 1, I,2 ) Q[1,2] <- 0 variance.fixed <- cbind( 1,2,0 ) mod2a <- sirt::smirt( dat, Qmatrix=Q, irtmodel="comp", est.a="2PL", variance.fixed=variance.fixed, maxiter=50) #++ (2) input estimated discriminations and intercepts for # functional unidimensional model mod2b <- sirt::f1d.irt( A=mod2a$a, intercept=mod2a$b ) ############################################################################# # EXAMPLE 2: Dataset Mathematics data.math | Confirmatory multidimensional model ############################################################################# data(data.math) library(TAM) # dataset dat <- data.math$data dat <- dat[, grep("M", colnames(dat) ) ] # extract item informations iteminfo <- data.math$item I <- ncol(dat) # define Q-matrix Q <- matrix( 0, nrow=I, ncol=3 ) Q[ grep( "arith", iteminfo$domain ), 1 ] <- 1 Q[ grep( "Meas", iteminfo$domain ), 2 ] <- 1 Q[ grep( "geom", iteminfo$domain ), 3 ] <- 1 # fit three-dimensional model in TAM mod1 <- TAM::tam.mml.2pl( dat, Q=Q, control=list(maxiter=40, snodes=1000) ) summary(mod1) # specify functional unidimensional model intercept <- mod1$xsi[, c("xsi") ] names(intercept) <- rownames(mod1$xsi) fumod1 <- sirt::f1d.irt( A=mod1$B[,2,], intercept=intercept, Sigma=mod1$variance) fumod1$item ## End(Not run)
Fit the isotonic probabilistic model (ISOP; Scheiblechner, 1995) and the additive isotonic probabilistic model (ADISOP; Scheiblechner, 1999).
fit.isop(freq.correct, wgt, conv=1e-04, maxit=100, progress=TRUE, calc.ll=TRUE) fit.adisop(freq.correct, wgt, conv=1e-04, maxit=100, epsilon=0.01, progress=TRUE, calc.ll=TRUE)
fit.isop(freq.correct, wgt, conv=1e-04, maxit=100, progress=TRUE, calc.ll=TRUE) fit.adisop(freq.correct, wgt, conv=1e-04, maxit=100, epsilon=0.01, progress=TRUE, calc.ll=TRUE)
freq.correct |
Frequency table |
wgt |
Weights for frequency table (number of persons in each cell) |
conv |
Convergence criterion |
maxit |
Maximum number of iterations |
epsilon |
Additive constant to handle cell frequencies
of 0 or 1 in |
progress |
Display progress? |
calc.ll |
Calculate log-likelihood values?
The default is |
See isop.dich
for more details of the
ISOP and ADISOP model.
A list with following entries
fX |
Fitted frequency table |
ResX |
Residual frequency table |
fit |
Fit statistic: weighted least squares of deviations between observed and expected frequencies |
item.sc |
Estimated item parameters |
person.sc |
Estimated person parameters |
ll |
Log-likelihood of the model |
freq.fitted |
Fitted frequencies in a long data frame |
For fitting the ADISOP model it is recommended to first fit the ISOP model and then proceed with the fitted frequency table from ISOP (see Examples).
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60, 281-304.
Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic models (ADISOP). Psychometrika, 64, 295-316.
For fitting the ISOP model to dichotomous and
polytomous data see isop.dich
.
############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data(data.read) dat <- as.matrix( data.read) dat.resp <- 1 - is.na(dat) # response indicator matrix I <- ncol(dat) #*** # (1) Data preparation # actually only freq.correct and wgt are needed # but these matrices must be computed in advance. # different scores of students stud.p <- rowMeans( dat, na.rm=TRUE ) # different item p values item.p <- colMeans( dat, na.rm=TRUE ) item.ps <- sort( item.p, index.return=TRUE) dat <- dat[, item.ps$ix ] # define score groups students scores <- sort( unique( stud.p ) ) SC <- length(scores) # create table freq.correct <- matrix( NA, SC, I ) wgt <- freq.correct # percent correct a1 <- stats::aggregate( dat==1, list( stud.p ), mean, na.rm=TRUE ) freq.correct <- a1[,-1] # weights a1 <- stats::aggregate( dat.resp, list( stud.p ), sum, na.rm=TRUE ) wgt <- a1[,-1] #*** # (2) Fit ISOP model res.isop <- sirt::fit.isop( freq.correct, wgt ) # fitted frequency table res.isop$fX #*** # (3) Fit ADISOP model # use monotonely smoothed frequency table from ISOP model res.adisop <- sirt::fit.adisop( freq.correct=res.isop$fX, wgt ) # fitted frequency table res.adisop$fX
############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data(data.read) dat <- as.matrix( data.read) dat.resp <- 1 - is.na(dat) # response indicator matrix I <- ncol(dat) #*** # (1) Data preparation # actually only freq.correct and wgt are needed # but these matrices must be computed in advance. # different scores of students stud.p <- rowMeans( dat, na.rm=TRUE ) # different item p values item.p <- colMeans( dat, na.rm=TRUE ) item.ps <- sort( item.p, index.return=TRUE) dat <- dat[, item.ps$ix ] # define score groups students scores <- sort( unique( stud.p ) ) SC <- length(scores) # create table freq.correct <- matrix( NA, SC, I ) wgt <- freq.correct # percent correct a1 <- stats::aggregate( dat==1, list( stud.p ), mean, na.rm=TRUE ) freq.correct <- a1[,-1] # weights a1 <- stats::aggregate( dat.resp, list( stud.p ), sum, na.rm=TRUE ) wgt <- a1[,-1] #*** # (2) Fit ISOP model res.isop <- sirt::fit.isop( freq.correct, wgt ) # fitted frequency table res.isop$fX #*** # (3) Fit ADISOP model # use monotonely smoothed frequency table from ISOP model res.adisop <- sirt::fit.adisop( freq.correct=res.isop$fX, wgt ) # fitted frequency table res.adisop$fX
This function performs clustering for continuous fuzzy data for which membership functions are assumed to be Gaussian (Denoeux, 2013). The mixture is also assumed to be Gaussian and (conditionally cluster membership) independent.
fuzcluster(dat_m, dat_s, K=2, nstarts=7, seed=NULL, maxiter=100, parmconv=0.001, fac.oldxsi=0.75, progress=TRUE) ## S3 method for class 'fuzcluster' summary(object,...)
fuzcluster(dat_m, dat_s, K=2, nstarts=7, seed=NULL, maxiter=100, parmconv=0.001, fac.oldxsi=0.75, progress=TRUE) ## S3 method for class 'fuzcluster' summary(object,...)
dat_m |
Centers for individual item specific membership functions |
dat_s |
Standard deviations for individual item specific membership functions |
K |
Number of latent classes |
nstarts |
Number of random starts. The default is 7 random starts. |
seed |
Simulation seed. If one value is provided, then only one start is performed. |
maxiter |
Maximum number of iterations |
parmconv |
Maximum absolute change in parameters |
fac.oldxsi |
Convergence acceleration factor which should take values between 0 and 1. The default is 0.75. |
progress |
An optional logical indicating whether iteration progress should be displayed. |
object |
Object of class |
... |
Further arguments to be passed |
A list with following entries
deviance |
Deviance |
iter |
Number of iterations |
pi_est |
Estimated class probabilities |
mu_est |
Cluster means |
sd_est |
Cluster standard deviations |
posterior |
Individual posterior distributions of cluster membership |
seed |
Simulation seed for cluster solution |
ic |
Information criteria |
Denoeux, T. (2013). Maximum likelihood estimation from uncertain data in the belief function framework. IEEE Transactions on Knowledge and Data Engineering, 25, 119-130.
See fuzdiscr
for estimating discrete distributions for
fuzzy data.
See the fclust package for fuzzy clustering.
## Not run: ############################################################################# # EXAMPLE 1: 2 classes and 3 items ############################################################################# #*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- # simulate data (2 classes and 3 items) set.seed(876) library(mvtnorm) Ntot <- 1000 # number of subjects # define SDs for simulating uncertainty sd_uncertain <- c( .2, 1, 2 ) dat_m <- NULL # data frame containing mean of membership function dat_s <- NULL # data frame containing SD of membership function # *** Class 1 pi_class <- .6 Nclass <- Ntot * pi_class mu <- c(3,1,0) Sigma <- diag(3) # simulate data dat_m1 <- mvtnorm::rmvnorm( Nclass, mean=mu, sigma=Sigma ) dat_s1 <- matrix( stats::runif( Nclass * 3 ), nrow=Nclass ) for ( ii in 1:3){ dat_s1[,ii] <- dat_s1[,ii] * sd_uncertain[ii] } dat_m <- rbind( dat_m, dat_m1 ) dat_s <- rbind( dat_s, dat_s1 ) # *** Class 2 pi_class <- .4 Nclass <- Ntot * pi_class mu <- c(0,-2,0.4) Sigma <- diag(c(0.5, 2, 2 ) ) # simulate data dat_m1 <- mvtnorm::rmvnorm( Nclass, mean=mu, sigma=Sigma ) dat_s1 <- matrix( stats::runif( Nclass * 3 ), nrow=Nclass ) for ( ii in 1:3){ dat_s1[,ii] <- dat_s1[,ii] * sd_uncertain[ii] } dat_m <- rbind( dat_m, dat_m1 ) dat_s <- rbind( dat_s, dat_s1 ) colnames(dat_s) <- colnames(dat_m) <- paste0("I", 1:3 ) #*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- # estimation #*** Model 1: Clustering with 8 random starts res1 <- sirt::fuzcluster(K=2,dat_m, dat_s, nstarts=8, maxiter=25) summary(res1) ## Number of iterations=22 (Seed=5090 ) ## --------------------------------------------------- ## Class probabilities (2 Classes) ## [1] 0.4083 0.5917 ## ## Means ## I1 I2 I3 ## [1,] 0.0595 -1.9070 0.4011 ## [2,] 3.0682 1.0233 0.0359 ## ## Standard deviations ## [,1] [,2] [,3] ## [1,] 0.7238 1.3712 1.2647 ## [2,] 0.9740 0.8500 0.7523 #*** Model 2: Clustering with one start with seed 4550 res2 <- sirt::fuzcluster(K=2,dat_m, dat_s, nstarts=1, seed=5090 ) summary(res2) #*** Model 3: Clustering for crisp data # (assuming no uncertainty, i.e. dat_s=0) res3 <- sirt::fuzcluster(K=2,dat_m, dat_s=0*dat_s, nstarts=30, maxiter=25) summary(res3) ## Class probabilities (2 Classes) ## [1] 0.3645 0.6355 ## ## Means ## I1 I2 I3 ## [1,] 0.0463 -1.9221 0.4481 ## [2,] 3.0527 1.0241 -0.0008 ## ## Standard deviations ## [,1] [,2] [,3] ## [1,] 0.7261 1.4541 1.4586 ## [2,] 0.9933 0.9592 0.9535 #*** Model 4: kmeans cluster analysis res4 <- stats::kmeans( dat_m, centers=2 ) ## K-means clustering with 2 clusters of sizes 607, 393 ## Cluster means: ## I1 I2 I3 ## 1 3.01550780 1.035848 -0.01662275 ## 2 0.03448309 -2.008209 0.48295067 ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: 2 classes and 3 items ############################################################################# #*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- # simulate data (2 classes and 3 items) set.seed(876) library(mvtnorm) Ntot <- 1000 # number of subjects # define SDs for simulating uncertainty sd_uncertain <- c( .2, 1, 2 ) dat_m <- NULL # data frame containing mean of membership function dat_s <- NULL # data frame containing SD of membership function # *** Class 1 pi_class <- .6 Nclass <- Ntot * pi_class mu <- c(3,1,0) Sigma <- diag(3) # simulate data dat_m1 <- mvtnorm::rmvnorm( Nclass, mean=mu, sigma=Sigma ) dat_s1 <- matrix( stats::runif( Nclass * 3 ), nrow=Nclass ) for ( ii in 1:3){ dat_s1[,ii] <- dat_s1[,ii] * sd_uncertain[ii] } dat_m <- rbind( dat_m, dat_m1 ) dat_s <- rbind( dat_s, dat_s1 ) # *** Class 2 pi_class <- .4 Nclass <- Ntot * pi_class mu <- c(0,-2,0.4) Sigma <- diag(c(0.5, 2, 2 ) ) # simulate data dat_m1 <- mvtnorm::rmvnorm( Nclass, mean=mu, sigma=Sigma ) dat_s1 <- matrix( stats::runif( Nclass * 3 ), nrow=Nclass ) for ( ii in 1:3){ dat_s1[,ii] <- dat_s1[,ii] * sd_uncertain[ii] } dat_m <- rbind( dat_m, dat_m1 ) dat_s <- rbind( dat_s, dat_s1 ) colnames(dat_s) <- colnames(dat_m) <- paste0("I", 1:3 ) #*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- # estimation #*** Model 1: Clustering with 8 random starts res1 <- sirt::fuzcluster(K=2,dat_m, dat_s, nstarts=8, maxiter=25) summary(res1) ## Number of iterations=22 (Seed=5090 ) ## --------------------------------------------------- ## Class probabilities (2 Classes) ## [1] 0.4083 0.5917 ## ## Means ## I1 I2 I3 ## [1,] 0.0595 -1.9070 0.4011 ## [2,] 3.0682 1.0233 0.0359 ## ## Standard deviations ## [,1] [,2] [,3] ## [1,] 0.7238 1.3712 1.2647 ## [2,] 0.9740 0.8500 0.7523 #*** Model 2: Clustering with one start with seed 4550 res2 <- sirt::fuzcluster(K=2,dat_m, dat_s, nstarts=1, seed=5090 ) summary(res2) #*** Model 3: Clustering for crisp data # (assuming no uncertainty, i.e. dat_s=0) res3 <- sirt::fuzcluster(K=2,dat_m, dat_s=0*dat_s, nstarts=30, maxiter=25) summary(res3) ## Class probabilities (2 Classes) ## [1] 0.3645 0.6355 ## ## Means ## I1 I2 I3 ## [1,] 0.0463 -1.9221 0.4481 ## [2,] 3.0527 1.0241 -0.0008 ## ## Standard deviations ## [,1] [,2] [,3] ## [1,] 0.7261 1.4541 1.4586 ## [2,] 0.9933 0.9592 0.9535 #*** Model 4: kmeans cluster analysis res4 <- stats::kmeans( dat_m, centers=2 ) ## K-means clustering with 2 clusters of sizes 607, 393 ## Cluster means: ## I1 I2 I3 ## 1 3.01550780 1.035848 -0.01662275 ## 2 0.03448309 -2.008209 0.48295067 ## End(Not run)
This function estimates a discrete distribution for uncertain data based on the belief function framework (Denoeux, 2013; see Details).
fuzdiscr(X, theta0=NULL, maxiter=200, conv=1e-04)
fuzdiscr(X, theta0=NULL, maxiter=200, conv=1e-04)
X |
Matrix with fuzzy data. Rows corresponds to subjects and columns to values of the membership function |
theta0 |
Initial vector of parameter estimates |
maxiter |
Maximum number of iterations |
conv |
Convergence criterion |
For subjects, membership functions
are observed which indicate
the belief in data
. The membership function is interpreted as
epistemic uncertainty (Denoeux, 2011). However, associated parameters
in statistical models are crisp which means that models are formulated at the
basis of precise (crisp) data if they would be observed.
In the present estimation problem of a discrete distribution,
the parameters of interest are category probabilities
.
The parameter estimation follows the evidential EM algorithm (Denoeux, 2013).
Vector of probabilities of the discrete distribution
Denoeux, T. (2011). Maximum likelihood estimation from fuzzy data using the EM algorithm. Fuzzy Sets and Systems, 183, 72-91.
Denoeux, T. (2013). Maximum likelihood estimation from uncertain data in the belief function framework. IEEE Transactions on Knowledge and Data Engineering, 25, 119-130.
############################################################################# # EXAMPLE 1: Binomial distribution Denoeux Example 4.3 (2013) ############################################################################# #*** define uncertain data X_alpha <- function( alpha ){ Q <- matrix( 0, 6, 2 ) Q[5:6,2] <- Q[1:3,1] <- 1 Q[4,] <- c( alpha, 1 - alpha ) return(Q) } # define data for alpha=0.5 X <- X_alpha( alpha=.5 ) ## > X ## [,1] [,2] ## [1,] 1.0 0.0 ## [2,] 1.0 0.0 ## [3,] 1.0 0.0 ## [4,] 0.5 0.5 ## [5,] 0.0 1.0 ## [6,] 0.0 1.0 ## The fourth observation has equal plausibility for the first and the ## second category. # parameter estimate uncertain data fuzdiscr( X ) ## > sirt::fuzdiscr( X ) ## [1] 0.5999871 0.4000129 # parameter estimate pseudo likelihood colMeans( X ) ## > colMeans( X ) ## [1] 0.5833333 0.4166667 ##-> Observations are weighted according to belief function values. #***** # plot parameter estimates as function of alpha alpha <- seq( 0, 1, len=100 ) res <- sapply( alpha, FUN=function(aa){ X <- X_alpha( alpha=aa ) c( sirt::fuzdiscr( X )[1], colMeans( X )[1] ) } ) # plot plot( alpha, res[1,], xlab=expression(alpha), ylab=expression( theta[alpha] ), type="l", main="Comparison Belief Function and Pseudo-Likelihood (Example 1)") lines( alpha, res[2,], lty=2, col=2) legend( 0, .67, c("Belief Function", "Pseudo-Likelihood" ), col=c(1,2), lty=c(1,2) ) ############################################################################# # EXAMPLE 2: Binomial distribution (extends Example 1) ############################################################################# X_alpha <- function( alpha ){ Q <- matrix( 0, 6, 2 ) Q[6,2] <- Q[1:2,1] <- 1 Q[3:5,] <- matrix( c( alpha, 1 - alpha ), 3, 2, byrow=TRUE) return(Q) } X <- X_alpha( alpha=.5 ) alpha <- seq( 0, 1, len=100 ) res <- sapply( alpha, FUN=function(aa){ X <- X_alpha( alpha=aa ) c( sirt::fuzdiscr( X )[1], colMeans( X )[1] ) } ) # plot plot( alpha, res[1,], xlab=expression(alpha), ylab=expression( theta[alpha] ), type="l", main="Comparison Belief Function and Pseudo-Likelihood (Example 2)") lines( alpha, res[2,], lty=2, col=2) legend( 0, .67, c("Belief Function", "Pseudo-Likelihood" ), col=c(1,2), lty=c(1,2) ) ############################################################################# # EXAMPLE 3: Multinomial distribution with three categories ############################################################################# # define uncertain data X <- matrix( c( 1,0,0, 1,0,0, 0,1,0, 0,0,1, .7, .2, .1, .4, .6, 0 ), 6, 3, byrow=TRUE ) ## > X ## [,1] [,2] [,3] ## [1,] 1.0 0.0 0.0 ## [2,] 1.0 0.0 0.0 ## [3,] 0.0 1.0 0.0 ## [4,] 0.0 0.0 1.0 ## [5,] 0.7 0.2 0.1 ## [6,] 0.4 0.6 0.0 ##-> Only the first four observations are crisp. #*** estimation for uncertain data fuzdiscr( X ) ## > sirt::fuzdiscr( X ) ## [1] 0.5772305 0.2499931 0.1727764 #*** estimation pseudo-likelihood colMeans(X) ## > colMeans(X) ## [1] 0.5166667 0.3000000 0.1833333 ##-> Obviously, the treatment uncertainty is different in belief function ## and in pseudo-likelihood framework.
############################################################################# # EXAMPLE 1: Binomial distribution Denoeux Example 4.3 (2013) ############################################################################# #*** define uncertain data X_alpha <- function( alpha ){ Q <- matrix( 0, 6, 2 ) Q[5:6,2] <- Q[1:3,1] <- 1 Q[4,] <- c( alpha, 1 - alpha ) return(Q) } # define data for alpha=0.5 X <- X_alpha( alpha=.5 ) ## > X ## [,1] [,2] ## [1,] 1.0 0.0 ## [2,] 1.0 0.0 ## [3,] 1.0 0.0 ## [4,] 0.5 0.5 ## [5,] 0.0 1.0 ## [6,] 0.0 1.0 ## The fourth observation has equal plausibility for the first and the ## second category. # parameter estimate uncertain data fuzdiscr( X ) ## > sirt::fuzdiscr( X ) ## [1] 0.5999871 0.4000129 # parameter estimate pseudo likelihood colMeans( X ) ## > colMeans( X ) ## [1] 0.5833333 0.4166667 ##-> Observations are weighted according to belief function values. #***** # plot parameter estimates as function of alpha alpha <- seq( 0, 1, len=100 ) res <- sapply( alpha, FUN=function(aa){ X <- X_alpha( alpha=aa ) c( sirt::fuzdiscr( X )[1], colMeans( X )[1] ) } ) # plot plot( alpha, res[1,], xlab=expression(alpha), ylab=expression( theta[alpha] ), type="l", main="Comparison Belief Function and Pseudo-Likelihood (Example 1)") lines( alpha, res[2,], lty=2, col=2) legend( 0, .67, c("Belief Function", "Pseudo-Likelihood" ), col=c(1,2), lty=c(1,2) ) ############################################################################# # EXAMPLE 2: Binomial distribution (extends Example 1) ############################################################################# X_alpha <- function( alpha ){ Q <- matrix( 0, 6, 2 ) Q[6,2] <- Q[1:2,1] <- 1 Q[3:5,] <- matrix( c( alpha, 1 - alpha ), 3, 2, byrow=TRUE) return(Q) } X <- X_alpha( alpha=.5 ) alpha <- seq( 0, 1, len=100 ) res <- sapply( alpha, FUN=function(aa){ X <- X_alpha( alpha=aa ) c( sirt::fuzdiscr( X )[1], colMeans( X )[1] ) } ) # plot plot( alpha, res[1,], xlab=expression(alpha), ylab=expression( theta[alpha] ), type="l", main="Comparison Belief Function and Pseudo-Likelihood (Example 2)") lines( alpha, res[2,], lty=2, col=2) legend( 0, .67, c("Belief Function", "Pseudo-Likelihood" ), col=c(1,2), lty=c(1,2) ) ############################################################################# # EXAMPLE 3: Multinomial distribution with three categories ############################################################################# # define uncertain data X <- matrix( c( 1,0,0, 1,0,0, 0,1,0, 0,0,1, .7, .2, .1, .4, .6, 0 ), 6, 3, byrow=TRUE ) ## > X ## [,1] [,2] [,3] ## [1,] 1.0 0.0 0.0 ## [2,] 1.0 0.0 0.0 ## [3,] 0.0 1.0 0.0 ## [4,] 0.0 0.0 1.0 ## [5,] 0.7 0.2 0.1 ## [6,] 0.4 0.6 0.0 ##-> Only the first four observations are crisp. #*** estimation for uncertain data fuzdiscr( X ) ## > sirt::fuzdiscr( X ) ## [1] 0.5772305 0.2499931 0.1727764 #*** estimation pseudo-likelihood colMeans(X) ## > colMeans(X) ## [1] 0.5166667 0.3000000 0.1833333 ##-> Obviously, the treatment uncertainty is different in belief function ## and in pseudo-likelihood framework.
This function estimates the grade of membership model (Erosheva, Fienberg & Joutard, 2007; also called mixed membership model) by the EM algorithm assuming a discrete membership score distribution. The function is restricted to dichotomous item responses.
gom.em(dat, K=NULL, problevels=NULL, weights=NULL, model="GOM", theta0.k=seq(-5,5,len=15), xsi0.k=exp(seq(-6, 3, len=15)), max.increment=0.3, numdiff.parm=1e-4, maxdevchange=1e-6, globconv=1e-4, maxiter=1000, msteps=4, mstepconv=0.001, theta_adjust=FALSE, lambda.inits=NULL, lambda.index=NULL, pi.k.inits=NULL, newton_raphson=TRUE, optimizer="nlminb", progress=TRUE) ## S3 method for class 'gom' summary(object, file=NULL, ...) ## S3 method for class 'gom' anova(object,...) ## S3 method for class 'gom' logLik(object,...) ## S3 method for class 'gom' IRT.irfprob(object,...) ## S3 method for class 'gom' IRT.likelihood(object,...) ## S3 method for class 'gom' IRT.posterior(object,...) ## S3 method for class 'gom' IRT.modelfit(object,...) ## S3 method for class 'IRT.modelfit.gom' summary(object,...)
gom.em(dat, K=NULL, problevels=NULL, weights=NULL, model="GOM", theta0.k=seq(-5,5,len=15), xsi0.k=exp(seq(-6, 3, len=15)), max.increment=0.3, numdiff.parm=1e-4, maxdevchange=1e-6, globconv=1e-4, maxiter=1000, msteps=4, mstepconv=0.001, theta_adjust=FALSE, lambda.inits=NULL, lambda.index=NULL, pi.k.inits=NULL, newton_raphson=TRUE, optimizer="nlminb", progress=TRUE) ## S3 method for class 'gom' summary(object, file=NULL, ...) ## S3 method for class 'gom' anova(object,...) ## S3 method for class 'gom' logLik(object,...) ## S3 method for class 'gom' IRT.irfprob(object,...) ## S3 method for class 'gom' IRT.likelihood(object,...) ## S3 method for class 'gom' IRT.posterior(object,...) ## S3 method for class 'gom' IRT.modelfit(object,...) ## S3 method for class 'IRT.modelfit.gom' summary(object,...)
dat |
Data frame with dichotomous responses |
K |
Number of classes (only applies for |
problevels |
Vector containing probability levels for membership functions
(only applies for |
weights |
Optional vector of sampling weights |
model |
The type of grade of membership model. The default |
theta0.k |
Vector of |
xsi0.k |
Vector of |
max.increment |
Maximum increment |
numdiff.parm |
Numerical differentiation parameter |
maxdevchange |
Convergence criterion for change in relative deviance |
globconv |
Global convergence criterion for parameter change |
maxiter |
Maximum number of iterations |
msteps |
Number of iterations within a M step |
mstepconv |
Convergence criterion within a M step |
theta_adjust |
Logical indicating whether multivariate normal distribution should be adaptively chosen during the EM algorithm. |
lambda.inits |
Initial values for item parameters |
lambda.index |
Optional integer matrix with integers indicating
equality constraints among |
pi.k.inits |
Initial values for distribution parameters |
newton_raphson |
Logical indicating whether Newton-Raphson should be used for final iterations |
optimizer |
Type of optimizer. Can be |
progress |
Display iteration progress? Default is |
object |
Object of class |
file |
Optional file name for summary output |
... |
Further arguments to be passed |
The item response model of the grade of membership model
(Erosheva, Fienberg & Junker, 2002;
Erosheva, Fienberg & Joutard, 2007) with classes
for dichotomous correct responses
of person
on item
is as follows (
model="GOM"
)
In most applications (e.g. Erosheva et al., 2007), the grade of
membership function is assumed to follow a Dirichlet
distribution. In our
gom.em
implementation
the membership function is assumed to be discretely represented
by a grid with entries between 0 and 1
(e.g.
seq(0,1,length=5)
with ).
The values
of the membership function can then
only take values in
with the restriction
.
The grid
is specified by using the argument
problevels
.
The Rasch grade of membership model (model="GOMRasch"
) poses constraints
on probabilities and membership functions
.
The membership
function of person
is parameterized by a location parameter
and a variability parameter
. Each class
is represented by
a location parameter
. The membership function is defined as
The person parameter indicates the usual 'ability', while
describes the individual tendency to change between classes
and their corresponding locations
.
The extremal class probabilities
follow the Rasch model
Putting these assumptions together leads to the model equation
In the extreme case of a very small and
, the Rasch model is obtained
See Erosheva et al. (2002), Erosheva (2005, 2006) or Galyart (2015) for a comparison of grade of membership models with latent trait models and latent class models.
The grade of membership model is also published under the name Bernoulli aspect model, see Bingham, Kaban and Fortelius (2009).
A list with following entries:
deviance |
Deviance |
ic |
Information criteria |
item |
Data frame with item parameters |
person |
Data frame with person parameters |
EAP.rel |
EAP reliability (only applies for |
MAP |
Maximum aposteriori estimate of the membership function |
EAP |
EAP estimate for individual membership scores |
classdesc |
Descriptives for class membership |
lambda |
Estimated response probabilities |
se.lambda |
Standard error for estimated response probabilities
|
mu |
Mean of the distribution of |
Sigma |
Covariance matrix of |
b |
Estimated item difficulties (only applies for |
se.b |
Standard error of estimated difficulties
(only applies for |
f.yi.qk |
Individual likelihood |
f.qk.yi |
Individual posterior |
probs |
Array with response probabilities |
n.ik |
Expected counts |
iter |
Number of iterations |
I |
Number of items |
K |
Number of classes |
TP |
Number of discrete integration points for |
theta.k |
Used grid of membership functions |
... |
Further values |
Bingham, E., Kaban, A., & Fortelius, M. (2009). The aspect Bernoulli model: multiple causes of presences and absences. Pattern Analysis and Applications, 12(1), 55-78.
Erosheva, E. A. (2005). Comparing latent structures of the grade of membership, Rasch, and latent class models. Psychometrika, 70, 619-628.
Erosheva, E. A. (2006). Latent class representation of the grade of membership model. Seattle: University of Washington.
Erosheva, E. A., Fienberg, S. E., & Junker, B. W. (2002). Alternative statistical models and representations for large sparse multi-dimensional contingency tables. Annales-Faculte Des Sciences Toulouse Mathematiques, 11, 485-505.
Erosheva, E. A., Fienberg, S. E., & Joutard, C. (2007). Describing disability through individual-level mixture models for multivariate binary data. Annals of Applied Statistics, 1, 502-537.
Galyardt, A. (2015). Interpreting mixed membership models: Implications of Erosheva's representation theorem. In E. M. Airoldi, D. Blei, E. A. Erosheva, & S. E. Fienberg (Eds.). Handbook of Mixed Membership Models (pp. 39-65). Chapman & Hall.
For joint maximum likelihood estimation of the grade of membership model
see gom.jml
.
See also the mixedMem package for estimating mixed membership models by a variational EM algorithm.
The C code of Erosheva et al. (2007) can be downloaded from http://projecteuclid.org/euclid.aoas/1196438029#supplemental.
Code from Manrique-Vallier can be downloaded from http://pages.iu.edu/~dmanriqu/software.html.
See http://users.ics.aalto.fi/ella/publications/aspect_bernoulli.m for a Matlab implementation of the algorithm in Bingham, Kaban and Fortelius (2009).
############################################################################# # EXAMPLE 1: PISA data mathematics ############################################################################# data(data.pisaMath) dat <- data.pisaMath$data dat <- dat[, grep("M", colnames(dat)) ] #*** # Model 1: Discrete GOM with 3 classes and 5 probability levels problevels <- seq( 0, 1, len=5 ) mod1 <- sirt::gom.em( dat, K=3, problevels, model="GOM") summary(mod1) ## Not run: #-- some plots #* multivariate scatterplot car::scatterplotMatrix(mod1$EAP, regLine=FALSE, smooth=FALSE, pch=16, cex=.4) #* ternary plot vcd::ternaryplot(mod1$EAP, pch=16, col=1, cex=.3) #*** # Model 1a: Multivariate normal distribution problevels <- seq( 0, 1, len=5 ) mod1a <- sirt::gom.em( dat, K=3, theta0.k=seq(-15,15,len=21), model="GOMnormal" ) summary(mod1a) #*** # Model 2: Discrete GOM with 4 classes and 5 probability levels problevels <- seq( 0, 1, len=5 ) mod2 <- sirt::gom.em( dat, K=4, problevels, model="GOM" ) summary(mod2) # model comparison smod1 <- IRT.modelfit(mod1) smod2 <- IRT.modelfit(mod2) IRT.compareModels(smod1,smod2) #*** # Model 2a: Estimate discrete GOM with 4 classes and restricted space of probability levels # the 2nd, 4th and 6th class correspond to "intermediate stages" problevels <- scan() 1 0 0 0 .5 .5 0 0 0 1 0 0 0 .5 .5 0 0 0 1 0 0 0 .5 .5 0 0 0 1 problevels <- matrix( problevels, ncol=4, byrow=TRUE) mod2a <- sirt::gom.em( dat, K=4, problevels, model="GOM" ) # probability distribution for latent classes cbind( mod2a$theta.k, mod2a$pi.k ) ## [,1] [,2] [,3] [,4] [,5] ## [1,] 1.0 0.0 0.0 0.0 0.17214630 ## [2,] 0.5 0.5 0.0 0.0 0.04965676 ## [3,] 0.0 1.0 0.0 0.0 0.09336660 ## [4,] 0.0 0.5 0.5 0.0 0.06555719 ## [5,] 0.0 0.0 1.0 0.0 0.27523678 ## [6,] 0.0 0.0 0.5 0.5 0.08458620 ## [7,] 0.0 0.0 0.0 1.0 0.25945016 ## End(Not run) #*** # Model 3: Rasch GOM mod3 <- sirt::gom.em( dat, model="GOMRasch", maxiter=20 ) summary(mod3) #*** # Model 4: 'Ordinary' Rasch model mod4 <- sirt::rasch.mml2( dat ) summary(mod4) ## Not run: ############################################################################# # EXAMPLE 2: Grade of membership model with 2 classes ############################################################################# #********* DATASET 1 ************* # define an ordinary 2 latent class model set.seed(8765) I <- 10 prob.class1 <- stats::runif( I, 0, .35 ) prob.class2 <- stats::runif( I, .70, .95 ) probs <- cbind( prob.class1, prob.class2 ) # define classes N <- 1000 latent.class <- c( rep( 1, 1/4*N ), rep( 2,3/4*N ) ) # simulate item responses dat <- matrix( NA, nrow=N, ncol=I ) for (ii in 1:I){ dat[,ii] <- probs[ ii, latent.class ] dat[,ii] <- 1 * ( stats::runif(N) < dat[,ii] ) } colnames(dat) <- paste0( "I", 1:I) # Model 1: estimate latent class model mod1 <- sirt::gom.em(dat, K=2, problevels=c(0,1), model="GOM" ) summary(mod1) # Model 2: estimate GOM mod2 <- sirt::gom.em(dat, K=2, problevels=seq(0,1,0.5), model="GOM" ) summary(mod2) # estimated distribution cbind( mod2$theta.k, mod2$pi.k ) ## [,1] [,2] [,3] ## [1,] 1.0 0.0 0.243925644 ## [2,] 0.5 0.5 0.006534278 ## [3,] 0.0 1.0 0.749540078 #********* DATASET 2 ************* # define a 2-class model with graded membership set.seed(8765) I <- 10 prob.class1 <- stats::runif( I, 0, .35 ) prob.class2 <- stats::runif( I, .70, .95 ) prob.class3 <- .5*prob.class1+.5*prob.class2 # probabilities for 'fuzzy class' probs <- cbind( prob.class1, prob.class2, prob.class3) # define classes N <- 1000 latent.class <- c( rep(1,round(1/3*N)),rep(2,round(1/2*N)),rep(3,round(1/6*N))) # simulate item responses dat <- matrix( NA, nrow=N, ncol=I ) for (ii in 1:I){ dat[,ii] <- probs[ ii, latent.class ] dat[,ii] <- 1 * ( stats::runif(N) < dat[,ii] ) } colnames(dat) <- paste0( "I", 1:I) #** Model 1: estimate latent class model mod1 <- sirt::gom.em(dat, K=2, problevels=c(0,1), model="GOM" ) summary(mod1) #** Model 2: estimate GOM mod2 <- sirt::gom.em(dat, K=2, problevels=seq(0,1,0.5), model="GOM" ) summary(mod2) # inspect distribution cbind( mod2$theta.k, mod2$pi.k ) ## [,1] [,2] [,3] ## [1,] 1.0 0.0 0.3335666 ## [2,] 0.5 0.5 0.1810114 ## [3,] 0.0 1.0 0.4854220 #*** # Model2m: estimate discrete GOM in mirt # define latent classes Theta <- scan( nlines=1) 1 0 .5 .5 0 1 Theta <- matrix( Theta, nrow=3, ncol=2,byrow=TRUE) # define mirt model I <- ncol(dat) #*** create customized item response function for mirt model name <- 'gom' par <- c("a1"=-1, "a2"=1 ) est <- c(TRUE, TRUE) P.gom <- function(par,Theta,ncat){ # GOM for two extremal classes pext1 <- stats::plogis(par[1]) pext2 <- stats::plogis(par[2]) P1 <- Theta[,1]*pext1 + Theta[,2]*pext2 cbind(1-P1, P1) } # create item response function icc_gom <- mirt::createItem(name, par=par, est=est, P=P.gom) #** define prior for latent class analysis lca_prior <- function(Theta,Etable){ # number of latent Theta classes TP <- nrow(Theta) # prior in initial iteration if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) } # process Etable (this is correct for datasets without missing data) if ( ! is.null(Etable) ){ # sum over correct and incorrect expected responses prior <- ( rowSums(Etable[, seq(1,2*I,2)]) + rowSums(Etable[,seq(2,2*I,2)]) )/I } prior <- prior / sum(prior) return(prior) } #*** estimate discrete GOM in mirt package mod2m <- mirt::mirt(dat, 1, rep( "icc_gom",I), customItems=list("icc_gom"=icc_gom), technical=list( customTheta=Theta, customPriorFun=lca_prior) ) # correct number of estimated parameters mod2m@nest <- as.integer(sum(mod.pars$est) + nrow(Theta)-1 ) # extract log-likelihood and compute AIC and BIC mod2m@logLik ( AIC <- -2*mod2m@logLik+2*mod2m@nest ) ( BIC <- -2*mod2m@logLik+log(mod2m@Data$N)*mod2m@nest ) # extract coefficients ( cmod2m <- sirt::mirt.wrapper.coef(mod2m) ) # compare estimated distributions round( cbind( "sirt"=mod2$pi.k, "mirt"=mod2m@Prior[[1]] ), 5 ) ## sirt mirt ## [1,] 0.33357 0.33627 ## [2,] 0.18101 0.17789 ## [3,] 0.48542 0.48584 # compare estimated item parameters dfr <- data.frame( "sirt"=mod2$item[,4:5] ) dfr$mirt <- apply(cmod2m$coef[, c("a1", "a2") ], 2, stats::plogis ) round(dfr,4) ## sirt.lam.Cl1 sirt.lam.Cl2 mirt.a1 mirt.a2 ## 1 0.1157 0.8935 0.1177 0.8934 ## 2 0.0790 0.8360 0.0804 0.8360 ## 3 0.0743 0.8165 0.0760 0.8164 ## 4 0.0398 0.8093 0.0414 0.8094 ## 5 0.1273 0.7244 0.1289 0.7243 ## [...] ############################################################################# # EXAMPLE 3: Lung cancer dataset; using sampling weights ############################################################################# data(data.si08, package="sirt") dat <- data.si08 #- Latent class model with 3 classes problevels <- c(0,1) mod1 <- sirt::gom.em( dat[,1:5], weights=dat$wgt, K=3, problevels=problevels ) summary(mod1) #- Grade of membership model with discrete distribution problevels <- seq(0,1,length=5) mod2 <- sirt::gom.em( dat[,1:5], weights=dat$wgt, K=3, problevels=problevels ) summary(mod2) #- Grade of membership model with multivariate normal distribution mod3 <- sirt::gom.em( dat[,1:5], weights=dat$wgt, K=3, theta0.k=10*seq(-1,1,len=11), model="GOMnormal", optimizer="nlminb" ) summary(mod3) ## End(Not run)
############################################################################# # EXAMPLE 1: PISA data mathematics ############################################################################# data(data.pisaMath) dat <- data.pisaMath$data dat <- dat[, grep("M", colnames(dat)) ] #*** # Model 1: Discrete GOM with 3 classes and 5 probability levels problevels <- seq( 0, 1, len=5 ) mod1 <- sirt::gom.em( dat, K=3, problevels, model="GOM") summary(mod1) ## Not run: #-- some plots #* multivariate scatterplot car::scatterplotMatrix(mod1$EAP, regLine=FALSE, smooth=FALSE, pch=16, cex=.4) #* ternary plot vcd::ternaryplot(mod1$EAP, pch=16, col=1, cex=.3) #*** # Model 1a: Multivariate normal distribution problevels <- seq( 0, 1, len=5 ) mod1a <- sirt::gom.em( dat, K=3, theta0.k=seq(-15,15,len=21), model="GOMnormal" ) summary(mod1a) #*** # Model 2: Discrete GOM with 4 classes and 5 probability levels problevels <- seq( 0, 1, len=5 ) mod2 <- sirt::gom.em( dat, K=4, problevels, model="GOM" ) summary(mod2) # model comparison smod1 <- IRT.modelfit(mod1) smod2 <- IRT.modelfit(mod2) IRT.compareModels(smod1,smod2) #*** # Model 2a: Estimate discrete GOM with 4 classes and restricted space of probability levels # the 2nd, 4th and 6th class correspond to "intermediate stages" problevels <- scan() 1 0 0 0 .5 .5 0 0 0 1 0 0 0 .5 .5 0 0 0 1 0 0 0 .5 .5 0 0 0 1 problevels <- matrix( problevels, ncol=4, byrow=TRUE) mod2a <- sirt::gom.em( dat, K=4, problevels, model="GOM" ) # probability distribution for latent classes cbind( mod2a$theta.k, mod2a$pi.k ) ## [,1] [,2] [,3] [,4] [,5] ## [1,] 1.0 0.0 0.0 0.0 0.17214630 ## [2,] 0.5 0.5 0.0 0.0 0.04965676 ## [3,] 0.0 1.0 0.0 0.0 0.09336660 ## [4,] 0.0 0.5 0.5 0.0 0.06555719 ## [5,] 0.0 0.0 1.0 0.0 0.27523678 ## [6,] 0.0 0.0 0.5 0.5 0.08458620 ## [7,] 0.0 0.0 0.0 1.0 0.25945016 ## End(Not run) #*** # Model 3: Rasch GOM mod3 <- sirt::gom.em( dat, model="GOMRasch", maxiter=20 ) summary(mod3) #*** # Model 4: 'Ordinary' Rasch model mod4 <- sirt::rasch.mml2( dat ) summary(mod4) ## Not run: ############################################################################# # EXAMPLE 2: Grade of membership model with 2 classes ############################################################################# #********* DATASET 1 ************* # define an ordinary 2 latent class model set.seed(8765) I <- 10 prob.class1 <- stats::runif( I, 0, .35 ) prob.class2 <- stats::runif( I, .70, .95 ) probs <- cbind( prob.class1, prob.class2 ) # define classes N <- 1000 latent.class <- c( rep( 1, 1/4*N ), rep( 2,3/4*N ) ) # simulate item responses dat <- matrix( NA, nrow=N, ncol=I ) for (ii in 1:I){ dat[,ii] <- probs[ ii, latent.class ] dat[,ii] <- 1 * ( stats::runif(N) < dat[,ii] ) } colnames(dat) <- paste0( "I", 1:I) # Model 1: estimate latent class model mod1 <- sirt::gom.em(dat, K=2, problevels=c(0,1), model="GOM" ) summary(mod1) # Model 2: estimate GOM mod2 <- sirt::gom.em(dat, K=2, problevels=seq(0,1,0.5), model="GOM" ) summary(mod2) # estimated distribution cbind( mod2$theta.k, mod2$pi.k ) ## [,1] [,2] [,3] ## [1,] 1.0 0.0 0.243925644 ## [2,] 0.5 0.5 0.006534278 ## [3,] 0.0 1.0 0.749540078 #********* DATASET 2 ************* # define a 2-class model with graded membership set.seed(8765) I <- 10 prob.class1 <- stats::runif( I, 0, .35 ) prob.class2 <- stats::runif( I, .70, .95 ) prob.class3 <- .5*prob.class1+.5*prob.class2 # probabilities for 'fuzzy class' probs <- cbind( prob.class1, prob.class2, prob.class3) # define classes N <- 1000 latent.class <- c( rep(1,round(1/3*N)),rep(2,round(1/2*N)),rep(3,round(1/6*N))) # simulate item responses dat <- matrix( NA, nrow=N, ncol=I ) for (ii in 1:I){ dat[,ii] <- probs[ ii, latent.class ] dat[,ii] <- 1 * ( stats::runif(N) < dat[,ii] ) } colnames(dat) <- paste0( "I", 1:I) #** Model 1: estimate latent class model mod1 <- sirt::gom.em(dat, K=2, problevels=c(0,1), model="GOM" ) summary(mod1) #** Model 2: estimate GOM mod2 <- sirt::gom.em(dat, K=2, problevels=seq(0,1,0.5), model="GOM" ) summary(mod2) # inspect distribution cbind( mod2$theta.k, mod2$pi.k ) ## [,1] [,2] [,3] ## [1,] 1.0 0.0 0.3335666 ## [2,] 0.5 0.5 0.1810114 ## [3,] 0.0 1.0 0.4854220 #*** # Model2m: estimate discrete GOM in mirt # define latent classes Theta <- scan( nlines=1) 1 0 .5 .5 0 1 Theta <- matrix( Theta, nrow=3, ncol=2,byrow=TRUE) # define mirt model I <- ncol(dat) #*** create customized item response function for mirt model name <- 'gom' par <- c("a1"=-1, "a2"=1 ) est <- c(TRUE, TRUE) P.gom <- function(par,Theta,ncat){ # GOM for two extremal classes pext1 <- stats::plogis(par[1]) pext2 <- stats::plogis(par[2]) P1 <- Theta[,1]*pext1 + Theta[,2]*pext2 cbind(1-P1, P1) } # create item response function icc_gom <- mirt::createItem(name, par=par, est=est, P=P.gom) #** define prior for latent class analysis lca_prior <- function(Theta,Etable){ # number of latent Theta classes TP <- nrow(Theta) # prior in initial iteration if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) } # process Etable (this is correct for datasets without missing data) if ( ! is.null(Etable) ){ # sum over correct and incorrect expected responses prior <- ( rowSums(Etable[, seq(1,2*I,2)]) + rowSums(Etable[,seq(2,2*I,2)]) )/I } prior <- prior / sum(prior) return(prior) } #*** estimate discrete GOM in mirt package mod2m <- mirt::mirt(dat, 1, rep( "icc_gom",I), customItems=list("icc_gom"=icc_gom), technical=list( customTheta=Theta, customPriorFun=lca_prior) ) # correct number of estimated parameters mod2m@nest <- as.integer(sum(mod.pars$est) + nrow(Theta)-1 ) # extract log-likelihood and compute AIC and BIC mod2m@logLik ( AIC <- -2*mod2m@logLik+2*mod2m@nest ) ( BIC <- -2*mod2m@logLik+log(mod2m@Data$N)*mod2m@nest ) # extract coefficients ( cmod2m <- sirt::mirt.wrapper.coef(mod2m) ) # compare estimated distributions round( cbind( "sirt"=mod2$pi.k, "mirt"=mod2m@Prior[[1]] ), 5 ) ## sirt mirt ## [1,] 0.33357 0.33627 ## [2,] 0.18101 0.17789 ## [3,] 0.48542 0.48584 # compare estimated item parameters dfr <- data.frame( "sirt"=mod2$item[,4:5] ) dfr$mirt <- apply(cmod2m$coef[, c("a1", "a2") ], 2, stats::plogis ) round(dfr,4) ## sirt.lam.Cl1 sirt.lam.Cl2 mirt.a1 mirt.a2 ## 1 0.1157 0.8935 0.1177 0.8934 ## 2 0.0790 0.8360 0.0804 0.8360 ## 3 0.0743 0.8165 0.0760 0.8164 ## 4 0.0398 0.8093 0.0414 0.8094 ## 5 0.1273 0.7244 0.1289 0.7243 ## [...] ############################################################################# # EXAMPLE 3: Lung cancer dataset; using sampling weights ############################################################################# data(data.si08, package="sirt") dat <- data.si08 #- Latent class model with 3 classes problevels <- c(0,1) mod1 <- sirt::gom.em( dat[,1:5], weights=dat$wgt, K=3, problevels=problevels ) summary(mod1) #- Grade of membership model with discrete distribution problevels <- seq(0,1,length=5) mod2 <- sirt::gom.em( dat[,1:5], weights=dat$wgt, K=3, problevels=problevels ) summary(mod2) #- Grade of membership model with multivariate normal distribution mod3 <- sirt::gom.em( dat[,1:5], weights=dat$wgt, K=3, theta0.k=10*seq(-1,1,len=11), model="GOMnormal", optimizer="nlminb" ) summary(mod3) ## End(Not run)
This function estimates the grade of membership model employing a joint maximum likelihood estimation method (Erosheva, 2002; p. 23ff.).
gom.jml(dat, K=2, seed=NULL, globconv=0.001, maxdevchange=0.001, maxiter=600, min.lambda=0.001, min.g=0.001)
gom.jml(dat, K=2, seed=NULL, globconv=0.001, maxdevchange=0.001, maxiter=600, min.lambda=0.001, min.g=0.001)
dat |
Data frame of dichotomous item responses |
K |
Number of classes |
seed |
Seed value of random number generator. Deterministic starting values
are used for the default value |
globconv |
Global parameter convergence criterion |
maxdevchange |
Maximum change in relative deviance |
maxiter |
Maximum number of iterations |
min.lambda |
Minimum |
min.g |
Minimum |
The item response model of the grade of membership model with classes
for dichotomous correct responses
of person
on item
is
A list with following entries:
lambda |
Data frame of item parameters |
g |
Data frame of individual membership scores |
g.mean |
Mean membership scores |
gcut |
Discretized membership scores |
gcut.distr |
Distribution of discretized membership scores |
K |
Number of classes |
deviance |
Deviance |
ic |
Information criteria |
N |
Number of students |
score |
Person score |
iter |
Number of iterations |
datproc |
List with processed data (recoded data, starting values, ...) |
... |
Further values |
Erosheva, E. A. (2002). Grade of membership and latent structure models with application to disability survey data. PhD thesis, Carnegie Mellon University, Department of Statistics.
S3 method summary.gom
############################################################################# # EXAMPLE 1: TIMSS data ############################################################################# data( data.timss) dat <- data.timss$data[, grep("M", colnames(data.timss$data) ) ] # 2 Classes (deterministic starting values) m2 <- sirt::gom.jml(dat,K=2, maxiter=10 ) summary(m2) ## Not run: # 3 Classes with fixed seed and maximum number of iterations m3 <- sirt::gom.jml(dat,K=3, maxiter=50,seed=89) summary(m3) ## End(Not run)
############################################################################# # EXAMPLE 1: TIMSS data ############################################################################# data( data.timss) dat <- data.timss$data[, grep("M", colnames(data.timss$data) ) ] # 2 Classes (deterministic starting values) m2 <- sirt::gom.jml(dat,K=2, maxiter=10 ) summary(m2) ## Not run: # 3 Classes with fixed seed and maximum number of iterations m3 <- sirt::gom.jml(dat,K=3, maxiter=50,seed=89) summary(m3) ## End(Not run)
This function estimates the model-based reliability
of dichotomous data using the Green & Yang (2009) method.
The underlying factor model is -dimensional where
the dimension
is specified by the argument
nfactors
. The factor solution is subject to the
application of the Schmid-Leiman transformation (see Reise, 2012;
Reise, Bonifay, & Haviland, 2013; Reise, Moore, & Haviland, 2010).
greenyang.reliability(object.tetra, nfactors)
greenyang.reliability(object.tetra, nfactors)
object.tetra |
Object as the output of the function |
nfactors |
Number of factors (dimensions) |
A data frame with columns:
coefficient |
Name of the reliability measure. |
dimensions |
Number of dimensions |
estimate |
Reliability estimate |
This function needs the psych package.
Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 74, 155-167.
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47, 667-696.
Reise, S. P., Bonifay, W. E., & Haviland, M. G. (2013). Scoring and modeling psychological measures in the presence of multidimensionality. Journal of Personality Assessment, 95, 129-140.
Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores, Journal of Personality Assessment, 92, 544-559.
See f1d.irt
for estimating the functional unidimensional
item response model.
This function uses reliability.nonlinearSEM
.
See also the MBESS::ci.reliability
function for estimating
reliability for polytomous item responses.
## Not run: ############################################################################# # EXAMPLE 1: Reliability estimation of Reading dataset data.read ############################################################################# miceadds::library_install("psych") set.seed(789) data( data.read ) dat <- data.read # calculate matrix of tetrachoric correlations dat.tetra <- psych::tetrachoric(dat) # using tetrachoric from psych package dat.tetra2 <- sirt::tetrachoric2(dat) # using tetrachoric2 from sirt package # perform parallel factor analysis fap <- psych::fa.parallel.poly(dat, n.iter=1 ) ## Parallel analysis suggests that the number of factors=3 ## and the number of components=2 # parallel factor analysis based on tetrachoric correlation matrix ## (tetrachoric2) fap2 <- psych::fa.parallel(dat.tetra2$rho, n.obs=nrow(dat), n.iter=1 ) ## Parallel analysis suggests that the number of factors=6 ## and the number of components=2 ## Note that in this analysis, uncertainty with respect to thresholds is ignored. # calculate reliability using a model with 4 factors greenyang.reliability( object.tetra=dat.tetra, nfactors=4 ) ## coefficient dimensions estimate ## Omega Total (1D) omega_1 1 0.771 ## Omega Total (4D) omega_t 4 0.844 ## Omega Hierarchical (4D) omega_h 4 0.360 ## Omega Hierarchical Asymptotic (4D) omega_ha 4 0.427 ## Explained Common Variance (4D) ECV 4 0.489 ## Explained Variance (First Eigenvalue) ExplVar NA 35.145 ## Eigenvalue Ratio (1st to 2nd Eigenvalue) EigenvalRatio NA 2.121 # calculation of Green-Yang-Reliability based on tetrachoric correlations # obtained by tetrachoric2 greenyang.reliability( object.tetra=dat.tetra2, nfactors=4 ) # The same result will be obtained by using fap as the input greenyang.reliability( object.tetra=fap, nfactors=4 ) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Reliability estimation of Reading dataset data.read ############################################################################# miceadds::library_install("psych") set.seed(789) data( data.read ) dat <- data.read # calculate matrix of tetrachoric correlations dat.tetra <- psych::tetrachoric(dat) # using tetrachoric from psych package dat.tetra2 <- sirt::tetrachoric2(dat) # using tetrachoric2 from sirt package # perform parallel factor analysis fap <- psych::fa.parallel.poly(dat, n.iter=1 ) ## Parallel analysis suggests that the number of factors=3 ## and the number of components=2 # parallel factor analysis based on tetrachoric correlation matrix ## (tetrachoric2) fap2 <- psych::fa.parallel(dat.tetra2$rho, n.obs=nrow(dat), n.iter=1 ) ## Parallel analysis suggests that the number of factors=6 ## and the number of components=2 ## Note that in this analysis, uncertainty with respect to thresholds is ignored. # calculate reliability using a model with 4 factors greenyang.reliability( object.tetra=dat.tetra, nfactors=4 ) ## coefficient dimensions estimate ## Omega Total (1D) omega_1 1 0.771 ## Omega Total (4D) omega_t 4 0.844 ## Omega Hierarchical (4D) omega_h 4 0.360 ## Omega Hierarchical Asymptotic (4D) omega_ha 4 0.427 ## Explained Common Variance (4D) ECV 4 0.489 ## Explained Variance (First Eigenvalue) ExplVar NA 35.145 ## Eigenvalue Ratio (1st to 2nd Eigenvalue) EigenvalRatio NA 2.121 # calculation of Green-Yang-Reliability based on tetrachoric correlations # obtained by tetrachoric2 greenyang.reliability( object.tetra=dat.tetra2, nfactors=4 ) # The same result will be obtained by using fap as the input greenyang.reliability( object.tetra=fap, nfactors=4 ) ## End(Not run)
The function invariance.alignment
performs alignment under approximate
invariance for groups and
items
(Asparouhov & Muthen, 2014; Byrne & van de Vijver, 2017; DeMars, 2020; Finch, 2016;
Fischer & Karl, 2019; Flake & McCoach, 2018; Kim et al., 2017; Marsh et al., 2018;
Muthen & Asparouhov, 2014, 2018; Pokropek, Davidov & Schmidt, 2019).
It is assumed that item loadings and intercepts are
previously estimated as a unidimensional factor model under the assumption of a factor
with zero mean and a variance of one.
The function invariance_alignment_constraints
postprocesses the output of the
invariance.alignment
function and estimates item parameters under equality
constraints for prespecified absolute values of parameter tolerance.
The function invariance_alignment_simulate
simulates a one-factor model
for multiple groups for given matrices of and
parameters of
item intercepts and item slopes (see Example 6).
The function invariance_alignment_cfa_config
estimates one-factor
models separately for each group as a preliminary step for invariance
alignment (see Example 6). Sampling weights are accommodated by the
argument weights
. The computed variance matrix vcov
by this function
can be used to obtain standard errors in the invariance.alignment
function
if it is supplied as the argument vcov
.
invariance.alignment(lambda, nu, wgt=NULL, align.scale=c(1, 1), align.pow=c(.5, .5), eps=1e-3, psi0.init=NULL, alpha0.init=NULL, center=FALSE, optimizer="optim", fixed=NULL, meth=1, vcov=NULL, eps_grid=seq(0,-10, by=-.5), num_deriv=FALSE, ...) ## S3 method for class 'invariance.alignment' summary(object, digits=3, file=NULL, ...) invariance_alignment_constraints(model, lambda_parm_tol, nu_parm_tol ) ## S3 method for class 'invariance_alignment_constraints' summary(object, digits=3, file=NULL, ...) invariance_alignment_simulate(nu, lambda, err_var, mu, sigma, N, output="data", groupwise=FALSE, exact=FALSE) invariance_alignment_cfa_config(dat, group, weights=NULL, model="2PM", verbose=FALSE, ...)
invariance.alignment(lambda, nu, wgt=NULL, align.scale=c(1, 1), align.pow=c(.5, .5), eps=1e-3, psi0.init=NULL, alpha0.init=NULL, center=FALSE, optimizer="optim", fixed=NULL, meth=1, vcov=NULL, eps_grid=seq(0,-10, by=-.5), num_deriv=FALSE, ...) ## S3 method for class 'invariance.alignment' summary(object, digits=3, file=NULL, ...) invariance_alignment_constraints(model, lambda_parm_tol, nu_parm_tol ) ## S3 method for class 'invariance_alignment_constraints' summary(object, digits=3, file=NULL, ...) invariance_alignment_simulate(nu, lambda, err_var, mu, sigma, N, output="data", groupwise=FALSE, exact=FALSE) invariance_alignment_cfa_config(dat, group, weights=NULL, model="2PM", verbose=FALSE, ...)
lambda |
A |
nu |
A |
wgt |
A |
align.scale |
A vector of length two containing scale parameter
|
align.pow |
A vector of length two containing power
|
eps |
A parameter in the optimization function |
psi0.init |
An optional vector of initial |
alpha0.init |
An optional vector of initial |
center |
Logical indicating whether estimated means and standard deviations should be centered. |
optimizer |
Name of the optimizer chosen for alignment. Options are
|
fixed |
Logical indicating whether SD of first group should
be fixed to one. If |
meth |
Type of method used for optimization function. |
vcov |
Variance matrix produced by |
eps_grid |
Grid of logarithmized epsilon values in optimization |
num_deriv |
Logical indicating whether numerical derivatives should be used |
object |
Object of class |
digits |
Number of digits used for rounding |
file |
Optional file name in which summary should be sunk |
... |
Further optional arguments to be passed |
model |
Model of class |
lambda_parm_tol |
Parameter tolerance for |
nu_parm_tol |
Parameter tolerance for |
err_var |
Error variance |
mu |
Vector of means |
sigma |
Vector of standard deviations |
N |
Vector of sample sizes per group |
output |
Specifies output type: |
groupwise |
Logical indicating whether group-wise output is requested |
exact |
Logical indicating whether distributions should be exactly preserved in simulated data |
dat |
Dataset with items or a list containing sufficient statistics |
group |
Vector containing group indicators |
weights |
Optional vector of sampling weights |
verbose |
Logical indicating whether progress should be printed |
For groups and
items, item loadings
and intercepts
are available and have been estimated
in a 1-dimensional factor analysis assuming a standardized factor.
The alignment procedure searches means
and standard deviations
using an alignment
optimization function
. This function is defined as
where the aligned item parameters
and
are defined such that
and the optimization functions are defined as
using a small (e.g. .001) to obtain
a differentiable optimization function. For
or
, the
optimization function essentially counts the number of different parameter
and mimicks a
penalty which is zero iff the argument is zero
and one otherwise. It is approximated by
(O'Neill & Burke, 2023).
For identification reasons, the product (
meth
=0,0.5)
of all group standard deviations or (
meth
=1,2)
is set to one. The mean
of the first group is set to zero (
meth
=0.5,1,2) or
a penalty function is added to the linking function (meth
=0).
Note that Asparouhov and Muthen (2014) use
(which can be modified in
align.scale
)
and (which can be modified in
align.pow
).
In case of , the penalty is approximately
, in case of
it is approximately
. Note that sirt used a
different parametrization in versions up to 3.5. The
parameters have to be halved
for consistency with previous versions (e.g., the Asparouhov & Muthen parametrization
corresponds to
; see also Fischer & Karl, 2019, for an application of
the previous parametrization).
Effect sizes of approximate invariance based on have
been proposed by Asparouhov and Muthen (2014). These are
calculated separately for item loading and intercepts, resulting
in
and
measures which are
included in the output
es.invariance
. In addition,
the average correlation of aligned item parameters among groups (rbar
)
is reported.
Metric invariance means that all aligned item loadings
are equal across groups and therefore
.
Scalar invariance means that all aligned item loadings
and aligned item intercepts
are
equal across groups and therefore
and
(see Vandenberg & Lance, 2000).
A list with following entries
pars |
Aligned distribution parameters |
itempars.aligned |
Aligned item parameters for all groups |
es.invariance |
Effect sizes of approximate invariance |
lambda.aligned |
Aligned |
lambda.resid |
Residuals of |
nu.aligned |
Aligned |
nu.resid |
Residuals of |
Niter |
Number of iterations for |
fopt |
Minimum optimization value |
align.scale |
Used alignment scale parameters |
align.pow |
Used alignment power parameters |
vcov |
Estimated variance matrix of aligned means and standard deviations |
Asparouhov, T., & Muthen, B. (2014). Multiple-group factor analysis alignment. Structural Equation Modeling, 21(4), 1-14. doi:10.1080/10705511.2014.919210
Byrne, B. M., & van de Vijver, F. J. R. (2017). The maximum likelihood alignment approach to testing for approximate measurement invariance: A paradigmatic cross-cultural application. Psicothema, 29(4), 539-551. doi:10.7334/psicothema2017.178
DeMars, C. E. (2020). Alignment as an alternative to anchor purification in DIF analyses. Structural Equation Modeling, 27(1), 56-72. doi:10.1080/10705511.2019.1617151
Finch, W. H. (2016). Detection of differential item functioning for more than two groups: A Monte Carlo comparison of methods. Applied Measurement in Education, 29,(1), 30-45, doi:10.1080/08957347.2015.1102916
Fischer, R., & Karl, J. A. (2019). A primer to (cross-cultural) multi-group invariance testing possibilities in R. Frontiers in Psychology | Cultural Psychology, 10:1507. doi:10.3389/fpsyg.2019.01507
Flake, J. K., & McCoach, D. B. (2018). An investigation of the alignment method with polytomous indicators under conditions of partial measurement invariance. Structural Equation Modeling, 25(1), 56-70. doi:10.1080/10705511.2017.1374187
Kim, E. S., Cao, C., Wang, Y., & Nguyen, D. T. (2017). Measurement invariance testing with many groups: A comparison of five approaches. Structural Equation Modeling, 24(4), 524-544. doi:10.1080/10705511.2017.1304822
Marsh, H. W., Guo, J., Parker, P. D., Nagengast, B., Asparouhov, T., Muthen, B., & Dicke, T. (2018). What to do when scalar invariance fails: The extended alignment method for multi-group factor analysis comparison of latent means across many groups. Psychological Methods, 23(3), 524-545. doi: 10.1037/met0000113
Muthen, B., & Asparouhov, T. (2014). IRT studies of many groups: The alignment method. Frontiers in Psychology | Quantitative Psychology and Measurement, 5:978. doi:10.3389/fpsyg.2014.00978
Muthen, B., & Asparouhov, T. (2018). Recent methods for the study of measurement invariance with many groups: Alignment and random effects. Sociological Methods & Research, 47(4), 637-664. doi:10.1177/0049124117701488
O'Neill, M., & Burke, K. (2023). Variable selection using a smooth information criterion for distributional regression models. Statistics and Computing, 33(3), 71. doi:10.1007/s11222-023-10204-8
Pokropek, A., Davidov, E., & Schmidt, P. (2019). A Monte Carlo simulation study to assess the appropriateness of traditional and newer approaches to test for measurement invariance. Structural Equation Modeling, 26(5), 724-744. doi:10.1080/10705511.2018.1561293
Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4-70. doi:10.1177/109442810031002s
For IRT linking see also linking.haberman
or
TAM::tam.linking
.
For modeling random item effects for loadings and intercepts
see mcmc.2pno.ml
.
############################################################################# # EXAMPLE 1: Item parameters cultural activities ############################################################################# data(data.activity.itempars, package="sirt") lambda <- data.activity.itempars$lambda nu <- data.activity.itempars$nu Ng <- data.activity.itempars$N wgt <- matrix( sqrt(Ng), length(Ng), ncol(nu) ) #*** # Model 1: Alignment using a quadratic loss function mod1 <- sirt::invariance.alignment( lambda, nu, wgt, align.pow=c(2,2) ) summary(mod1) #**** # Model 2: Different powers for alignment mod2 <- sirt::invariance.alignment( lambda, nu, wgt, align.pow=c(.5,1), align.scale=c(.95,.95)) summary(mod2) # compare means from Models 1 and 2 plot( mod1$pars$alpha0, mod2$pars$alpha0, pch=16, xlab="M (Model 1)", ylab="M (Model 2)", xlim=c(-.3,.3), ylim=c(-.3,.3) ) lines( c(-1,1), c(-1,1), col="gray") round( cbind( mod1$pars$alpha0, mod2$pars$alpha0 ), 3 ) round( mod1$nu.resid, 3) round( mod2$nu.resid,3 ) # L0 penalty mod2b <- sirt::invariance.alignment( lambda, nu, wgt, align.pow=c(0,0), align.scale=c(.3,.3)) summary(mod2b) #**** # Model 3: Low powers for alignment of scale and power # Note that setting increment.factor larger than 1 seems necessary mod3 <- sirt::invariance.alignment( lambda, nu, wgt, align.pow=c(.5,.75), align.scale=c(.55,.55), psi0.init=mod1$psi0, alpha0.init=mod1$alpha0 ) summary(mod3) # compare mean and SD estimates of Models 1 and 3 plot( mod1$pars$alpha0, mod3$pars$alpha0, pch=16) plot( mod1$pars$psi0, mod3$pars$psi0, pch=16) # compare residuals for Models 1 and 3 # plot lambda plot( abs(as.vector(mod1$lambda.resid)), abs(as.vector(mod3$lambda.resid)), pch=16, xlab="Residuals lambda (Model 1)", ylab="Residuals lambda (Model 3)", xlim=c(0,.1), ylim=c(0,.1)) lines( c(-3,3),c(-3,3), col="gray") # plot nu plot( abs(as.vector(mod1$nu.resid)), abs(as.vector(mod3$nu.resid)), pch=16, xlab="Residuals nu (Model 1)", ylab="Residuals nu (Model 3)", xlim=c(0,.4),ylim=c(0,.4)) lines( c(-3,3),c(-3,3), col="gray") ## Not run: ############################################################################# # EXAMPLE 2: Comparison 4 groups | data.inv4gr ############################################################################# data(data.inv4gr) dat <- data.inv4gr miceadds::library_install("semTools") model1 <- " F=~ I01 + I02 + I03 + I04 + I05 + I06 + I07 + I08 + I09 + I10 + I11 F ~~ 1*F " res <- semTools::measurementInvariance(model1, std.lv=TRUE, data=dat, group="group") ## Measurement invariance tests: ## ## Model 1: configural invariance: ## chisq df pvalue cfi rmsea bic ## 162.084 176.000 0.766 1.000 0.000 95428.025 ## ## Model 2: weak invariance (equal loadings): ## chisq df pvalue cfi rmsea bic ## 519.598 209.000 0.000 0.973 0.039 95511.835 ## ## [Model 1 versus model 2] ## delta.chisq delta.df delta.p.value delta.cfi ## 357.514 33.000 0.000 0.027 ## ## Model 3: strong invariance (equal loadings + intercepts): ## chisq df pvalue cfi rmsea bic ## 2197.260 239.000 0.000 0.828 0.091 96940.676 ## ## [Model 1 versus model 3] ## delta.chisq delta.df delta.p.value delta.cfi ## 2035.176 63.000 0.000 0.172 ## ## [Model 2 versus model 3] ## delta.chisq delta.df delta.p.value delta.cfi ## 1677.662 30.000 0.000 0.144 ## # extract item parameters separate group analyses ipars <- lavaan::parameterEstimates(res$fit.configural) # extract lambda's: groups are in rows, items in columns lambda <- matrix( ipars[ ipars$op=="=~", "est"], nrow=4, byrow=TRUE) colnames(lambda) <- colnames(dat)[-1] # extract nu's nu <- matrix( ipars[ ipars$op=="~1" & ipars$se !=0, "est" ], nrow=4, byrow=TRUE) colnames(nu) <- colnames(dat)[-1] # Model 1: least squares optimization mod1 <- sirt::invariance.alignment( lambda=lambda, nu=nu ) summary(mod1) ## Effect Sizes of Approximate Invariance ## loadings intercepts ## R2 0.9826 0.9972 ## sqrtU2 0.1319 0.0526 ## rbar 0.6237 0.7821 ## ----------------------------------------------------------------- ## Group Means and Standard Deviations ## alpha0 psi0 ## 1 0.000 0.965 ## 2 -0.105 1.098 ## 3 -0.081 1.011 ## 4 0.171 0.935 # Model 2: sparse target function mod2 <- sirt::invariance.alignment( lambda=lambda, nu=nu, align.pow=c(.5,.5) ) summary(mod2) ## Effect Sizes of Approximate Invariance ## loadings intercepts ## R2 0.9824 0.9972 ## sqrtU2 0.1327 0.0529 ## rbar 0.6237 0.7856 ## ----------------------------------------------------------------- ## Group Means and Standard Deviations ## alpha0 psi0 ## 1 -0.002 0.965 ## 2 -0.107 1.098 ## 3 -0.083 1.011 ## 4 0.170 0.935 ############################################################################# # EXAMPLE 3: European Social Survey data.ess2005 ############################################################################# data(data.ess2005) lambda <- data.ess2005$lambda nu <- data.ess2005$nu # Model 1: least squares optimization mod1 <- sirt::invariance.alignment( lambda=lambda, nu=nu, align.pow=c(2,2) ) summary(mod1) # Model 2: sparse target function and definition of scales mod2 <- sirt::invariance.alignment( lambda=lambda, nu=nu, control=list(trace=2) ) summary(mod2) ############################################################################# # EXAMPLE 4: Linking with item parameters containing outliers ############################################################################# # see Help file in linking.robust # simulate some item difficulties in the Rasch model I <- 38 set.seed(18785) itempars <- data.frame("item"=paste0("I",1:I) ) itempars$study1 <- stats::rnorm( I, mean=.3, sd=1.4 ) # simulate DIF effects plus some outliers bdif <- stats::rnorm(I, mean=.4, sd=.09) + (stats::runif(I)>.9 )*rep( 1*c(-1,1)+.4, each=I/2 ) itempars$study2 <- itempars$study1 + bdif # create input for function invariance.alignment nu <- t( itempars[,2:3] ) colnames(nu) <- itempars$item lambda <- 1+0*nu # linking using least squares optimization mod1 <- sirt::invariance.alignment( lambda=lambda, nu=nu ) summary(mod1) ## Group Means and Standard Deviations ## alpha0 psi0 ## study1 -0.286 1 ## study2 0.286 1 # linking using powers of .5 mod2 <- sirt::invariance.alignment( lambda=lambda, nu=nu, align.pow=c(1,1) ) summary(mod2) ## Group Means and Standard Deviations ## alpha0 psi0 ## study1 -0.213 1 ## study2 0.213 1 # linking using powers of .25 mod3 <- sirt::invariance.alignment( lambda=lambda, nu=nu, align.pow=c(.5,.5) ) summary(mod3) ## Group Means and Standard Deviations ## alpha0 psi0 ## study1 -0.207 1 ## study2 0.207 1 ############################################################################# # EXAMPLE 5: Linking gender groups with data.math ############################################################################# data(data.math) dat <- data.math$data dat.male <- dat[ dat$female==0, substring( colnames(dat),1,1)=="M" ] dat.female <- dat[ dat$female==1, substring( colnames(dat),1,1)=="M" ] #************************* # Model 1: Linking using the Rasch model mod1m <- sirt::rasch.mml2( dat.male ) mod1f <- sirt::rasch.mml2( dat.female ) # create objects for invariance.alignment nu <- rbind( mod1m$item$thresh, mod1f$item$thresh ) colnames(nu) <- mod1m$item$item rownames(nu) <- c("male", "female") lambda <- 1+0*nu # mean of item difficulties round( rowMeans(nu), 3 ) # Linking using least squares optimization res1a <- sirt::invariance.alignment( lambda, nu, align.scale=c( .3, .5 ) ) summary(res1a) # Linking using optimization with absolute value function (pow=.5) res1b <- sirt::invariance.alignment( lambda, nu, align.scale=c( .3, .5 ), align.pow=c(1,1) ) summary(res1b) #-- compare results with Haberman linking I <- ncol(dat.male) itempartable <- data.frame( "study"=rep( c("male", "female"), each=I ) ) itempartable$item <- c( paste0(mod1m$item$item), paste0(mod1f$item$item) ) itempartable$a <- 1 itempartable$b <- c( mod1m$item$b, mod1f$item$b ) # estimate linking parameters res1c <- sirt::linking.haberman( itempars=itempartable ) #-- results of sirt::equating.rasch x <- itempartable[ 1:I, c("item", "b") ] y <- itempartable[ I + 1:I, c("item", "b") ] res1d <- sirt::equating.rasch( x, y ) round( res1d$B.est, 3 ) ## Mean.Mean Haebara Stocking.Lord ## 1 0.032 0.032 0.029 #************************* # Model 2: Linking using the 2PL model I <- ncol(dat.male) mod2m <- sirt::rasch.mml2( dat.male, est.a=1:I) mod2f <- sirt::rasch.mml2( dat.female, est.a=1:I) # create objects for invariance.alignment nu <- rbind( mod2m$item$thresh, mod2f$item$thresh ) colnames(nu) <- mod2m$item$item rownames(nu) <- c("male", "female") lambda <- rbind( mod2m$item$a, mod2f$item$a ) colnames(lambda) <- mod2m$item$item rownames(lambda) <- c("male", "female") res2a <- sirt::invariance.alignment( lambda, nu, align.scale=c( .3, .5 ) ) summary(res2a) res2b <- sirt::invariance.alignment( lambda, nu, align.scale=c( .3, .5 ), align.pow=c(1,1) ) summary(res2b) # compare results with Haberman linking I <- ncol(dat.male) itempartable <- data.frame( "study"=rep( c("male", "female"), each=I ) ) itempartable$item <- c( paste0(mod2m$item$item), paste0(mod2f$item$item ) ) itempartable$a <- c( mod2m$item$a, mod2f$item$a ) itempartable$b <- c( mod2m$item$b, mod2f$item$b ) # estimate linking parameters res2c <- sirt::linking.haberman( itempars=itempartable ) ############################################################################# # EXAMPLE 6: Data from Asparouhov & Muthen (2014) simulation study ############################################################################# G <- 3 # number of groups I <- 5 # number of items # define lambda and nu parameters lambda <- matrix(1, nrow=G, ncol=I) nu <- matrix(0, nrow=G, ncol=I) # define size of noninvariance dif <- 1 #- 1st group: N(0,1) lambda[1,3] <- 1+dif*.4; nu[1,5] <- dif*.5 #- 2nd group: N(0.3,1.5) gg <- 2 ; mu <- .3; sigma <- sqrt(1.5) lambda[gg,5] <- 1-.5*dif; nu[gg,1] <- -.5*dif nu[gg,] <- nu[gg,] + mu*lambda[gg,] lambda[gg,] <- lambda[gg,] * sigma #- 3nd group: N(.8,1.2) gg <- 3 ; mu <- .8; sigma <- sqrt(1.2) lambda[gg,4] <- 1-.7*dif; nu[gg,2] <- -.5*dif nu[gg,] <- nu[gg,] + mu*lambda[gg,] lambda[gg,] <- lambda[gg,] * sigma # define alignment scale align.scale <- c(.2,.4) # Asparouhov and Muthen use c(1,1) # define alignment powers align.pow <- c(.5,.5) # as in Asparouhov and Muthen #*** estimate alignment parameters mod1 <- sirt::invariance.alignment( lambda, nu, eps=.01, optimizer="optim", align.scale=align.scale, align.pow=align.pow, center=FALSE ) summary(mod1) #--- find parameter constraints for prespecified tolerance cmod1 <- sirt::invariance_alignment_constraints(model=mod1, nu_parm_tol=.4, lambda_parm_tol=.2 ) summary(cmod1) ############################################################################# # EXAMPLE 7: Similar to Example 6, but with data simulation and CFA estimation ############################################################################# #--- data simulation set.seed(65) G <- 3 # number of groups I <- 5 # number of items # define lambda and nu parameters lambda <- matrix(1, nrow=G, ncol=I) nu <- matrix(0, nrow=G, ncol=I) err_var <- matrix(1, nrow=G, ncol=I) # define size of noninvariance dif <- 1 #- 1st group: N(0,1) lambda[1,3] <- 1+dif*.4; nu[1,5] <- dif*.5 #- 2nd group: N(0.3,1.5) gg <- 2 ; lambda[gg,5] <- 1-.5*dif; nu[gg,1] <- -.5*dif #- 3nd group: N(.8,1.2) gg <- 3 lambda[gg,4] <- 1-.7*dif; nu[gg,2] <- -.5*dif #- define distributions of groups mu <- c(0,.3,.8) sigma <- sqrt(c(1,1.5,1.2)) N <- rep(1000,3) # sample sizes per group #* simulate data dat <- sirt::invariance_alignment_simulate(nu, lambda, err_var, mu, sigma, N) head(dat) #--- estimate CFA models pars <- sirt::invariance_alignment_cfa_config(dat[,-1], group=dat$group) print(pars) #--- invariance alignment # define alignment scale align.scale <- c(.2,.4) # define alignment powers align.pow <- c(.5,.5) mod1 <- sirt::invariance.alignment( lambda=pars$lambda, nu=pars$nu, eps=.01, optimizer="optim", align.scale=align.scale, align.pow=align.pow, center=FALSE) #* find parameter constraints for prespecified tolerance cmod1 <- sirt::invariance_alignment_constraints(model=mod1, nu_parm_tol=.4, lambda_parm_tol=.2 ) summary(cmod1) #--- estimate CFA models with sampling weights #* simulate weights weights <- stats::runif(sum(N), 0, 2) #* estimate models pars2 <- sirt::invariance_alignment_cfa_config(dat[,-1], group=dat$group, weights=weights) print(pars2$nu) print(pars$nu) #--- estimate one-parameter model pars <- sirt::invariance_alignment_cfa_config(dat[,-1], group=dat$group, model="1PM") print(pars) ############################################################################# # EXAMPLE 8: Computation of standard errors ############################################################################# G <- 3 # number of groups I <- 5 # number of items # define lambda and nu parameters lambda <- matrix(1, nrow=G, ncol=I) nu <- matrix(0, nrow=G, ncol=I) # define size of noninvariance dif <- 1 mu1 <- c(0,.3,.8) sigma1 <- c(1,1.25,1.1) #- 1st group lambda[1,3] <- 1+dif*.4; nu[1,5] <- dif*.5 #- 2nd group gg <- 2 lambda[gg,5] <- 1-.5*dif; nu[gg,1] <- -.5*dif #- 3nd group gg <- 3 lambda[gg,4] <- 1-.7*dif; nu[gg,2] <- -.5*dif dat <- sirt::invariance_alignment_simulate(nu=nu, lambda=lambda, err_var=1+0*lambda, mu=mu1, sigma=sigma1, N=500, output="data", exact=TRUE) #* estimate CFA res <- sirt::invariance_alignment_cfa_config(dat=dat[,-1], group=dat$group ) #- perform invariance alignment eps <- .001 align.pow <- 0.5*rep(1,2) lambda <- res$lambda nu <- res$nu mod1 <- sirt::invariance.alignment( lambda=lambda, nu=nu, eps=eps, optimizer="optim", align.pow=align.pow, meth=meth, vcov=res$vcov) # variance matrix and standard errors mod1$vcov sqrt(diag(mod1$vcov)) ## End(Not run)
############################################################################# # EXAMPLE 1: Item parameters cultural activities ############################################################################# data(data.activity.itempars, package="sirt") lambda <- data.activity.itempars$lambda nu <- data.activity.itempars$nu Ng <- data.activity.itempars$N wgt <- matrix( sqrt(Ng), length(Ng), ncol(nu) ) #*** # Model 1: Alignment using a quadratic loss function mod1 <- sirt::invariance.alignment( lambda, nu, wgt, align.pow=c(2,2) ) summary(mod1) #**** # Model 2: Different powers for alignment mod2 <- sirt::invariance.alignment( lambda, nu, wgt, align.pow=c(.5,1), align.scale=c(.95,.95)) summary(mod2) # compare means from Models 1 and 2 plot( mod1$pars$alpha0, mod2$pars$alpha0, pch=16, xlab="M (Model 1)", ylab="M (Model 2)", xlim=c(-.3,.3), ylim=c(-.3,.3) ) lines( c(-1,1), c(-1,1), col="gray") round( cbind( mod1$pars$alpha0, mod2$pars$alpha0 ), 3 ) round( mod1$nu.resid, 3) round( mod2$nu.resid,3 ) # L0 penalty mod2b <- sirt::invariance.alignment( lambda, nu, wgt, align.pow=c(0,0), align.scale=c(.3,.3)) summary(mod2b) #**** # Model 3: Low powers for alignment of scale and power # Note that setting increment.factor larger than 1 seems necessary mod3 <- sirt::invariance.alignment( lambda, nu, wgt, align.pow=c(.5,.75), align.scale=c(.55,.55), psi0.init=mod1$psi0, alpha0.init=mod1$alpha0 ) summary(mod3) # compare mean and SD estimates of Models 1 and 3 plot( mod1$pars$alpha0, mod3$pars$alpha0, pch=16) plot( mod1$pars$psi0, mod3$pars$psi0, pch=16) # compare residuals for Models 1 and 3 # plot lambda plot( abs(as.vector(mod1$lambda.resid)), abs(as.vector(mod3$lambda.resid)), pch=16, xlab="Residuals lambda (Model 1)", ylab="Residuals lambda (Model 3)", xlim=c(0,.1), ylim=c(0,.1)) lines( c(-3,3),c(-3,3), col="gray") # plot nu plot( abs(as.vector(mod1$nu.resid)), abs(as.vector(mod3$nu.resid)), pch=16, xlab="Residuals nu (Model 1)", ylab="Residuals nu (Model 3)", xlim=c(0,.4),ylim=c(0,.4)) lines( c(-3,3),c(-3,3), col="gray") ## Not run: ############################################################################# # EXAMPLE 2: Comparison 4 groups | data.inv4gr ############################################################################# data(data.inv4gr) dat <- data.inv4gr miceadds::library_install("semTools") model1 <- " F=~ I01 + I02 + I03 + I04 + I05 + I06 + I07 + I08 + I09 + I10 + I11 F ~~ 1*F " res <- semTools::measurementInvariance(model1, std.lv=TRUE, data=dat, group="group") ## Measurement invariance tests: ## ## Model 1: configural invariance: ## chisq df pvalue cfi rmsea bic ## 162.084 176.000 0.766 1.000 0.000 95428.025 ## ## Model 2: weak invariance (equal loadings): ## chisq df pvalue cfi rmsea bic ## 519.598 209.000 0.000 0.973 0.039 95511.835 ## ## [Model 1 versus model 2] ## delta.chisq delta.df delta.p.value delta.cfi ## 357.514 33.000 0.000 0.027 ## ## Model 3: strong invariance (equal loadings + intercepts): ## chisq df pvalue cfi rmsea bic ## 2197.260 239.000 0.000 0.828 0.091 96940.676 ## ## [Model 1 versus model 3] ## delta.chisq delta.df delta.p.value delta.cfi ## 2035.176 63.000 0.000 0.172 ## ## [Model 2 versus model 3] ## delta.chisq delta.df delta.p.value delta.cfi ## 1677.662 30.000 0.000 0.144 ## # extract item parameters separate group analyses ipars <- lavaan::parameterEstimates(res$fit.configural) # extract lambda's: groups are in rows, items in columns lambda <- matrix( ipars[ ipars$op=="=~", "est"], nrow=4, byrow=TRUE) colnames(lambda) <- colnames(dat)[-1] # extract nu's nu <- matrix( ipars[ ipars$op=="~1" & ipars$se !=0, "est" ], nrow=4, byrow=TRUE) colnames(nu) <- colnames(dat)[-1] # Model 1: least squares optimization mod1 <- sirt::invariance.alignment( lambda=lambda, nu=nu ) summary(mod1) ## Effect Sizes of Approximate Invariance ## loadings intercepts ## R2 0.9826 0.9972 ## sqrtU2 0.1319 0.0526 ## rbar 0.6237 0.7821 ## ----------------------------------------------------------------- ## Group Means and Standard Deviations ## alpha0 psi0 ## 1 0.000 0.965 ## 2 -0.105 1.098 ## 3 -0.081 1.011 ## 4 0.171 0.935 # Model 2: sparse target function mod2 <- sirt::invariance.alignment( lambda=lambda, nu=nu, align.pow=c(.5,.5) ) summary(mod2) ## Effect Sizes of Approximate Invariance ## loadings intercepts ## R2 0.9824 0.9972 ## sqrtU2 0.1327 0.0529 ## rbar 0.6237 0.7856 ## ----------------------------------------------------------------- ## Group Means and Standard Deviations ## alpha0 psi0 ## 1 -0.002 0.965 ## 2 -0.107 1.098 ## 3 -0.083 1.011 ## 4 0.170 0.935 ############################################################################# # EXAMPLE 3: European Social Survey data.ess2005 ############################################################################# data(data.ess2005) lambda <- data.ess2005$lambda nu <- data.ess2005$nu # Model 1: least squares optimization mod1 <- sirt::invariance.alignment( lambda=lambda, nu=nu, align.pow=c(2,2) ) summary(mod1) # Model 2: sparse target function and definition of scales mod2 <- sirt::invariance.alignment( lambda=lambda, nu=nu, control=list(trace=2) ) summary(mod2) ############################################################################# # EXAMPLE 4: Linking with item parameters containing outliers ############################################################################# # see Help file in linking.robust # simulate some item difficulties in the Rasch model I <- 38 set.seed(18785) itempars <- data.frame("item"=paste0("I",1:I) ) itempars$study1 <- stats::rnorm( I, mean=.3, sd=1.4 ) # simulate DIF effects plus some outliers bdif <- stats::rnorm(I, mean=.4, sd=.09) + (stats::runif(I)>.9 )*rep( 1*c(-1,1)+.4, each=I/2 ) itempars$study2 <- itempars$study1 + bdif # create input for function invariance.alignment nu <- t( itempars[,2:3] ) colnames(nu) <- itempars$item lambda <- 1+0*nu # linking using least squares optimization mod1 <- sirt::invariance.alignment( lambda=lambda, nu=nu ) summary(mod1) ## Group Means and Standard Deviations ## alpha0 psi0 ## study1 -0.286 1 ## study2 0.286 1 # linking using powers of .5 mod2 <- sirt::invariance.alignment( lambda=lambda, nu=nu, align.pow=c(1,1) ) summary(mod2) ## Group Means and Standard Deviations ## alpha0 psi0 ## study1 -0.213 1 ## study2 0.213 1 # linking using powers of .25 mod3 <- sirt::invariance.alignment( lambda=lambda, nu=nu, align.pow=c(.5,.5) ) summary(mod3) ## Group Means and Standard Deviations ## alpha0 psi0 ## study1 -0.207 1 ## study2 0.207 1 ############################################################################# # EXAMPLE 5: Linking gender groups with data.math ############################################################################# data(data.math) dat <- data.math$data dat.male <- dat[ dat$female==0, substring( colnames(dat),1,1)=="M" ] dat.female <- dat[ dat$female==1, substring( colnames(dat),1,1)=="M" ] #************************* # Model 1: Linking using the Rasch model mod1m <- sirt::rasch.mml2( dat.male ) mod1f <- sirt::rasch.mml2( dat.female ) # create objects for invariance.alignment nu <- rbind( mod1m$item$thresh, mod1f$item$thresh ) colnames(nu) <- mod1m$item$item rownames(nu) <- c("male", "female") lambda <- 1+0*nu # mean of item difficulties round( rowMeans(nu), 3 ) # Linking using least squares optimization res1a <- sirt::invariance.alignment( lambda, nu, align.scale=c( .3, .5 ) ) summary(res1a) # Linking using optimization with absolute value function (pow=.5) res1b <- sirt::invariance.alignment( lambda, nu, align.scale=c( .3, .5 ), align.pow=c(1,1) ) summary(res1b) #-- compare results with Haberman linking I <- ncol(dat.male) itempartable <- data.frame( "study"=rep( c("male", "female"), each=I ) ) itempartable$item <- c( paste0(mod1m$item$item), paste0(mod1f$item$item) ) itempartable$a <- 1 itempartable$b <- c( mod1m$item$b, mod1f$item$b ) # estimate linking parameters res1c <- sirt::linking.haberman( itempars=itempartable ) #-- results of sirt::equating.rasch x <- itempartable[ 1:I, c("item", "b") ] y <- itempartable[ I + 1:I, c("item", "b") ] res1d <- sirt::equating.rasch( x, y ) round( res1d$B.est, 3 ) ## Mean.Mean Haebara Stocking.Lord ## 1 0.032 0.032 0.029 #************************* # Model 2: Linking using the 2PL model I <- ncol(dat.male) mod2m <- sirt::rasch.mml2( dat.male, est.a=1:I) mod2f <- sirt::rasch.mml2( dat.female, est.a=1:I) # create objects for invariance.alignment nu <- rbind( mod2m$item$thresh, mod2f$item$thresh ) colnames(nu) <- mod2m$item$item rownames(nu) <- c("male", "female") lambda <- rbind( mod2m$item$a, mod2f$item$a ) colnames(lambda) <- mod2m$item$item rownames(lambda) <- c("male", "female") res2a <- sirt::invariance.alignment( lambda, nu, align.scale=c( .3, .5 ) ) summary(res2a) res2b <- sirt::invariance.alignment( lambda, nu, align.scale=c( .3, .5 ), align.pow=c(1,1) ) summary(res2b) # compare results with Haberman linking I <- ncol(dat.male) itempartable <- data.frame( "study"=rep( c("male", "female"), each=I ) ) itempartable$item <- c( paste0(mod2m$item$item), paste0(mod2f$item$item ) ) itempartable$a <- c( mod2m$item$a, mod2f$item$a ) itempartable$b <- c( mod2m$item$b, mod2f$item$b ) # estimate linking parameters res2c <- sirt::linking.haberman( itempars=itempartable ) ############################################################################# # EXAMPLE 6: Data from Asparouhov & Muthen (2014) simulation study ############################################################################# G <- 3 # number of groups I <- 5 # number of items # define lambda and nu parameters lambda <- matrix(1, nrow=G, ncol=I) nu <- matrix(0, nrow=G, ncol=I) # define size of noninvariance dif <- 1 #- 1st group: N(0,1) lambda[1,3] <- 1+dif*.4; nu[1,5] <- dif*.5 #- 2nd group: N(0.3,1.5) gg <- 2 ; mu <- .3; sigma <- sqrt(1.5) lambda[gg,5] <- 1-.5*dif; nu[gg,1] <- -.5*dif nu[gg,] <- nu[gg,] + mu*lambda[gg,] lambda[gg,] <- lambda[gg,] * sigma #- 3nd group: N(.8,1.2) gg <- 3 ; mu <- .8; sigma <- sqrt(1.2) lambda[gg,4] <- 1-.7*dif; nu[gg,2] <- -.5*dif nu[gg,] <- nu[gg,] + mu*lambda[gg,] lambda[gg,] <- lambda[gg,] * sigma # define alignment scale align.scale <- c(.2,.4) # Asparouhov and Muthen use c(1,1) # define alignment powers align.pow <- c(.5,.5) # as in Asparouhov and Muthen #*** estimate alignment parameters mod1 <- sirt::invariance.alignment( lambda, nu, eps=.01, optimizer="optim", align.scale=align.scale, align.pow=align.pow, center=FALSE ) summary(mod1) #--- find parameter constraints for prespecified tolerance cmod1 <- sirt::invariance_alignment_constraints(model=mod1, nu_parm_tol=.4, lambda_parm_tol=.2 ) summary(cmod1) ############################################################################# # EXAMPLE 7: Similar to Example 6, but with data simulation and CFA estimation ############################################################################# #--- data simulation set.seed(65) G <- 3 # number of groups I <- 5 # number of items # define lambda and nu parameters lambda <- matrix(1, nrow=G, ncol=I) nu <- matrix(0, nrow=G, ncol=I) err_var <- matrix(1, nrow=G, ncol=I) # define size of noninvariance dif <- 1 #- 1st group: N(0,1) lambda[1,3] <- 1+dif*.4; nu[1,5] <- dif*.5 #- 2nd group: N(0.3,1.5) gg <- 2 ; lambda[gg,5] <- 1-.5*dif; nu[gg,1] <- -.5*dif #- 3nd group: N(.8,1.2) gg <- 3 lambda[gg,4] <- 1-.7*dif; nu[gg,2] <- -.5*dif #- define distributions of groups mu <- c(0,.3,.8) sigma <- sqrt(c(1,1.5,1.2)) N <- rep(1000,3) # sample sizes per group #* simulate data dat <- sirt::invariance_alignment_simulate(nu, lambda, err_var, mu, sigma, N) head(dat) #--- estimate CFA models pars <- sirt::invariance_alignment_cfa_config(dat[,-1], group=dat$group) print(pars) #--- invariance alignment # define alignment scale align.scale <- c(.2,.4) # define alignment powers align.pow <- c(.5,.5) mod1 <- sirt::invariance.alignment( lambda=pars$lambda, nu=pars$nu, eps=.01, optimizer="optim", align.scale=align.scale, align.pow=align.pow, center=FALSE) #* find parameter constraints for prespecified tolerance cmod1 <- sirt::invariance_alignment_constraints(model=mod1, nu_parm_tol=.4, lambda_parm_tol=.2 ) summary(cmod1) #--- estimate CFA models with sampling weights #* simulate weights weights <- stats::runif(sum(N), 0, 2) #* estimate models pars2 <- sirt::invariance_alignment_cfa_config(dat[,-1], group=dat$group, weights=weights) print(pars2$nu) print(pars$nu) #--- estimate one-parameter model pars <- sirt::invariance_alignment_cfa_config(dat[,-1], group=dat$group, model="1PM") print(pars) ############################################################################# # EXAMPLE 8: Computation of standard errors ############################################################################# G <- 3 # number of groups I <- 5 # number of items # define lambda and nu parameters lambda <- matrix(1, nrow=G, ncol=I) nu <- matrix(0, nrow=G, ncol=I) # define size of noninvariance dif <- 1 mu1 <- c(0,.3,.8) sigma1 <- c(1,1.25,1.1) #- 1st group lambda[1,3] <- 1+dif*.4; nu[1,5] <- dif*.5 #- 2nd group gg <- 2 lambda[gg,5] <- 1-.5*dif; nu[gg,1] <- -.5*dif #- 3nd group gg <- 3 lambda[gg,4] <- 1-.7*dif; nu[gg,2] <- -.5*dif dat <- sirt::invariance_alignment_simulate(nu=nu, lambda=lambda, err_var=1+0*lambda, mu=mu1, sigma=sigma1, N=500, output="data", exact=TRUE) #* estimate CFA res <- sirt::invariance_alignment_cfa_config(dat=dat[,-1], group=dat$group ) #- perform invariance alignment eps <- .001 align.pow <- 0.5*rep(1,2) lambda <- res$lambda nu <- res$nu mod1 <- sirt::invariance.alignment( lambda=lambda, nu=nu, eps=eps, optimizer="optim", align.pow=align.pow, meth=meth, vcov=res$vcov) # variance matrix and standard errors mod1$vcov sqrt(diag(mod1$vcov)) ## End(Not run)
Computes the maximum likelihood estimate (MLE), weighted likelihood estimate (WLE) and maximum aposterior estimate (MAP) of ability in unidimensional item response models (Penfield & Bergeron, 2005; Warm, 1989). Item response functions can be defined by the user.
IRT.mle(data, irffct, arg.list, theta=rep(0,nrow(data)), type="MLE", mu=0, sigma=1, maxiter=20, maxincr=3, h=0.001, convP=1e-04, maxval=9, progress=TRUE)
IRT.mle(data, irffct, arg.list, theta=rep(0,nrow(data)), type="MLE", mu=0, sigma=1, maxiter=20, maxincr=3, h=0.001, convP=1e-04, maxval=9, progress=TRUE)
data |
Data frame with item responses |
irffct |
User defined item response (see Examples). Arguments must be
specified in |
theta |
Initial ability estimate |
arg.list |
List of arguments for |
type |
Type of ability estimate. It can be |
mu |
Mean of normal prior distribution (for |
sigma |
Standard deviation of normal prior distribution (for |
maxiter |
Maximum number of iterations |
maxincr |
Maximum increment |
h |
Numerical differentiation parameter |
convP |
Convergence criterion |
maxval |
Maximum ability value to be estimated |
progress |
Logical indicating whether iteration progress should be displayed |
Data frame with estimated abilities (est
) and its standard error
(se
).
Penfield, R. D., & Bergeron, J. M. (2005). Applying a weighted maximum likelihood latent trait estimator to the generalized partial credit model. Applied Psychological Measurement, 29, 218-233.
Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427-450.
See also the PP package for further person parameter estimation methods.
## Not run: ############################################################################# # EXAMPLE 1: Generalized partial credit model ############################################################################# data(data.ratings1) dat <- data.ratings1 # estimate model mod1 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, maxiter=15) # extract dataset and item parameters data <- mod1$procdata$dat2.NA a <- mod1$ipars.dat2$a b <- mod1$ipars.dat2$b theta0 <- mod1$person$EAP # define item response function for item ii calc.pcm <- function( theta, a, b, ii ){ K <- ncol(b) N <- length(theta) matrK <- matrix( 0:K, nrow=N, ncol=K+1, byrow=TRUE) eta <- a[ii] * theta * matrK - matrix( c(0,b[ii,]), nrow=N, ncol=K+1, byrow=TRUE) eta <- exp(eta) probs <- eta / rowSums(eta, na.rm=TRUE) return(probs) } arg.list <- list("a"=a, "b"=b ) # MLE abil1 <- sirt::IRT.mle( data, irffct=calc.pcm, theta=theta0, arg.list=arg.list ) str(abil1) # WLE abil2 <- sirt::IRT.mle( data, irffct=calc.pcm, theta=theta0, arg.list=arg.list, type="WLE") str(abil2) # MAP with prior distribution N(.2, 1.3) abil3 <- sirt::IRT.mle( data, irffct=calc.pcm, theta=theta0, arg.list=arg.list, type="MAP", mu=.2, sigma=1.3 ) str(abil3) ############################################################################# # EXAMPLE 2: Rasch model ############################################################################# data(data.read) dat <- data.read I <- ncol(dat) # estimate Rasch model mod1 <- sirt::rasch.mml2( dat ) summary(mod1) # define item response function irffct <- function( theta, b, ii){ eta <- exp( theta - b[ii] ) probs <- eta / ( 1 + eta ) probs <- cbind( 1 - probs, probs ) return(probs) } # initial person parameters and item parameters theta0 <- mod1$person$EAP arg.list <- list( "b"=mod1$item$b ) # estimate WLE abil <- sirt::IRT.mle( data=dat, irffct=irffct, arg.list=arg.list, theta=theta0, type="WLE") # compare with wle.rasch function theta <- sirt::wle.rasch( dat, b=mod1$item$b ) cbind( abil[,1], theta$theta, abil[,2], theta$se.theta ) ############################################################################# # EXAMPLE 3: Ramsay quotient model ############################################################################# data(data.read) dat <- data.read I <- ncol(dat) # estimate Ramsay model mod1 <- sirt::rasch.mml2( dat, irtmodel="ramsay.qm" ) summary(mod1) # define item response function irffct <- function( theta, b, K, ii){ eta <- exp( theta / b[ii] ) probs <- eta / ( K[ii] + eta ) probs <- cbind( 1 - probs, probs ) return(probs) } # initial person parameters and item parameters theta0 <- exp( mod1$person$EAP ) arg.list <- list( "b"=mod1$item2$b, "K"=mod1$item2$K ) # estimate MLE res <- sirt::IRT.mle( data=dat, irffct=irffct, arg.list=arg.list, theta=theta0, maxval=20, maxiter=50) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Generalized partial credit model ############################################################################# data(data.ratings1) dat <- data.ratings1 # estimate model mod1 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, maxiter=15) # extract dataset and item parameters data <- mod1$procdata$dat2.NA a <- mod1$ipars.dat2$a b <- mod1$ipars.dat2$b theta0 <- mod1$person$EAP # define item response function for item ii calc.pcm <- function( theta, a, b, ii ){ K <- ncol(b) N <- length(theta) matrK <- matrix( 0:K, nrow=N, ncol=K+1, byrow=TRUE) eta <- a[ii] * theta * matrK - matrix( c(0,b[ii,]), nrow=N, ncol=K+1, byrow=TRUE) eta <- exp(eta) probs <- eta / rowSums(eta, na.rm=TRUE) return(probs) } arg.list <- list("a"=a, "b"=b ) # MLE abil1 <- sirt::IRT.mle( data, irffct=calc.pcm, theta=theta0, arg.list=arg.list ) str(abil1) # WLE abil2 <- sirt::IRT.mle( data, irffct=calc.pcm, theta=theta0, arg.list=arg.list, type="WLE") str(abil2) # MAP with prior distribution N(.2, 1.3) abil3 <- sirt::IRT.mle( data, irffct=calc.pcm, theta=theta0, arg.list=arg.list, type="MAP", mu=.2, sigma=1.3 ) str(abil3) ############################################################################# # EXAMPLE 2: Rasch model ############################################################################# data(data.read) dat <- data.read I <- ncol(dat) # estimate Rasch model mod1 <- sirt::rasch.mml2( dat ) summary(mod1) # define item response function irffct <- function( theta, b, ii){ eta <- exp( theta - b[ii] ) probs <- eta / ( 1 + eta ) probs <- cbind( 1 - probs, probs ) return(probs) } # initial person parameters and item parameters theta0 <- mod1$person$EAP arg.list <- list( "b"=mod1$item$b ) # estimate WLE abil <- sirt::IRT.mle( data=dat, irffct=irffct, arg.list=arg.list, theta=theta0, type="WLE") # compare with wle.rasch function theta <- sirt::wle.rasch( dat, b=mod1$item$b ) cbind( abil[,1], theta$theta, abil[,2], theta$se.theta ) ############################################################################# # EXAMPLE 3: Ramsay quotient model ############################################################################# data(data.read) dat <- data.read I <- ncol(dat) # estimate Ramsay model mod1 <- sirt::rasch.mml2( dat, irtmodel="ramsay.qm" ) summary(mod1) # define item response function irffct <- function( theta, b, K, ii){ eta <- exp( theta / b[ii] ) probs <- eta / ( K[ii] + eta ) probs <- cbind( 1 - probs, probs ) return(probs) } # initial person parameters and item parameters theta0 <- exp( mod1$person$EAP ) arg.list <- list( "b"=mod1$item2$b, "K"=mod1$item2$K ) # estimate MLE res <- sirt::IRT.mle( data=dat, irffct=irffct, arg.list=arg.list, theta=theta0, maxval=20, maxiter=50) ## End(Not run)
Fit the unidimensional isotonic probabilistic model (ISOP;
Scheiblechner, 1995, 2007) and the additive istotonic
probabilistic model (ADISOP; Scheiblechner, 1999).
The isop.dich
function can be used for dichotomous
data while the isop.poly
function can be applied
to polytomous data. Note that for applying the ISOP model for
polytomous data it is necessary that all items do have the
same number of categories.
isop.dich(dat, score.breaks=NULL, merge.extreme=TRUE, conv=.0001, maxit=1000, epsilon=.025, progress=TRUE) isop.poly( dat, score.breaks=seq(0,1,len=10 ), conv=.0001, maxit=1000, epsilon=.025, progress=TRUE ) ## S3 method for class 'isop' summary(object,...) ## S3 method for class 'isop' plot(x,ask=TRUE,...)
isop.dich(dat, score.breaks=NULL, merge.extreme=TRUE, conv=.0001, maxit=1000, epsilon=.025, progress=TRUE) isop.poly( dat, score.breaks=seq(0,1,len=10 ), conv=.0001, maxit=1000, epsilon=.025, progress=TRUE ) ## S3 method for class 'isop' summary(object,...) ## S3 method for class 'isop' plot(x,ask=TRUE,...)
dat |
Data frame with dichotomous or polytomous item responses |
score.breaks |
Vector with breaks to define score groups. For dichotomous data, the person score grouping is applied for the mean person score, for polytomous data it is applied to the modified percentile score. |
merge.extreme |
Merge extreme groups with zero and maximum score
with succeeding score categories? The default is
|
conv |
Convergence criterion |
maxit |
Maximum number of iterations |
epsilon |
Additive constant to handle cell frequencies
of 0 or 1 in |
progress |
Display progress? |
object |
Object of class |
x |
Object of class |
ask |
Ask for a new plot? |
... |
Further arguments to be passed |
The ISOP model for dichotomous data was firstly proposed
by Irtel and Schmalhofer (1982). Consider person groups
(ordered from low to high scores)
and items
(ordered from difficult to easy items).
Here,
denotes
the proportion correct for item
in score group
, while
denotes the number of persons
in group
and on item
. The isotonic
probabilistic model (Scheiblechner, 1995) monotonically
smooths this distribution function
such that
where the two-dimensional distribution function
is isotonic in
and
. Model fit is
assessed by the square root of weighted squares of deviations
with frequency weights and
for every item
.
The additive isotonic model (ADISOP; Scheiblechner, 1999)
assumes the existence of person parameters
and item parameters
such that
and is a nonparametrically estimated isotonic
function. The functions
isop.dich
and isop.poly
uses
from the ISOP models and estimates person and item parameters of the
ADISOP model. For comparison,
isop.dich
also fits a model with
the logistic function which results in the Rasch
model.
For polytomous data, the starting point is the empirical distribution function
which is increasing
in the argument (the item categories).
The ISOP model is defined to be antitonic in
and
while items are ordered with respect to item P-scores and persons are ordered
according to modified percentile scores (Scheiblechner, 2007).
The estimated ISOP model results in a distribution
function
. Using this function, the additive
isotonic probabilistic model (ADISOP) aims at estimating
a distribution function
which is antitonic in and in
.
Due to this additive relation, the ADISOP scale values
are claimed to be measured at interval scale level (Scheiblechner, 1999).
The ADISOP model is compared to the graded response model which is defined by the response equation
where denotes the logistic function.
Estimated parameters are in the value
fit.grm
:
person parameters (
person.sc
),
item parameters (
item.sc
) and
category parameters (
cat.sc
).
The calculation of person and item scores is explained
in isop.scoring
.
For an application of the ISOP and ADISOP model see Scheiblechner and Lutz (2009).
A list with following entries:
freq.correct |
Used frequency table (distribution function) for dichotomous and polytomous data |
wgt |
Used weights (frequencies) |
prob.saturated |
Frequencies of the saturated model |
prob.isop |
Fitted frequencies of the ISOP model |
prob.adisop |
Fitted frequencies of the ADISOP model |
prob.logistic |
Fitted frequencies of the logistic model
(only for |
prob.grm |
Fitted frequencies of the graded response model
(only for |
ll |
List with log-likelihood values |
fit |
Vector of fit statistics |
person |
Data frame of person parameters |
item |
Data frame of item parameters |
p.itemcat |
Frequencies for every item category |
score.itemcat |
Scoring points for every item category |
fit.isop |
Values of fitting the ISOP model
(see |
fit.isop |
Values of fitting the ADISOP model
(see |
fit.logistic |
Values of fitting the logistic model
(only for |
fit.grm |
Values of fitting the graded response model
(only for |
... |
Further values |
Irtel, H., & Schmalhofer, F. (1982). Psychodiagnostik auf Ordinalskalenniveau: Messtheoretische Grundlagen, Modelltest und Parameterschaetzung. Archiv fuer Psychologie, 134, 197-218.
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60, 281-304.
Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic models (ADISOP). Psychometrika, 64, 295-316.
Scheiblechner, H. (2007). A unified nonparametric IRT model for d-dimensional psychological test data (d-ISOP). Psychometrika, 72, 43-67.
Scheiblechner, H., & Lutz, R. (2009). Die Konstruktion eines optimalen eindimensionalen Tests mittels nichtparametrischer Testtheorie (NIRT) am Beispiel des MR SOC. Diagnostica, 55, 41-54.
This function uses isop.scoring
,
fit.isop
and fit.adisop
.
Tests of the W1 axiom of the ISOP model (Scheiblechner, 1995) can be performed with
isop.test
.
See also the ISOP package at Rforge: http://www.rforge.net/ISOP/.
Install this package using
install.packages("ISOP",repos="http://www.rforge.net/")
############################################################################# # EXAMPLE 1: Dataset Reading (dichotomous items) ############################################################################# data(data.read) dat <- as.matrix( data.read) I <- ncol(dat) # Model 1: ISOP Model (11 score groups) mod1 <- sirt::isop.dich( dat ) summary(mod1) plot(mod1) ## Not run: # Model 2: ISOP Model (5 score groups) score.breaks <- seq( -.005, 1.005, len=5+1 ) mod2 <- sirt::isop.dich( dat, score.breaks=score.breaks) summary(mod2) ############################################################################# # EXAMPLE 2: Dataset PISA mathematics (dichotomous items) ############################################################################# data(data.pisaMath) dat <- data.pisaMath$data dat <- dat[, grep("M", colnames(dat) ) ] # fit ISOP model # Note that for this model many iterations are needed # to reach convergence for ADISOP mod1 <- sirt::isop.dich( dat, maxit=4000) summary(mod1) ## End(Not run) ############################################################################# # EXAMPLE 3: Dataset Students (polytomous items) ############################################################################# # Dataset students: scale cultural activities library(CDM) data(data.Students, package="CDM") dat <- stats::na.omit( data.Students[, paste0("act",1:4) ] ) # fit models mod1 <- sirt::isop.poly( dat ) summary(mod1) plot(mod1)
############################################################################# # EXAMPLE 1: Dataset Reading (dichotomous items) ############################################################################# data(data.read) dat <- as.matrix( data.read) I <- ncol(dat) # Model 1: ISOP Model (11 score groups) mod1 <- sirt::isop.dich( dat ) summary(mod1) plot(mod1) ## Not run: # Model 2: ISOP Model (5 score groups) score.breaks <- seq( -.005, 1.005, len=5+1 ) mod2 <- sirt::isop.dich( dat, score.breaks=score.breaks) summary(mod2) ############################################################################# # EXAMPLE 2: Dataset PISA mathematics (dichotomous items) ############################################################################# data(data.pisaMath) dat <- data.pisaMath$data dat <- dat[, grep("M", colnames(dat) ) ] # fit ISOP model # Note that for this model many iterations are needed # to reach convergence for ADISOP mod1 <- sirt::isop.dich( dat, maxit=4000) summary(mod1) ## End(Not run) ############################################################################# # EXAMPLE 3: Dataset Students (polytomous items) ############################################################################# # Dataset students: scale cultural activities library(CDM) data(data.Students, package="CDM") dat <- stats::na.omit( data.Students[, paste0("act",1:4) ] ) # fit models mod1 <- sirt::isop.poly( dat ) summary(mod1) plot(mod1)
This function does the scoring in the isotonic probabilistic model (Scheiblechner, 1995, 2003, 2007). Person parameters are ordinally scaled but the ISOP model also allows specific objective (ordinal) comparisons for persons (Scheiblechner, 1995).
isop.scoring(dat,score.itemcat=NULL)
isop.scoring(dat,score.itemcat=NULL)
dat |
Data frame with dichotomous or polytomous item responses |
score.itemcat |
Optional data frame with scoring points for every item and every category (see Example 2). |
This function extracts the scoring rule of the ISOP model
(if score.itemcat !=NULL
) and calculates the
modified percentile score for every person. The score
for item
and category
is calculated as
where is the relative frequency of item
in category
and
is the maximum category.
The modified percentile score
for subject
(
mpsc
in person
) is
defined by
Note that for dichotomous items, the sum score is a
sufficient statistic for but this is
not the case for polytomous items.
The modified percentile score
ranges between -1 and 1.
The modified item P-score (Scheiblechner, 2007, p. 52) is
defined by
A list with following entries:
person |
A data frame with person parameters. The modified
percentile score |
item |
Item statistics and scoring parameters.
The item P-scores |
p.itemcat |
Frequencies for every item category |
score.itemcat |
Scoring points for every item category |
distr.fct |
Empirical distribution function |
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60, 281-304.
Scheiblechner, H. (2003). Nonparametric IRT: Scoring functions and ordinal parameter estimation of isotonic probabilistic models (ISOP). Technical Report, Philipps-Universitaet Marburg.
Scheiblechner, H. (2007). A unified nonparametric IRT model for d-dimensional psychological test data (d-ISOP). Psychometrika, 72, 43-67.
For fitting the ISOP and ADISOP model see
isop.dich
or fit.isop
.
############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data( data.read ) dat <- data.read # Scoring according to the ISOP model msc <- sirt::isop.scoring( dat ) # plot student scores boxplot( msc$person$mpsc ~ msc$person$score ) ############################################################################# # EXAMPLE 2: Dataset students from CDM package | polytomous items ############################################################################# library("CDM") data( data.Students, package="CDM") dat <- stats::na.omit(data.Students[, -c(1:2) ]) # Scoring according to the ISOP model msc <- sirt::isop.scoring( dat ) # plot student scores boxplot( msc$person$mpsc ~ msc$person$score ) # scoring with known scoring rule for activity items items <- paste0( "act", 1:5 ) score.itemcat <- msc$score.itemcat score.itemcat <- score.itemcat[ items, ] msc2 <- sirt::isop.scoring( dat[,items], score.itemcat=score.itemcat )
############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data( data.read ) dat <- data.read # Scoring according to the ISOP model msc <- sirt::isop.scoring( dat ) # plot student scores boxplot( msc$person$mpsc ~ msc$person$score ) ############################################################################# # EXAMPLE 2: Dataset students from CDM package | polytomous items ############################################################################# library("CDM") data( data.Students, package="CDM") dat <- stats::na.omit(data.Students[, -c(1:2) ]) # Scoring according to the ISOP model msc <- sirt::isop.scoring( dat ) # plot student scores boxplot( msc$person$mpsc ~ msc$person$score ) # scoring with known scoring rule for activity items items <- paste0( "act", 1:5 ) score.itemcat <- msc$score.itemcat score.itemcat <- score.itemcat[ items, ] msc2 <- sirt::isop.scoring( dat[,items], score.itemcat=score.itemcat )
This function performs tests of the W1 axiom of the ISOP model
(Scheiblechner, 2003). Standard errors of the corresponding statistics
are obtained by Jackknife.
isop.test(data, jackunits=20, weights=rep(1, nrow(data))) ## S3 method for class 'isop.test' summary(object,...)
isop.test(data, jackunits=20, weights=rep(1, nrow(data))) ## S3 method for class 'isop.test' summary(object,...)
data |
Data frame with item responses |
jackunits |
A number of Jackknife units (if an integer is provided as the argument value) or a vector in the Jackknife units are already defined. |
weights |
Optional vector of sampling weights |
object |
Object of class |
... |
Further arguments to be passed |
A list with following entries
itemstat |
Data frame with test and item statistics for the W1 axiom.
The |
Es |
Number of concordances per item |
Ed |
Number of disconcordances per item |
The statistics are printed by the
summary
method.
Scheiblechner, H. (2003). Nonparametric IRT: Testing the bi-isotonicity of isotonic probabilistic models (ISOP). Psychometrika, 68, 79-96.
Fit the ISOP model with isop.dich
or isop.poly
.
See also the ISOP package at Rforge: http://www.rforge.net/ISOP/.
############################################################################# # EXAMPLE 1: ISOP model data.Students ############################################################################# data(data.Students, package="CDM") dat <- data.Students[, paste0("act",1:5) ] dat <- dat[1:300, ] # select first 300 students # perform the ISOP test mod <- sirt::isop.test(dat) summary(mod) ## -> W1i statistics ## parm N M est se t ## 1 test 300 NA 0.430 0.036 11.869 ## 2 act1 278 0.601 0.451 0.048 9.384 ## 3 act2 275 0.473 0.473 0.035 13.571 ## 4 act3 274 0.277 0.352 0.098 3.596 ## 5 act4 291 1.320 0.381 0.054 7.103 ## 6 act5 276 0.460 0.475 0.042 11.184
############################################################################# # EXAMPLE 1: ISOP model data.Students ############################################################################# data(data.Students, package="CDM") dat <- data.Students[, paste0("act",1:5) ] dat <- dat[1:300, ] # select first 300 students # perform the ISOP test mod <- sirt::isop.test(dat) summary(mod) ## -> W1i statistics ## parm N M est se t ## 1 test 300 NA 0.430 0.036 11.869 ## 2 act1 278 0.601 0.451 0.048 9.384 ## 3 act2 275 0.473 0.473 0.035 13.571 ## 4 act3 274 0.277 0.352 0.098 3.596 ## 5 act4 291 1.320 0.381 0.054 7.103 ## 6 act5 276 0.460 0.475 0.042 11.184
This function estimates a unidimensional latent regression model if a likelihood is specified, parameters from the generalized item response model (Stukel, 1988) or a mean and a standard error estimate for individual scores is provided as input. Item parameters are treated as fixed in the estimation.
latent.regression.em.raschtype(data=NULL, f.yi.qk=NULL, X, weights=rep(1, nrow(X)), beta.init=rep(0,ncol(X)), sigma.init=1, b=rep(0,ncol(X)), a=rep(1,length(b)), c=rep(0, length(b)), d=rep(1, length(b)), alpha1=0, alpha2=0, max.parchange=1e-04, theta.list=seq(-5, 5, len=20), maxiter=300, progress=TRUE ) latent.regression.em.normal(y, X, sig.e, weights=rep(1, nrow(X)), beta.init=rep(0, ncol(X)), sigma.init=1, max.parchange=1e-04, maxiter=300, progress=TRUE) ## S3 method for class 'latent.regression' summary(object,...)
latent.regression.em.raschtype(data=NULL, f.yi.qk=NULL, X, weights=rep(1, nrow(X)), beta.init=rep(0,ncol(X)), sigma.init=1, b=rep(0,ncol(X)), a=rep(1,length(b)), c=rep(0, length(b)), d=rep(1, length(b)), alpha1=0, alpha2=0, max.parchange=1e-04, theta.list=seq(-5, 5, len=20), maxiter=300, progress=TRUE ) latent.regression.em.normal(y, X, sig.e, weights=rep(1, nrow(X)), beta.init=rep(0, ncol(X)), sigma.init=1, max.parchange=1e-04, maxiter=300, progress=TRUE) ## S3 method for class 'latent.regression' summary(object,...)
data |
An |
f.yi.qk |
An optional matrix which contains the individual likelihood.
This matrix is produced by |
X |
An |
weights |
Student weights (optional). |
beta.init |
Initial regression coefficients (optional). |
sigma.init |
Initial residual standard deviation (optional). |
b |
Item difficulties (optional). They must only be provided
if the likelihood |
a |
Item discriminations (optional). |
c |
Guessing parameter (lower asymptotes) (optional). |
d |
One minus slipping parameter (upper asymptotes) (optional). |
alpha1 |
Upper tail parameter |
alpha2 |
Lower tail parameter |
max.parchange |
Maximum change in regression parameters |
theta.list |
Grid of person ability where theta is evaluated |
maxiter |
Maximum number of iterations |
progress |
An optional logical indicating whether computation progress should be displayed. |
y |
Individual scores |
sig.e |
Standard errors for individual scores |
object |
Object of class |
... |
Further arguments to be passed |
In the output Regression Parameters
the fraction of missing information (fmi
) is reported
which is the increase of variance in regression
parameter estimates because ability is defined as
a latent variable. The effective sample size pseudoN.latent
corresponds to a sample size when the ability would be
available with a reliability of one.
A list with following entries
iterations |
Number of iterations needed |
maxiter |
Maximal number of iterations |
max.parchange |
Maximum change in parameter estimates |
coef |
Coefficients |
summary.coef |
Summary of regression coefficients |
sigma |
Estimate of residual standard deviation |
vcov.simple |
Covariance parameters of estimated parameters (simplified version) |
vcov.latent |
Covariance parameters of estimated parameters which accounts for latent ability |
post |
Individual posterior distribution |
EAP |
Individual EAP estimates |
SE.EAP |
Standard error estimates of EAP |
explvar |
Explained variance in latent regression |
totalvar |
Total variance in latent regression |
rsquared |
Explained variance |
Using the defaults in a
, c
, d
,
alpha1
and alpha2
corresponds to the
Rasch model.
Adams, R., & Wu. M. (2007). The mixed-coefficients multinomial logit model: A generalized form of the Rasch model. In M. von Davier & C. H. Carstensen (Eds.). Multivariate and mixture distribution Rasch models: Extensions and applications (pp. 57-76). New York: Springer. doi:10.1007/978-0-387-49839-3_4
Mislevy, R. J. (1991). Randomization-based inference about latent variables from complex samples. Psychometrika, 56(2), 177-196. doi:10.1007/BF02294457
Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Association, 83(402), 426-431. doi:10.1080/01621459.1988.10478613
See also plausible.value.imputation.raschtype
for plausible value imputation of generalized logistic
item type models.
############################################################################# # EXAMPLE 1: PISA Reading | Rasch model for dichotomous data ############################################################################# data(data.pisaRead, package="sirt") dat <- data.pisaRead$data items <- grep("R", colnames(dat)) # define matrix of covariates X <- cbind( 1, dat[, c("female","hisei","migra" ) ] ) #*** # Model 1: Latent regression model in the Rasch model # estimate Rasch model mod1 <- sirt::rasch.mml2( dat[,items] ) # latent regression model lm1 <- sirt::latent.regression.em.raschtype( data=dat[,items ], X=X, b=mod1$item$b ) ## Not run: #*** # Model 2: Latent regression with generalized link function # estimate alpha parameters for link function mod2 <- sirt::rasch.mml2( dat[,items], est.alpha=TRUE) # use model estimated likelihood for latent regression model lm2 <- sirt::latent.regression.em.raschtype( f.yi.qk=mod2$f.yi.qk, X=X, theta.list=mod2$theta.k) #*** # Model 3: Latent regression model based on Rasch copula model testlets <- paste( data.pisaRead$item$testlet) itemclusters <- match( testlets, unique(testlets) ) # estimate Rasch copula model mod3 <- sirt::rasch.copula2( dat[,items], itemcluster=itemclusters ) # use model estimated likelihood for latent regression model lm3 <- sirt::latent.regression.em.raschtype( f.yi.qk=mod3$f.yi.qk, X=X, theta.list=mod3$theta.k) ############################################################################# # EXAMPLE 2: Simulated data according to the Rasch model ############################################################################# set.seed(899) I <- 21 # number of items b <- seq(-2,2, len=I) # item difficulties n <- 2000 # number of students # simulate theta and covariates theta <- stats::rnorm( n ) x <- .7 * theta + stats::rnorm( n, .5 ) y <- .2 * x+ .3*theta + stats::rnorm( n, .4 ) dfr <- data.frame( theta, 1, x, y ) # simulate Rasch model dat1 <- sirt::sim.raschtype( theta=theta, b=b ) # estimate latent regression mod <- sirt::latent.regression.em.raschtype( data=dat1, X=dfr[,-1], b=b ) ## Regression Parameters ## ## est se.simple se t p beta fmi N.simple pseudoN.latent ## X1 -0.2554 0.0208 0.0248 -10.2853 0 0.0000 0.2972 2000 1411.322 ## x 0.4113 0.0161 0.0193 21.3037 0 0.4956 0.3052 2000 1411.322 ## y 0.1715 0.0179 0.0213 8.0438 0 0.1860 0.2972 2000 1411.322 ## ## Residual Variance=0.685 ## Explained Variance=0.3639 ## Total Variance=1.049 ## R2=0.3469 # compare with linear model (based on true scores) summary( stats::lm( theta ~ x + y, data=dfr ) ) ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -0.27821 0.01984 -14.02 <2e-16 *** ## x 0.40747 0.01534 26.56 <2e-16 *** ## y 0.18189 0.01704 10.67 <2e-16 *** ## --- ## ## Residual standard error: 0.789 on 1997 degrees of freedom ## Multiple R-squared: 0.3713, Adjusted R-squared: 0.3707 #*********** # define guessing parameters (lower asymptotes) and # upper asymptotes ( 1 minus slipping parameters) cI <- rep(.2, I) # all items get a guessing parameter of .2 cI[ c(7,9) ] <- .25 # 7th and 9th get a guessing parameter of .25 dI <- rep( .95, I ) # upper asymptote of .95 dI[ c(7,11) ] <- 1 # 7th and 9th item have an asymptote of 1 # latent regression model mod1 <- sirt::latent.regression.em.raschtype( data=dat1, X=dfr[,-1], b=b, c=cI, d=dI ) ## Regression Parameters ## ## est se.simple se t p beta fmi N.simple pseudoN.latent ## X1 -0.7929 0.0243 0.0315 -25.1818 0 0.0000 0.4044 2000 1247.306 ## x 0.5025 0.0188 0.0241 20.8273 0 0.5093 0.3936 2000 1247.306 ## y 0.2149 0.0209 0.0266 8.0850 0 0.1960 0.3831 2000 1247.306 ## ## Residual Variance=0.9338 ## Explained Variance=0.5487 ## Total Variance=1.4825 ## R2=0.3701 ############################################################################# # EXAMPLE 3: Measurement error in dependent variable ############################################################################# set.seed(8766) N <- 4000 # number of persons X <- stats::rnorm(N) # independent variable Z <- stats::rnorm(N) # independent variable y <- .45 * X + .25 * Z + stats::rnorm(N) # dependent variable true score sig.e <- stats::runif( N, .5, .6 ) # measurement error standard deviation yast <- y + stats::rnorm( N, sd=sig.e ) # dependent variable measured with error #**** # Model 1: Estimation with latent.regression.em.raschtype using # individual likelihood # define theta grid for evaluation of density theta.list <- mean(yast) + stats::sd(yast) * seq( - 5, 5, length=21) # compute individual likelihood f.yi.qk <- stats::dnorm( outer( yast, theta.list, "-" ) / sig.e ) f.yi.qk <- f.yi.qk / rowSums(f.yi.qk) # define predictor matrix X1 <- as.matrix(data.frame( "intercept"=1, "X"=X, "Z"=Z )) # latent regression model res <- sirt::latent.regression.em.raschtype( f.yi.qk=f.yi.qk, X=X1, theta.list=theta.list) ## Regression Parameters ## ## est se.simple se t p beta fmi N.simple pseudoN.latent ## intercept 0.0112 0.0157 0.0180 0.6225 0.5336 0.0000 0.2345 4000 3061.998 ## X 0.4275 0.0157 0.0180 23.7926 0.0000 0.3868 0.2350 4000 3061.998 ## Z 0.2314 0.0156 0.0178 12.9868 0.0000 0.2111 0.2349 4000 3061.998 ## ## Residual Variance=0.9877 ## Explained Variance=0.2343 ## Total Variance=1.222 ## R2=0.1917 #**** # Model 2: Estimation with latent.regression.em.normal res2 <- sirt::latent.regression.em.normal( y=yast, sig.e=sig.e, X=X1) ## Regression Parameters ## ## est se.simple se t p beta fmi N.simple pseudoN.latent ## intercept 0.0112 0.0157 0.0180 0.6225 0.5336 0.0000 0.2345 4000 3062.041 ## X 0.4275 0.0157 0.0180 23.7927 0.0000 0.3868 0.2350 4000 3062.041 ## Z 0.2314 0.0156 0.0178 12.9870 0.0000 0.2111 0.2349 4000 3062.041 ## ## Residual Variance=0.9877 ## Explained Variance=0.2343 ## Total Variance=1.222 ## R2=0.1917 ## -> Results between Model 1 and Model 2 are identical because they use ## the same input. #*** # Model 3: Regression model based on true scores y mod3 <- stats::lm( y ~ X + Z ) summary(mod3) ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 0.02364 0.01569 1.506 0.132 ## X 0.42401 0.01570 27.016 <2e-16 *** ## Z 0.23804 0.01556 15.294 <2e-16 *** ## Residual standard error: 0.9925 on 3997 degrees of freedom ## Multiple R-squared: 0.1923, Adjusted R-squared: 0.1919 ## F-statistic: 475.9 on 2 and 3997 DF, p-value: < 2.2e-16 #*** # Model 4: Regression model based on observed scores yast mod4 <- stats::lm( yast ~ X + Z ) summary(mod4) ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 0.01101 0.01797 0.613 0.54 ## X 0.42716 0.01797 23.764 <2e-16 *** ## Z 0.23174 0.01783 13.001 <2e-16 *** ## Residual standard error: 1.137 on 3997 degrees of freedom ## Multiple R-squared: 0.1535, Adjusted R-squared: 0.1531 ## F-statistic: 362.4 on 2 and 3997 DF, p-value: < 2.2e-16 ## End(Not run)
############################################################################# # EXAMPLE 1: PISA Reading | Rasch model for dichotomous data ############################################################################# data(data.pisaRead, package="sirt") dat <- data.pisaRead$data items <- grep("R", colnames(dat)) # define matrix of covariates X <- cbind( 1, dat[, c("female","hisei","migra" ) ] ) #*** # Model 1: Latent regression model in the Rasch model # estimate Rasch model mod1 <- sirt::rasch.mml2( dat[,items] ) # latent regression model lm1 <- sirt::latent.regression.em.raschtype( data=dat[,items ], X=X, b=mod1$item$b ) ## Not run: #*** # Model 2: Latent regression with generalized link function # estimate alpha parameters for link function mod2 <- sirt::rasch.mml2( dat[,items], est.alpha=TRUE) # use model estimated likelihood for latent regression model lm2 <- sirt::latent.regression.em.raschtype( f.yi.qk=mod2$f.yi.qk, X=X, theta.list=mod2$theta.k) #*** # Model 3: Latent regression model based on Rasch copula model testlets <- paste( data.pisaRead$item$testlet) itemclusters <- match( testlets, unique(testlets) ) # estimate Rasch copula model mod3 <- sirt::rasch.copula2( dat[,items], itemcluster=itemclusters ) # use model estimated likelihood for latent regression model lm3 <- sirt::latent.regression.em.raschtype( f.yi.qk=mod3$f.yi.qk, X=X, theta.list=mod3$theta.k) ############################################################################# # EXAMPLE 2: Simulated data according to the Rasch model ############################################################################# set.seed(899) I <- 21 # number of items b <- seq(-2,2, len=I) # item difficulties n <- 2000 # number of students # simulate theta and covariates theta <- stats::rnorm( n ) x <- .7 * theta + stats::rnorm( n, .5 ) y <- .2 * x+ .3*theta + stats::rnorm( n, .4 ) dfr <- data.frame( theta, 1, x, y ) # simulate Rasch model dat1 <- sirt::sim.raschtype( theta=theta, b=b ) # estimate latent regression mod <- sirt::latent.regression.em.raschtype( data=dat1, X=dfr[,-1], b=b ) ## Regression Parameters ## ## est se.simple se t p beta fmi N.simple pseudoN.latent ## X1 -0.2554 0.0208 0.0248 -10.2853 0 0.0000 0.2972 2000 1411.322 ## x 0.4113 0.0161 0.0193 21.3037 0 0.4956 0.3052 2000 1411.322 ## y 0.1715 0.0179 0.0213 8.0438 0 0.1860 0.2972 2000 1411.322 ## ## Residual Variance=0.685 ## Explained Variance=0.3639 ## Total Variance=1.049 ## R2=0.3469 # compare with linear model (based on true scores) summary( stats::lm( theta ~ x + y, data=dfr ) ) ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -0.27821 0.01984 -14.02 <2e-16 *** ## x 0.40747 0.01534 26.56 <2e-16 *** ## y 0.18189 0.01704 10.67 <2e-16 *** ## --- ## ## Residual standard error: 0.789 on 1997 degrees of freedom ## Multiple R-squared: 0.3713, Adjusted R-squared: 0.3707 #*********** # define guessing parameters (lower asymptotes) and # upper asymptotes ( 1 minus slipping parameters) cI <- rep(.2, I) # all items get a guessing parameter of .2 cI[ c(7,9) ] <- .25 # 7th and 9th get a guessing parameter of .25 dI <- rep( .95, I ) # upper asymptote of .95 dI[ c(7,11) ] <- 1 # 7th and 9th item have an asymptote of 1 # latent regression model mod1 <- sirt::latent.regression.em.raschtype( data=dat1, X=dfr[,-1], b=b, c=cI, d=dI ) ## Regression Parameters ## ## est se.simple se t p beta fmi N.simple pseudoN.latent ## X1 -0.7929 0.0243 0.0315 -25.1818 0 0.0000 0.4044 2000 1247.306 ## x 0.5025 0.0188 0.0241 20.8273 0 0.5093 0.3936 2000 1247.306 ## y 0.2149 0.0209 0.0266 8.0850 0 0.1960 0.3831 2000 1247.306 ## ## Residual Variance=0.9338 ## Explained Variance=0.5487 ## Total Variance=1.4825 ## R2=0.3701 ############################################################################# # EXAMPLE 3: Measurement error in dependent variable ############################################################################# set.seed(8766) N <- 4000 # number of persons X <- stats::rnorm(N) # independent variable Z <- stats::rnorm(N) # independent variable y <- .45 * X + .25 * Z + stats::rnorm(N) # dependent variable true score sig.e <- stats::runif( N, .5, .6 ) # measurement error standard deviation yast <- y + stats::rnorm( N, sd=sig.e ) # dependent variable measured with error #**** # Model 1: Estimation with latent.regression.em.raschtype using # individual likelihood # define theta grid for evaluation of density theta.list <- mean(yast) + stats::sd(yast) * seq( - 5, 5, length=21) # compute individual likelihood f.yi.qk <- stats::dnorm( outer( yast, theta.list, "-" ) / sig.e ) f.yi.qk <- f.yi.qk / rowSums(f.yi.qk) # define predictor matrix X1 <- as.matrix(data.frame( "intercept"=1, "X"=X, "Z"=Z )) # latent regression model res <- sirt::latent.regression.em.raschtype( f.yi.qk=f.yi.qk, X=X1, theta.list=theta.list) ## Regression Parameters ## ## est se.simple se t p beta fmi N.simple pseudoN.latent ## intercept 0.0112 0.0157 0.0180 0.6225 0.5336 0.0000 0.2345 4000 3061.998 ## X 0.4275 0.0157 0.0180 23.7926 0.0000 0.3868 0.2350 4000 3061.998 ## Z 0.2314 0.0156 0.0178 12.9868 0.0000 0.2111 0.2349 4000 3061.998 ## ## Residual Variance=0.9877 ## Explained Variance=0.2343 ## Total Variance=1.222 ## R2=0.1917 #**** # Model 2: Estimation with latent.regression.em.normal res2 <- sirt::latent.regression.em.normal( y=yast, sig.e=sig.e, X=X1) ## Regression Parameters ## ## est se.simple se t p beta fmi N.simple pseudoN.latent ## intercept 0.0112 0.0157 0.0180 0.6225 0.5336 0.0000 0.2345 4000 3062.041 ## X 0.4275 0.0157 0.0180 23.7927 0.0000 0.3868 0.2350 4000 3062.041 ## Z 0.2314 0.0156 0.0178 12.9870 0.0000 0.2111 0.2349 4000 3062.041 ## ## Residual Variance=0.9877 ## Explained Variance=0.2343 ## Total Variance=1.222 ## R2=0.1917 ## -> Results between Model 1 and Model 2 are identical because they use ## the same input. #*** # Model 3: Regression model based on true scores y mod3 <- stats::lm( y ~ X + Z ) summary(mod3) ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 0.02364 0.01569 1.506 0.132 ## X 0.42401 0.01570 27.016 <2e-16 *** ## Z 0.23804 0.01556 15.294 <2e-16 *** ## Residual standard error: 0.9925 on 3997 degrees of freedom ## Multiple R-squared: 0.1923, Adjusted R-squared: 0.1919 ## F-statistic: 475.9 on 2 and 3997 DF, p-value: < 2.2e-16 #*** # Model 4: Regression model based on observed scores yast mod4 <- stats::lm( yast ~ X + Z ) summary(mod4) ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 0.01101 0.01797 0.613 0.54 ## X 0.42716 0.01797 23.764 <2e-16 *** ## Z 0.23174 0.01783 13.001 <2e-16 *** ## Residual standard error: 1.137 on 3997 degrees of freedom ## Multiple R-squared: 0.1535, Adjusted R-squared: 0.1531 ## F-statistic: 362.4 on 2 and 3997 DF, p-value: < 2.2e-16 ## End(Not run)
lavaan
Model into a mirt
Model
Converts a lavaan
model into a mirt
model.
Optionally, the model can be estimated with the
mirt::mirt
function
(est.mirt=TRUE
) or just mirt
syntax
is generated (est.mirt=FALSE
).
Extensions of the lavaan
syntax include guessing and slipping
parameters (operators ?=g1
and ?=s1
)
and a shortage operator for item groups (see __
).
See TAM::lavaanify.IRT
for more details.
lavaan2mirt(dat, lavmodel, est.mirt=TRUE, poly.itemtype="gpcm", ...)
lavaan2mirt(dat, lavmodel, est.mirt=TRUE, poly.itemtype="gpcm", ...)
dat |
Dataset with item responses |
lavmodel |
Model specified in |
est.mirt |
An optional logical indicating whether the model
should be estimated with |
poly.itemtype |
Item type for polytomous data. This can
be |
... |
Further arguments to be passed for estimation in
|
This function uses the lavaan::lavaanify
(lavaan) function.
Only single group models are supported (for now).
A list with following entries
mirt |
Object generated by |
mirt.model |
Generated |
mirt.syntax |
Generated |
mirt.pars |
Generated parameter specifications
in |
lavaan.model |
Used |
dat |
Used dataset. If necessary, only items used in the model are included in the dataset. |
See https://lavaan.ugent.be/ for lavaan resources.
See https://groups.google.com/forum/#!forum/lavaan
for discussion about the lavaan package.
See mirt.wrapper
for convenience wrapper functions
for mirt::mirt
objects.
See TAM::lavaanify.IRT
for extensions of lavaanify
.
See tam2mirt
for converting fitted objects in the TAM
package into fitted mirt::mirt
objects.
## Not run: ############################################################################# # EXAMPLE 1: Convert some lavaan syntax to mirt syntax for data.read ############################################################################# library(mirt) data(data.read) dat <- data.read #****************** #*** Model 1: Single factor model lavmodel <- " # omit item C3 F=~ A1+A2+A3+A4 + C1+C2+C4 + B1+B2+B3+B4 F ~~ 1*F " # convert syntax and estimate model res <- sirt::lavaan2mirt( dat, lavmodel, verbose=TRUE, technical=list(NCYCLES=3) ) # inspect coefficients coef(res$mirt) mirt.wrapper.coef(res$mirt) # converted mirt model and parameter table cat(res$mirt.syntax) res$mirt.pars #****************** #*** Model 2: Rasch Model with first six items lavmodel <- " F=~ a*A1+a*A2+a*A3+a*A4+a*B1+a*B2 F ~~ 1*F " # convert syntax and estimate model res <- sirt::lavaan2mirt( dat, lavmodel, est.mirt=FALSE) # converted mirt model cat(res$mirt.syntax) # mirt parameter table res$mirt.pars # estimate model using generated objects res2 <- mirt::mirt( res$dat, res$mirt.model, pars=res$mirt.pars ) mirt.wrapper.coef(res2) # parameter estimates #****************** #*** Model 3: Bifactor model lavmodel <- " G=~ A1+A2+A3+A4 + B1+B2+B3+B4 + C1+C2+C3+C4 A=~ A1+A2+A3+A4 B=~ B1+B2+B3+B4 C=~ C1+C2+C3+C4 G ~~ 1*G A ~~ 1*A B ~~ 1*B C ~~ 1*C " res <- sirt::lavaan2mirt( dat, lavmodel, est.mirt=FALSE ) # mirt syntax and mirt model cat(res$mirt.syntax) res$mirt.model res$mirt.pars #****************** #*** Model 4: 3-dimensional model with some parameter constraints lavmodel <- " # some equality constraints among loadings A=~ a*A1+a*A2+a2*A3+a2*A4 B=~ B1+B2+b3*B3+B4 C=~ c*C1+c*C2+c*C3+c*C4 # some equality constraints among thresholds A1 | da*t1 A3 | da*t1 B3 | da*t1 C3 | dg*t1 C4 | dg*t1 # standardized latent variables A ~~ 1*A B ~~ 1*B C ~~ 1*C # estimate Cov(A,B) and Cov(A,C) A ~~ B A ~~ C # estimate mean of B B ~ 1 " res <- sirt::lavaan2mirt( dat, lavmodel, verbose=TRUE, technical=list(NCYCLES=3) ) # estimated parameters mirt.wrapper.coef(res$mirt) # generated mirt syntax cat(res$mirt.syntax) # mirt parameter table mirt::mod2values(res$mirt) #****************** #*** Model 5: 3-dimensional model with some parameter constraints and # parameter fixings lavmodel <- " A=~ a*A1+a*A2+1.3*A3+A4 # set loading of A3 to 1.3 B=~ B1+1*B2+b3*B3+B4 C=~ c*C1+C2+c*C3+C4 A1 | da*t1 A3 | da*t1 C4 | dg*t1 B1 | 0*t1 B3 | -1.4*t1 # fix item threshold of B3 to -1.4 A ~~ 1*A B ~~ B # estimate variance of B freely C ~~ 1*C A ~~ B # estimate covariance between A and B A ~~ .6 * C # fix covariance to .6 A ~ .5*1 # set mean of A to .5 B ~ 1 # estimate mean of B " res <- sirt::lavaan2mirt( dat, lavmodel, verbose=TRUE, technical=list(NCYCLES=3) ) mirt.wrapper.coef(res$mirt) #****************** #*** Model 6: 1-dimensional model with guessing and slipping parameters #****************** lavmodel <- " F=~ c*A1+c*A2+1*A3+1.3*A4 + C1__C4 + a*B1+b*B2+b*B3+B4 # guessing parameters A1+A2 ?=guess1*g1 A3 ?=.25*g1 B1+C1 ?=g1 B2__B4 ?=0.10*g1 # slipping parameters A1+A2+C3 ?=slip1*s1 A3 ?=.02*s1 # fix item intercepts A1 | 0*t1 A2 | -.4*t1 F ~ 1 # estimate mean of F F ~~ 1*F # fix variance of F " # convert syntax and estimate model res <- sirt::lavaan2mirt( dat, lavmodel, verbose=TRUE, technical=list(NCYCLES=3) ) # coefficients mirt.wrapper.coef(res$mirt) # converted mirt model cat(res$mirt.syntax) ############################################################################# # EXAMPLE 2: Convert some lavaan syntax to mirt syntax for # longitudinal data data.long ############################################################################# data(data.long) dat <- data.long[,-1] #****************** #*** Model 1: Rasch model for T1 lavmodel <- " F=~ 1*I1T1 +1*I2T1+1*I3T1+1*I4T1+1*I5T1+1*I6T1 F ~~ F " # convert syntax and estimate model res <- sirt::lavaan2mirt( dat, lavmodel, verbose=TRUE, technical=list(NCYCLES=20) ) # inspect coefficients mirt.wrapper.coef(res$mirt) # converted mirt model cat(res$mirt.syntax) #****************** #*** Model 2: Rasch model for two time points lavmodel <- " F1=~ 1*I1T1 +1*I2T1+1*I3T1+1*I4T1+1*I5T1+1*I6T1 F2=~ 1*I3T2 +1*I4T2+1*I5T2+1*I6T2+1*I7T2+1*I8T2 F1 ~~ F1 F1 ~~ F2 F2 ~~ F2 # equal item difficulties of same items I3T1 | i3*t1 I3T2 | i3*t1 I4T1 | i4*t1 I4T2 | i4*t1 I5T1 | i5*t1 I5T2 | i5*t1 I6T1 | i6*t1 I6T2 | i6*t1 # estimate mean of F1, but fix mean of F2 F1 ~ 1 F2 ~ 0*1 " # convert syntax and estimate model res <- sirt::lavaan2mirt( dat, lavmodel, verbose=TRUE, technical=list(NCYCLES=20) ) # inspect coefficients mirt.wrapper.coef(res$mirt) # converted mirt model cat(res$mirt.syntax) #-- compare estimation with smirt function # define Q-matrix I <- ncol(dat) Q <- matrix(0,I,2) Q[1:6,1] <- 1 Q[7:12,2] <- 1 rownames(Q) <- colnames(dat) colnames(Q) <- c("T1","T2") # vector with same items itemnr <- as.numeric( substring( colnames(dat),2,2) ) # fix mean at T2 to zero mu.fixed <- cbind( 2,0 ) # estimate model in smirt mod1 <- sirt::smirt(dat, Qmatrix=Q, irtmodel="comp", est.b=itemnr, mu.fixed=mu.fixed ) summary(mod1) ############################################################################# # EXAMPLE 3: Converting lavaan syntax for polytomous data ############################################################################# data(data.big5) # select some items items <- c( grep( "O", colnames(data.big5), value=TRUE )[1:6], grep( "N", colnames(data.big5), value=TRUE )[1:4] ) # O3 O8 O13 O18 O23 O28 N1 N6 N11 N16 dat <- data.big5[, items ] library(psych) psych::describe(dat) #****************** #*** Model 1: Partial credit model lavmodel <- " O=~ 1*O3+1*O8+1*O13+1*O18+1*O23+1*O28 O ~~ O " # estimate model in mirt res <- sirt::lavaan2mirt( dat, lavmodel, technical=list(NCYCLES=20), verbose=TRUE) # estimated mirt model mres <- res$mirt # mirt syntax cat(res$mirt.syntax) ## O=1,2,3,4,5,6 ## COV=O*O # estimated parameters mirt.wrapper.coef(mres) # some plots mirt::itemplot( mres, 3 ) # third item plot(mres) # item information plot(mres,type="trace") # item category functions # graded response model with equal slopes res1 <- sirt::lavaan2mirt( dat, lavmodel, poly.itemtype="graded", technical=list(NCYCLES=20), verbose=TRUE ) mirt.wrapper.coef(res1$mirt) #****************** #*** Model 2: Generalized partial credit model with some constraints lavmodel <- " O=~ O3+O8+O13+a*O18+a*O23+1.2*O28 O ~ 1 # estimate mean O ~~ O # estimate variance # some constraints among thresholds O3 | d1*t1 O13 | d1*t1 O3 | d2*t2 O8 | d3*t2 O28 | (-0.5)*t1 " # estimate model in mirt res <- sirt::lavaan2mirt( dat, lavmodel, technical=list(NCYCLES=5), verbose=TRUE) # estimated mirt model mres <- res$mirt # estimated parameters mirt.wrapper.coef(mres) #*** generate syntax for mirt for this model and estimate it in mirt package # Items: O3 O8 O13 O18 O23 O28 mirtmodel <- mirt::mirt.model( " O=1-6 # a(O18)=a(O23), t1(O3)=t1(O18), t2(O3)=t2(O8) CONSTRAIN=(4,5,a1), (1,3,d1), (1,2,d2) MEAN=O COV=O*O ") # initial table of parameters in mirt mirt.pars <- mirt::mirt( dat[,1:6], mirtmodel, itemtype="gpcm", pars="values") # fix slope of item O28 to 1.2 ind <- which( ( mirt.pars$item=="O28" ) & ( mirt.pars$name=="a1") ) mirt.pars[ ind, "est"] <- FALSE mirt.pars[ ind, "value"] <- 1.2 # fix d1 of item O28 to -0.5 ind <- which( ( mirt.pars$item=="O28" ) & ( mirt.pars$name=="d1") ) mirt.pars[ ind, "est"] <- FALSE mirt.pars[ ind, "value"] <- -0.5 # estimate model res2 <- mirt::mirt( dat[,1:6], mirtmodel, pars=mirt.pars, verbose=TRUE, technical=list(NCYCLES=4) ) mirt.wrapper.coef(res2) plot(res2, type="trace") ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Convert some lavaan syntax to mirt syntax for data.read ############################################################################# library(mirt) data(data.read) dat <- data.read #****************** #*** Model 1: Single factor model lavmodel <- " # omit item C3 F=~ A1+A2+A3+A4 + C1+C2+C4 + B1+B2+B3+B4 F ~~ 1*F " # convert syntax and estimate model res <- sirt::lavaan2mirt( dat, lavmodel, verbose=TRUE, technical=list(NCYCLES=3) ) # inspect coefficients coef(res$mirt) mirt.wrapper.coef(res$mirt) # converted mirt model and parameter table cat(res$mirt.syntax) res$mirt.pars #****************** #*** Model 2: Rasch Model with first six items lavmodel <- " F=~ a*A1+a*A2+a*A3+a*A4+a*B1+a*B2 F ~~ 1*F " # convert syntax and estimate model res <- sirt::lavaan2mirt( dat, lavmodel, est.mirt=FALSE) # converted mirt model cat(res$mirt.syntax) # mirt parameter table res$mirt.pars # estimate model using generated objects res2 <- mirt::mirt( res$dat, res$mirt.model, pars=res$mirt.pars ) mirt.wrapper.coef(res2) # parameter estimates #****************** #*** Model 3: Bifactor model lavmodel <- " G=~ A1+A2+A3+A4 + B1+B2+B3+B4 + C1+C2+C3+C4 A=~ A1+A2+A3+A4 B=~ B1+B2+B3+B4 C=~ C1+C2+C3+C4 G ~~ 1*G A ~~ 1*A B ~~ 1*B C ~~ 1*C " res <- sirt::lavaan2mirt( dat, lavmodel, est.mirt=FALSE ) # mirt syntax and mirt model cat(res$mirt.syntax) res$mirt.model res$mirt.pars #****************** #*** Model 4: 3-dimensional model with some parameter constraints lavmodel <- " # some equality constraints among loadings A=~ a*A1+a*A2+a2*A3+a2*A4 B=~ B1+B2+b3*B3+B4 C=~ c*C1+c*C2+c*C3+c*C4 # some equality constraints among thresholds A1 | da*t1 A3 | da*t1 B3 | da*t1 C3 | dg*t1 C4 | dg*t1 # standardized latent variables A ~~ 1*A B ~~ 1*B C ~~ 1*C # estimate Cov(A,B) and Cov(A,C) A ~~ B A ~~ C # estimate mean of B B ~ 1 " res <- sirt::lavaan2mirt( dat, lavmodel, verbose=TRUE, technical=list(NCYCLES=3) ) # estimated parameters mirt.wrapper.coef(res$mirt) # generated mirt syntax cat(res$mirt.syntax) # mirt parameter table mirt::mod2values(res$mirt) #****************** #*** Model 5: 3-dimensional model with some parameter constraints and # parameter fixings lavmodel <- " A=~ a*A1+a*A2+1.3*A3+A4 # set loading of A3 to 1.3 B=~ B1+1*B2+b3*B3+B4 C=~ c*C1+C2+c*C3+C4 A1 | da*t1 A3 | da*t1 C4 | dg*t1 B1 | 0*t1 B3 | -1.4*t1 # fix item threshold of B3 to -1.4 A ~~ 1*A B ~~ B # estimate variance of B freely C ~~ 1*C A ~~ B # estimate covariance between A and B A ~~ .6 * C # fix covariance to .6 A ~ .5*1 # set mean of A to .5 B ~ 1 # estimate mean of B " res <- sirt::lavaan2mirt( dat, lavmodel, verbose=TRUE, technical=list(NCYCLES=3) ) mirt.wrapper.coef(res$mirt) #****************** #*** Model 6: 1-dimensional model with guessing and slipping parameters #****************** lavmodel <- " F=~ c*A1+c*A2+1*A3+1.3*A4 + C1__C4 + a*B1+b*B2+b*B3+B4 # guessing parameters A1+A2 ?=guess1*g1 A3 ?=.25*g1 B1+C1 ?=g1 B2__B4 ?=0.10*g1 # slipping parameters A1+A2+C3 ?=slip1*s1 A3 ?=.02*s1 # fix item intercepts A1 | 0*t1 A2 | -.4*t1 F ~ 1 # estimate mean of F F ~~ 1*F # fix variance of F " # convert syntax and estimate model res <- sirt::lavaan2mirt( dat, lavmodel, verbose=TRUE, technical=list(NCYCLES=3) ) # coefficients mirt.wrapper.coef(res$mirt) # converted mirt model cat(res$mirt.syntax) ############################################################################# # EXAMPLE 2: Convert some lavaan syntax to mirt syntax for # longitudinal data data.long ############################################################################# data(data.long) dat <- data.long[,-1] #****************** #*** Model 1: Rasch model for T1 lavmodel <- " F=~ 1*I1T1 +1*I2T1+1*I3T1+1*I4T1+1*I5T1+1*I6T1 F ~~ F " # convert syntax and estimate model res <- sirt::lavaan2mirt( dat, lavmodel, verbose=TRUE, technical=list(NCYCLES=20) ) # inspect coefficients mirt.wrapper.coef(res$mirt) # converted mirt model cat(res$mirt.syntax) #****************** #*** Model 2: Rasch model for two time points lavmodel <- " F1=~ 1*I1T1 +1*I2T1+1*I3T1+1*I4T1+1*I5T1+1*I6T1 F2=~ 1*I3T2 +1*I4T2+1*I5T2+1*I6T2+1*I7T2+1*I8T2 F1 ~~ F1 F1 ~~ F2 F2 ~~ F2 # equal item difficulties of same items I3T1 | i3*t1 I3T2 | i3*t1 I4T1 | i4*t1 I4T2 | i4*t1 I5T1 | i5*t1 I5T2 | i5*t1 I6T1 | i6*t1 I6T2 | i6*t1 # estimate mean of F1, but fix mean of F2 F1 ~ 1 F2 ~ 0*1 " # convert syntax and estimate model res <- sirt::lavaan2mirt( dat, lavmodel, verbose=TRUE, technical=list(NCYCLES=20) ) # inspect coefficients mirt.wrapper.coef(res$mirt) # converted mirt model cat(res$mirt.syntax) #-- compare estimation with smirt function # define Q-matrix I <- ncol(dat) Q <- matrix(0,I,2) Q[1:6,1] <- 1 Q[7:12,2] <- 1 rownames(Q) <- colnames(dat) colnames(Q) <- c("T1","T2") # vector with same items itemnr <- as.numeric( substring( colnames(dat),2,2) ) # fix mean at T2 to zero mu.fixed <- cbind( 2,0 ) # estimate model in smirt mod1 <- sirt::smirt(dat, Qmatrix=Q, irtmodel="comp", est.b=itemnr, mu.fixed=mu.fixed ) summary(mod1) ############################################################################# # EXAMPLE 3: Converting lavaan syntax for polytomous data ############################################################################# data(data.big5) # select some items items <- c( grep( "O", colnames(data.big5), value=TRUE )[1:6], grep( "N", colnames(data.big5), value=TRUE )[1:4] ) # O3 O8 O13 O18 O23 O28 N1 N6 N11 N16 dat <- data.big5[, items ] library(psych) psych::describe(dat) #****************** #*** Model 1: Partial credit model lavmodel <- " O=~ 1*O3+1*O8+1*O13+1*O18+1*O23+1*O28 O ~~ O " # estimate model in mirt res <- sirt::lavaan2mirt( dat, lavmodel, technical=list(NCYCLES=20), verbose=TRUE) # estimated mirt model mres <- res$mirt # mirt syntax cat(res$mirt.syntax) ## O=1,2,3,4,5,6 ## COV=O*O # estimated parameters mirt.wrapper.coef(mres) # some plots mirt::itemplot( mres, 3 ) # third item plot(mres) # item information plot(mres,type="trace") # item category functions # graded response model with equal slopes res1 <- sirt::lavaan2mirt( dat, lavmodel, poly.itemtype="graded", technical=list(NCYCLES=20), verbose=TRUE ) mirt.wrapper.coef(res1$mirt) #****************** #*** Model 2: Generalized partial credit model with some constraints lavmodel <- " O=~ O3+O8+O13+a*O18+a*O23+1.2*O28 O ~ 1 # estimate mean O ~~ O # estimate variance # some constraints among thresholds O3 | d1*t1 O13 | d1*t1 O3 | d2*t2 O8 | d3*t2 O28 | (-0.5)*t1 " # estimate model in mirt res <- sirt::lavaan2mirt( dat, lavmodel, technical=list(NCYCLES=5), verbose=TRUE) # estimated mirt model mres <- res$mirt # estimated parameters mirt.wrapper.coef(mres) #*** generate syntax for mirt for this model and estimate it in mirt package # Items: O3 O8 O13 O18 O23 O28 mirtmodel <- mirt::mirt.model( " O=1-6 # a(O18)=a(O23), t1(O3)=t1(O18), t2(O3)=t2(O8) CONSTRAIN=(4,5,a1), (1,3,d1), (1,2,d2) MEAN=O COV=O*O ") # initial table of parameters in mirt mirt.pars <- mirt::mirt( dat[,1:6], mirtmodel, itemtype="gpcm", pars="values") # fix slope of item O28 to 1.2 ind <- which( ( mirt.pars$item=="O28" ) & ( mirt.pars$name=="a1") ) mirt.pars[ ind, "est"] <- FALSE mirt.pars[ ind, "value"] <- 1.2 # fix d1 of item O28 to -0.5 ind <- which( ( mirt.pars$item=="O28" ) & ( mirt.pars$name=="d1") ) mirt.pars[ ind, "est"] <- FALSE mirt.pars[ ind, "value"] <- -0.5 # estimate model res2 <- mirt::mirt( dat[,1:6], mirtmodel, pars=mirt.pars, verbose=TRUE, technical=list(NCYCLES=4) ) mirt.wrapper.coef(res2) plot(res2, type="trace") ## End(Not run)
This function computes a latent class model for ratings on an item based on exchangeable raters (Uebersax & Grove, 1990). Additionally, several measures of rater agreement are computed (see e.g. Gwet, 2010).
lc.2raters(data, conv=0.001, maxiter=1000, progress=TRUE) ## S3 method for class 'lc.2raters' summary(object,...)
lc.2raters(data, conv=0.001, maxiter=1000, progress=TRUE) ## S3 method for class 'lc.2raters' summary(object,...)
data |
Data frame with item responses (must be ordered from 0 to |
conv |
Convergence criterion |
maxiter |
Maximum number of iterations |
progress |
An optional logical indicating whether iteration progress should be displayed. |
object |
Object of class |
... |
Further arguments to be passed |
For two exchangeable raters which provide ratings on an item, a latent
class model with classes (if there are
item categories
) is defined. Where
denotes
the probability that the first rating is
and the second rating is
given the true but unknown item category (class)
. Ratings are
assumed to be locally independent, i.e.
Note that holds due to the exchangeability of raters.
The latent class model estimates true class proportions
and
conditional item probabilities
.
A list with following entries
classprob.1rater.like |
Classification probability |
classprob.1rater.post |
Classification probability |
classprob.2rater.like |
Classification probability |
classprob.2rater.post |
Classification probability |
f.yi.qk |
Likelihood of each pair of ratings |
f.qk.yi |
Posterior of each pair of ratings |
probs |
Item response probabilities |
pi.k |
Estimated class proportions |
pi.k.obs |
Observed manifest class proportions |
freq.long |
Frequency table of ratings in long format |
freq.table |
Symmetrized frequency table of ratings |
agree.stats |
Measures of rater agreement. These measures include
percentage agreement ( |
data |
Used dataset |
N.categ |
Number of categories |
Aickin, M. (1990). Maximum likelihood estimation of agreement in the constant predictive probability model, and its relation to Cohen's kappa. Biometrics, 46, 293-302.
Gwet, K. L. (2008). Computing inter-rater reliability and its variance in the presence of high agreement. British Journal of Mathematical and Statistical Psychology, 61, 29-48.
Gwet, K. L. (2010). Handbook of Inter-Rater Reliability. Advanced Analytics, Gaithersburg. http://www.agreestat.com/
Uebersax, J. S., & Grove, W. M. (1990). Latent class analysis of diagnostic agreement. Statistics in Medicine, 9, 559-572.
See also rm.facets
and rm.sdt
for
specifying rater models.
See also the irr package for measures of rater agreement.
############################################################################# # EXAMPLE 1: Latent class models for rating datasets data.si05 ############################################################################# data(data.si05) #*** Model 1: one item with two categories mod1 <- sirt::lc.2raters( data.si05$Ex1) summary(mod1) #*** Model 2: one item with five categories mod2 <- sirt::lc.2raters( data.si05$Ex2) summary(mod2) #*** Model 3: one item with eight categories mod3 <- sirt::lc.2raters( data.si05$Ex3) summary(mod3)
############################################################################# # EXAMPLE 1: Latent class models for rating datasets data.si05 ############################################################################# data(data.si05) #*** Model 1: one item with two categories mod1 <- sirt::lc.2raters( data.si05$Ex1) summary(mod1) #*** Model 2: one item with five categories mod2 <- sirt::lc.2raters( data.si05$Ex2) summary(mod2) #*** Model 3: one item with eight categories mod3 <- sirt::lc.2raters( data.si05$Ex3) summary(mod3)
Approximates individual likelihood functions
by normal distributions (see Mislevy, 1990). Extreme response patterns
are handled by adding pseudo-observations of items with extreme item
difficulties (see argument
extreme.item
. The individual standard
deviations of the likelihood, used in the normal approximation, can be
modified by individual adjustment factors which are specified in adjfac
.
In addition, a reliability of the adjusted likelihood can be specified
in target.EAP.rel
.
likelihood.adjustment(likelihood, theta=NULL, prob.theta=NULL, adjfac=rep(1, nrow(likelihood)), extreme.item=5, target.EAP.rel=NULL, min_tuning=0.2, max_tuning=3, maxiter=100, conv=1e-04, trait.normal=TRUE)
likelihood.adjustment(likelihood, theta=NULL, prob.theta=NULL, adjfac=rep(1, nrow(likelihood)), extreme.item=5, target.EAP.rel=NULL, min_tuning=0.2, max_tuning=3, maxiter=100, conv=1e-04, trait.normal=TRUE)
likelihood |
A matrix containing the individual likelihood |
theta |
Optional vector of (unidimensional) |
prob.theta |
Optional vector of probabilities of |
adjfac |
Vector with individual adjustment factors of the standard deviations of the likelihood |
extreme.item |
Item difficulties of two extreme pseudo items which are added as additional
observed data to the likelihood. A large number (e.g. |
target.EAP.rel |
Target EAP reliability. An additional tuning parameter is estimated which adjusts the likelihood to obtain a pre-specified reliability. |
min_tuning |
Minimum value of tuning parameter (if |
max_tuning |
Maximum value of tuning parameter (if |
maxiter |
Maximum number of iterations (if |
conv |
Convergence criterion (if |
trait.normal |
Optional logical indicating whether the trait distribution should be
normally distributed (if |
Object of class IRT.likelihood
.
Mislevy, R. (1990). Scaling procedures. In E. Johnson & R. Zwick (Eds.), Focusing the new design: The NAEP 1988 technical report (ETS RR 19-20). Princeton, NJ: Educational Testing Service.
CDM::IRT.likelihood
,
TAM::tam.latreg
## Not run: ############################################################################# # EXAMPLE 1: Adjustment of the likelihood | data.read ############################################################################# library(CDM) library(TAM) data(data.read) dat <- data.read # define theta grid theta.k <- seq(-6,6,len=41) #*** Model 1: fit Rasch model in TAM mod1 <- TAM::tam.mml( dat, control=list( nodes=theta.k) ) summary(mod1) #*** Model 2: fit Rasch copula model testlets <- substring( colnames(dat), 1, 1 ) mod2 <- sirt::rasch.copula2( dat, itemcluster=testlets, theta.k=theta.k) summary(mod2) # model comparison IRT.compareModels( mod1, mod2 ) # extract EAP reliabilities rel1 <- mod1$EAP.rel rel2 <- mod2$EAP.Rel # variance inflation factor vif <- (1-rel2) / (1-rel1) ## > vif ## [1] 1.211644 # extract individual likelihood like1 <- IRT.likelihood( mod1 ) # adjust likelihood from Model 1 to obtain a target EAP reliability of .599 like1b <- sirt::likelihood.adjustment( like1, target.EAP.rel=.599 ) # compare estimated latent regressions lmod1a <- TAM::tam.latreg( like1, Y=NULL ) lmod1b <- TAM::tam.latreg( like1b, Y=NULL ) summary(lmod1a) summary(lmod1b) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Adjustment of the likelihood | data.read ############################################################################# library(CDM) library(TAM) data(data.read) dat <- data.read # define theta grid theta.k <- seq(-6,6,len=41) #*** Model 1: fit Rasch model in TAM mod1 <- TAM::tam.mml( dat, control=list( nodes=theta.k) ) summary(mod1) #*** Model 2: fit Rasch copula model testlets <- substring( colnames(dat), 1, 1 ) mod2 <- sirt::rasch.copula2( dat, itemcluster=testlets, theta.k=theta.k) summary(mod2) # model comparison IRT.compareModels( mod1, mod2 ) # extract EAP reliabilities rel1 <- mod1$EAP.rel rel2 <- mod2$EAP.Rel # variance inflation factor vif <- (1-rel2) / (1-rel1) ## > vif ## [1] 1.211644 # extract individual likelihood like1 <- IRT.likelihood( mod1 ) # adjust likelihood from Model 1 to obtain a target EAP reliability of .599 like1b <- sirt::likelihood.adjustment( like1, target.EAP.rel=.599 ) # compare estimated latent regressions lmod1a <- TAM::tam.latreg( like1, Y=NULL ) lmod1b <- TAM::tam.latreg( like1b, Y=NULL ) summary(lmod1a) summary(lmod1b) ## End(Not run)
This function does the linking of several studies which are calibrated
using the 2PL or the generalized item response model according to
Haberman (2009). This method is a generalization of log-mean-mean
linking from one study to several studies. The default a_log=TRUE
logarithmizes item slopes for linking while otherwise an additive regression
model is assumed for the original item loadings (see Details; Battauz, 2017)
linking.haberman(itempars, personpars, estimation="OLS", a_trim=Inf, b_trim=Inf, lts_prop=.5, a_log=TRUE, conv=1e-05, maxiter=1000, progress=TRUE, adjust_main_effects=TRUE, vcov=TRUE) ## S3 method for class 'linking.haberman' summary(object, digits=3, file=NULL, ...) linking.haberman.lq(itempars, pow=2, eps=1e-3, a_log=TRUE, use_nu=FALSE, est_pow=FALSE, lower_pow=.1, upper_pow=3) ## S3 method for class 'linking.haberman.lq' summary(object, digits=3, file=NULL, ...) ## prepare 'itempars' argument for linking.haberman() linking_haberman_itempars_prepare(b, a=NULL, wgt=NULL) ## conversion of different parameterizations of item parameters linking_haberman_itempars_convert(itempars=NULL, lambda=NULL, nu=NULL, a=NULL, b=NULL) ## L0 polish precedure minimizing number of interactions in two-way table L0_polish(x, tol, conv=0.01, maxiter=30, type=1, verbose=TRUE)
linking.haberman(itempars, personpars, estimation="OLS", a_trim=Inf, b_trim=Inf, lts_prop=.5, a_log=TRUE, conv=1e-05, maxiter=1000, progress=TRUE, adjust_main_effects=TRUE, vcov=TRUE) ## S3 method for class 'linking.haberman' summary(object, digits=3, file=NULL, ...) linking.haberman.lq(itempars, pow=2, eps=1e-3, a_log=TRUE, use_nu=FALSE, est_pow=FALSE, lower_pow=.1, upper_pow=3) ## S3 method for class 'linking.haberman.lq' summary(object, digits=3, file=NULL, ...) ## prepare 'itempars' argument for linking.haberman() linking_haberman_itempars_prepare(b, a=NULL, wgt=NULL) ## conversion of different parameterizations of item parameters linking_haberman_itempars_convert(itempars=NULL, lambda=NULL, nu=NULL, a=NULL, b=NULL) ## L0 polish precedure minimizing number of interactions in two-way table L0_polish(x, tol, conv=0.01, maxiter=30, type=1, verbose=TRUE)
itempars |
A data frame with four or five columns. The first four columns contain
in the order: study name, item name, |
personpars |
A list with vectors (e.g. EAPs or WLEs) or data frames
(e.g. plausible values) containing person parameters which
should be transformed.
If a data frame in each list entry has |
estimation |
Estimation method. Can be |
a_trim |
Trimming parameter for item slopes |
b_trim |
Trimming parameter for item slopes |
lts_prop |
Proportion of retained observations in |
a_log |
Logical indicating whether item slopes should be logarithmized for linking. |
conv |
Convergence criterion. |
maxiter |
Maximum number of iterations. |
progress |
An optional logical indicating whether computational progress should be displayed. |
adjust_main_effects |
Logical indicating whether all elements in the vector of main effects should be simultaneously adjusted |
vcov |
Optional indicating whether covariance matrix for linking errors should be computed |
pow |
Power |
eps |
Epsilon value used in differentiable approximating function |
use_nu |
Logical indicating whether item intercepts instead of item difficulties are used in linking |
est_pow |
Logical indicating whether power values should be estimated |
lower_pow |
Lower bound for estimated power |
upper_pow |
Upper bound for estimated power |
lambda |
Matrix containing item loadings |
nu |
Matrix containing item intercepts |
object |
Object of class |
digits |
Number of digits after decimals for rounding in |
file |
Optional file name if |
... |
Further arguments to be passed |
b |
Matrix of item intercepts (items |
a |
Matrix of item slopes |
wgt |
Matrix of weights |
x |
Matrix |
tol |
Tolerance value |
type |
Can be |
verbose |
Logical indicating whether iteration progress should be displayed |
For studies, item difficulties
and
item slopes
are available. For dichotomous responses, these
parameters are defined by the 2PL response equation
while for polytomous responses the generalized partial credit model holds
The parameters of all items and studies are
linearly transformed using equations
(if
a_log=TRUE
) or
(if
a_log=FALSE
) and
. For identification reasons,
we define
and
=0.
The optimization function (which is a least squares criterion;
see Haberman, 2009) seeks the transformation parameters and
with an alternating least squares
method (
estimation="OLS"
). Note that every item and every study
can
be weighted (specified in the fifth column of
itempars
).
Alternatively, a robust regression method based on bisquare weighting (Fox, 2015)
can be employed for linking using the argument estimation="BSQ"
.
For example, in the case of item loadings, bisquare weighting is applied to
residuals (where logarithmized or non-logarithmized
item loadings are employed) forming weights
for
and 0 for
where
is the trimming constant which can be estimated or fixed
during estimation using arguments
a_trim
or b_trim
. Items in studies with
large residuals
(i.e., presence differential item functioning) are effectively set to zero in the
linking procedure. Alternatively, Huber weights (estimation="HUB"
) downweight
large residuals by applying for residuals
. The method
estimation="LTS"
employs trimmed least squares
where the proportion
of data retained is specified in lts_prop
with default set to .50.
The method estimation="MED"
estimates item parameters and linking constants
based on alternating median regression. A similar approach is the median polish
procedure of Tukey (Tukey, 1977, p. 362ff.; Maronna, Martin & Yohai, 2006, p. 104;
see also stats::medpolish
) implemented in
estimation="L1"
which aims to minimize .
For a pre-specified tolerance value
(in
a_trim
or b_trim
),
the approach estimation="L0"
minimizes the number of interactions
(i.e., DIF effects) in the effects. In more detail, it minimizes
which is computationally conducted
by repeatedly applying the median polish procedure in which one cell is
omitted (Davies, 2012; Terbeck & Davies, 1998).
Effect sizes of invariance are calculated as R-squared measures of explained item slopes and intercepts after linking in comparison to item parameters across groups (Asparouhov & Muthen, 2014).
The function uses the loss function
.
The originally proposed Haberman linking can be obtained with
pow=2
().
The powers can also be estimated (argument
est_pow=TRUE
).
A list with following entries
transf.pars |
Data frame with transformation parameters
|
transf.personpars |
Data frame with linear transformation functions for person parameters |
joint.itempars |
Estimated joint item parameters |
a.trans |
Transformed |
b.trans |
Transformed |
a.orig |
Original |
b.orig |
Original |
a.resid |
Residual |
b.resid |
Residual |
personpars |
Transformed person parameters |
es.invariance |
Effect size measures of invariance,
separately for item slopes and intercepts.
In the rows, |
es.robust |
Effect size measures of invariance based on robust estimation (if used). |
selitems |
Indices of items which are present in more than one study. |
Asparouhov, T., & Muthen, B. (2014). Multiple-group factor analysis alignment. Structural Equation Modeling, 21(4), 1-14. doi:10.1080/10705511.2014.919210
Battauz, M. (2017). Multiple equating of separate IRT calibrations. Psychometrika, 82(3), 610-636. doi:10.1007/s11336-016-9517-x
Davies, P. L. (2012). Interactions in the analysis of variance. Journal of the American Statistical Association, 107(500), 1502-1509. doi:10.1080/01621459.2012.726895
Fox, J. (2015). Applied regression analysis and generalized linear models. Thousand Oaks: Sage.
Haberman, S. J. (2009). Linking parameter estimates derived from an item response model through separate calibrations. ETS Research Report ETS RR-09-40. Princeton, ETS. doi:10.1002/j.2333-8504.2009.tb02197.x
Kolen, M. J., & Brennan, R. L. (2014). Test equating, scaling, and linking: Methods and practices. New York: Springer. doi:10.1007/978-1-4939-0317-7
Magis, D., & De Boeck, P. (2012). A robust outlier approach to prevent type I error inflation in differential item functioning. Educational and Psychological Measurement, 72(2), 291-311. doi:10.1177/0013164411416975
Maronna, R. A., Martin, R. D., & Yohai, V. J. (2006). Robust statistics. West Sussex: Wiley. doi:10.1002/0470010940
Terbeck, W., & Davies, P. L. (1998). Interactions and outliers in the two-way analysis of variance. Annals of Statistics, 26(4), 1279-1305. doi: 10.1214/aos/1024691243
Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.
Weeks, J. P. (2010). plink: An R package for linking mixed-format tests
using IRT-based methods. Journal of Statistical Software, 35
(12), 1-33.
doi:10.18637/jss.v035.i12
See the plink package (Weeks, 2010) for a diversity of linking methods.
Mean-mean linking, Stocking-Lord and Haebara linking (see Kolen & Brennan, 2014,
for an overview) in the generalized logistic item response model can be conducted with
equating.rasch
. See also TAM::tam.linking
in the TAM package. Haebara linking and a robustified version of it can be
found in linking.haebara
.
The invariance alignment method employs an optimization function based on
pairwise loss functions of item parameters (Asparouhov & Muthen, 2014),
see invariance.alignment
.
############################################################################# # EXAMPLE 1: Item parameters data.pars1.rasch and data.pars1.2pl ############################################################################# # Model 1: Linking three studies calibrated by the Rasch model data(data.pars1.rasch) mod1 <- sirt::linking.haberman( itempars=data.pars1.rasch ) summary(mod1) # Model 1b: Linking these studies but weigh these studies by # proportion weights 3 : 0.5 : 1 (see below). # All weights are the same for each item but they could also # be item specific. itempars <- data.pars1.rasch itempars$wgt <- 1 itempars[ itempars$study=="study1","wgt"] <- 3 itempars[ itempars$study=="study2","wgt"] <- .5 mod1b <- sirt::linking.haberman( itempars=itempars ) summary(mod1b) # Model 2: Linking three studies calibrated by the 2PL model data(data.pars1.2pl) mod2 <- sirt::linking.haberman( itempars=data.pars1.2pl ) summary(mod2) # additive model instead of logarithmic model for item slopes mod2b <- sirt::linking.haberman( itempars=data.pars1.2pl, a_log=FALSE ) summary(mod2b) ## Not run: ############################################################################# # EXAMPLE 2: Linking longitudinal data ############################################################################# data(data.long) #****** # Model 1: Scaling with the 1PL model # scaling at T1 dat1 <- data.long[, grep("T1", colnames(data.long) ) ] resT1 <- sirt::rasch.mml2( dat1 ) itempartable1 <- data.frame( "study"="T1", resT1$item[, c("item", "a", "b" ) ] ) # scaling at T2 dat2 <- data.long[, grep("T2", colnames(data.long) ) ] resT2 <- sirt::rasch.mml2( dat2 ) summary(resT2) itempartable2 <- data.frame( "study"="T2", resT2$item[, c("item", "a", "b" ) ] ) itempartable <- rbind( itempartable1, itempartable2 ) itempartable[,2] <- substring( itempartable[,2], 1, 2 ) # estimate linking parameters mod1 <- sirt::linking.haberman( itempars=itempartable ) #****** # Model 2: Scaling with the 2PL model # scaling at T1 dat1 <- data.long[, grep("T1", colnames(data.long) ) ] resT1 <- sirt::rasch.mml2( dat1, est.a=1:6) itempartable1 <- data.frame( "study"="T1", resT1$item[, c("item", "a", "b" ) ] ) # scaling at T2 dat2 <- data.long[, grep("T2", colnames(data.long) ) ] resT2 <- sirt::rasch.mml2( dat2, est.a=1:6) summary(resT2) itempartable2 <- data.frame( "study"="T2", resT2$item[, c("item", "a", "b" ) ] ) itempartable <- rbind( itempartable1, itempartable2 ) itempartable[,2] <- substring( itempartable[,2], 1, 2 ) # estimate linking parameters mod2 <- sirt::linking.haberman( itempars=itempartable ) ############################################################################# # EXAMPLE 3: 2 Studies - 1PL and 2PL linking ############################################################################# set.seed(789) I <- 20 # number of items N <- 2000 # number of persons # define item parameters b <- seq( -1.5, 1.5, length=I ) # simulate data dat1 <- sirt::sim.raschtype( stats::rnorm( N, mean=0,sd=1 ), b=b ) dat2 <- sirt::sim.raschtype( stats::rnorm( N, mean=0.5,sd=1.50 ), b=b ) #*** Model 1: 1PL # 1PL Study 1 mod1 <- sirt::rasch.mml2( dat1, est.a=rep(1,I) ) summary(mod1) # 1PL Study 2 mod2 <- sirt::rasch.mml2( dat2, est.a=rep(1,I) ) summary(mod2) # collect item parameters dfr1 <- data.frame( "study1", mod1$item$item, mod1$item$a, mod1$item$b ) dfr2 <- data.frame( "study2", mod2$item$item, mod2$item$a, mod2$item$b ) colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" ) itempars <- rbind( dfr1, dfr2 ) # Haberman linking linkhab1 <- sirt::linking.haberman(itempars=itempars) ## Transformation parameters (Haberman linking) ## study At Bt ## 1 study1 1.000 0.000 ## 2 study2 1.465 -0.512 ## ## Linear transformation for item parameters a and b ## study A_a A_b B_b ## 1 study1 1.000 1.000 0.000 ## 2 study2 0.682 1.465 -0.512 ## ## Linear transformation for person parameters theta ## study A_theta B_theta ## 1 study1 1.000 0.000 ## 2 study2 1.465 0.512 ## ## R-Squared Measures of Invariance ## slopes intercepts ## R2 1 0.9979 ## sqrtU2 0 0.0456 #*** Model 2: 2PL # 2PL Study 1 mod1 <- sirt::rasch.mml2( dat1, est.a=1:I ) summary(mod1) # 2PL Study 2 mod2 <- sirt::rasch.mml2( dat2, est.a=1:I ) summary(mod2) # collect item parameters dfr1 <- data.frame( "study1", mod1$item$item, mod1$item$a, mod1$item$b ) dfr2 <- data.frame( "study2", mod2$item$item, mod2$item$a, mod2$item$b ) colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" ) itempars <- rbind( dfr1, dfr2 ) # Haberman linking linkhab2 <- sirt::linking.haberman(itempars=itempars) ## Transformation parameters (Haberman linking) ## study At Bt ## 1 study1 1.000 0.000 ## 2 study2 1.468 -0.515 ## ## Linear transformation for item parameters a and b ## study A_a A_b B_b ## 1 study1 1.000 1.000 0.000 ## 2 study2 0.681 1.468 -0.515 ## ## Linear transformation for person parameters theta ## study A_theta B_theta ## 1 study1 1.000 0.000 ## 2 study2 1.468 0.515 ## ## R-Squared Measures of Invariance ## slopes intercepts ## R2 0.9984 0.9980 ## sqrtU2 0.0397 0.0443 ############################################################################# # EXAMPLE 4: 3 Studies - 1PL and 2PL linking ############################################################################# set.seed(789) I <- 20 # number of items N <- 1500 # number of persons # define item parameters b <- seq( -1.5, 1.5, length=I ) # simulate data dat1 <- sirt::sim.raschtype( stats::rnorm( N, mean=0, sd=1), b=b ) dat2 <- sirt::sim.raschtype( stats::rnorm( N, mean=0.5, sd=1.50), b=b ) dat3 <- sirt::sim.raschtype( stats::rnorm( N, mean=-0.2, sd=0.8), b=b ) # set some items to non-administered dat3 <- dat3[, -c(1,4) ] dat2 <- dat2[, -c(1,2,3) ] #*** Model 1: 1PL in sirt # 1PL Study 1 mod1 <- sirt::rasch.mml2( dat1, est.a=rep(1,ncol(dat1)) ) summary(mod1) # 1PL Study 2 mod2 <- sirt::rasch.mml2( dat2, est.a=rep(1,ncol(dat2)) ) summary(mod2) # 1PL Study 3 mod3 <- sirt::rasch.mml2( dat3, est.a=rep(1,ncol(dat3)) ) summary(mod3) # collect item parameters dfr1 <- data.frame( "study1", mod1$item$item, mod1$item$a, mod1$item$b ) dfr2 <- data.frame( "study2", mod2$item$item, mod2$item$a, mod2$item$b ) dfr3 <- data.frame( "study3", mod3$item$item, mod3$item$a, mod3$item$b ) colnames(dfr3) <- colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" ) itempars <- rbind( dfr1, dfr2, dfr3 ) # use person parameters personpars <- list( mod1$person[, c("EAP","SE.EAP") ], mod2$person[, c("EAP","SE.EAP") ], mod3$person[, c("EAP","SE.EAP") ] ) # Haberman linking linkhab1 <- sirt::linking.haberman(itempars=itempars, personpars=personpars) # compare item parameters round( cbind( linkhab1$joint.itempars[,-1], linkhab1$b.trans )[1:5,], 3 ) ## aj bj study1 study2 study3 ## I0001 0.998 -1.427 -1.427 NA NA ## I0002 0.998 -1.290 -1.324 NA -1.256 ## I0003 0.998 -1.140 -1.068 NA -1.212 ## I0004 0.998 -0.986 -1.003 -0.969 NA ## I0005 0.998 -0.869 -0.809 -0.872 -0.926 # summary of person parameters of second study round( psych::describe( linkhab1$personpars[[2]] ), 2 ) ## var n mean sd median trimmed mad min max range skew kurtosis ## EAP 1 1500 0.45 1.36 0.41 0.47 1.52 -2.61 3.25 5.86 -0.08 -0.62 ## SE.EAP 2 1500 0.57 0.09 0.53 0.56 0.04 0.49 0.84 0.35 1.47 1.56 ## se ## EAP 0.04 ## SE.EAP 0.00 #*** Model 2: 2PL in TAM library(TAM) # 2PL Study 1 mod1 <- TAM::tam.mml.2pl( resp=dat1, irtmodel="2PL" ) pvmod1 <- TAM::tam.pv(mod1, ntheta=300, normal.approx=TRUE) # draw plausible values summary(mod1) # 2PL Study 2 mod2 <- TAM::tam.mml.2pl( resp=dat2, irtmodel="2PL" ) pvmod2 <- TAM::tam.pv(mod2, ntheta=300, normal.approx=TRUE) summary(mod2) # 2PL Study 3 mod3 <- TAM::tam.mml.2pl( resp=dat3, irtmodel="2PL" ) pvmod3 <- TAM::tam.pv(mod3, ntheta=300, normal.approx=TRUE) summary(mod3) # collect item parameters #!! Note that in TAM the parametrization is a*theta - b while linking.haberman #!! needs the parametrization a*(theta-b) dfr1 <- data.frame( "study1", mod1$item$item, mod1$B[,2,1], mod1$xsi$xsi / mod1$B[,2,1] ) dfr2 <- data.frame( "study2", mod2$item$item, mod2$B[,2,1], mod2$xsi$xsi / mod2$B[,2,1] ) dfr3 <- data.frame( "study3", mod3$item$item, mod3$B[,2,1], mod3$xsi$xsi / mod3$B[,2,1] ) colnames(dfr3) <- colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" ) itempars <- rbind( dfr1, dfr2, dfr3 ) # define list containing person parameters personpars <- list( pvmod1$pv[,-1], pvmod2$pv[,-1], pvmod3$pv[,-1] ) # Haberman linking linkhab2 <- sirt::linking.haberman(itempars=itempars,personpars=personpars) ## Linear transformation for person parameters theta ## study A_theta B_theta ## 1 study1 1.000 0.000 ## 2 study2 1.485 0.465 ## 3 study3 0.786 -0.192 # extract transformed person parameters personpars.trans <- linkhab2$personpars ############################################################################# # EXAMPLE 5: Linking with simulated item parameters containing outliers ############################################################################# # simulate some parameters I <- 38 set.seed(18785) b <- stats::rnorm( I, mean=.3, sd=1.4 ) # simulate DIF effects plus some outliers bdif <- stats::rnorm(I,mean=.4,sd=.09)+( stats::runif(I)>.9 )* rep( 1*c(-1,1)+.4, each=I/2 ) # create item parameter table itempars <- data.frame( "study"=paste0("study",rep(1:2, each=I)), "item"=paste0( "I", 100 + rep(1:I,2) ), "a"=1, "b"=c( b, b + bdif ) ) #*** Model 1: Haberman linking with least squares regression mod1 <- sirt::linking.haberman( itempars=itempars ) summary(mod1) #*** Model 2: Haberman linking with robust bisquare regression with fixed trimming value mod2 <- sirt::linking.haberman( itempars=itempars, estimation="BSQ", b_trim=.4) summary(mod2) #*** Model 2: Haberman linking with robust bisquare regression with estimated trimming value mod3 <- sirt::linking.haberman( itempars=itempars, estimation="BSQ") summary(mod3) ## see also Example 3 of ?sirt::robust.linking ############################################################################# # EXAMPLE 6: Toy example of Magis and De Boeck (2012) ############################################################################# # define item parameters from Magis & De Boeck (20212, p. 293) b1 <- c(1,1,1,1) b2 <- c(1,1,1,2) itempars <- data.frame(study=rep(1:2, each=4), item=rep(1:4,2), a=1, b=c(b1,b2) ) #- Least squares regression mod1 <- sirt::linking.haberman( itempars=itempars, estimation="OLS") summary(mod1) #- Bisquare regression with estimated and fixed trimming factors mod2 <- sirt::linking.haberman( itempars=itempars, estimation="BSQ") mod2a <- sirt::linking.haberman( itempars=itempars, estimation="BSQ", b_trim=.4) mod2b <- sirt::linking.haberman( itempars=itempars, estimation="BSQ", b_trim=1.2) summary(mod2) summary(mod2a) summary(mod2b) #- Least squares trimmed regression mod3 <- sirt::linking.haberman( itempars=itempars, estimation="LTS") summary(mod3) #- median regression mod4 <- sirt::linking.haberman( itempars=itempars, estimation="MED") summary(mod4) ############################################################################# # EXAMPLE 7: Simulated example with directional DIF ############################################################################# set.seed(98) I <- 8 mu <- c(-.5, 0, .5) b <- sample(seq(-1.5,1.5, len=I)) sd_dif <- 0.001 pars <- outer(b, mu, "+") + stats::rnorm(I*3, sd=sd_dif) ind <- c(1,2); pars[ind,1] <- pars[ind,1] + c(.5,.5) ind <- c(3,4); pars[ind,2] <- pars[ind,2] + (-1)*c(.6,.6) ind <- c(5,6); pars[ind,3] <- pars[ind,3] + (-1)*c(1,1) # median polish (=stats::medpolish()) tmod1 <- sirt:::L1_polish(x=pars) # L0 polish with tolerance criterion of .3 tmod2 <- sirt::L0_polish(x=pars, tol=.3) #- prepare itempars input itempars <- sirt::linking_haberman_itempars_prepare(b=pars) #- compare different estimation functions for Haberman linking mod01 <- sirt::linking.haberman(itempars, estimation="L1") mod02 <- sirt::linking.haberman(itempars, estimation="L0", b_trim=.3) mod1 <- sirt::linking.haberman(itempars, estimation="OLS") mod2 <- sirt::linking.haberman(itempars, estimation="BSQ") mod2a <- sirt::linking.haberman(itempars, estimation="BSQ", b_trim=.4) mod3 <- sirt::linking.haberman(itempars, estimation="MED") mod4 <- sirt::linking.haberman(itempars, estimation="LTS") mod5 <- sirt::linking.haberman(itempars, estimation="HUB") mod01$transf.pars mod02$transf.pars mod1$transf.pars mod2$transf.pars mod2a$transf.pars mod3$transf.pars mod4$transf.pars mod5$transf.pars ############################################################################# # EXAMPLE 8: Many studies and directional DIF ############################################################################# ## dataset 2 set.seed(98) I <- 10 # number of items S <- 7 # number of studies mu <- round( seq(0, 1, len=S)) b <- sample(seq(-1.5,1.5, len=I)) sd_dif <- 0.001 pars0 <- pars <- outer(b, mu, "+") + stats::rnorm(I*S, sd=sd_dif) # select n_dif items at random per group and set it to dif or -dif n_dif <- 2 dif <- .6 for (ss in 1:S){ ind <- sample( 1:I, n_dif ) pars[ind,ss] <- pars[ind,ss] + dif*sign( runif(1) - .5 ) } # check DIF pars - pars0 #* estimate models itempars <- sirt::linking_haberman_itempars_prepare(b=pars) mod0 <- sirt::linking.haberman(itempars, estimation="L0", b_trim=.2) mod1 <- sirt::linking.haberman(itempars, estimation="OLS") mod2 <- sirt::linking.haberman(itempars, estimation="BSQ") mod2a <- sirt::linking.haberman(itempars, estimation="BSQ", b_trim=.4) mod3 <- sirt::linking.haberman(itempars, estimation="MED") mod3a <- sirt::linking.haberman(itempars, estimation="L1") mod4 <- sirt::linking.haberman(itempars, estimation="LTS") mod5 <- sirt::linking.haberman(itempars, estimation="HUB") mod0$transf.pars mod1$transf.pars mod2$transf.pars mod2a$transf.pars mod3$transf.pars mod3a$transf.pars mod4$transf.pars mod5$transf.pars #* compare results with Haebara linking mod11 <- sirt::linking.haebara(itempars, dist="L2") mod12 <- sirt::linking.haebara(itempars, dist="L1") summary(mod11) summary(mod12) ## End(Not run)
############################################################################# # EXAMPLE 1: Item parameters data.pars1.rasch and data.pars1.2pl ############################################################################# # Model 1: Linking three studies calibrated by the Rasch model data(data.pars1.rasch) mod1 <- sirt::linking.haberman( itempars=data.pars1.rasch ) summary(mod1) # Model 1b: Linking these studies but weigh these studies by # proportion weights 3 : 0.5 : 1 (see below). # All weights are the same for each item but they could also # be item specific. itempars <- data.pars1.rasch itempars$wgt <- 1 itempars[ itempars$study=="study1","wgt"] <- 3 itempars[ itempars$study=="study2","wgt"] <- .5 mod1b <- sirt::linking.haberman( itempars=itempars ) summary(mod1b) # Model 2: Linking three studies calibrated by the 2PL model data(data.pars1.2pl) mod2 <- sirt::linking.haberman( itempars=data.pars1.2pl ) summary(mod2) # additive model instead of logarithmic model for item slopes mod2b <- sirt::linking.haberman( itempars=data.pars1.2pl, a_log=FALSE ) summary(mod2b) ## Not run: ############################################################################# # EXAMPLE 2: Linking longitudinal data ############################################################################# data(data.long) #****** # Model 1: Scaling with the 1PL model # scaling at T1 dat1 <- data.long[, grep("T1", colnames(data.long) ) ] resT1 <- sirt::rasch.mml2( dat1 ) itempartable1 <- data.frame( "study"="T1", resT1$item[, c("item", "a", "b" ) ] ) # scaling at T2 dat2 <- data.long[, grep("T2", colnames(data.long) ) ] resT2 <- sirt::rasch.mml2( dat2 ) summary(resT2) itempartable2 <- data.frame( "study"="T2", resT2$item[, c("item", "a", "b" ) ] ) itempartable <- rbind( itempartable1, itempartable2 ) itempartable[,2] <- substring( itempartable[,2], 1, 2 ) # estimate linking parameters mod1 <- sirt::linking.haberman( itempars=itempartable ) #****** # Model 2: Scaling with the 2PL model # scaling at T1 dat1 <- data.long[, grep("T1", colnames(data.long) ) ] resT1 <- sirt::rasch.mml2( dat1, est.a=1:6) itempartable1 <- data.frame( "study"="T1", resT1$item[, c("item", "a", "b" ) ] ) # scaling at T2 dat2 <- data.long[, grep("T2", colnames(data.long) ) ] resT2 <- sirt::rasch.mml2( dat2, est.a=1:6) summary(resT2) itempartable2 <- data.frame( "study"="T2", resT2$item[, c("item", "a", "b" ) ] ) itempartable <- rbind( itempartable1, itempartable2 ) itempartable[,2] <- substring( itempartable[,2], 1, 2 ) # estimate linking parameters mod2 <- sirt::linking.haberman( itempars=itempartable ) ############################################################################# # EXAMPLE 3: 2 Studies - 1PL and 2PL linking ############################################################################# set.seed(789) I <- 20 # number of items N <- 2000 # number of persons # define item parameters b <- seq( -1.5, 1.5, length=I ) # simulate data dat1 <- sirt::sim.raschtype( stats::rnorm( N, mean=0,sd=1 ), b=b ) dat2 <- sirt::sim.raschtype( stats::rnorm( N, mean=0.5,sd=1.50 ), b=b ) #*** Model 1: 1PL # 1PL Study 1 mod1 <- sirt::rasch.mml2( dat1, est.a=rep(1,I) ) summary(mod1) # 1PL Study 2 mod2 <- sirt::rasch.mml2( dat2, est.a=rep(1,I) ) summary(mod2) # collect item parameters dfr1 <- data.frame( "study1", mod1$item$item, mod1$item$a, mod1$item$b ) dfr2 <- data.frame( "study2", mod2$item$item, mod2$item$a, mod2$item$b ) colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" ) itempars <- rbind( dfr1, dfr2 ) # Haberman linking linkhab1 <- sirt::linking.haberman(itempars=itempars) ## Transformation parameters (Haberman linking) ## study At Bt ## 1 study1 1.000 0.000 ## 2 study2 1.465 -0.512 ## ## Linear transformation for item parameters a and b ## study A_a A_b B_b ## 1 study1 1.000 1.000 0.000 ## 2 study2 0.682 1.465 -0.512 ## ## Linear transformation for person parameters theta ## study A_theta B_theta ## 1 study1 1.000 0.000 ## 2 study2 1.465 0.512 ## ## R-Squared Measures of Invariance ## slopes intercepts ## R2 1 0.9979 ## sqrtU2 0 0.0456 #*** Model 2: 2PL # 2PL Study 1 mod1 <- sirt::rasch.mml2( dat1, est.a=1:I ) summary(mod1) # 2PL Study 2 mod2 <- sirt::rasch.mml2( dat2, est.a=1:I ) summary(mod2) # collect item parameters dfr1 <- data.frame( "study1", mod1$item$item, mod1$item$a, mod1$item$b ) dfr2 <- data.frame( "study2", mod2$item$item, mod2$item$a, mod2$item$b ) colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" ) itempars <- rbind( dfr1, dfr2 ) # Haberman linking linkhab2 <- sirt::linking.haberman(itempars=itempars) ## Transformation parameters (Haberman linking) ## study At Bt ## 1 study1 1.000 0.000 ## 2 study2 1.468 -0.515 ## ## Linear transformation for item parameters a and b ## study A_a A_b B_b ## 1 study1 1.000 1.000 0.000 ## 2 study2 0.681 1.468 -0.515 ## ## Linear transformation for person parameters theta ## study A_theta B_theta ## 1 study1 1.000 0.000 ## 2 study2 1.468 0.515 ## ## R-Squared Measures of Invariance ## slopes intercepts ## R2 0.9984 0.9980 ## sqrtU2 0.0397 0.0443 ############################################################################# # EXAMPLE 4: 3 Studies - 1PL and 2PL linking ############################################################################# set.seed(789) I <- 20 # number of items N <- 1500 # number of persons # define item parameters b <- seq( -1.5, 1.5, length=I ) # simulate data dat1 <- sirt::sim.raschtype( stats::rnorm( N, mean=0, sd=1), b=b ) dat2 <- sirt::sim.raschtype( stats::rnorm( N, mean=0.5, sd=1.50), b=b ) dat3 <- sirt::sim.raschtype( stats::rnorm( N, mean=-0.2, sd=0.8), b=b ) # set some items to non-administered dat3 <- dat3[, -c(1,4) ] dat2 <- dat2[, -c(1,2,3) ] #*** Model 1: 1PL in sirt # 1PL Study 1 mod1 <- sirt::rasch.mml2( dat1, est.a=rep(1,ncol(dat1)) ) summary(mod1) # 1PL Study 2 mod2 <- sirt::rasch.mml2( dat2, est.a=rep(1,ncol(dat2)) ) summary(mod2) # 1PL Study 3 mod3 <- sirt::rasch.mml2( dat3, est.a=rep(1,ncol(dat3)) ) summary(mod3) # collect item parameters dfr1 <- data.frame( "study1", mod1$item$item, mod1$item$a, mod1$item$b ) dfr2 <- data.frame( "study2", mod2$item$item, mod2$item$a, mod2$item$b ) dfr3 <- data.frame( "study3", mod3$item$item, mod3$item$a, mod3$item$b ) colnames(dfr3) <- colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" ) itempars <- rbind( dfr1, dfr2, dfr3 ) # use person parameters personpars <- list( mod1$person[, c("EAP","SE.EAP") ], mod2$person[, c("EAP","SE.EAP") ], mod3$person[, c("EAP","SE.EAP") ] ) # Haberman linking linkhab1 <- sirt::linking.haberman(itempars=itempars, personpars=personpars) # compare item parameters round( cbind( linkhab1$joint.itempars[,-1], linkhab1$b.trans )[1:5,], 3 ) ## aj bj study1 study2 study3 ## I0001 0.998 -1.427 -1.427 NA NA ## I0002 0.998 -1.290 -1.324 NA -1.256 ## I0003 0.998 -1.140 -1.068 NA -1.212 ## I0004 0.998 -0.986 -1.003 -0.969 NA ## I0005 0.998 -0.869 -0.809 -0.872 -0.926 # summary of person parameters of second study round( psych::describe( linkhab1$personpars[[2]] ), 2 ) ## var n mean sd median trimmed mad min max range skew kurtosis ## EAP 1 1500 0.45 1.36 0.41 0.47 1.52 -2.61 3.25 5.86 -0.08 -0.62 ## SE.EAP 2 1500 0.57 0.09 0.53 0.56 0.04 0.49 0.84 0.35 1.47 1.56 ## se ## EAP 0.04 ## SE.EAP 0.00 #*** Model 2: 2PL in TAM library(TAM) # 2PL Study 1 mod1 <- TAM::tam.mml.2pl( resp=dat1, irtmodel="2PL" ) pvmod1 <- TAM::tam.pv(mod1, ntheta=300, normal.approx=TRUE) # draw plausible values summary(mod1) # 2PL Study 2 mod2 <- TAM::tam.mml.2pl( resp=dat2, irtmodel="2PL" ) pvmod2 <- TAM::tam.pv(mod2, ntheta=300, normal.approx=TRUE) summary(mod2) # 2PL Study 3 mod3 <- TAM::tam.mml.2pl( resp=dat3, irtmodel="2PL" ) pvmod3 <- TAM::tam.pv(mod3, ntheta=300, normal.approx=TRUE) summary(mod3) # collect item parameters #!! Note that in TAM the parametrization is a*theta - b while linking.haberman #!! needs the parametrization a*(theta-b) dfr1 <- data.frame( "study1", mod1$item$item, mod1$B[,2,1], mod1$xsi$xsi / mod1$B[,2,1] ) dfr2 <- data.frame( "study2", mod2$item$item, mod2$B[,2,1], mod2$xsi$xsi / mod2$B[,2,1] ) dfr3 <- data.frame( "study3", mod3$item$item, mod3$B[,2,1], mod3$xsi$xsi / mod3$B[,2,1] ) colnames(dfr3) <- colnames(dfr2) <- colnames(dfr1) <- c("study", "item", "a", "b" ) itempars <- rbind( dfr1, dfr2, dfr3 ) # define list containing person parameters personpars <- list( pvmod1$pv[,-1], pvmod2$pv[,-1], pvmod3$pv[,-1] ) # Haberman linking linkhab2 <- sirt::linking.haberman(itempars=itempars,personpars=personpars) ## Linear transformation for person parameters theta ## study A_theta B_theta ## 1 study1 1.000 0.000 ## 2 study2 1.485 0.465 ## 3 study3 0.786 -0.192 # extract transformed person parameters personpars.trans <- linkhab2$personpars ############################################################################# # EXAMPLE 5: Linking with simulated item parameters containing outliers ############################################################################# # simulate some parameters I <- 38 set.seed(18785) b <- stats::rnorm( I, mean=.3, sd=1.4 ) # simulate DIF effects plus some outliers bdif <- stats::rnorm(I,mean=.4,sd=.09)+( stats::runif(I)>.9 )* rep( 1*c(-1,1)+.4, each=I/2 ) # create item parameter table itempars <- data.frame( "study"=paste0("study",rep(1:2, each=I)), "item"=paste0( "I", 100 + rep(1:I,2) ), "a"=1, "b"=c( b, b + bdif ) ) #*** Model 1: Haberman linking with least squares regression mod1 <- sirt::linking.haberman( itempars=itempars ) summary(mod1) #*** Model 2: Haberman linking with robust bisquare regression with fixed trimming value mod2 <- sirt::linking.haberman( itempars=itempars, estimation="BSQ", b_trim=.4) summary(mod2) #*** Model 2: Haberman linking with robust bisquare regression with estimated trimming value mod3 <- sirt::linking.haberman( itempars=itempars, estimation="BSQ") summary(mod3) ## see also Example 3 of ?sirt::robust.linking ############################################################################# # EXAMPLE 6: Toy example of Magis and De Boeck (2012) ############################################################################# # define item parameters from Magis & De Boeck (20212, p. 293) b1 <- c(1,1,1,1) b2 <- c(1,1,1,2) itempars <- data.frame(study=rep(1:2, each=4), item=rep(1:4,2), a=1, b=c(b1,b2) ) #- Least squares regression mod1 <- sirt::linking.haberman( itempars=itempars, estimation="OLS") summary(mod1) #- Bisquare regression with estimated and fixed trimming factors mod2 <- sirt::linking.haberman( itempars=itempars, estimation="BSQ") mod2a <- sirt::linking.haberman( itempars=itempars, estimation="BSQ", b_trim=.4) mod2b <- sirt::linking.haberman( itempars=itempars, estimation="BSQ", b_trim=1.2) summary(mod2) summary(mod2a) summary(mod2b) #- Least squares trimmed regression mod3 <- sirt::linking.haberman( itempars=itempars, estimation="LTS") summary(mod3) #- median regression mod4 <- sirt::linking.haberman( itempars=itempars, estimation="MED") summary(mod4) ############################################################################# # EXAMPLE 7: Simulated example with directional DIF ############################################################################# set.seed(98) I <- 8 mu <- c(-.5, 0, .5) b <- sample(seq(-1.5,1.5, len=I)) sd_dif <- 0.001 pars <- outer(b, mu, "+") + stats::rnorm(I*3, sd=sd_dif) ind <- c(1,2); pars[ind,1] <- pars[ind,1] + c(.5,.5) ind <- c(3,4); pars[ind,2] <- pars[ind,2] + (-1)*c(.6,.6) ind <- c(5,6); pars[ind,3] <- pars[ind,3] + (-1)*c(1,1) # median polish (=stats::medpolish()) tmod1 <- sirt:::L1_polish(x=pars) # L0 polish with tolerance criterion of .3 tmod2 <- sirt::L0_polish(x=pars, tol=.3) #- prepare itempars input itempars <- sirt::linking_haberman_itempars_prepare(b=pars) #- compare different estimation functions for Haberman linking mod01 <- sirt::linking.haberman(itempars, estimation="L1") mod02 <- sirt::linking.haberman(itempars, estimation="L0", b_trim=.3) mod1 <- sirt::linking.haberman(itempars, estimation="OLS") mod2 <- sirt::linking.haberman(itempars, estimation="BSQ") mod2a <- sirt::linking.haberman(itempars, estimation="BSQ", b_trim=.4) mod3 <- sirt::linking.haberman(itempars, estimation="MED") mod4 <- sirt::linking.haberman(itempars, estimation="LTS") mod5 <- sirt::linking.haberman(itempars, estimation="HUB") mod01$transf.pars mod02$transf.pars mod1$transf.pars mod2$transf.pars mod2a$transf.pars mod3$transf.pars mod4$transf.pars mod5$transf.pars ############################################################################# # EXAMPLE 8: Many studies and directional DIF ############################################################################# ## dataset 2 set.seed(98) I <- 10 # number of items S <- 7 # number of studies mu <- round( seq(0, 1, len=S)) b <- sample(seq(-1.5,1.5, len=I)) sd_dif <- 0.001 pars0 <- pars <- outer(b, mu, "+") + stats::rnorm(I*S, sd=sd_dif) # select n_dif items at random per group and set it to dif or -dif n_dif <- 2 dif <- .6 for (ss in 1:S){ ind <- sample( 1:I, n_dif ) pars[ind,ss] <- pars[ind,ss] + dif*sign( runif(1) - .5 ) } # check DIF pars - pars0 #* estimate models itempars <- sirt::linking_haberman_itempars_prepare(b=pars) mod0 <- sirt::linking.haberman(itempars, estimation="L0", b_trim=.2) mod1 <- sirt::linking.haberman(itempars, estimation="OLS") mod2 <- sirt::linking.haberman(itempars, estimation="BSQ") mod2a <- sirt::linking.haberman(itempars, estimation="BSQ", b_trim=.4) mod3 <- sirt::linking.haberman(itempars, estimation="MED") mod3a <- sirt::linking.haberman(itempars, estimation="L1") mod4 <- sirt::linking.haberman(itempars, estimation="LTS") mod5 <- sirt::linking.haberman(itempars, estimation="HUB") mod0$transf.pars mod1$transf.pars mod2$transf.pars mod2a$transf.pars mod3$transf.pars mod3a$transf.pars mod4$transf.pars mod5$transf.pars #* compare results with Haebara linking mod11 <- sirt::linking.haebara(itempars, dist="L2") mod12 <- sirt::linking.haebara(itempars, dist="L1") summary(mod11) summary(mod12) ## End(Not run)
The function linking.haebara
is a generalization of Haebara linking
of the 2PL model to multiple groups (or multiple studies; see Battauz, 2017,
for a similar approach). The optimization estimates transformation parameters for
means and standard deviations of the groups and joint item parameters.
The function allows two different distance functions dist="L2"
and
dist="L1"
where the latter is a robustified version of
Haebara linking (see Details; He, Cui, & Osterlind, 2015; He & Cui, 2020;
Hu, Rogers, & Vukmirovic, 2008).
linking.haebara(itempars, dist="L2", theta=seq(-4,4, length=61), optimizer="optim", center=FALSE, eps=1e-3, par_init=NULL, use_rcpp=TRUE, pow=2, use_der=TRUE, ...) ## S3 method for class 'linking.haebara' summary(object, digits=3, file=NULL, ...)
linking.haebara(itempars, dist="L2", theta=seq(-4,4, length=61), optimizer="optim", center=FALSE, eps=1e-3, par_init=NULL, use_rcpp=TRUE, pow=2, use_der=TRUE, ...) ## S3 method for class 'linking.haebara' summary(object, digits=3, file=NULL, ...)
itempars |
A data frame with four or five columns. The first four columns contain
in the order: study name, item name, |
dist |
Distance function. Options are |
theta |
Grid of theta points for 2PL item response functions |
optimizer |
Name of the optimizer chosen for alignment. Options are
|
center |
Logical indicating whether means and standard deviations should be centered after estimation |
eps |
Small value for smooth approximation of the absolute value function |
par_init |
Optional vector of initial parameter estimates |
use_rcpp |
Logical indicating whether Rcpp is used for computation |
pow |
Power for method |
use_der |
Logical indicating whether analytical derivative should be used |
object |
Object of class |
digits |
Number of digits after decimals for rounding in |
file |
Optional file name if |
... |
Further arguments to be passed |
For studies, item difficulties
and
item slopes
are available. The 2PL item response functions are given by
Haebara linking compares the observed item response functions
based on the equation for the logits
and the expected
item response functions
based on the equation for the logits
where the joint
item parameters
and
and means
and standard
deviations
are estimated.
Two loss functions are implemented. The quadratic loss of Haebara linking
(dist="L2"
) minimizes
was originally proposed by Haebara. A robustified version (dist="L1"
)
uses the optimization function (He et al., 2015)
As a further generalization, the follwing distance function (dist="Lp"
)
can be minimized:
A list with following entries
pars |
Estimated means and standard deviations (transformation parameters) |
item |
Estimated joint item parameters |
a.orig |
Original |
b.orig |
Original |
a.resid |
Residual |
b.resid |
Residual |
res_optim |
Value of optimization routine |
Battauz, M. (2017). Multiple equating of separate IRT calibrations. Psychometrika, 82, 610-636. doi:10.1007/s11336-016-9517-x
He, Y., Cui, Z., & Osterlind, S. J. (2015). New robust scale transformation methods in the presence of outlying common items. Applied Psychological Measurement, 39(8), 613-626. doi:10.1177/0146621615587003
He, Y., & Cui, Z. (2020). Evaluating robust scale transformation methods with multiple outlying common items under IRT true score equating. Applied Psychological Measurement, 44(4), 296-310. doi:10.1177/0146621619886050
Hu, H., Rogers, W. T., & Vukmirovic, Z. (2008). Investigation of IRT-based equating methods in the presence of outlier common items. Applied Psychological Measurement, 32(4), 311-333. doi:10.1177/0146621606292215
See invariance.alignment
and linking.haberman
for alternative linking methods in the sirt package. See also
TAM::tam.linking
in the TAM package for more linking functionality
and the R packages plink, equateIRT, equateMultiple and
SNSequate.
## Not run: ############################################################################# # EXAMPLE 1: Robust linking methods in the presence of outliers ############################################################################# #** simulate data I <- 10 a <- seq(.9, 1.1, len=I) b <- seq(-2, 2, len=I) #- define item parameters item_names <- paste0("I",100+1:I) # th=SIG*TH+MU=> logit(p)=a*(SIG*TH+MU-b)=a*SIG*(TH-(-MU)/SIG-b/SIG) d1 <- data.frame( study="S1", item=item_names, a=a, b=b ) mu <- .5; sigma <- 1.3 d2 <- data.frame( study="S2", item=item_names, a=a*sigma, b=(b-mu)/sigma ) mu <- -.3; sigma <- .7 d3 <- data.frame( study="S3", item=item_names, a=a*sigma, b=(b-mu)/sigma ) #- define DIF effect # dif <- 0 # no DIF effects dif <- 1 d2[4,"a"] <- d2[4,"a"] * (1-.8*dif) d3[5,"b"] <- d3[5,"b"] - 2*dif itempars <- rbind(d1, d2, d3) #* Haebara linking non-robust mod1 <- sirt::linking.haebara( itempars, dist="L2", control=list(trace=2) ) summary(mod1) #* Haebara linking robust mod2 <- sirt::linking.haebara( itempars, dist="L1", control=list(trace=2) ) summary(mod2) #* using initial parameter estimates par_init <- mod1$res_optim$par mod2b <- sirt::linking.haebara( itempars, dist="L1", par_init=par_init) summary(mod2b) #* power p=.25 mod2c <- sirt::linking.haebara( itempars, dist="Lp", pow=.25, par_init=par_init) summary(mod2c) #* Haberman linking non-robust mod3 <- sirt::linking.haberman(itempars) summary(mod3) #* Haberman linking robust mod4 <- sirt::linking.haberman(itempars, estimation="BSQ", a_trim=.25, b_trim=.5) summary(mod4) #* compare transformation parameters (means and standard deviations) mod1$pars mod2$pars mod3$transf.personpars mod4$transf.personpars ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Robust linking methods in the presence of outliers ############################################################################# #** simulate data I <- 10 a <- seq(.9, 1.1, len=I) b <- seq(-2, 2, len=I) #- define item parameters item_names <- paste0("I",100+1:I) # th=SIG*TH+MU=> logit(p)=a*(SIG*TH+MU-b)=a*SIG*(TH-(-MU)/SIG-b/SIG) d1 <- data.frame( study="S1", item=item_names, a=a, b=b ) mu <- .5; sigma <- 1.3 d2 <- data.frame( study="S2", item=item_names, a=a*sigma, b=(b-mu)/sigma ) mu <- -.3; sigma <- .7 d3 <- data.frame( study="S3", item=item_names, a=a*sigma, b=(b-mu)/sigma ) #- define DIF effect # dif <- 0 # no DIF effects dif <- 1 d2[4,"a"] <- d2[4,"a"] * (1-.8*dif) d3[5,"b"] <- d3[5,"b"] - 2*dif itempars <- rbind(d1, d2, d3) #* Haebara linking non-robust mod1 <- sirt::linking.haebara( itempars, dist="L2", control=list(trace=2) ) summary(mod1) #* Haebara linking robust mod2 <- sirt::linking.haebara( itempars, dist="L1", control=list(trace=2) ) summary(mod2) #* using initial parameter estimates par_init <- mod1$res_optim$par mod2b <- sirt::linking.haebara( itempars, dist="L1", par_init=par_init) summary(mod2b) #* power p=.25 mod2c <- sirt::linking.haebara( itempars, dist="Lp", pow=.25, par_init=par_init) summary(mod2c) #* Haberman linking non-robust mod3 <- sirt::linking.haberman(itempars) summary(mod3) #* Haberman linking robust mod4 <- sirt::linking.haberman(itempars, estimation="BSQ", a_trim=.25, b_trim=.5) summary(mod4) #* compare transformation parameters (means and standard deviations) mod1$pars mod2$pars mod3$transf.personpars mod4$transf.personpars ## End(Not run)
This function implements a robust alternative of mean-mean linking which
employs trimmed means instead of means.
The linking constant is calculated for varying trimming parameters .
The treatment of differential item functioning as outliers and application of
robust statistics is discussed in Magis and De Boeck (2011, 2012).
linking.robust(itempars) ## S3 method for class 'linking.robust' summary(object,...) ## S3 method for class 'linking.robust' plot(x, ...)
linking.robust(itempars) ## S3 method for class 'linking.robust' summary(object,...) ## S3 method for class 'linking.robust' plot(x, ...)
itempars |
Data frame of item parameters (item intercepts). The first column contains the item label, the 2nd and 3rd columns item parameters of two studies. |
object |
Object of class |
x |
Object of class |
... |
Further arguments to be passed |
A list with following entries
ind.kopt |
Index for optimal scale parameter |
kopt |
Optimal scale parameter |
meanpars.kopt |
Linking constant for optimal scale parameter |
se.kopt |
Standard error for linking constant obtained with optimal scale parameter |
meanpars |
Linking constant dependent on the scale parameter |
se |
Standard error of the linking constant dependent on the scale parameter |
sd |
DIF standard deviation (non-robust estimate) |
mad |
DIF standard deviation (robust estimate using the MAD measure) |
pars |
Original item parameters |
k.robust |
Used vector of scale parameters |
I |
Number of items |
itempars |
Used data frame of item parameters |
Magis, D., & De Boeck, P. (2011). Identification of differential item functioning in multiple-group settings: A multivariate outlier detection approach. Multivariate Behavioral Research, 46(5), 733-755. doi:10.1080/00273171.2011.606757
Magis, D., & De Boeck, P. (2012). A robust outlier approach to prevent type I error inflation in differential item functioning. Educational and Psychological Measurement, 72(2), 291-311. doi:10.1177/0013164411416975
Other functions for linking: linking.haberman
,
equating.rasch
See also the plink package.
############################################################################# # EXAMPLE 1: Linking data.si03 ############################################################################# data(data.si03) res1 <- sirt::linking.robust( itempars=data.si03 ) summary(res1) ## Number of items=27 ## Optimal trimming parameter k=8 | non-robust parameter k=0 ## Linking constant=-0.0345 | non-robust estimate=-0.056 ## Standard error=0.0186 | non-robust estimate=0.027 ## DIF SD: MAD=0.0771 (robust) | SD=0.1405 (non-robust) plot(res1) ## Not run: ############################################################################# # EXAMPLE 2: Linking PISA item parameters data.pisaPars ############################################################################# data(data.pisaPars) # Linking with items res2 <- sirt::linking.robust( data.pisaPars[, c(1,3,4)] ) summary(res2) ## Optimal trimming parameter k=0 | non-robust parameter k=0 ## Linking constant=-0.0883 | non-robust estimate=-0.0883 ## Standard error=0.0297 | non-robust estimate=0.0297 ## DIF SD: MAD=0.1824 (robust) | SD=0.1487 (non-robust) ## -> no trimming is necessary for reducing the standard error plot(res2) ############################################################################# # EXAMPLE 3: Linking with simulated item parameters containing outliers ############################################################################# # simulate some parameters I <- 38 set.seed(18785) itempars <- data.frame("item"=paste0("I",1:I) ) itempars$study1 <- stats::rnorm( I, mean=.3, sd=1.4 ) # simulate DIF effects plus some outliers bdif <- stats::rnorm(I,mean=.4,sd=.09)+( stats::runif(I)>.9 )* rep( 1*c(-1,1)+.4, each=I/2 ) itempars$study2 <- itempars$study1 + bdif # robust linking res <- sirt::linking.robust( itempars ) summary(res) ## Number of items=38 ## Optimal trimming parameter k=12 | non-robust parameter k=0 ## Linking constant=-0.4285 | non-robust estimate=-0.5727 ## Standard error=0.0218 | non-robust estimate=0.0913 ## DIF SD: MAD=0.1186 (robust) | SD=0.5628 (non-robust) ## -> substantial differences of estimated linking constants in this case of ## deviations from normality of item parameters plot(res) ## End(Not run)
############################################################################# # EXAMPLE 1: Linking data.si03 ############################################################################# data(data.si03) res1 <- sirt::linking.robust( itempars=data.si03 ) summary(res1) ## Number of items=27 ## Optimal trimming parameter k=8 | non-robust parameter k=0 ## Linking constant=-0.0345 | non-robust estimate=-0.056 ## Standard error=0.0186 | non-robust estimate=0.027 ## DIF SD: MAD=0.0771 (robust) | SD=0.1405 (non-robust) plot(res1) ## Not run: ############################################################################# # EXAMPLE 2: Linking PISA item parameters data.pisaPars ############################################################################# data(data.pisaPars) # Linking with items res2 <- sirt::linking.robust( data.pisaPars[, c(1,3,4)] ) summary(res2) ## Optimal trimming parameter k=0 | non-robust parameter k=0 ## Linking constant=-0.0883 | non-robust estimate=-0.0883 ## Standard error=0.0297 | non-robust estimate=0.0297 ## DIF SD: MAD=0.1824 (robust) | SD=0.1487 (non-robust) ## -> no trimming is necessary for reducing the standard error plot(res2) ############################################################################# # EXAMPLE 3: Linking with simulated item parameters containing outliers ############################################################################# # simulate some parameters I <- 38 set.seed(18785) itempars <- data.frame("item"=paste0("I",1:I) ) itempars$study1 <- stats::rnorm( I, mean=.3, sd=1.4 ) # simulate DIF effects plus some outliers bdif <- stats::rnorm(I,mean=.4,sd=.09)+( stats::runif(I)>.9 )* rep( 1*c(-1,1)+.4, each=I/2 ) itempars$study2 <- itempars$study1 + bdif # robust linking res <- sirt::linking.robust( itempars ) summary(res) ## Number of items=38 ## Optimal trimming parameter k=12 | non-robust parameter k=0 ## Linking constant=-0.4285 | non-robust estimate=-0.5727 ## Standard error=0.0218 | non-robust estimate=0.0913 ## DIF SD: MAD=0.1186 (robust) | SD=0.5628 (non-robust) ## -> substantial differences of estimated linking constants in this case of ## deviations from normality of item parameters plot(res) ## End(Not run)
Regression Model
Fits a regression model in the norm (also labeled as the
norm).
In more detail,
the optimization function
is optimized.
The nondifferentiable function is approximated by a differentiable approximation,
i.e., we use
. The power
can also be estimated by using
est_pow=TRUE
, see
Giacalone, Panarello and Mattera (2018). The algorithm iterates between estimating
regression coefficients and the estimation of power values. The estimation of the
power based on a vector of residuals e
can be conducted using the
function lq_fit_estimate_power
.
Using the norm in the regression is equivalent to assuming an expontial
power function for residuals (Giacalone et al., 2018). The density function and
a simulation function is provided by
dexppow
and rexppow
, respectively.
See also the normalp package.
lq_fit(y, X, w=NULL, pow=2, eps=0.001, beta_init=NULL, est_pow=FALSE, optimizer="optim", eps_vec=10^seq(0,-10, by=-.5), conv=1e-4, miter=20, lower_pow=.1, upper_pow=5) lq_fit_estimate_power(e, pow_init=2, lower_pow=.1, upper_pow=10) dexppow(x, mu=0, sigmap=1, pow=2, log=FALSE) rexppow(n, mu=0, sigmap=1, pow=2, xbound=100, xdiff=.01)
lq_fit(y, X, w=NULL, pow=2, eps=0.001, beta_init=NULL, est_pow=FALSE, optimizer="optim", eps_vec=10^seq(0,-10, by=-.5), conv=1e-4, miter=20, lower_pow=.1, upper_pow=5) lq_fit_estimate_power(e, pow_init=2, lower_pow=.1, upper_pow=10) dexppow(x, mu=0, sigmap=1, pow=2, log=FALSE) rexppow(n, mu=0, sigmap=1, pow=2, xbound=100, xdiff=.01)
y |
Dependent variable |
X |
Design matrix |
w |
Optional vector of weights |
pow |
Power |
est_pow |
Logical indicating whether power should be estimated |
eps |
Parameter governing the differentiable approximation |
e |
Vector of resiuals |
pow_init |
Initial value of power |
beta_init |
Initial vector |
optimizer |
Can be |
eps_vec |
Vector with decreasing |
conv |
Convergence criterion |
miter |
Maximum number of iterations |
lower_pow |
Lower bound for estimated power |
upper_pow |
Upper bound for estimated power |
x |
Vector |
mu |
Location parameter |
sigmap |
Scale parameter |
log |
Logical indicating whether the logarithm should be provided |
n |
Sample size |
xbound |
Lower and upper bound for density approximation |
xdiff |
Grid width for density approximation |
List with following several entries
coefficients |
Vector of coefficients |
res_optim |
Results of optimization |
... |
More values |
Giacalone, M., Panarello, D., & Mattera, R. (2018). Multicollinearity in regression: an efficiency comparison between $L_p$-norm and least squares estimators. Quality & Quantity, 52(4), 1831-1859. doi:10.1007/s11135-017-0571-y
############################################################################# # EXAMPLE 1: Small simulated example with fixed power ############################################################################# set.seed(98) N <- 300 x1 <- stats::rnorm(N) x2 <- stats::rnorm(N) par1 <- c(1,.5,-.7) y <- par1[1]+par1[2]*x1+par1[3]*x2 + stats::rnorm(N) X <- cbind(1,x1,x2) #- lm function in stats mod1 <- stats::lm.fit(y=y, x=X) #- use lq_fit function mod2 <- sirt::lq_fit( y=y, X=X, pow=2, eps=1e-4) mod1$coefficients mod2$coefficients ## Not run: ############################################################################# # EXAMPLE 2: Example with estimated power values ############################################################################# #*** simulate regression model with residuals from the exponential power distribution #*** using a power of .30 set.seed(918) N <- 2000 X <- cbind( 1, c(rep(1,N), rep(0,N)) ) e <- sirt::rexppow(n=2*N, pow=.3, xdiff=.01, xbound=200) y <- X %*% c(1,.5) + e #*** estimate model mod <- sirt::lq_fit( y=y, X=X, est_pow=TRUE, lower_pow=.1) mod1 <- stats::lm( y ~ 0 + X ) mod$coefficients mod$pow mod1$coefficients ## End(Not run)
############################################################################# # EXAMPLE 1: Small simulated example with fixed power ############################################################################# set.seed(98) N <- 300 x1 <- stats::rnorm(N) x2 <- stats::rnorm(N) par1 <- c(1,.5,-.7) y <- par1[1]+par1[2]*x1+par1[3]*x2 + stats::rnorm(N) X <- cbind(1,x1,x2) #- lm function in stats mod1 <- stats::lm.fit(y=y, x=X) #- use lq_fit function mod2 <- sirt::lq_fit( y=y, X=X, pow=2, eps=1e-4) mod1$coefficients mod2$coefficients ## Not run: ############################################################################# # EXAMPLE 2: Example with estimated power values ############################################################################# #*** simulate regression model with residuals from the exponential power distribution #*** using a power of .30 set.seed(918) N <- 2000 X <- cbind( 1, c(rep(1,N), rep(0,N)) ) e <- sirt::rexppow(n=2*N, pow=.3, xdiff=.01, xbound=200) y <- X %*% c(1,.5) + e #*** estimate model mod <- sirt::lq_fit( y=y, X=X, est_pow=TRUE, lower_pow=.1) mod1 <- stats::lm( y ~ 0 + X ) mod$coefficients mod$pow mod1$coefficients ## End(Not run)
This function estimates the least squares distance method
of cognitive validation (Dimitrov, 2007; Dimitrov & Atanasov, 2012)
which assumes a multiplicative relationship of attribute response
probabilities to explain item response probabilities. The argument distance
allows the estimation of a squared loss function (distance="L2"
)
and an absolute value loss function (distance="L1"
).
The function also estimates the classical linear logistic test model (LLTM; Fischer, 1973) which assumes a linear relationship for item difficulties in the Rasch model.
lsdm(data, Qmatrix, theta=seq(-3,3,by=.5), wgt_theta=rep(1, length(theta)), distance="L2", quant.list=c(0.5,0.65,0.8), b=NULL, a=rep(1,nrow(Qmatrix)), c=rep(0,nrow(Qmatrix)) ) ## S3 method for class 'lsdm' summary(object, file=NULL, digits=3, ...) ## S3 method for class 'lsdm' plot(x, ...)
lsdm(data, Qmatrix, theta=seq(-3,3,by=.5), wgt_theta=rep(1, length(theta)), distance="L2", quant.list=c(0.5,0.65,0.8), b=NULL, a=rep(1,nrow(Qmatrix)), c=rep(0,nrow(Qmatrix)) ) ## S3 method for class 'lsdm' summary(object, file=NULL, digits=3, ...) ## S3 method for class 'lsdm' plot(x, ...)
data |
An |
Qmatrix |
An |
theta |
The discrete grid points |
wgt_theta |
Optional vector for weights of discrete |
quant.list |
A vector of quantiles where attribute response functions are evaluated. |
distance |
Type of distance function for minimizing the discrepancy between
observed and expected item response functions. Options are |
b |
An optional vector of item difficulties. If it is specified,
then no |
a |
An optional vector of item discriminations. |
c |
An optional vector of guessing parameters. |
object |
Object of class |
file |
Optional file name for |
digits |
Number of digits aftert decimal in |
... |
Further arguments to be passed |
x |
Object of class |
The least squares distance method (LSDM; Dimitrov 2007) is based on the
assumption that estimated item response functions
can be decomposed in a multiplicative way (in the implemented
conjunctive model):
where are attribute response functions and
are entries of the Q-matrix. Note that the multiplicative form
can be rewritten by taking the logarithm
The item and attribute response functions are evaluated on a grid of values.
Using the definitions of matrices
,
and
, the estimation problem can be formulated
as
. Two different loss functions for minimizing
the discrepancy between
and
are implemented.
First, the squared loss function computes the weighted difference
(
distance="L2"
) and has
been originally proposed by Dimitrov (2007). Second, the
absolute value loss function
(
distance="L1"
) is more robust to outliers (i.e., items which
show misfit to the assumed multiplicative LSDM formulation).
After fitting the attribute response functions, empirical item-attribute
discriminations are calculated as the approximation of the following
equation
A list with following entries
mean.mad.lsdm0 |
Mean of |
mean.mad.lltm |
Mean of |
attr.curves |
Estimated attribute response curves evaluated at |
attr.pars |
Estimated attribute parameters for LSDM and LLTM |
data.fitted |
LSDM-fitted item response functions evaluated at |
theta |
Grid of ability distributions at which functions are evaluated |
item |
Item statistics (p value, |
data |
Estimated or fixed item response functions evaluated at |
Qmatrix |
Used Q-matrix |
lltm |
Model output of LLTM ( |
W |
Matrix with empirical item-attribute discriminations |
Al-Shamrani, A., & Dimitrov, D. M. (2016). Cognitive diagnostic analysis of reading comprehension items: The case of English proficiency assessment in Saudi Arabia. International Journal of School and Cognitive Psychology, 4(3). 1000196. http://dx.doi.org/10.4172/2469-9837.1000196
DiBello, L. V., Roussos, L. A., & Stout, W. F. (2007). Review of cognitively diagnostic assessment and a summary of psychometric models. In C. R. Rao and S. Sinharay (Eds.), Handbook of Statistics, Vol. 26 (pp. 979-1030). Amsterdam: Elsevier.
Dimitrov, D. M. (2007). Least squares distance method of cognitive validation and analysis for binary items using their item response theory parameters. Applied Psychological Measurement, 31, 367-387. http://dx.doi.org/10.1177/0146621606295199
Dimitrov, D. M., & Atanasov, D. V. (2012). Conjunctive and disjunctive extensions of the least squares distance model of cognitive diagnosis. Educational and Psychological Measurement, 72, 120-138. http://dx.doi.org/10.1177/0013164411402324
Dimitrov, D. M., Gerganov, E. N., Greenberg, M., & Atanasov, D. V. (2008). Analysis of cognitive attributes for mathematics items in the framework of Rasch measurement. AERA 2008, New York.
Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359-374. http://dx.doi.org/10.1016/0001-6918(73)90003-6
Sonnleitner, P. (2008). Using the LLTM to evaluate an item-generating system for reading comprehension. Psychology Science, 50, 345-362.
Get a summary of the LSDM analysis with summary.lsdm
.
See the CDM package for the estimation of related cognitive diagnostic models (DiBello, Roussos & Stout, 2007).
############################################################################# # EXAMPLE 1: Dataset Fischer (see Dimitrov, 2007) ############################################################################# # item difficulties b <- c( 0.171,-1.626,-0.729,0.137,0.037,-0.787,-1.322,-0.216,1.802, 0.476,1.19,-0.768,0.275,-0.846,0.213,0.306,0.796,0.089, 0.398,-0.887,0.888,0.953,-1.496,0.905,-0.332,-0.435,0.346, -0.182,0.906) # read Q-matrix Qmatrix <- c( 1,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0, 1,0,1,1,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,1,0,1,0,1,0,0,0, 1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,0,1,0,1,0,0,1,0,1,1,1,0,0,0, 1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,1,0,1,0,0,0,1,0,1,1,0,1,0,1,1,0, 1,0,1,1,0,0,1,0,1,0,0,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0,0,0,1, 0,1,0,0,0,1,0,1,1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0,1,1,0,0,1,0,0,0, 1,0,0,1,1,0,0,0,1,1,0,1,0,0,0,0,1,0,1,1,0,0,0,0,1,0,1,1,0,1,0,0, 1,1,0,1,0,0,0,0,1,0,1,1,1,1,0,0 ) Qmatrix <- matrix( Qmatrix, nrow=29, byrow=TRUE ) colnames(Qmatrix) <- paste("A",1:8,sep="") rownames(Qmatrix) <- paste("Item",1:29,sep="") #* Model 1: perform a LSDM analysis with defaults mod1 <- sirt::lsdm( b=b, Qmatrix=Qmatrix ) summary(mod1) plot(mod1) #* Model 2: different theta values and weights theta <- seq(-4,4,len=31) wgt_theta <- stats::dnorm(theta) mod2 <- sirt::lsdm( b=b, Qmatrix=Qmatrix, theta=theta, wgt_theta=wgt_theta ) summary(mod2) #* Model 3: absolute value distance function mod3 <- sirt::lsdm( b=b, Qmatrix=Qmatrix, distance="L1" ) summary(mod3) ############################################################################# # EXAMPLE 2: Dataset Henning (see Dimitrov, 2007) ############################################################################# # item difficulties b <- c(-2.03,-1.29,-1.03,-1.58,0.59,-1.65,2.22,-1.46,2.58,-0.66) # item slopes a <- c(0.6,0.81,0.75,0.81,0.62,0.75,0.54,0.65,0.75,0.54) # define Q-matrix Qmatrix <- c(1,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,1,0,0, 0,0,0,1,0,0,1,0,0,1,0,0,0,1,0,0,0,0,1,1,1,0,1,0,0 ) Qmatrix <- matrix( Qmatrix, nrow=10, byrow=TRUE ) colnames(Qmatrix) <- paste("A",1:5,sep="") rownames(Qmatrix) <- paste("Item",1:10,sep="") # LSDM analysis mod <- sirt::lsdm( b=b, a=a, Qmatrix=Qmatrix ) summary(mod) ## Not run: ############################################################################# # EXAMPLE 3: PISA reading (data.pisaRead) # using nonparametrically estimated item response functions ############################################################################# data(data.pisaRead) # response data dat <- data.pisaRead$data dat <- dat[, substring( colnames(dat),1,1)=="R" ] # define Q-matrix pars <- data.pisaRead$item Qmatrix <- data.frame( "A0"=1*(pars$ItemFormat=="MC" ), "A1"=1*(pars$ItemFormat=="CR" ) ) # start with estimating the 1PL in order to get person parameters mod <- sirt::rasch.mml2( dat ) theta <- sirt::wle.rasch( dat=dat,b=mod$item$b )$theta # Nonparametric estimation of item response functions mod2 <- sirt::np.dich( dat=dat, theta=theta, thetagrid=seq(-3,3,len=100) ) # LSDM analysis lmod <- sirt::lsdm( data=mod2$estimate, Qmatrix=Qmatrix, theta=mod2$thetagrid) summary(lmod) plot(lmod) ############################################################################# # EXAMPLE 4: Fraction subtraction dataset ############################################################################# data( data.fraction1, package="CDM") data <- data.fraction1$data q.matrix <- data.fraction1$q.matrix #**** # Model 1: 2PL estimation mod1 <- sirt::rasch.mml2( data, est.a=1:nrow(q.matrix) ) # LSDM analysis lmod1 <- sirt::lsdm( b=mod1$item$b, a=mod1$item$a, Qmatrix=q.matrix ) summary(lmod1) #**** # Model 2: 1PL estimation mod2 <- sirt::rasch.mml2(data) # LSDM analysis lmod2 <- sirt::lsdm( b=mod1$item$b, Qmatrix=q.matrix ) summary(lmod2) ############################################################################# # EXAMPLE 5: Dataset LLTM Sonnleitner Reading Comprehension (Sonnleitner, 2008) ############################################################################# # item difficulties Table 7, p. 355 (Sonnleitner, 2008) b <- c(-1.0189,1.6754,-1.0842,-.4457,-1.9419,-1.1513,2.0871,2.4874,-1.659,-1.197,-1.2437, 2.1537,.3301,-.5181,-1.3024,-.8248,-.0278,1.3279,2.1454,-1.55,1.4277,.3301) b <- b[-21] # remove Item 21 # Q-matrix Table 9, p. 357 (Sonnleitner, 2008) Qmatrix <- scan() 1 0 0 0 0 0 0 7 4 0 0 0 0 1 0 0 0 0 0 5 1 0 0 0 1 1 0 1 0 0 0 9 1 0 1 0 1 1 1 0 0 0 0 5 2 0 1 0 1 1 0 0 1 0 0 7 5 1 1 0 1 1 0 0 0 0 0 7 3 0 0 0 0 1 0 0 0 0 2 6 1 0 0 0 0 0 0 0 0 0 2 6 1 0 0 0 1 0 0 0 0 0 1 7 4 1 0 0 0 1 0 0 0 0 0 6 2 1 1 0 0 1 0 0 0 1 0 7 3 1 0 0 0 1 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 1 0 4 1 0 0 1 0 0 0 0 0 0 0 6 1 0 1 1 0 0 1 0 0 0 0 6 3 0 1 1 0 0 0 1 0 0 1 7 5 0 0 1 0 1 0 0 0 0 1 2 2 0 0 1 0 1 1 0 0 0 1 4 1 0 0 1 0 1 0 0 1 0 0 5 1 0 0 1 0 1 0 0 0 0 1 7 2 0 0 1 0 0 0 0 0 1 0 5 1 0 0 1 Qmatrix <- matrix( as.numeric(Qmatrix), nrow=21, ncol=12, byrow=TRUE ) colnames(Qmatrix) <- scan( what="character", nlines=1) pc ic ier inc iui igc ch nro ncro td a t # divide Q-matrix entries by maximum in each column Qmatrix <- round(Qmatrix / matrix(apply(Qmatrix,2,max),21,12,byrow=TRUE),3) # LSDM analysis mod <- sirt::lsdm( b=b, Qmatrix=Qmatrix ) summary(mod) ############################################################################# # EXAMPLE 6: Dataset Dimitrov et al. (2008) ############################################################################# Qmatrix <- scan() 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 Qmatrix <- matrix(Qmatrix, ncol=4, byrow=TRUE) colnames(Qmatrix) <- paste0("A",1:4) rownames(Qmatrix) <- paste0("I",1:9) b <- scan() 0.068 1.095 -0.641 -1.129 -0.061 1.218 1.244 -0.648 -1.146 # estimate model mod <- sirt::lsdm( b=b, Qmatrix=Qmatrix ) summary(mod) plot(mod) ############################################################################# # EXAMPLE 7: Dataset Al-Shamrani & Dimitrov et al. (2017) ############################################################################# I <- 39 # number of items Qmatrix <- scan() 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 Qmatrix <- matrix(Qmatrix, nrow=I, byrow=TRUE) colnames(Qmatrix) <- paste0("A",1:7) rownames(Qmatrix) <- paste0("I",1:I) pars <- scan() 1.952 0.9833 0.1816 1.1053 0.9631 0.1653 1.3904 1.3208 0.2545 0.7391 1.9367 0.2083 2.0833 1.8627 0.1873 1.4139 1.0107 0.2454 0.8274 0.9913 0.2137 1.0338 -0.0068 0.2368 2.4803 0.7939 0.1997 1.4867 1.1705 0.2541 1.4482 1.4176 0.2889 1.0789 0.8062 0.269 1.6258 1.1739 0.1723 1.5995 1.0936 0.2054 1.1814 1.0909 0.2623 2.0389 1.5023 0.2466 1.3636 1.1485 0.2059 1.8468 1.2755 0.192 1.9461 1.4947 0.2001 1.194 0.0889 0.2275 1.2114 0.8925 0.2367 2.0912 0.5961 0.2036 2.5769 1.3014 0.186 1.4554 1.2529 0.2423 1.4919 0.4763 0.2482 2.6787 1.7069 0.1796 1.5611 1.3991 0.2312 1.4353 0.678 0.1851 0.9127 1.3523 0.2525 0.6886 -0.3652 0.207 0.7039 -0.2494 0.2315 1.3683 0.8953 0.2326 1.4992 0.1025 0.2403 1.0727 0.2591 0.2152 1.3854 1.3802 0.2448 0.7748 0.4304 0.184 1.0218 1.8964 0.1949 1.5773 1.8934 0.2231 0.8631 1.4145 0.2132 pars <- matrix(pars, nrow=I, byrow=TRUE) colnames(pars) <- c("a","b","c") rownames(pars) <- paste0("I",1:I) pars <- as.data.frame(pars) #* Model 1: fit LSDM to 3PL curves (as in Al-Shamrani) mod1 <- sirt::lsdm(b=pars$b, a=pars$a, c=pars$c, Qmatrix=Qmatrix) summary(mod1) plot(mod1) #* Model 2: fit LSDM to 2PL curves mod2 <- sirt::lsdm(b=pars$b, a=pars$a, Qmatrix=Qmatrix) summary(mod2) plot(mod2) ## End(Not run)
############################################################################# # EXAMPLE 1: Dataset Fischer (see Dimitrov, 2007) ############################################################################# # item difficulties b <- c( 0.171,-1.626,-0.729,0.137,0.037,-0.787,-1.322,-0.216,1.802, 0.476,1.19,-0.768,0.275,-0.846,0.213,0.306,0.796,0.089, 0.398,-0.887,0.888,0.953,-1.496,0.905,-0.332,-0.435,0.346, -0.182,0.906) # read Q-matrix Qmatrix <- c( 1,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0, 1,0,1,1,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,1,0,1,0,1,0,0,0, 1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,0,1,0,1,0,0,1,0,1,1,1,0,0,0, 1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,1,0,1,0,0,0,1,0,1,1,0,1,0,1,1,0, 1,0,1,1,0,0,1,0,1,0,0,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0,0,0,1, 0,1,0,0,0,1,0,1,1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0,1,1,0,0,1,0,0,0, 1,0,0,1,1,0,0,0,1,1,0,1,0,0,0,0,1,0,1,1,0,0,0,0,1,0,1,1,0,1,0,0, 1,1,0,1,0,0,0,0,1,0,1,1,1,1,0,0 ) Qmatrix <- matrix( Qmatrix, nrow=29, byrow=TRUE ) colnames(Qmatrix) <- paste("A",1:8,sep="") rownames(Qmatrix) <- paste("Item",1:29,sep="") #* Model 1: perform a LSDM analysis with defaults mod1 <- sirt::lsdm( b=b, Qmatrix=Qmatrix ) summary(mod1) plot(mod1) #* Model 2: different theta values and weights theta <- seq(-4,4,len=31) wgt_theta <- stats::dnorm(theta) mod2 <- sirt::lsdm( b=b, Qmatrix=Qmatrix, theta=theta, wgt_theta=wgt_theta ) summary(mod2) #* Model 3: absolute value distance function mod3 <- sirt::lsdm( b=b, Qmatrix=Qmatrix, distance="L1" ) summary(mod3) ############################################################################# # EXAMPLE 2: Dataset Henning (see Dimitrov, 2007) ############################################################################# # item difficulties b <- c(-2.03,-1.29,-1.03,-1.58,0.59,-1.65,2.22,-1.46,2.58,-0.66) # item slopes a <- c(0.6,0.81,0.75,0.81,0.62,0.75,0.54,0.65,0.75,0.54) # define Q-matrix Qmatrix <- c(1,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,1,0,0, 0,0,0,1,0,0,1,0,0,1,0,0,0,1,0,0,0,0,1,1,1,0,1,0,0 ) Qmatrix <- matrix( Qmatrix, nrow=10, byrow=TRUE ) colnames(Qmatrix) <- paste("A",1:5,sep="") rownames(Qmatrix) <- paste("Item",1:10,sep="") # LSDM analysis mod <- sirt::lsdm( b=b, a=a, Qmatrix=Qmatrix ) summary(mod) ## Not run: ############################################################################# # EXAMPLE 3: PISA reading (data.pisaRead) # using nonparametrically estimated item response functions ############################################################################# data(data.pisaRead) # response data dat <- data.pisaRead$data dat <- dat[, substring( colnames(dat),1,1)=="R" ] # define Q-matrix pars <- data.pisaRead$item Qmatrix <- data.frame( "A0"=1*(pars$ItemFormat=="MC" ), "A1"=1*(pars$ItemFormat=="CR" ) ) # start with estimating the 1PL in order to get person parameters mod <- sirt::rasch.mml2( dat ) theta <- sirt::wle.rasch( dat=dat,b=mod$item$b )$theta # Nonparametric estimation of item response functions mod2 <- sirt::np.dich( dat=dat, theta=theta, thetagrid=seq(-3,3,len=100) ) # LSDM analysis lmod <- sirt::lsdm( data=mod2$estimate, Qmatrix=Qmatrix, theta=mod2$thetagrid) summary(lmod) plot(lmod) ############################################################################# # EXAMPLE 4: Fraction subtraction dataset ############################################################################# data( data.fraction1, package="CDM") data <- data.fraction1$data q.matrix <- data.fraction1$q.matrix #**** # Model 1: 2PL estimation mod1 <- sirt::rasch.mml2( data, est.a=1:nrow(q.matrix) ) # LSDM analysis lmod1 <- sirt::lsdm( b=mod1$item$b, a=mod1$item$a, Qmatrix=q.matrix ) summary(lmod1) #**** # Model 2: 1PL estimation mod2 <- sirt::rasch.mml2(data) # LSDM analysis lmod2 <- sirt::lsdm( b=mod1$item$b, Qmatrix=q.matrix ) summary(lmod2) ############################################################################# # EXAMPLE 5: Dataset LLTM Sonnleitner Reading Comprehension (Sonnleitner, 2008) ############################################################################# # item difficulties Table 7, p. 355 (Sonnleitner, 2008) b <- c(-1.0189,1.6754,-1.0842,-.4457,-1.9419,-1.1513,2.0871,2.4874,-1.659,-1.197,-1.2437, 2.1537,.3301,-.5181,-1.3024,-.8248,-.0278,1.3279,2.1454,-1.55,1.4277,.3301) b <- b[-21] # remove Item 21 # Q-matrix Table 9, p. 357 (Sonnleitner, 2008) Qmatrix <- scan() 1 0 0 0 0 0 0 7 4 0 0 0 0 1 0 0 0 0 0 5 1 0 0 0 1 1 0 1 0 0 0 9 1 0 1 0 1 1 1 0 0 0 0 5 2 0 1 0 1 1 0 0 1 0 0 7 5 1 1 0 1 1 0 0 0 0 0 7 3 0 0 0 0 1 0 0 0 0 2 6 1 0 0 0 0 0 0 0 0 0 2 6 1 0 0 0 1 0 0 0 0 0 1 7 4 1 0 0 0 1 0 0 0 0 0 6 2 1 1 0 0 1 0 0 0 1 0 7 3 1 0 0 0 1 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 1 0 4 1 0 0 1 0 0 0 0 0 0 0 6 1 0 1 1 0 0 1 0 0 0 0 6 3 0 1 1 0 0 0 1 0 0 1 7 5 0 0 1 0 1 0 0 0 0 1 2 2 0 0 1 0 1 1 0 0 0 1 4 1 0 0 1 0 1 0 0 1 0 0 5 1 0 0 1 0 1 0 0 0 0 1 7 2 0 0 1 0 0 0 0 0 1 0 5 1 0 0 1 Qmatrix <- matrix( as.numeric(Qmatrix), nrow=21, ncol=12, byrow=TRUE ) colnames(Qmatrix) <- scan( what="character", nlines=1) pc ic ier inc iui igc ch nro ncro td a t # divide Q-matrix entries by maximum in each column Qmatrix <- round(Qmatrix / matrix(apply(Qmatrix,2,max),21,12,byrow=TRUE),3) # LSDM analysis mod <- sirt::lsdm( b=b, Qmatrix=Qmatrix ) summary(mod) ############################################################################# # EXAMPLE 6: Dataset Dimitrov et al. (2008) ############################################################################# Qmatrix <- scan() 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 Qmatrix <- matrix(Qmatrix, ncol=4, byrow=TRUE) colnames(Qmatrix) <- paste0("A",1:4) rownames(Qmatrix) <- paste0("I",1:9) b <- scan() 0.068 1.095 -0.641 -1.129 -0.061 1.218 1.244 -0.648 -1.146 # estimate model mod <- sirt::lsdm( b=b, Qmatrix=Qmatrix ) summary(mod) plot(mod) ############################################################################# # EXAMPLE 7: Dataset Al-Shamrani & Dimitrov et al. (2017) ############################################################################# I <- 39 # number of items Qmatrix <- scan() 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 Qmatrix <- matrix(Qmatrix, nrow=I, byrow=TRUE) colnames(Qmatrix) <- paste0("A",1:7) rownames(Qmatrix) <- paste0("I",1:I) pars <- scan() 1.952 0.9833 0.1816 1.1053 0.9631 0.1653 1.3904 1.3208 0.2545 0.7391 1.9367 0.2083 2.0833 1.8627 0.1873 1.4139 1.0107 0.2454 0.8274 0.9913 0.2137 1.0338 -0.0068 0.2368 2.4803 0.7939 0.1997 1.4867 1.1705 0.2541 1.4482 1.4176 0.2889 1.0789 0.8062 0.269 1.6258 1.1739 0.1723 1.5995 1.0936 0.2054 1.1814 1.0909 0.2623 2.0389 1.5023 0.2466 1.3636 1.1485 0.2059 1.8468 1.2755 0.192 1.9461 1.4947 0.2001 1.194 0.0889 0.2275 1.2114 0.8925 0.2367 2.0912 0.5961 0.2036 2.5769 1.3014 0.186 1.4554 1.2529 0.2423 1.4919 0.4763 0.2482 2.6787 1.7069 0.1796 1.5611 1.3991 0.2312 1.4353 0.678 0.1851 0.9127 1.3523 0.2525 0.6886 -0.3652 0.207 0.7039 -0.2494 0.2315 1.3683 0.8953 0.2326 1.4992 0.1025 0.2403 1.0727 0.2591 0.2152 1.3854 1.3802 0.2448 0.7748 0.4304 0.184 1.0218 1.8964 0.1949 1.5773 1.8934 0.2231 0.8631 1.4145 0.2132 pars <- matrix(pars, nrow=I, byrow=TRUE) colnames(pars) <- c("a","b","c") rownames(pars) <- paste0("I",1:I) pars <- as.data.frame(pars) #* Model 1: fit LSDM to 3PL curves (as in Al-Shamrani) mod1 <- sirt::lsdm(b=pars$b, a=pars$a, c=pars$c, Qmatrix=Qmatrix) summary(mod1) plot(mod1) #* Model 2: fit LSDM to 2PL curves mod2 <- sirt::lsdm(b=pars$b, a=pars$a, Qmatrix=Qmatrix) summary(mod2) plot(mod2) ## End(Not run)
Local structural equation models (LSEM) are structural equation models (SEM)
which are evaluated for each value of a pre-defined moderator variable
(Hildebrandt et al., 2009, 2016).
As in nonparametric regression models, observations near a focal point - at
which the model is evaluated - obtain higher weights, far distant observations
obtain lower weights. The LSEM can be specified by making use of lavaan syntax.
It is also possible to specify a discretized version of LSEM in which
values of the moderator are grouped and a multiple group SEM is specified.
The LSEM can be tested by employing a permutation test, see
lsem.permutationTest
.
The function lsem.MGM.stepfunctions
outputs stepwise functions
for a multiple group model evaluated at a grid of focal points of the
moderator, specified in moderator.grid
.
The argument pseudo_weights
provides an ad hoc solution to estimate
an LSEM for any model which can be fitted in lavaan.
It is also possible to constrain some of the parameters along the values
of the moderator in a joint estimation approach (est_joint=TRUE
). Parameter
names can be specified which are assumed to be invariant (in par_invariant
).
In addition, linear or quadratic constraints can be imposed on
parameters (par_linear
or par_quadratic
).
Statistical inference in case of joint estimation (but also for separate estimation)
can be conducted via bootstrap using the function lsem.bootstrap
.
Bootstrap at the level of a cluster identifier is allowed (argument cluster
).
lsem.estimate(data, moderator, moderator.grid, lavmodel, type="LSEM", h=1.1, bw=NULL, residualize=TRUE, fit_measures=c("rmsea", "cfi", "tli", "gfi", "srmr"), standardized=FALSE, standardized_type="std.all", lavaan_fct="sem", sufficient_statistics=TRUE, pseudo_weights=0, sampling_weights=NULL, loc_linear_smooth=TRUE, est_joint=FALSE, par_invariant=NULL, par_linear=NULL, par_quadratic=NULL, partable_joint=NULL, pw_linear=1, pw_quadratic=1, pd=TRUE, est_DIF=FALSE, se=NULL, kernel="gaussian", eps=1e-08, verbose=TRUE, ...) ## S3 method for class 'lsem' summary(object, file=NULL, digits=3, ...) ## S3 method for class 'lsem' plot(x, parindex=NULL, ask=TRUE, ci=TRUE, lintrend=TRUE, parsummary=TRUE, ylim=NULL, xlab=NULL, ylab=NULL, main=NULL, digits=3, ...) lsem.MGM.stepfunctions( object, moderator.grid ) # compute local weights lsem_local_weights(data.mod, moderator.grid, h, sampling_weights=NULL, bw=NULL, kernel="gaussian") lsem.bootstrap(object, R=100, verbose=TRUE, cluster=NULL, repl_design=NULL, repl_factor=NULL, use_starting_values=TRUE, n.core=1, cl.type="PSOCK")
lsem.estimate(data, moderator, moderator.grid, lavmodel, type="LSEM", h=1.1, bw=NULL, residualize=TRUE, fit_measures=c("rmsea", "cfi", "tli", "gfi", "srmr"), standardized=FALSE, standardized_type="std.all", lavaan_fct="sem", sufficient_statistics=TRUE, pseudo_weights=0, sampling_weights=NULL, loc_linear_smooth=TRUE, est_joint=FALSE, par_invariant=NULL, par_linear=NULL, par_quadratic=NULL, partable_joint=NULL, pw_linear=1, pw_quadratic=1, pd=TRUE, est_DIF=FALSE, se=NULL, kernel="gaussian", eps=1e-08, verbose=TRUE, ...) ## S3 method for class 'lsem' summary(object, file=NULL, digits=3, ...) ## S3 method for class 'lsem' plot(x, parindex=NULL, ask=TRUE, ci=TRUE, lintrend=TRUE, parsummary=TRUE, ylim=NULL, xlab=NULL, ylab=NULL, main=NULL, digits=3, ...) lsem.MGM.stepfunctions( object, moderator.grid ) # compute local weights lsem_local_weights(data.mod, moderator.grid, h, sampling_weights=NULL, bw=NULL, kernel="gaussian") lsem.bootstrap(object, R=100, verbose=TRUE, cluster=NULL, repl_design=NULL, repl_factor=NULL, use_starting_values=TRUE, n.core=1, cl.type="PSOCK")
data |
Data frame |
moderator |
Variable name of the moderator |
moderator.grid |
Focal points at which the LSEM should be evaluated. If |
lavmodel |
Specified SEM in lavaan. |
type |
Type of estimated model. The default is |
h |
Bandwidth factor |
bw |
Optional bandwidth parameter if |
residualize |
Logical indicating whether a residualization should be applied. |
fit_measures |
Vector with names of fit measures following the labels in lavaan |
standardized |
Optional logical indicating whether
standardized solution should be included as parameters in
the output using the
|
standardized_type |
Type of standardization if |
lavaan_fct |
String whether
|
sufficient_statistics |
Logical whether sufficient statistics of weighted
means and covariances should be used for model fitting. This option
can be set to |
pseudo_weights |
Integer defining a target sample size. Local weights
are multiplied by a factor which is rounded to integers.
This approach is referred as a pseudo weighting approach.
For example, using |
sampling_weights |
Optional vector of sampling weights |
loc_linear_smooth |
Logical indicating whether local linear
smoothing should be used for computing sufficient statistics for
means and covariances. The default is |
est_joint |
Logical indicating whether LSEM should be estimated in a joint estimation approach. This options only works wih continuous data and sufficient statistics. |
par_invariant |
Vector of invariant parameters |
par_linear |
Vector of parameters with linear function |
par_quadratic |
Vector of parameters with quadratic function |
partable_joint |
User-defined parameter table if joint estimation is
used ( |
pw_linear |
Number of segments if piecewise linear estimation of parameters is used |
pw_quadratic |
Number of segments if piecewise quadratic estimation of parameters is used |
pd |
Logical indicating whether nearest positive definite covariance matrix should be computed if sufficient statistics are used |
est_DIF |
Logical indicating whether parameters under differential item functioning (DIF) should be additionally computed for invariant item parameters |
se |
Type of standard error used in |
kernel |
Type of kernel function. Can be |
eps |
Minimum number for weights |
verbose |
Optional logical printing information about computation progress. |
object |
Object of class |
file |
A file name in which the summary output will be written. |
digits |
Number of digits. |
x |
Object of class |
parindex |
Vector of indices for parameters in plot function. |
ask |
A logical which asks for changing the graphic for each parameter. |
ci |
Logical indicating whether confidence intervals should be plotted. |
lintrend |
Logical indicating whether a linear trend should be plotted. |
parsummary |
Logical indicating whether a parameter summary should be displayed. |
ylim |
Plot parameter |
xlab |
Plot parameter |
ylab |
Plot parameter |
main |
Plot parameter |
... |
Further arguments to be passed to |
data.mod |
Observed values of the moderator |
R |
Number of bootstrap samples |
cluster |
Optional variable name for bootstrap at the level of a cluster identifier |
repl_design |
Optional matrix containing replication weights for computation of
standard errors. Note that sampling weights have to be already included in
|
repl_factor |
Replication factor in variance formula for statistical inference, e.g., 0.05 in PISA. |
use_starting_values |
Logical indicating whether starting values should be used from the original sample |
n.core |
A scalar indicating the number of cores that should be used. |
cl.type |
The cluster type.
Default value is |
List with following entries
parameters |
Data frame with all parameters estimated at focal points of
moderator. Bias-corrected estimates under boostrap can be found in
the column |
weights |
Data frame with weights at each focal point |
parameters_summary |
Summary table for estimated parameters |
parametersM |
Estimated parameters in matrix form. Parameters are in columns and values of the grid of the moderator are in rows. |
bw |
Used bandwidth |
h |
Used bandwidth factor |
N |
Sample size |
moderator.density |
Estimated frequencies and effective sample size for moderator at focal points |
moderator.stat |
Descriptive statistics for moderator |
moderator |
Variable name of moderator |
moderator.grid |
Used grid of focal points for moderator |
moderator.grouped |
Data frame with informations about grouping of
moderator if |
residualized.intercepts |
Estimated intercept functions used for residualization. |
lavmodel |
Used lavaan model |
data |
Used data frame, possibly residualized if |
model_parameters |
Model parameters in LSEM |
parameters_boot |
Parameter values in each bootstrap sample
(for |
fitstats_joint_boot |
Fit statistics in each bootstrap sample
(for |
dif_effects |
Estimated item parameters under DIF |
Alexander Robitzsch, Oliver Luedtke, Andrea Hildebrandt
Hildebrandt, A., Luedtke, O., Robitzsch, A., Sommer, C., & Wilhelm, O. (2016). Exploring factor model parameters across continuous variables with local structural equation models. Multivariate Behavioral Research, 51(2-3), 257-278. doi:10.1080/00273171.2016.1142856
Hildebrandt, A., Wilhelm, O., & Robitzsch, A. (2009). Complementary and competing factor analytic approaches for the investigation of measurement invariance. Review of Psychology, 16, 87-102.
See lsem.permutationTest
for conducting a permutation test
and lsem.test
for applying a Wald test to a bootstrapped LSEM model.
## Not run: ############################################################################# # EXAMPLE 1: data.lsem01 | Age differentiation ############################################################################# data(data.lsem01, package="sirt") dat <- data.lsem01 # specify lavaan model lavmodel <- " F=~ v1+v2+v3+v4+v5 F ~~ 1*F" # define grid of moderator variable age moderator.grid <- seq(4,23,1) #******************************** #*** Model 1: estimate LSEM with bandwidth 2 mod1 <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, std.lv=TRUE) summary(mod1) plot(mod1, parindex=1:5) # perform permutation test for Model 1 pmod1 <- sirt::lsem.permutationTest( mod1, B=10 ) # only for illustrative purposes the number of permutations B is set # to a low number of 10 summary(pmod1) plot(pmod1, type="global") #* perform permutation test with parallel computation pmod1a <- sirt::lsem.permutationTest( mod1, B=10, n.core=3 ) summary(pmod1a) #** estimate Model 1 based on pseudo weights mod1b <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, std.lv=TRUE, pseudo_weights=50 ) summary(mod1b) #** estimation with sampling weights # generate random sampling weights set.seed(987) weights <- stats::runif(nrow(dat), min=.4, max=3 ) mod1c <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, sampling_weights=weights) summary(mod1c) #******************************** #*** Model 2: estimate multiple group model with 4 age groups # define breaks for age groups moderator.grid <- seq( 3.5, 23.5, len=5) # 4 groups # estimate model mod2 <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, type="MGM", std.lv=TRUE) summary(mod2) # output step functions smod2 <- sirt::lsem.MGM.stepfunctions( object=mod2, moderator.grid=seq(4,23,1) ) str(smod2) #******************************** #*** Model 3: define standardized loadings as derived variables # specify lavaan model lavmodel <- " F=~ a1*v1+a2*v2+a3*v3+a4*v4 v1 ~~ s1*v1 v2 ~~ s2*v2 v3 ~~ s3*v3 v4 ~~ s4*v4 F ~~ 1*F # standardized loadings l1 :=a1 / sqrt(a1^2 + s1 ) l2 :=a2 / sqrt(a2^2 + s2 ) l3 :=a3 / sqrt(a3^2 + s3 ) l4 :=a4 / sqrt(a4^2 + s4 ) " # estimate model mod3 <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, std.lv=TRUE) summary(mod3) plot(mod3) #******************************** #*** Model 4: estimate LSEM and automatically include standardized solutions lavmodel <- " F=~ 1*v1+v2+v3+v4 F ~~ F" mod4 <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, standardized=TRUE) summary(mod4) # permutation test (use only few permutations for testing purposes) pmod1 <- sirt::lsem.permutationTest( mod4, B=3 ) #**** compute LSEM local weights wgt <- sirt::lsem_local_weights(data.mod=dat$age, moderator.grid=moderator.grid, h=2)$weights print(str(weights)) #******************************** #*** Model 5: invariance parameter constraints and other constraints lavmodel <- " F=~ 1*v1+v2+v3+v4 F ~~ F" moderator.grid <- seq(4,23,4) #- estimate model without constraints mod5a <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, standardized=TRUE) summary(mod5a) # extract parameter names mod5a$model_parameters #- invariance constraints on residual variances par_invariant <- c("F=~v2","v2~~v2") mod5b <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, standardized=TRUE, par_invariant=par_invariant) summary(mod5b) #- bootstrap for statistical inference bmod5b <- sirt::lsem.bootstrap(mod5b, R=100) # inspect parameter values and standard errors bmod5b$parameters #- bootstrap using parallel computing (i.e., multiple cores) bmod5ba <- sirt::lsem.bootstrap(mod5b, R=100, n.core=3) #- user-defined replication design R <- 100 # bootstrap samples N <- nrow(dat) repl_design <- matrix(0, nrow=N, ncol=R) for (rr in 1:R){ indices <- sort( sample(1:N, replace=TRUE) ) repl_design[,rr] <- sapply(1:N, FUN=function(ii){ sum(indices==ii) } ) } head(repl_design) bmod5b1 <- sirt::lsem.bootstrap(mod5a, repl_design=repl_design, repl_factor=1/R) #- compare model mod5b with joint estimation without constraints mod5c <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, standardized=TRUE, est_joint=TRUE) summary(mod5c) #- linear and quadratic functions par_invariant <- c("F=~v1","v2~~v2") par_linear <- c("v1~~v1") par_quadratic <- c("v4~~v4") mod5d <- sirt::lsem.estimate( dat1, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, par_invariant=par_invariant, par_linear=par_linear, par_quadratic=par_quadratic) summary(mod5d) #- user-defined constraints: step functions for parameters # inspect parameter table (from lavaan) of fitted model pj <- mod5d$partable_joint #* modify parameter table for user-defined constraints # define step function for F=~v1 which is constant on intervals 1:4 and 5:7 pj2 <- pj[ pj$con==1, ] pj2[ c(5,6), "lhs" ] <- "p1g5" pj2 <- pj2[ -4, ] partable_joint <- rbind(pj1, pj2) # estimate model with constraints mod5e <- lsem::lsem.estimate( dat1, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, std.lv=TRUE, estimator="ML", partable_joint=partable_joint) summary(mod5e) ############################################################################# # EXAMPLE 2: data.lsem01 | FIML with missing data ############################################################################# data(data.lsem01) dat <- data.lsem01 # induce artifical missing values set.seed(98) dat[ stats::runif(nrow(dat)) < .5, c("v1")] <- NA dat[ stats::runif(nrow(dat)) < .25, c("v2")] <- NA # specify lavaan model lavmodel1 <- " F=~ v1+v2+v3+v4+v5 F ~~ 1*F" # define grid of moderator variable age moderator.grid <- seq(4,23,2) #*** estimate LSEM with FIML mod1 <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel1, h=2, std.lv=TRUE, estimator="ML", missing="fiml") summary(mod1) ############################################################################# # EXAMPLE 3: data.lsem01 | WLSMV estimation ############################################################################# data(data.lsem01) dat <- data.lsem01 # create artificial dichotomous data for (vv in 2:6){ dat[,vv] <- 1*(dat[,vv] > mean(dat[,vv])) } # specify lavaan model lavmodel1 <- " F=~ v1+v2+v3+v4+v5 F ~~ 1*F v1 | t1 v2 | t1 v3 | t1 v4 | t1 v5 | t1 " # define grid of moderator variable age moderator.grid <- seq(4,23,2) #*** local WLSMV estimation mod1 <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel1, h=2, std.lv=TRUE, estimator="DWLS", ordered=paste0("v",1:5), residualize=FALSE, pseudo_weights=10000, parameterization="THETA" ) summary(mod1) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: data.lsem01 | Age differentiation ############################################################################# data(data.lsem01, package="sirt") dat <- data.lsem01 # specify lavaan model lavmodel <- " F=~ v1+v2+v3+v4+v5 F ~~ 1*F" # define grid of moderator variable age moderator.grid <- seq(4,23,1) #******************************** #*** Model 1: estimate LSEM with bandwidth 2 mod1 <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, std.lv=TRUE) summary(mod1) plot(mod1, parindex=1:5) # perform permutation test for Model 1 pmod1 <- sirt::lsem.permutationTest( mod1, B=10 ) # only for illustrative purposes the number of permutations B is set # to a low number of 10 summary(pmod1) plot(pmod1, type="global") #* perform permutation test with parallel computation pmod1a <- sirt::lsem.permutationTest( mod1, B=10, n.core=3 ) summary(pmod1a) #** estimate Model 1 based on pseudo weights mod1b <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, std.lv=TRUE, pseudo_weights=50 ) summary(mod1b) #** estimation with sampling weights # generate random sampling weights set.seed(987) weights <- stats::runif(nrow(dat), min=.4, max=3 ) mod1c <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, sampling_weights=weights) summary(mod1c) #******************************** #*** Model 2: estimate multiple group model with 4 age groups # define breaks for age groups moderator.grid <- seq( 3.5, 23.5, len=5) # 4 groups # estimate model mod2 <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, type="MGM", std.lv=TRUE) summary(mod2) # output step functions smod2 <- sirt::lsem.MGM.stepfunctions( object=mod2, moderator.grid=seq(4,23,1) ) str(smod2) #******************************** #*** Model 3: define standardized loadings as derived variables # specify lavaan model lavmodel <- " F=~ a1*v1+a2*v2+a3*v3+a4*v4 v1 ~~ s1*v1 v2 ~~ s2*v2 v3 ~~ s3*v3 v4 ~~ s4*v4 F ~~ 1*F # standardized loadings l1 :=a1 / sqrt(a1^2 + s1 ) l2 :=a2 / sqrt(a2^2 + s2 ) l3 :=a3 / sqrt(a3^2 + s3 ) l4 :=a4 / sqrt(a4^2 + s4 ) " # estimate model mod3 <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, std.lv=TRUE) summary(mod3) plot(mod3) #******************************** #*** Model 4: estimate LSEM and automatically include standardized solutions lavmodel <- " F=~ 1*v1+v2+v3+v4 F ~~ F" mod4 <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, standardized=TRUE) summary(mod4) # permutation test (use only few permutations for testing purposes) pmod1 <- sirt::lsem.permutationTest( mod4, B=3 ) #**** compute LSEM local weights wgt <- sirt::lsem_local_weights(data.mod=dat$age, moderator.grid=moderator.grid, h=2)$weights print(str(weights)) #******************************** #*** Model 5: invariance parameter constraints and other constraints lavmodel <- " F=~ 1*v1+v2+v3+v4 F ~~ F" moderator.grid <- seq(4,23,4) #- estimate model without constraints mod5a <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, standardized=TRUE) summary(mod5a) # extract parameter names mod5a$model_parameters #- invariance constraints on residual variances par_invariant <- c("F=~v2","v2~~v2") mod5b <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, standardized=TRUE, par_invariant=par_invariant) summary(mod5b) #- bootstrap for statistical inference bmod5b <- sirt::lsem.bootstrap(mod5b, R=100) # inspect parameter values and standard errors bmod5b$parameters #- bootstrap using parallel computing (i.e., multiple cores) bmod5ba <- sirt::lsem.bootstrap(mod5b, R=100, n.core=3) #- user-defined replication design R <- 100 # bootstrap samples N <- nrow(dat) repl_design <- matrix(0, nrow=N, ncol=R) for (rr in 1:R){ indices <- sort( sample(1:N, replace=TRUE) ) repl_design[,rr] <- sapply(1:N, FUN=function(ii){ sum(indices==ii) } ) } head(repl_design) bmod5b1 <- sirt::lsem.bootstrap(mod5a, repl_design=repl_design, repl_factor=1/R) #- compare model mod5b with joint estimation without constraints mod5c <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, standardized=TRUE, est_joint=TRUE) summary(mod5c) #- linear and quadratic functions par_invariant <- c("F=~v1","v2~~v2") par_linear <- c("v1~~v1") par_quadratic <- c("v4~~v4") mod5d <- sirt::lsem.estimate( dat1, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, par_invariant=par_invariant, par_linear=par_linear, par_quadratic=par_quadratic) summary(mod5d) #- user-defined constraints: step functions for parameters # inspect parameter table (from lavaan) of fitted model pj <- mod5d$partable_joint #* modify parameter table for user-defined constraints # define step function for F=~v1 which is constant on intervals 1:4 and 5:7 pj2 <- pj[ pj$con==1, ] pj2[ c(5,6), "lhs" ] <- "p1g5" pj2 <- pj2[ -4, ] partable_joint <- rbind(pj1, pj2) # estimate model with constraints mod5e <- lsem::lsem.estimate( dat1, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, std.lv=TRUE, estimator="ML", partable_joint=partable_joint) summary(mod5e) ############################################################################# # EXAMPLE 2: data.lsem01 | FIML with missing data ############################################################################# data(data.lsem01) dat <- data.lsem01 # induce artifical missing values set.seed(98) dat[ stats::runif(nrow(dat)) < .5, c("v1")] <- NA dat[ stats::runif(nrow(dat)) < .25, c("v2")] <- NA # specify lavaan model lavmodel1 <- " F=~ v1+v2+v3+v4+v5 F ~~ 1*F" # define grid of moderator variable age moderator.grid <- seq(4,23,2) #*** estimate LSEM with FIML mod1 <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel1, h=2, std.lv=TRUE, estimator="ML", missing="fiml") summary(mod1) ############################################################################# # EXAMPLE 3: data.lsem01 | WLSMV estimation ############################################################################# data(data.lsem01) dat <- data.lsem01 # create artificial dichotomous data for (vv in 2:6){ dat[,vv] <- 1*(dat[,vv] > mean(dat[,vv])) } # specify lavaan model lavmodel1 <- " F=~ v1+v2+v3+v4+v5 F ~~ 1*F v1 | t1 v2 | t1 v3 | t1 v4 | t1 v5 | t1 " # define grid of moderator variable age moderator.grid <- seq(4,23,2) #*** local WLSMV estimation mod1 <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel1, h=2, std.lv=TRUE, estimator="DWLS", ordered=paste0("v",1:5), residualize=FALSE, pseudo_weights=10000, parameterization="THETA" ) summary(mod1) ## End(Not run)
Performs a permutation test for testing the hypothesis that model parameter are independent of a moderator variable (see Hildebrandt, Wilhelm, & Robitzsch, 2009; Hildebrandt, Luedtke, Robitzsch, Sommer, & Wilhelm, 2016).
lsem.permutationTest(lsem.object, B=1000, residualize=TRUE, verbose=TRUE, n.core=1, cl.type="PSOCK") ## S3 method for class 'lsem.permutationTest' summary(object, file=NULL, digits=3, ...) ## S3 method for class 'lsem.permutationTest' plot(x, type="global", stattype="SD", parindex=NULL, sig_add=TRUE, sig_level=0.05, sig_pch=17, nonsig_pch=2, sig_cex=1, sig_lab="p value", stat_lab="Test statistic", moderator_lab=NULL, digits=3, title=NULL, parlabels=NULL, ask=TRUE, ...)
lsem.permutationTest(lsem.object, B=1000, residualize=TRUE, verbose=TRUE, n.core=1, cl.type="PSOCK") ## S3 method for class 'lsem.permutationTest' summary(object, file=NULL, digits=3, ...) ## S3 method for class 'lsem.permutationTest' plot(x, type="global", stattype="SD", parindex=NULL, sig_add=TRUE, sig_level=0.05, sig_pch=17, nonsig_pch=2, sig_cex=1, sig_lab="p value", stat_lab="Test statistic", moderator_lab=NULL, digits=3, title=NULL, parlabels=NULL, ask=TRUE, ...)
lsem.object |
Fitted object of class |
B |
Number of permutation samples |
residualize |
Optional logical indicating whether residualization of the moderator should be performed for each permutation sample. |
verbose |
Optional logical printing information about computation progress. |
n.core |
A scalar indicating the number of cores that should be used. |
cl.type |
The cluster type.
Default value is |
object |
Object of class |
file |
A file name in which the summary output will be written. |
digits |
Number of digits. |
... |
Further arguments to be passed. |
x |
Object of class |
type |
Type of the statistic to be plotted. If |
stattype |
Type of test statistics. Can be |
parindex |
Vector of indices of selected parameters. |
sig_add |
Logical indicating whether significance values (p values) should be displayed. |
sig_level |
Significance level. |
sig_pch |
Point symbol for significant values. |
nonsig_pch |
Point symbol for non-significant values. |
sig_cex |
Point size for graphic displaying p values |
sig_lab |
Label for significance value (p value). |
stat_lab |
Label of y axis for graphic with pointwise test statistic |
moderator_lab |
Label of the moderator. |
title |
Title of the plot. Can be a vector. |
parlabels |
Labels of the parameters. Can be a vector. |
ask |
A logical which asks for changing the graphic for each parameter. |
List with following entries
teststat |
Data frame with global test statistics. The statistics
are |
parameters_pointwise_test |
Data frame with pointwise test statistics. |
parameters |
Original parameters. |
parameters |
Parameters in permutation samples. |
parameters_summary |
Original parameter summary. |
parameters_summary_M |
Mean of each parameter in permutation sample. |
parameters_summary_SD |
Standard deviation (SD) statistic in permutation slope. |
parameters_summary_MAD |
Mean absolute deviation (MAD) statistic in permutation sample. |
parameters_summary_MAD |
Linear slope parameter in permutation sample. |
nonconverged_rate |
Percentage of permuted dataset in which a LSEM model did not converge |
Alexander Robitzsch, Oliver Luedtke, Andrea Hildebrandt
Hildebrandt, A., Luedtke, O., Robitzsch, A., Sommer, C., & Wilhelm, O. (2016). Exploring factor model parameters across continuous variables with local structural equation models. Multivariate Behavioral Research, 51(2-3), 257-278. doi:10.1080/00273171.2016.1142856
Hildebrandt, A., Wilhelm, O., & Robitzsch, A. (2009). Complementary and competing factor analytic approaches for the investigation of measurement invariance. Review of Psychology, 16, 87-102.
For Examples see lsem.estimate
.
Performs global and parameter tests for a fitted local structural equation model.
The LSEM must have been fitted and bootstrap estimates of the LSEM model must be
available for statistical inference. The hypothesis of a constant parameter is tested
by means of a Wald test. Moreover, regression functions can be specified and tested
if these are specified in the argument models
.
lsem.test(mod, bmod, models=NULL)
lsem.test(mod, bmod, models=NULL)
mod |
Fitted LSEM object |
bmod |
Fitted LSEM bootstrap object. The argument |
models |
List of model formulas for named LSEM model parameters |
List with following entries
wald_test_global |
Global Wald test for model parameters |
test_models |
Output for fitted regression models |
parameters |
Original model parameters after fitting (i.e., smoothing) a particular
parameter using a regression model specified in |
parameters_boot |
Bootstrapped model parameters after fitting (i.e., smoothing)
a particular parameter using a regression model specified in |
See also lsem.estimate
for estimating LSEM models and
lsem.bootstrap
for bootstrapping LSEM models.
## Not run: ############################################################################# # EXAMPLE 1: data.lsem01 | Age differentiation and tested models ############################################################################# data(data.lsem01, package="sirt") dat <- data.lsem01 # specify lavaan model lavmodel <- " F=~ v1+v2+v3+v4+v5 F ~~ 1*F " # define grid of moderator variable age moderator.grid <- seq(4,23,1) #-- estimate LSEM with bandwidth 2 mod <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, std.lv=TRUE) summary(mod1) #-- bootstrap model bmod <- sirt::lsem.bootstrap(mod, R=200) #-- test models models <- list( "F=~v1"=y ~ m + I(m^2), "F=~v2"=y ~ I( splines::bs(m, df=4) ) ) tmod <- sirt::lsem.test(mod=mod, bmod=bmod, models=models) str(tmod) sirt::print_digits(wald_test_global, 3) sirt::print_digits(test_models, 3) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: data.lsem01 | Age differentiation and tested models ############################################################################# data(data.lsem01, package="sirt") dat <- data.lsem01 # specify lavaan model lavmodel <- " F=~ v1+v2+v3+v4+v5 F ~~ 1*F " # define grid of moderator variable age moderator.grid <- seq(4,23,1) #-- estimate LSEM with bandwidth 2 mod <- sirt::lsem.estimate( dat, moderator="age", moderator.grid=moderator.grid, lavmodel=lavmodel, h=2, std.lv=TRUE) summary(mod1) #-- bootstrap model bmod <- sirt::lsem.bootstrap(mod, R=200) #-- test models models <- list( "F=~v1"=y ~ m + I(m^2), "F=~v2"=y ~ I( splines::bs(m, df=4) ) ) tmod <- sirt::lsem.test(mod=mod, bmod=bmod, models=models) str(tmod) sirt::print_digits(wald_test_global, 3) sirt::print_digits(test_models, 3) ## End(Not run)
This function computes the marginal true-score reliability for
dichotomous data (Dimitrov, 2003; May & Nicewander, 1994) for
the four-parameter logistic item response model
(see rasch.mml2
for details regarding this IRT model).
marginal.truescore.reliability(b, a=1+0*b,c=0*b,d=1+0*b, mean.trait=0, sd.trait=1, theta.k=seq(-6,6,len=200) )
marginal.truescore.reliability(b, a=1+0*b,c=0*b,d=1+0*b, mean.trait=0, sd.trait=1, theta.k=seq(-6,6,len=200) )
b |
Vector of item difficulties |
a |
Vector of item discriminations |
c |
Vector of guessing parameters |
d |
Vector of upper asymptotes |
mean.trait |
Mean of trait distribution |
sd.trait |
Standard deviation of trait distribution |
theta.k |
Grid at which the trait distribution should be evaluated |
A list with following entries:
rel.test |
Reliability of the test |
item |
True score variance ( |
pi |
Average proportion correct for all items and persons |
sig2.tau |
True score variance |
sig2.error |
Error variance |
Dimitrov, D. (2003). Marginal true-score measures and reliability for binary items as a function of their IRT parameters. Applied Psychological Measurement, 27, 440-458.
May, K., & Nicewander, W. A. (1994). Reliability and information functions for percentile ranks. Journal of Educational Measurement, 31, 313-325.
See greenyang.reliability
for calculating the reliability
for multidimensional measures.
############################################################################# # EXAMPLE 1: Dimitrov (2003) Table 1 - 2PL model ############################################################################# # item discriminations a <- 1.7*c(0.449,0.402,0.232,0.240,0.610,0.551,0.371,0.321,0.403,0.434,0.459, 0.410,0.302,0.343,0.225,0.215,0.487,0.608,0.341,0.465) # item difficulties b <- c( -2.554,-2.161,-1.551,-1.226,-0.127,-0.855,-0.568,-0.277,-0.017, 0.294,0.532,0.773,1.004,1.250,1.562,1.385,2.312,2.650,2.712,3.000 ) marginal.truescore.reliability( b=b, a=a ) ## Reliability=0.606 ############################################################################# # EXAMPLE 2: Dimitrov (2003) Table 2 # 3PL model: Poetry items (4 items) ############################################################################# # slopes, difficulties and guessing parameters a <- 1.7*c(1.169,0.724,0.554,0.706 ) b <- c(0.468,-1.541,-0.042,0.698 ) c <- c(0.159,0.211,0.197,0.177 ) res <- sirt::marginal.truescore.reliability( b=b, a=a, c=c) ## Reliability=0.403 ## > round( res$item, 3 ) ## item pi sig2.tau sig2.error rel.item ## 1 1 0.463 0.063 0.186 0.252 ## 2 2 0.855 0.017 0.107 0.135 ## 3 3 0.605 0.026 0.213 0.107 ## 4 4 0.459 0.032 0.216 0.130 ############################################################################# # EXAMPLE 3: Reading Data ############################################################################# data( data.read) #*** # Model 1: 1PL mod <- sirt::rasch.mml2( data.read ) marginal.truescore.reliability( b=mod$item$b ) ## Reliability=0.653 #*** # Model 2: 2PL mod <- sirt::rasch.mml2( data.read, est.a=1:12 ) marginal.truescore.reliability( b=mod$item$b, a=mod$item$a) ## Reliability=0.696 ## Not run: # compare results with Cronbach's alpha and McDonald's omega # posing a 'wrong model' for normally distributed data library(psych) psych::omega(dat, nfactors=1) # 1 factor ## Omega_h for 1 factor is not meaningful, just omega_t ## Omega ## Call: omega(m=dat, nfactors=1) ## Alpha: 0.69 ## G.6: 0.7 ## Omega Hierarchical: 0.66 ## Omega H asymptotic: 0.95 ## Omega Total 0.69 ##! Note that alpha in psych is the standardized one. ## End(Not run)
############################################################################# # EXAMPLE 1: Dimitrov (2003) Table 1 - 2PL model ############################################################################# # item discriminations a <- 1.7*c(0.449,0.402,0.232,0.240,0.610,0.551,0.371,0.321,0.403,0.434,0.459, 0.410,0.302,0.343,0.225,0.215,0.487,0.608,0.341,0.465) # item difficulties b <- c( -2.554,-2.161,-1.551,-1.226,-0.127,-0.855,-0.568,-0.277,-0.017, 0.294,0.532,0.773,1.004,1.250,1.562,1.385,2.312,2.650,2.712,3.000 ) marginal.truescore.reliability( b=b, a=a ) ## Reliability=0.606 ############################################################################# # EXAMPLE 2: Dimitrov (2003) Table 2 # 3PL model: Poetry items (4 items) ############################################################################# # slopes, difficulties and guessing parameters a <- 1.7*c(1.169,0.724,0.554,0.706 ) b <- c(0.468,-1.541,-0.042,0.698 ) c <- c(0.159,0.211,0.197,0.177 ) res <- sirt::marginal.truescore.reliability( b=b, a=a, c=c) ## Reliability=0.403 ## > round( res$item, 3 ) ## item pi sig2.tau sig2.error rel.item ## 1 1 0.463 0.063 0.186 0.252 ## 2 2 0.855 0.017 0.107 0.135 ## 3 3 0.605 0.026 0.213 0.107 ## 4 4 0.459 0.032 0.216 0.130 ############################################################################# # EXAMPLE 3: Reading Data ############################################################################# data( data.read) #*** # Model 1: 1PL mod <- sirt::rasch.mml2( data.read ) marginal.truescore.reliability( b=mod$item$b ) ## Reliability=0.653 #*** # Model 2: 2PL mod <- sirt::rasch.mml2( data.read, est.a=1:12 ) marginal.truescore.reliability( b=mod$item$b, a=mod$item$a) ## Reliability=0.696 ## Not run: # compare results with Cronbach's alpha and McDonald's omega # posing a 'wrong model' for normally distributed data library(psych) psych::omega(dat, nfactors=1) # 1 factor ## Omega_h for 1 factor is not meaningful, just omega_t ## Omega ## Call: omega(m=dat, nfactors=1) ## Alpha: 0.69 ## G.6: 0.7 ## Omega Hierarchical: 0.66 ## Omega H asymptotic: 0.95 ## Omega Total 0.69 ##! Note that alpha in psych is the standardized one. ## End(Not run)
Some matrix functions which are written in Rcpp for speed reasons.
rowMaxs.sirt(matr) # rowwise maximum rowMins.sirt(matr) # rowwise minimum rowCumsums.sirt(matr) # rowwise cumulative sum colCumsums.sirt(matr) # columnwise cumulative sum rowIntervalIndex.sirt(matr,rn) # first index in row nn when matr(nn,zz) > rn(nn) rowKSmallest.sirt(matr, K, break.ties=TRUE) # k smallest elements in a row rowKSmallest2.sirt(matr, K )
rowMaxs.sirt(matr) # rowwise maximum rowMins.sirt(matr) # rowwise minimum rowCumsums.sirt(matr) # rowwise cumulative sum colCumsums.sirt(matr) # columnwise cumulative sum rowIntervalIndex.sirt(matr,rn) # first index in row nn when matr(nn,zz) > rn(nn) rowKSmallest.sirt(matr, K, break.ties=TRUE) # k smallest elements in a row rowKSmallest2.sirt(matr, K )
matr |
A numeric matrix |
rn |
A vector, usually a random number in applications |
K |
An integer indicating the number of smallest elements to be extracted |
break.ties |
A logical which indicates if ties are randomly
broken. The default is |
The function rowIntervalIndex.sirt
searches for all rows n
the first index i
for which matr(n,i) > rn(n)
holds.
The functions rowKSmallest.sirt
and rowKSmallest2.sirt
extract the smallest entries in a matrix row. For small
numbers of
the function
rowKSmallest2.sirt
is
the faster one.
The output of rowMaxs.sirt
is a list with the elements
maxval
(rowwise maximum values) and maxind
(rowwise
maximum indices). The output of rowMins.sirt
contains
corresponding minimum values with entries minval
and
minind
.
The output of rowKSmallest.sirt
are two matrices:
smallval
contains the smallest values whereas
smallind
contains the smallest indices.
Alexander Robitzsch
The Rcpp code for rowCumsums.sirt
is copied from code of
Romain Francois
(https://lists.r-forge.r-project.org/pipermail/rcpp-devel/2010-October/001198.html).
For other matrix functions see the matrixStats package.
############################################################################# # EXAMPLE 1: a small toy example (I) ############################################################################# set.seed(789) N1 <- 10 ; N2 <- 4 M1 <- round( matrix( runif(N1*N2), nrow=N1, ncol=N2), 1 ) rowMaxs.sirt(M1) # rowwise maximum rowMins.sirt(M1) # rowwise minimum rowCumsums.sirt(M1) # rowwise cumulative sum # row index for exceeding a certain threshold value matr <- M1 matr <- matr / rowSums( matr ) matr <- sirt::rowCumsums.sirt( matr ) rn <- runif(N1) # generate random numbers rowIntervalIndex.sirt(matr,rn) # select the two smallest values rowKSmallest.sirt(matr=M1, K=2) rowKSmallest2.sirt(matr=M1, K=2)
############################################################################# # EXAMPLE 1: a small toy example (I) ############################################################################# set.seed(789) N1 <- 10 ; N2 <- 4 M1 <- round( matrix( runif(N1*N2), nrow=N1, ncol=N2), 1 ) rowMaxs.sirt(M1) # rowwise maximum rowMins.sirt(M1) # rowwise minimum rowCumsums.sirt(M1) # rowwise cumulative sum # row index for exceeding a certain threshold value matr <- M1 matr <- matr / rowSums( matr ) matr <- sirt::rowCumsums.sirt( matr ) rn <- runif(N1) # generate random numbers rowIntervalIndex.sirt(matr,rn) # select the two smallest values rowKSmallest.sirt(matr=M1, K=2) rowKSmallest2.sirt(matr=M1, K=2)
mcmc.list
Some methods for objects of class mcmc.list
created
from the coda package.
## coefficients mcmc_coef(mcmcobj, exclude="deviance") ## covariance matrix mcmc_vcov(mcmcobj, exclude="deviance") ## confidence interval mcmc_confint( mcmcobj, parm, level=.95, exclude="deviance" ) ## summary function mcmc_summary( mcmcobj, quantiles=c(.025,.05,.50,.95,.975) ) ## plot function mcmc_plot(mcmcobj, ...) ## inclusion of derived parameters in mcmc object mcmc_derivedPars( mcmcobj, derivedPars ) ## Wald test for parameters mcmc_WaldTest( mcmcobj, hypotheses ) ## S3 method for class 'mcmc_WaldTest' summary(object, digits=3, ...)
## coefficients mcmc_coef(mcmcobj, exclude="deviance") ## covariance matrix mcmc_vcov(mcmcobj, exclude="deviance") ## confidence interval mcmc_confint( mcmcobj, parm, level=.95, exclude="deviance" ) ## summary function mcmc_summary( mcmcobj, quantiles=c(.025,.05,.50,.95,.975) ) ## plot function mcmc_plot(mcmcobj, ...) ## inclusion of derived parameters in mcmc object mcmc_derivedPars( mcmcobj, derivedPars ) ## Wald test for parameters mcmc_WaldTest( mcmcobj, hypotheses ) ## S3 method for class 'mcmc_WaldTest' summary(object, digits=3, ...)
mcmcobj |
Objects of class |
exclude |
Vector of parameters which should be excluded in calculations |
parm |
Optional vector of parameters |
level |
Confidence level |
quantiles |
Vector of quantiles to be computed. |
... |
Parameters to be passed to |
derivedPars |
List with derived parameters (see examples). |
hypotheses |
List with hypotheses of the form
|
object |
Object of class |
digits |
Number of digits used for rounding. |
## Not run: ############################################################################# # EXAMPLE 1: Logistic regression in rcppbugs package ############################################################################# #*************************************** # (1) simulate data set.seed(8765) N <- 500 x1 <- stats::rnorm(N) x2 <- stats::rnorm(N) y <- 1*( stats::plogis( -.6 + .7*x1 + 1.1 *x2 ) > stats::runif(N) ) #*************************************** # (2) estimate logistic regression with glm mod <- stats::glm( y ~ x1 + x2, family="binomial" ) summary(mod) #*************************************** # (3) estimate model with rcppbugs package library(rcppbugs) b <- rcppbugs::mcmc.normal( stats::rnorm(3),mu=0,tau=0.0001) y.hat <- rcppbugs::deterministic( function(x1,x2,b){ stats::plogis( b[1] + b[2]*x1 + b[3]*x2 ) }, x1, x2, b) y.lik <- rcppbugs::mcmc.bernoulli( y, p=y.hat, observed=TRUE) model <- rcppbugs::create.model(b, y.hat, y.lik) #*** estimate model in rcppbugs; 5000 iterations, 1000 burnin iterations n.burnin <- 500 ; n.iter <- 2000 ; thin <- 2 ans <- rcppbugs::run.model(model, iterations=n.iter, burn=n.burnin, adapt=200, thin=thin) print(rcppbugs::get.ar(ans)) # get acceptance rate print(apply(ans[["b"]],2,mean)) # get means of posterior #*** convert rcppbugs into mcmclist object mcmcobj <- data.frame( ans$b ) colnames(mcmcobj) <- paste0("b",1:3) mcmcobj <- as.matrix(mcmcobj) class(mcmcobj) <- "mcmc" attr(mcmcobj, "mcpar") <- c( n.burnin+1, n.iter, thin ) mcmcobj <- coda::mcmc( mcmcobj ) # coefficients, variance covariance matrix and confidence interval mcmc_coef(mcmcobj) mcmc_vcov(mcmcobj) mcmc_confint( mcmcobj, level=.90 ) # summary and plot mcmc_summary(mcmcobj) mcmc_plot(mcmcobj, ask=TRUE) # include derived parameters in mcmc object derivedPars <- list( "diff12"=~ I(b2-b1), "diff13"=~ I(b3-b1) ) mcmcobj2 <- sirt::mcmc_derivedPars(mcmcobj, derivedPars=derivedPars ) mcmc_summary(mcmcobj2) #*** Wald test for parameters # hyp1: b2 - 0.5=0 # hyp2: b2 * b3=0 hypotheses <- list( "hyp1"=~ I( b2 - .5 ), "hyp2"=~ I( b2*b3 ) ) test1 <- sirt::mcmc_WaldTest( mcmcobj, hypotheses=hypotheses ) summary(test1) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Logistic regression in rcppbugs package ############################################################################# #*************************************** # (1) simulate data set.seed(8765) N <- 500 x1 <- stats::rnorm(N) x2 <- stats::rnorm(N) y <- 1*( stats::plogis( -.6 + .7*x1 + 1.1 *x2 ) > stats::runif(N) ) #*************************************** # (2) estimate logistic regression with glm mod <- stats::glm( y ~ x1 + x2, family="binomial" ) summary(mod) #*************************************** # (3) estimate model with rcppbugs package library(rcppbugs) b <- rcppbugs::mcmc.normal( stats::rnorm(3),mu=0,tau=0.0001) y.hat <- rcppbugs::deterministic( function(x1,x2,b){ stats::plogis( b[1] + b[2]*x1 + b[3]*x2 ) }, x1, x2, b) y.lik <- rcppbugs::mcmc.bernoulli( y, p=y.hat, observed=TRUE) model <- rcppbugs::create.model(b, y.hat, y.lik) #*** estimate model in rcppbugs; 5000 iterations, 1000 burnin iterations n.burnin <- 500 ; n.iter <- 2000 ; thin <- 2 ans <- rcppbugs::run.model(model, iterations=n.iter, burn=n.burnin, adapt=200, thin=thin) print(rcppbugs::get.ar(ans)) # get acceptance rate print(apply(ans[["b"]],2,mean)) # get means of posterior #*** convert rcppbugs into mcmclist object mcmcobj <- data.frame( ans$b ) colnames(mcmcobj) <- paste0("b",1:3) mcmcobj <- as.matrix(mcmcobj) class(mcmcobj) <- "mcmc" attr(mcmcobj, "mcpar") <- c( n.burnin+1, n.iter, thin ) mcmcobj <- coda::mcmc( mcmcobj ) # coefficients, variance covariance matrix and confidence interval mcmc_coef(mcmcobj) mcmc_vcov(mcmcobj) mcmc_confint( mcmcobj, level=.90 ) # summary and plot mcmc_summary(mcmcobj) mcmc_plot(mcmcobj, ask=TRUE) # include derived parameters in mcmc object derivedPars <- list( "diff12"=~ I(b2-b1), "diff13"=~ I(b3-b1) ) mcmcobj2 <- sirt::mcmc_derivedPars(mcmcobj, derivedPars=derivedPars ) mcmc_summary(mcmcobj2) #*** Wald test for parameters # hyp1: b2 - 0.5=0 # hyp2: b2 * b3=0 hypotheses <- list( "hyp1"=~ I( b2 - .5 ), "hyp2"=~ I( b2*b3 ) ) test1 <- sirt::mcmc_WaldTest( mcmcobj, hypotheses=hypotheses ) summary(test1) ## End(Not run)
Computes the Rhat statistic from a single MCMC chain.
mcmc_Rhat(mcmc_object, n_splits=3)
mcmc_Rhat(mcmc_object, n_splits=3)
mcmc_object |
Object of class |
n_splits |
Number of splits for MCMC chain |
Numeric vector
## Not run: ############################################################################# # EXAMPLE 1: Computation Rhat statistic for 2PNO model fitting by MCMC ############################################################################# data(data.read) # estimate 2PNO with MCMC with 3000 iterations and 500 burn-in iterations mod <- sirt::mcmc.2pno( dat=data.read, iter=1000, burnin=100 ) # plot MCMC chains plot( mod$mcmcobj, ask=TRUE ) # compute Rhat statistics round( sirt::mcmc_Rhat( mod$mcmcobj[[1]] ), 3 ) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Computation Rhat statistic for 2PNO model fitting by MCMC ############################################################################# data(data.read) # estimate 2PNO with MCMC with 3000 iterations and 500 burn-in iterations mod <- sirt::mcmc.2pno( dat=data.read, iter=1000, burnin=100 ) # plot MCMC chains plot( mod$mcmcobj, ask=TRUE ) # compute Rhat statistics round( sirt::mcmc_Rhat( mod$mcmcobj[[1]] ), 3 ) ## End(Not run)
This function estimates the Two-Parameter normal ogive item response model by MCMC sampling (Johnson & Albert, 1999, p. 195ff.).
mcmc.2pno(dat, weights=NULL, burnin=500, iter=1000, N.sampvalues=1000, progress.iter=50, save.theta=FALSE)
mcmc.2pno(dat, weights=NULL, burnin=500, iter=1000, N.sampvalues=1000, progress.iter=50, save.theta=FALSE)
dat |
Data frame with dichotomous item responses |
weights |
An optional vector with student sample weights |
burnin |
Number of burnin iterations |
iter |
Total number of iterations |
N.sampvalues |
Maximum number of sampled values to save |
progress.iter |
Display progress every |
save.theta |
Should theta values be saved? |
The two-parameter normal ogive item response model with a probit link function is defined by
Note that in this implementation non-informative priors for the item parameters are chosen (Johnson & Albert, 1999, p. 195ff.).
A list of class mcmc.sirt
with following entries:
mcmcobj |
Object of class |
summary.mcmcobj |
Summary of the |
burnin |
Number of burnin iterations |
iter |
Total number of iterations |
a.chain |
Sampled values of |
b.chain |
Sampled values of |
theta.chain |
Sampled values of |
deviance.chain |
Sampled values of Deviance values |
EAP.rel |
EAP reliability |
person |
Data frame with EAP person parameter estimates for
|
dat |
Used data frame |
weights |
Used student weights |
... |
Further values |
Johnson, V. E., & Albert, J. H. (1999). Ordinal Data Modeling. New York: Springer.
S3 methods: summary.mcmc.sirt
, plot.mcmc.sirt
For estimating the 2PL model with marginal maximum likelihood see
rasch.mml2
or smirt
.
A hierarchical version of this model can be estimated with
mcmc.2pnoh
.
## Not run: ############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data(data.read) # estimate 2PNO with MCMC with 3000 iterations and 500 burn-in iterations mod <- sirt::mcmc.2pno( dat=data.read, iter=3000, burnin=500 ) # plot MCMC chains plot( mod$mcmcobj, ask=TRUE ) # write sampled chains into codafile mcmclist2coda( mod$mcmcobj, name="dataread_2pno" ) # summary summary(mod) ############################################################################# # EXAMPLE 2 ############################################################################# # simulate data N <- 1000 I <- 10 b <- seq( -1.5, 1.5, len=I ) a <- rep( c(1,2), I/2 ) theta1 <- stats::rnorm(N) dat <- sirt::sim.raschtype( theta=theta1, fixed.a=a, b=b ) #*** # Model 1: estimate model without weights mod1 <- sirt::mcmc.2pno( dat, iter=1500, burnin=500) mod1$summary.mcmcobj plot( mod1$mcmcobj, ask=TRUE ) #*** # Model 2: estimate model with weights # define weights weights <- c( rep( 5, N/4 ), rep( .2, 3/4*N ) ) mod2 <- sirt::mcmc.2pno( dat, weights=weights, iter=1500, burnin=500) mod1$summary.mcmcobj ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data(data.read) # estimate 2PNO with MCMC with 3000 iterations and 500 burn-in iterations mod <- sirt::mcmc.2pno( dat=data.read, iter=3000, burnin=500 ) # plot MCMC chains plot( mod$mcmcobj, ask=TRUE ) # write sampled chains into codafile mcmclist2coda( mod$mcmcobj, name="dataread_2pno" ) # summary summary(mod) ############################################################################# # EXAMPLE 2 ############################################################################# # simulate data N <- 1000 I <- 10 b <- seq( -1.5, 1.5, len=I ) a <- rep( c(1,2), I/2 ) theta1 <- stats::rnorm(N) dat <- sirt::sim.raschtype( theta=theta1, fixed.a=a, b=b ) #*** # Model 1: estimate model without weights mod1 <- sirt::mcmc.2pno( dat, iter=1500, burnin=500) mod1$summary.mcmcobj plot( mod1$mcmcobj, ask=TRUE ) #*** # Model 2: estimate model with weights # define weights weights <- c( rep( 5, N/4 ), rep( .2, 3/4*N ) ) mod2 <- sirt::mcmc.2pno( dat, weights=weights, iter=1500, burnin=500) mod1$summary.mcmcobj ## End(Not run)
This function enables the estimation of random item models and multilevel (or hierarchical) IRT models (Chaimongkol, Huffer & Kamata, 2007; Fox & Verhagen, 2010; van den Noortgate, de Boeck & Meulders, 2003; Asparouhov & Muthen, 2012; Muthen & Asparouhov, 2013, 2014). Dichotomous response data is supported using a probit link. Normally distributed responses can also be analyzed. See Details for a description of the implemented item response models.
mcmc.2pno.ml(dat, group, link="logit", est.b.M="h", est.b.Var="n", est.a.M="f", est.a.Var="n", burnin=500, iter=1000, N.sampvalues=1000, progress.iter=50, prior.sigma2=c(1, 0.4), prior.sigma.b=c(1, 1), prior.sigma.a=c(1, 1), prior.omega.b=c(1, 1), prior.omega.a=c(1, 0.4), sigma.b.init=.3 )
mcmc.2pno.ml(dat, group, link="logit", est.b.M="h", est.b.Var="n", est.a.M="f", est.a.Var="n", burnin=500, iter=1000, N.sampvalues=1000, progress.iter=50, prior.sigma2=c(1, 0.4), prior.sigma.b=c(1, 1), prior.sigma.a=c(1, 1), prior.omega.b=c(1, 1), prior.omega.a=c(1, 0.4), sigma.b.init=.3 )
dat |
Data frame with item responses. |
group |
Vector of group identifiers (e.g. classes, schools or countries) |
link |
Link function. Choices are |
est.b.M |
Estimation type of |
est.b.Var |
Estimation type of standard deviations of item difficulties |
est.a.M |
Estimation type of |
est.a.Var |
Estimation type of standard deviations of item slopes |
burnin |
Number of burnin iterations |
iter |
Total number of iterations |
N.sampvalues |
Maximum number of sampled values to save |
progress.iter |
Display progress every |
prior.sigma2 |
Prior for Level 2 standard deviation |
prior.sigma.b |
Priors for item difficulty standard deviations |
prior.sigma.a |
Priors for item difficulty standard deviations |
prior.omega.b |
Prior for |
prior.omega.a |
Prior for |
sigma.b.init |
Initial standard deviation for |
For dichotomous item responses (link="logit"
) of persons in
group
on
item
, the probability of a correct response is defined as
The ability is decomposed into a Level 1 and a Level 2
effect
In a multilevel IRT model (or a random item model), item parameters are allowed to vary across groups:
In a hierarchical IRT model, a hierarchical distribution of the (main) item parameters is assumed
Note that for identification purposes, the mean of all item slopes
is set to one. Using the arguments
est.b.M
, est.b.Var
,
est.a.M
and est.a.Var
defines which variance components
should be estimated.
For normally distributed item responses (link="normal"
), the model
equations remain the same except the item response model which is now written as
A list of class mcmc.sirt
with following entries:
mcmcobj |
Object of class |
summary.mcmcobj |
Summary of the |
ic |
Information criteria (DIC) |
burnin |
Number of burnin iterations |
iter |
Total number of iterations |
theta.chain |
Sampled values of |
theta.chain |
Sampled values of |
deviance.chain |
Sampled values of Deviance values |
EAP.rel |
EAP reliability |
person |
Data frame with EAP person parameter estimates for
|
dat |
Used data frame |
... |
Further values |
Asparouhov, T. & Muthen, B. (2012). General random effect latent variable modeling: Random subjects, items, contexts, and parameters. http://www.statmodel.com/papers_date.shtml.
Chaimongkol, S., Huffer, F. W., & Kamata, A. (2007). An explanatory differential item functioning (DIF) model by the WinBUGS 1.4. Songklanakarin Journal of Science and Technology, 29, 449-458.
Fox, J.-P., & Verhagen, A.-J. (2010). Random item effects modeling for cross-national survey data. In E. Davidov, P. Schmidt, & J. Billiet (Eds.), Cross-cultural Analysis: Methods and Applications (pp. 467-488), London: Routledge Academic.
Muthen, B. & Asparouhov, T. (2013). New methods for the study of measurement invariance with many groups. http://www.statmodel.com/papers_date.shtml
Muthen, B. & Asparouhov, T. (2014). Item response modeling in Mplus: A multi-dimensional, multi-level, and multi-timepoint example. In W. Linden & R. Hambleton (2014). Handbook of item response theory: Models, statistical tools, and applications. http://www.statmodel.com/papers_date.shtml
van den Noortgate, W., De Boeck, P., & Meulders, M. (2003). Cross-classification multilevel logistic models in psychometrics. Journal of Educational and Behavioral Statistics, 28, 369-386.
S3 methods: summary.mcmc.sirt
, plot.mcmc.sirt
For MCMC estimation of three-parameter (testlet) models see
mcmc.3pno.testlet
.
See also the MLIRT package (http://www.jean-paulfox.com).
For more flexible estimation of multilevel IRT models see the MCMCglmm and lme4 packages.
## Not run: ############################################################################# # EXAMPLE 1: Dataset Multilevel data.ml1 - dichotomous items ############################################################################# data(data.ml1) dat <- data.ml1[,-1] group <- data.ml1$group # just for a try use a very small number of iterations burnin <- 50 ; iter <- 100 #*** # Model 1: 1PNO with no cluster item effects mod1 <- sirt::mcmc.2pno.ml( dat, group, est.b.Var="n", burnin=burnin, iter=iter ) summary(mod1) # summary plot(mod1,layout=2,ask=TRUE) # plot results # write results to coda file mcmclist2coda( mod1$mcmcobj, name="data.ml1_mod1" ) #*** # Model 2: 1PNO with cluster item effects of item difficulties mod2 <- sirt::mcmc.2pno.ml( dat, group, est.b.Var="i", burnin=burnin, iter=iter ) summary(mod2) plot(mod2, ask=TRUE, layout=2 ) #*** # Model 3: 2PNO with cluster item effects of item difficulties but # joint item slopes mod3 <- sirt::mcmc.2pno.ml( dat, group, est.b.Var="i", est.a.M="h", burnin=burnin, iter=iter ) summary(mod3) #*** # Model 4: 2PNO with cluster item effects of item difficulties and # cluster item effects with a jointly estimated SD mod4 <- sirt::mcmc.2pno.ml( dat, group, est.b.Var="i", est.a.M="h", est.a.Var="j", burnin=burnin, iter=iter ) summary(mod4) ############################################################################# # EXAMPLE 2: Dataset Multilevel data.ml2 - polytomous items # assuming a normal distribution for polytomous items ############################################################################# data(data.ml2) dat <- data.ml2[,-1] group <- data.ml2$group # set iterations for all examples (too few!!) burnin <- 100 ; iter <- 500 #*** # Model 1: no intercept variance, no slopes mod1 <- sirt::mcmc.2pno.ml( dat=dat, group=group, est.b.Var="n", burnin=burnin, iter=iter, link="normal", progress.iter=20 ) summary(mod1) #*** # Model 2a: itemwise intercept variance, no slopes mod2a <- sirt::mcmc.2pno.ml( dat=dat, group=group, est.b.Var="i", burnin=burnin, iter=iter,link="normal", progress.iter=20 ) summary(mod2a) #*** # Model 2b: homogeneous intercept variance, no slopes mod2b <- sirt::mcmc.2pno.ml( dat=dat, group=group, est.b.Var="j", burnin=burnin, iter=iter,link="normal", progress.iter=20 ) summary(mod2b) #*** # Model 3: intercept variance and slope variances # hierarchical item and slope parameters mod3 <- sirt::mcmc.2pno.ml( dat=dat, group=group, est.b.M="h", est.b.Var="i", est.a.M="h", est.a.Var="i", burnin=burnin, iter=iter,link="normal", progress.iter=20 ) summary(mod3) ############################################################################# # EXAMPLE 3: Simulated random effects model | dichotomous items ############################################################################# set.seed(7698) #*** model parameters sig2.lev2 <- .3^2 # theta level 2 variance sig2.lev1 <- .8^2 # theta level 1 variance G <- 100 # number of groups n <- 20 # number of persons within a group I <- 12 # number of items #*** simuate theta theta2 <- stats::rnorm( G, sd=sqrt(sig2.lev2) ) theta1 <- stats::rnorm( n*G, sd=sqrt(sig2.lev1) ) theta <- theta1 + rep( theta2, each=n ) #*** item difficulties b <- seq( -2, 2, len=I ) #*** define group identifier group <- 1000 + rep(1:G, each=n ) #*** SD of group specific difficulties for items 3 and 5 sigma.item <- rep(0,I) sigma.item[c(3,5)] <- 1 #*** simulate group specific item difficulties b.class <- sapply( sigma.item, FUN=function(sii){ stats::rnorm( G, sd=sii ) } ) b.class <- b.class[ rep( 1:G,each=n ), ] b <- matrix( b, n*G, I, byrow=TRUE ) + b.class #*** simulate item responses m1 <- stats::pnorm( theta - b ) dat <- 1 * ( m1 > matrix( stats::runif( n*G*I ), n*G, I ) ) #*** estimate model mod <- sirt::mcmc.2pno.ml( dat, group=group, burnin=burnin, iter=iter, est.b.M="n", est.b.Var="i", progress.iter=20) summary(mod) plot(mod, layout=2, ask=TRUE ) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Dataset Multilevel data.ml1 - dichotomous items ############################################################################# data(data.ml1) dat <- data.ml1[,-1] group <- data.ml1$group # just for a try use a very small number of iterations burnin <- 50 ; iter <- 100 #*** # Model 1: 1PNO with no cluster item effects mod1 <- sirt::mcmc.2pno.ml( dat, group, est.b.Var="n", burnin=burnin, iter=iter ) summary(mod1) # summary plot(mod1,layout=2,ask=TRUE) # plot results # write results to coda file mcmclist2coda( mod1$mcmcobj, name="data.ml1_mod1" ) #*** # Model 2: 1PNO with cluster item effects of item difficulties mod2 <- sirt::mcmc.2pno.ml( dat, group, est.b.Var="i", burnin=burnin, iter=iter ) summary(mod2) plot(mod2, ask=TRUE, layout=2 ) #*** # Model 3: 2PNO with cluster item effects of item difficulties but # joint item slopes mod3 <- sirt::mcmc.2pno.ml( dat, group, est.b.Var="i", est.a.M="h", burnin=burnin, iter=iter ) summary(mod3) #*** # Model 4: 2PNO with cluster item effects of item difficulties and # cluster item effects with a jointly estimated SD mod4 <- sirt::mcmc.2pno.ml( dat, group, est.b.Var="i", est.a.M="h", est.a.Var="j", burnin=burnin, iter=iter ) summary(mod4) ############################################################################# # EXAMPLE 2: Dataset Multilevel data.ml2 - polytomous items # assuming a normal distribution for polytomous items ############################################################################# data(data.ml2) dat <- data.ml2[,-1] group <- data.ml2$group # set iterations for all examples (too few!!) burnin <- 100 ; iter <- 500 #*** # Model 1: no intercept variance, no slopes mod1 <- sirt::mcmc.2pno.ml( dat=dat, group=group, est.b.Var="n", burnin=burnin, iter=iter, link="normal", progress.iter=20 ) summary(mod1) #*** # Model 2a: itemwise intercept variance, no slopes mod2a <- sirt::mcmc.2pno.ml( dat=dat, group=group, est.b.Var="i", burnin=burnin, iter=iter,link="normal", progress.iter=20 ) summary(mod2a) #*** # Model 2b: homogeneous intercept variance, no slopes mod2b <- sirt::mcmc.2pno.ml( dat=dat, group=group, est.b.Var="j", burnin=burnin, iter=iter,link="normal", progress.iter=20 ) summary(mod2b) #*** # Model 3: intercept variance and slope variances # hierarchical item and slope parameters mod3 <- sirt::mcmc.2pno.ml( dat=dat, group=group, est.b.M="h", est.b.Var="i", est.a.M="h", est.a.Var="i", burnin=burnin, iter=iter,link="normal", progress.iter=20 ) summary(mod3) ############################################################################# # EXAMPLE 3: Simulated random effects model | dichotomous items ############################################################################# set.seed(7698) #*** model parameters sig2.lev2 <- .3^2 # theta level 2 variance sig2.lev1 <- .8^2 # theta level 1 variance G <- 100 # number of groups n <- 20 # number of persons within a group I <- 12 # number of items #*** simuate theta theta2 <- stats::rnorm( G, sd=sqrt(sig2.lev2) ) theta1 <- stats::rnorm( n*G, sd=sqrt(sig2.lev1) ) theta <- theta1 + rep( theta2, each=n ) #*** item difficulties b <- seq( -2, 2, len=I ) #*** define group identifier group <- 1000 + rep(1:G, each=n ) #*** SD of group specific difficulties for items 3 and 5 sigma.item <- rep(0,I) sigma.item[c(3,5)] <- 1 #*** simulate group specific item difficulties b.class <- sapply( sigma.item, FUN=function(sii){ stats::rnorm( G, sd=sii ) } ) b.class <- b.class[ rep( 1:G,each=n ), ] b <- matrix( b, n*G, I, byrow=TRUE ) + b.class #*** simulate item responses m1 <- stats::pnorm( theta - b ) dat <- 1 * ( m1 > matrix( stats::runif( n*G*I ), n*G, I ) ) #*** estimate model mod <- sirt::mcmc.2pno.ml( dat, group=group, burnin=burnin, iter=iter, est.b.M="n", est.b.Var="i", progress.iter=20) summary(mod) plot(mod, layout=2, ask=TRUE ) ## End(Not run)
This function estimates the hierarchical IRT model for criterion-referenced measurement which is based on a two-parameter normal ogive response function (Janssen, Tuerlinckx, Meulders & de Boeck, 2000).
mcmc.2pnoh(dat, itemgroups, prob.mastery=c(.5,.8), weights=NULL, burnin=500, iter=1000, N.sampvalues=1000, progress.iter=50, prior.variance=c(1,1), save.theta=FALSE)
mcmc.2pnoh(dat, itemgroups, prob.mastery=c(.5,.8), weights=NULL, burnin=500, iter=1000, N.sampvalues=1000, progress.iter=50, prior.variance=c(1,1), save.theta=FALSE)
dat |
Data frame with dichotomous item responses |
itemgroups |
Vector with characters or integers which define the criterion to which an item is associated. |
prob.mastery |
Probability levels which define nonmastery, transition and mastery stage (see Details) |
weights |
An optional vector with student sample weights |
burnin |
Number of burnin iterations |
iter |
Total number of iterations |
N.sampvalues |
Maximum number of sampled values to save |
progress.iter |
Display progress every |
prior.variance |
Scale parameter of the inverse gamma distribution
for the |
save.theta |
Should theta values be saved? |
The hierarchical IRT model for criterion-referenced measurement
(Janssen et al., 2000) assumes that every item intends
to measure a criterion
. The item response function is defined as
Item parameters are hierarchically modeled, i.e.
In the mcmc.list
output object, also the derived parameters
and
are
calculated.
Mastery and nonmastery probabilities are based on a reference item
of criterion
and a response function
With known item parameters and person parameters, response probabilities of
criterion are calculated. If a response probability of criterion
is larger than
prob.mastery[2]
, then a student is defined as a
master. If this probability is smaller than prob.mastery[1]
, then
a student is a nonmaster. In all other cases, students are in a transition
stage.
In the mcmcobj
output object, the parameters d[i]
are defined by
while
tau[k]
are defined by
.
A list of class mcmc.sirt
with following entries:
mcmcobj |
Object of class |
summary.mcmcobj |
Summary of the |
burnin |
Number of burnin iterations |
iter |
Total number of iterations |
alpha.chain |
Sampled values of |
beta.chain |
Sampled values of |
xi.chain |
Sampled values of |
omega.chain |
Sampled values of |
sigma.chain |
Sampled values of |
nu.chain |
Sampled values of |
theta.chain |
Sampled values of |
deviance.chain |
Sampled values of Deviance values |
EAP.rel |
EAP reliability |
person |
Data frame with EAP person parameter estimates for
|
dat |
Used data frame |
weights |
Used student weights |
... |
Further values |
Janssen, R., Tuerlinckx, F., Meulders, M., & De Boeck, P. (2000). A hierarchical IRT model for criterion-referenced measurement. Journal of Educational and Behavioral Statistics, 25, 285-306.
S3 methods: summary.mcmc.sirt
, plot.mcmc.sirt
The two-parameter normal ogive model can be estimated with
mcmc.2pno
.
## Not run: ############################################################################# # EXAMPLE 1: Simulated data according to Janssen et al. (2000, Table 2) ############################################################################# N <- 1000 Ik <- c(4,6,8,5,9,6,8,6,5) xi.k <- c( -.89, -1.13, -1.23, .06, -1.41, -.66, -1.09, .57, -2.44) omega.k <- c(.98, .91, .76, .74, .71, .80, .79, .82, .54) # select 4 attributes K <- 4 Ik <- Ik[1:K] ; xi.k <- xi.k[1:K] ; omega.k <- omega.k[1:K] sig2 <- 3.02 nu2 <- .09 I <- sum(Ik) b <- rep( xi.k, Ik ) + stats::rnorm(I, sd=sqrt(sig2) ) a <- rep( omega.k, Ik ) + stats::rnorm(I, sd=sqrt(nu2) ) theta1 <- stats::rnorm(N) t1 <- rep(1,N) p1 <- stats::pnorm( outer(t1,a) * ( theta1 - outer(t1,b) ) ) dat <- 1 * ( p1 > stats::runif(N*I) ) itemgroups <- rep( paste0("A", 1:K ), Ik ) # estimate model mod <- sirt::mcmc.2pnoh(dat, itemgroups, burnin=200, iter=1000 ) # summary summary(mod) # plot plot(mod$mcmcobj, ask=TRUE) # write coda files mcmclist2coda( mod$mcmcobj, name="simul_2pnoh" ) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Simulated data according to Janssen et al. (2000, Table 2) ############################################################################# N <- 1000 Ik <- c(4,6,8,5,9,6,8,6,5) xi.k <- c( -.89, -1.13, -1.23, .06, -1.41, -.66, -1.09, .57, -2.44) omega.k <- c(.98, .91, .76, .74, .71, .80, .79, .82, .54) # select 4 attributes K <- 4 Ik <- Ik[1:K] ; xi.k <- xi.k[1:K] ; omega.k <- omega.k[1:K] sig2 <- 3.02 nu2 <- .09 I <- sum(Ik) b <- rep( xi.k, Ik ) + stats::rnorm(I, sd=sqrt(sig2) ) a <- rep( omega.k, Ik ) + stats::rnorm(I, sd=sqrt(nu2) ) theta1 <- stats::rnorm(N) t1 <- rep(1,N) p1 <- stats::pnorm( outer(t1,a) * ( theta1 - outer(t1,b) ) ) dat <- 1 * ( p1 > stats::runif(N*I) ) itemgroups <- rep( paste0("A", 1:K ), Ik ) # estimate model mod <- sirt::mcmc.2pnoh(dat, itemgroups, burnin=200, iter=1000 ) # summary summary(mod) # plot plot(mod$mcmcobj, ask=TRUE) # write coda files mcmclist2coda( mod$mcmcobj, name="simul_2pnoh" ) ## End(Not run)
This function estimates the 3PNO testlet model (Wang, Bradlow & Wainer, 2002, 2007) by Markov Chain Monte Carlo methods (Glas, 2012).
mcmc.3pno.testlet(dat, testlets=rep(NA, ncol(dat)), weights=NULL, est.slope=TRUE, est.guess=TRUE, guess.prior=NULL, testlet.variance.prior=c(1, 0.2), burnin=500, iter=1000, N.sampvalues=1000, progress.iter=50, save.theta=FALSE, save.gamma.testlet=FALSE )
mcmc.3pno.testlet(dat, testlets=rep(NA, ncol(dat)), weights=NULL, est.slope=TRUE, est.guess=TRUE, guess.prior=NULL, testlet.variance.prior=c(1, 0.2), burnin=500, iter=1000, N.sampvalues=1000, progress.iter=50, save.theta=FALSE, save.gamma.testlet=FALSE )
dat |
Data frame with dichotomous item responses for |
testlets |
An integer or character vector which indicates the allocation of items to
testlets. Same entries corresponds to same testlets.
If an entry is |
weights |
An optional vector with student sample weights |
est.slope |
Should item slopes be estimated? The default is |
est.guess |
Should guessing parameters be estimated? The default is |
guess.prior |
A vector of length two or a matrix with |
testlet.variance.prior |
A vector of length two which defines the (joint) prior for testlet variances
assuming an inverse chi-squared distribution.
The first entry is the effective sample size of the prior while the second
entry defines the prior variance of the testlet. The default of |
burnin |
Number of burnin iterations |
iter |
Number of iterations |
N.sampvalues |
Maximum number of sampled values to save |
progress.iter |
Display progress every |
save.theta |
Logical indicating whether theta values should be saved |
save.gamma.testlet |
Logical indicating whether gamma values should be saved |
The testlet response model for person at item
is defined as
In case of est.slope=FALSE
, all item slopes are set to 1. Then
a variance
of the
distribution is estimated
which is called the Rasch testlet model in the literature (Wang & Wilson, 2005).
In case of est.guess=FALSE
, all guessing parameters are
set to 0.
After fitting the testlet model, marginal item parameters are calculated (integrating
out testlet effects ) according the defining response equation
A list of class mcmc.sirt
with following entries:
mcmcobj |
Object of class |
summary.mcmcobj |
Summary of the |
ic |
Information criteria (DIC) |
burnin |
Number of burnin iterations |
iter |
Total number of iterations |
theta.chain |
Sampled values of |
deviance.chain |
Sampled values of deviance values |
EAP.rel |
EAP reliability |
person |
Data frame with EAP person parameter estimates for
|
dat |
Used data frame |
weights |
Used student weights |
... |
Further values |
Glas, C. A. W. (2012). Estimating and testing the extended testlet model. LSAC Research Report Series, RR 12-03.
Wainer, H., Bradlow, E. T., & Wang, X. (2007). Testlet response theory and its applications. Cambridge: Cambridge University Press.
Wang, W.-C., & Wilson, M. (2005). The Rasch testlet model. Applied Psychological Measurement, 29, 126-149.
Wang, X., Bradlow, E. T., & Wainer, H. (2002). A general Bayesian model for testlets: Theory and applications. Applied Psychological Measurement, 26, 109-128.
S3 methods: summary.mcmc.sirt
, plot.mcmc.sirt
## Not run: ############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data(data.read) dat <- data.read I <- ncol(dat) # set burnin and total number of iterations here (CHANGE THIS!) burnin <- 200 iter <- 500 #*** # Model 1: 1PNO model mod1 <- sirt::mcmc.3pno.testlet( dat, est.slope=FALSE, est.guess=FALSE, burnin=burnin, iter=iter ) summary(mod1) plot(mod1,ask=TRUE) # plot MCMC chains in coda style plot(mod1,ask=TRUE, layout=2) # plot MCMC output in different layout #*** # Model 2: 3PNO model with Beta(5,17) prior for guessing parameters mod2 <- sirt::mcmc.3pno.testlet( dat, guess.prior=c(5,17), burnin=burnin, iter=iter ) summary(mod2) #*** # Model 3: Rasch (1PNO) testlet model testlets <- substring( colnames(dat), 1, 1 ) mod3 <- sirt::mcmc.3pno.testlet( dat, testlets=testlets, est.slope=FALSE, est.guess=FALSE, burnin=burnin, iter=iter ) summary(mod3) #*** # Model 4: 3PNO testlet model with (almost) fixed guessing parameters .25 mod4 <- sirt::mcmc.3pno.testlet( dat, guess.prior=1000*c(25,75), testlets=testlets, burnin=burnin, iter=iter ) summary(mod4) plot(mod4, ask=TRUE, layout=2) ############################################################################# # EXAMPLE 2: Simulated data according to the Rasch testlet model ############################################################################# set.seed(678) N <- 3000 # number of persons I <- 4 # number of items per testlet TT <- 3 # number of testlets ITT <- I*TT b <- round( stats::rnorm( ITT, mean=0, sd=1 ), 2 ) sd0 <- 1 # sd trait sdt <- seq( 0, 2, len=TT ) # sd testlets # simulate theta theta <- stats::rnorm( N, sd=sd0 ) # simulate testlets ut <- matrix(0,nrow=N, ncol=TT ) for (tt in 1:TT){ ut[,tt] <- stats::rnorm( N, sd=sdt[tt] ) } ut <- ut[, rep(1:TT,each=I) ] # calculate response probability prob <- matrix( stats::pnorm( theta + ut + matrix( b, nrow=N, ncol=ITT, byrow=TRUE ) ), N, ITT) Y <- (matrix( stats::runif(N*ITT), N, ITT) < prob )*1 colMeans(Y) # define testlets testlets <- rep(1:TT, each=I ) burnin <- 300 iter <- 1000 #*** # Model 1: 1PNO model (without testlet structure) mod1 <- sirt::mcmc.3pno.testlet( dat=Y, est.slope=FALSE, est.guess=FALSE, burnin=burnin, iter=iter, testlets=testlets ) summary(mod1) summ1 <- mod1$summary.mcmcobj # compare item parameters cbind( b, summ1[ grep("b", summ1$parameter ), "Mean" ] ) # Testlet standard deviations cbind( sdt, summ1[ grep("sigma\.testlet", summ1$parameter ), "Mean" ] ) #*** # Model 2: 1PNO model (without testlet structure) mod2 <- sirt::mcmc.3pno.testlet( dat=Y, est.slope=TRUE, est.guess=FALSE, burnin=burnin, iter=iter, testlets=testlets ) summary(mod2) summ2 <- mod2$summary.mcmcobj # compare item parameters cbind( b, summ2[ grep("b\[", summ2$parameter ), "Mean" ] ) # item discriminations cbind( sd0, summ2[ grep("a\[", summ2$parameter ), "Mean" ] ) # Testlet standard deviations cbind( sdt, summ2[ grep("sigma\.testlet", summ2$parameter ), "Mean" ] ) ############################################################################# # EXAMPLE 3: Simulated data according to the 2PNO testlet model ############################################################################# set.seed(678) N <- 3000 # number of persons I <- 3 # number of items per testlet TT <- 5 # number of testlets ITT <- I*TT b <- round( stats::rnorm( ITT, mean=0, sd=1 ), 2 ) a <- round( stats::runif( ITT, 0.5, 2 ),2) sdt <- seq( 0, 2, len=TT ) # sd testlets sd0 <- 1 # simulate theta theta <- stats::rnorm( N, sd=sd0 ) # simulate testlets ut <- matrix(0,nrow=N, ncol=TT ) for (tt in 1:TT){ ut[,tt] <- stats::rnorm( N, sd=sdt[tt] ) } ut <- ut[, rep(1:TT,each=I) ] # calculate response probability bM <- matrix( b, nrow=N, ncol=ITT, byrow=TRUE ) aM <- matrix( a, nrow=N, ncol=ITT, byrow=TRUE ) prob <- matrix( stats::pnorm( aM*theta + ut + bM ), N, ITT) Y <- (matrix( stats::runif(N*ITT), N, ITT) < prob )*1 colMeans(Y) # define testlets testlets <- rep(1:TT, each=I ) burnin <- 500 iter <- 1500 #*** # Model 1: 2PNO model mod1 <- sirt::mcmc.3pno.testlet( dat=Y, est.slope=TRUE, est.guess=FALSE, burnin=burnin, iter=iter, testlets=testlets ) summary(mod1) summ1 <- mod1$summary.mcmcobj # compare item parameters cbind( b, summ1[ grep("b\[", summ1$parameter ), "Mean" ] ) # item discriminations cbind( a, summ1[ grep("a\[", summ1$parameter ), "Mean" ] ) # Testlet standard deviations cbind( sdt, summ1[ grep("sigma\.testlet", summ1$parameter ), "Mean" ] ) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data(data.read) dat <- data.read I <- ncol(dat) # set burnin and total number of iterations here (CHANGE THIS!) burnin <- 200 iter <- 500 #*** # Model 1: 1PNO model mod1 <- sirt::mcmc.3pno.testlet( dat, est.slope=FALSE, est.guess=FALSE, burnin=burnin, iter=iter ) summary(mod1) plot(mod1,ask=TRUE) # plot MCMC chains in coda style plot(mod1,ask=TRUE, layout=2) # plot MCMC output in different layout #*** # Model 2: 3PNO model with Beta(5,17) prior for guessing parameters mod2 <- sirt::mcmc.3pno.testlet( dat, guess.prior=c(5,17), burnin=burnin, iter=iter ) summary(mod2) #*** # Model 3: Rasch (1PNO) testlet model testlets <- substring( colnames(dat), 1, 1 ) mod3 <- sirt::mcmc.3pno.testlet( dat, testlets=testlets, est.slope=FALSE, est.guess=FALSE, burnin=burnin, iter=iter ) summary(mod3) #*** # Model 4: 3PNO testlet model with (almost) fixed guessing parameters .25 mod4 <- sirt::mcmc.3pno.testlet( dat, guess.prior=1000*c(25,75), testlets=testlets, burnin=burnin, iter=iter ) summary(mod4) plot(mod4, ask=TRUE, layout=2) ############################################################################# # EXAMPLE 2: Simulated data according to the Rasch testlet model ############################################################################# set.seed(678) N <- 3000 # number of persons I <- 4 # number of items per testlet TT <- 3 # number of testlets ITT <- I*TT b <- round( stats::rnorm( ITT, mean=0, sd=1 ), 2 ) sd0 <- 1 # sd trait sdt <- seq( 0, 2, len=TT ) # sd testlets # simulate theta theta <- stats::rnorm( N, sd=sd0 ) # simulate testlets ut <- matrix(0,nrow=N, ncol=TT ) for (tt in 1:TT){ ut[,tt] <- stats::rnorm( N, sd=sdt[tt] ) } ut <- ut[, rep(1:TT,each=I) ] # calculate response probability prob <- matrix( stats::pnorm( theta + ut + matrix( b, nrow=N, ncol=ITT, byrow=TRUE ) ), N, ITT) Y <- (matrix( stats::runif(N*ITT), N, ITT) < prob )*1 colMeans(Y) # define testlets testlets <- rep(1:TT, each=I ) burnin <- 300 iter <- 1000 #*** # Model 1: 1PNO model (without testlet structure) mod1 <- sirt::mcmc.3pno.testlet( dat=Y, est.slope=FALSE, est.guess=FALSE, burnin=burnin, iter=iter, testlets=testlets ) summary(mod1) summ1 <- mod1$summary.mcmcobj # compare item parameters cbind( b, summ1[ grep("b", summ1$parameter ), "Mean" ] ) # Testlet standard deviations cbind( sdt, summ1[ grep("sigma\.testlet", summ1$parameter ), "Mean" ] ) #*** # Model 2: 1PNO model (without testlet structure) mod2 <- sirt::mcmc.3pno.testlet( dat=Y, est.slope=TRUE, est.guess=FALSE, burnin=burnin, iter=iter, testlets=testlets ) summary(mod2) summ2 <- mod2$summary.mcmcobj # compare item parameters cbind( b, summ2[ grep("b\[", summ2$parameter ), "Mean" ] ) # item discriminations cbind( sd0, summ2[ grep("a\[", summ2$parameter ), "Mean" ] ) # Testlet standard deviations cbind( sdt, summ2[ grep("sigma\.testlet", summ2$parameter ), "Mean" ] ) ############################################################################# # EXAMPLE 3: Simulated data according to the 2PNO testlet model ############################################################################# set.seed(678) N <- 3000 # number of persons I <- 3 # number of items per testlet TT <- 5 # number of testlets ITT <- I*TT b <- round( stats::rnorm( ITT, mean=0, sd=1 ), 2 ) a <- round( stats::runif( ITT, 0.5, 2 ),2) sdt <- seq( 0, 2, len=TT ) # sd testlets sd0 <- 1 # simulate theta theta <- stats::rnorm( N, sd=sd0 ) # simulate testlets ut <- matrix(0,nrow=N, ncol=TT ) for (tt in 1:TT){ ut[,tt] <- stats::rnorm( N, sd=sdt[tt] ) } ut <- ut[, rep(1:TT,each=I) ] # calculate response probability bM <- matrix( b, nrow=N, ncol=ITT, byrow=TRUE ) aM <- matrix( a, nrow=N, ncol=ITT, byrow=TRUE ) prob <- matrix( stats::pnorm( aM*theta + ut + bM ), N, ITT) Y <- (matrix( stats::runif(N*ITT), N, ITT) < prob )*1 colMeans(Y) # define testlets testlets <- rep(1:TT, each=I ) burnin <- 500 iter <- 1500 #*** # Model 1: 2PNO model mod1 <- sirt::mcmc.3pno.testlet( dat=Y, est.slope=TRUE, est.guess=FALSE, burnin=burnin, iter=iter, testlets=testlets ) summary(mod1) summ1 <- mod1$summary.mcmcobj # compare item parameters cbind( b, summ1[ grep("b\[", summ1$parameter ), "Mean" ] ) # item discriminations cbind( a, summ1[ grep("a\[", summ1$parameter ), "Mean" ] ) # Testlet standard deviations cbind( sdt, summ1[ grep("sigma\.testlet", summ1$parameter ), "Mean" ] ) ## End(Not run)
mcmc.list
Object
Computation of descriptive statistics, Rhat convergence statistic
and MAP for a mcmc.list
object. The Rhat statistic
is computed by splitting one Monte Carlo chain into three segments of equal
length. The MAP is the mode estimate of the posterior distribution which is
approximated by the mode of the kernel density estimate.
mcmc.list.descriptives( mcmcobj, quantiles=c(.025,.05,.1,.5,.9,.95,.975) )
mcmc.list.descriptives( mcmcobj, quantiles=c(.025,.05,.1,.5,.9,.95,.975) )
mcmcobj |
Object of class |
quantiles |
Quantiles to be calculated for all parameters |
A data frame with descriptive statistics for all parameters in
the mcmc.list
object.
See mcmclist2coda
for writing an object of class mcmc.list
into a coda file (see also the coda package).
## Not run: miceadds::library_install("coda") miceadds::library_install("R2WinBUGS") ############################################################################# # EXAMPLE 1: Logistic regression ############################################################################# #*************************************** # (1) simulate data set.seed(8765) N <- 500 x1 <- stats::rnorm(N) x2 <- stats::rnorm(N) y <- 1*( stats::plogis( -.6 + .7*x1 + 1.1 *x2 ) > stats::runif(N) ) #*************************************** # (2) estimate logistic regression with glm mod <- stats::glm( y ~ x1 + x2, family="binomial" ) summary(mod) #*************************************** # (3) estimate model with rcppbugs package b <- rcppbugs::mcmc.normal( stats::rnorm(3),mu=0,tau=0.0001) y.hat <- rcppbugs::deterministic(function(x1,x2,b) { stats::plogis( b[1] + b[2]*x1 + b[3]*x2 ) }, x1, x2, b) y.lik <- rcppbugs::mcmc.bernoulli( y, p=y.hat, observed=TRUE) m <- rcppbugs::create.model(b, y.hat, y.lik) #*** estimate model in rcppbugs; 5000 iterations, 1000 burnin iterations ans <- rcppbugs::run.model(m, iterations=5000, burn=1000, adapt=1000, thin=5) print(rcppbugs::get.ar(ans)) # get acceptance rate print(apply(ans[["b"]],2,mean)) # get means of posterior #*** convert rcppbugs into mcmclist object mcmcobj <- data.frame( ans$b ) colnames(mcmcobj) <- paste0("b",1:3) mcmcobj <- as.matrix(mcmcobj) class(mcmcobj) <- "mcmc" attr(mcmcobj, "mcpar") <- c( 1, nrow(mcmcobj), 1 ) mcmcobj <- coda::as.mcmc.list( mcmcobj ) # plot results plot(mcmcobj) # summary summ1 <- sirt::mcmc.list.descriptives( mcmcobj ) summ1 ## End(Not run)
## Not run: miceadds::library_install("coda") miceadds::library_install("R2WinBUGS") ############################################################################# # EXAMPLE 1: Logistic regression ############################################################################# #*************************************** # (1) simulate data set.seed(8765) N <- 500 x1 <- stats::rnorm(N) x2 <- stats::rnorm(N) y <- 1*( stats::plogis( -.6 + .7*x1 + 1.1 *x2 ) > stats::runif(N) ) #*************************************** # (2) estimate logistic regression with glm mod <- stats::glm( y ~ x1 + x2, family="binomial" ) summary(mod) #*************************************** # (3) estimate model with rcppbugs package b <- rcppbugs::mcmc.normal( stats::rnorm(3),mu=0,tau=0.0001) y.hat <- rcppbugs::deterministic(function(x1,x2,b) { stats::plogis( b[1] + b[2]*x1 + b[3]*x2 ) }, x1, x2, b) y.lik <- rcppbugs::mcmc.bernoulli( y, p=y.hat, observed=TRUE) m <- rcppbugs::create.model(b, y.hat, y.lik) #*** estimate model in rcppbugs; 5000 iterations, 1000 burnin iterations ans <- rcppbugs::run.model(m, iterations=5000, burn=1000, adapt=1000, thin=5) print(rcppbugs::get.ar(ans)) # get acceptance rate print(apply(ans[["b"]],2,mean)) # get means of posterior #*** convert rcppbugs into mcmclist object mcmcobj <- data.frame( ans$b ) colnames(mcmcobj) <- paste0("b",1:3) mcmcobj <- as.matrix(mcmcobj) class(mcmcobj) <- "mcmc" attr(mcmcobj, "mcpar") <- c( 1, nrow(mcmcobj), 1 ) mcmcobj <- coda::as.mcmc.list( mcmcobj ) # plot results plot(mcmcobj) # summary summ1 <- sirt::mcmc.list.descriptives( mcmcobj ) summ1 ## End(Not run)
mcmc.list
This function writes a coda file from an object of class mcmc.list
.
Note that only first entry (i.e. one chain) will be processed.
mcmclist2coda(mcmclist, name, coda.digits=5)
mcmclist2coda(mcmclist, name, coda.digits=5)
mcmclist |
An object of class |
name |
Name of the coda file to be written |
coda.digits |
Number of digits after decimal in the coda file |
The coda file and a corresponding index file are written into the working directory.
## Not run: ############################################################################# # EXAMPLE 1: MCMC estimation 2PNO dataset Reading ############################################################################# data(data.read) # estimate 2PNO with MCMC with 3000 iterations and 500 burn-in iterations mod <- sirt::mcmc.2pno( dat=data.read, iter=3000, burnin=500 ) # plot MCMC chains plot( mod$mcmcobj, ask=TRUE ) # write sampled chains into codafile mcmclist2coda( mod$mcmcobj, name="dataread_2pl" ) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: MCMC estimation 2PNO dataset Reading ############################################################################# data(data.read) # estimate 2PNO with MCMC with 3000 iterations and 500 burn-in iterations mod <- sirt::mcmc.2pno( dat=data.read, iter=3000, burnin=500 ) # plot MCMC chains plot( mod$mcmcobj, ask=TRUE ) # write sampled chains into codafile mcmclist2coda( mod$mcmcobj, name="dataread_2pl" ) ## End(Not run)
Computes different statistics of the response pattern in a binary matrix.
md.pattern.sirt(dat)
md.pattern.sirt(dat)
dat |
A binary data matrix |
A list with following entries:
dat |
Original dataset |
dat.resp1 |
Indices for responses of 1's |
dat.resp0 |
Indices for responses of 0's |
resp_patt |
Vector of response patterns |
unique_resp_patt |
Unique response patterns |
unique_resp_patt_freq |
Frequencies of unique response patterns |
unique_resp_patt_firstobs |
First observation in original dataset
|
freq1 |
Frequencies of 1's |
freq0 |
Frequencies of 0's |
dat.ordered |
Dataset according to response patterns |
See also the md.pattern
function in the mice package.
############################################################################# # EXAMPLE 1: Response patterns ############################################################################# set.seed(7654) N <- 21 # number of rows I <- 4 # number of columns dat <- matrix( 1*( stats::runif(N*I) > .3 ), N, I ) res <- sirt::md.pattern.sirt(dat) # plot of response patterns res$dat.ordered image( z=t(res$dat.ordered), y=1:N, x=1:I, xlab="Items", ylab="Persons") # 0's are yellow and 1's are red ############################################################################# # EXAMPLE 2: Item response patterns for dataset data.read ############################################################################# data(data.read) dat <- data.read ; N <- nrow(dat) ; I <- ncol(dat) # order items according to p values dat <- dat[, order(colMeans(dat, na.rm=TRUE )) ] # analyzing response pattern res <- sirt::md.pattern.sirt(dat) res$dat.ordered image( z=t(res$dat.ordered), y=1:N, x=1:I, xlab="Items", ylab="Persons")
############################################################################# # EXAMPLE 1: Response patterns ############################################################################# set.seed(7654) N <- 21 # number of rows I <- 4 # number of columns dat <- matrix( 1*( stats::runif(N*I) > .3 ), N, I ) res <- sirt::md.pattern.sirt(dat) # plot of response patterns res$dat.ordered image( z=t(res$dat.ordered), y=1:N, x=1:I, xlab="Items", ylab="Persons") # 0's are yellow and 1's are red ############################################################################# # EXAMPLE 2: Item response patterns for dataset data.read ############################################################################# data(data.read) dat <- data.read ; N <- nrow(dat) ; I <- ncol(dat) # order items according to p values dat <- dat[, order(colMeans(dat, na.rm=TRUE )) ] # analyzing response pattern res <- sirt::md.pattern.sirt(dat) res$dat.ordered image( z=t(res$dat.ordered), y=1:N, x=1:I, xlab="Items", ylab="Persons")
Estimates a multiple-group structural equation model. The function allows arbitrary
prior distributions on model parameters and regularized estimation with the SCAD and
the LASSO penalty. Moreover, it can also conduct robust moment estimation using
the loss function
for
.
See Robitzsch (2023) for more details.
mgsem(suffstat, model, data=NULL, group=NULL, weights=NULL, estimator="ML", p_me=2, p_pen=1, pen_type="scad", diffpar_pen=NULL, pen_sample_size=TRUE, a_scad=3.7, eps_approx=0.001, comp_se=TRUE, se_delta_formula=FALSE, prior_list=NULL, hessian=TRUE, fixed_parms=FALSE, cd=FALSE, cd_control=list(maxiter=20, tol=5*1e-04, interval_length=0.05, method="exact"), partable_start=NULL, num_approx=FALSE, technical=NULL, control=list())
mgsem(suffstat, model, data=NULL, group=NULL, weights=NULL, estimator="ML", p_me=2, p_pen=1, pen_type="scad", diffpar_pen=NULL, pen_sample_size=TRUE, a_scad=3.7, eps_approx=0.001, comp_se=TRUE, se_delta_formula=FALSE, prior_list=NULL, hessian=TRUE, fixed_parms=FALSE, cd=FALSE, cd_control=list(maxiter=20, tol=5*1e-04, interval_length=0.05, method="exact"), partable_start=NULL, num_approx=FALSE, technical=NULL, control=list())
suffstat |
List containing sufficient statistics |
model |
Model specification, see examples. Can have entries |
data |
Optional data frame |
group |
Optional vector of group identifiers |
weights |
Optional vector of sampling weights |
estimator |
Character. Can be either |
p_me |
Power in $L_p$ loss function for robust moment estimation |
p_pen |
Power for penalty in regularized estimation. For regular LASSO and SCAD penalty functions, it is $p=1$. |
pen_type |
Penalty type. Can be either |
diffpar_pen |
List containing values of regularization parameters in fused lasso estimation |
pen_sample_size |
List containing values for sample sizes for regularized estimation |
a_scad |
Parameter $a$ used in SCAD penalty |
eps_approx |
Approximation value for nondifferentiable robust moment fitting function or penalty function |
comp_se |
Logical indicating whether standard errors should be computed |
se_delta_formula |
Logical indicating whether standard errors should be computed according to the delta formula |
prior_list |
List containing specifications of the prior distributions |
hessian |
Logical indicating whether the Hessian matrix should be computed |
fixed_parms |
Logical indicating whether all model parameters should be fixed |
cd |
Logical indicating whether coordinate descent should be used for estimation |
cd_control |
Control parameters for coordinate descent estimation |
partable_start |
Starting values for parameter estimation |
num_approx |
Logical indicating whether derivatives should be computed based on numerical differentiation |
technical |
Parameters used for optimization in |
control |
Control paramaters for optimization |
[MORE INFORMATION TO BE ADDED]
A list with following values
coef |
Coeffients |
vcov |
Variance matrix |
se |
Vector of standard errors |
partable |
Parameter table |
model |
Specified model |
opt_res |
Result from optimization |
opt_value |
Value of fitting function |
residuals |
Residuals of sufficient statistics |
ic |
Information criteria |
technical |
Specifications of optimizer |
suffstat_vcov |
Variance matrix of sufficient statistics |
me_delta_method |
Input and output matrices for delta method if
|
data_proc |
Processed data |
case_ll |
Casewise log-likelihood function |
... |
Further values |
Robitzsch, A. (2023). Model-robust estimation of multiple-group structural equation models. Algorithms, 16(4), 210. doi:10.3390/a16040210
## Not run: ############################################################################# # EXAMPLE 1: Noninvariant item intercepts in a multiple-group SEM ############################################################################# #---- simulate data set.seed(65) G <- 3 # number of groups I <- 5 # number of items # define lambda and nu parameters lambda <- matrix(1, nrow=G, ncol=I) nu <- matrix(0, nrow=G, ncol=I) err_var <- matrix(1, nrow=G, ncol=I) # define extent of noninvariance dif_int <- .5 #- 1st group: N(0,1) nu[1,4] <- dif_int #- 2nd group: N(0.3,1.5) gg <- 2 ; nu[gg,1] <- -dif_int #- 3nd group: N(.8,1.2) gg <- 3 nu[gg,2] <- -dif_int #- define distributions of groups mu <- c(0,.3,.8) sigma <- sqrt(c(1,1.5,1.2)) N <- rep(1000,3) # sample sizes per group exact <- FALSE suffstat <- sirt::invariance_alignment_simulate(nu, lambda, err_var, mu, sigma, N, output="suffstat", groupwise=TRUE, exact=exact) #---- model specification # model specifications joint group est <- list( ALPHA=matrix( c(0), ncol=1), NU=matrix( 0, nrow=I, ncol=1), LAM=matrix(1, nrow=I, ncol=1), PHI=matrix(0,nrow=1,ncol=1), PSI=diag(rep(1,I)) ) # parameter index index <- list( ALPHA=0*est$ALPHA, NU=1+0*est$NU, LAM=1+0*est$LAM, PHI=0*est$PHI, PSI=diag(1,I) ) # lower bounds lower <- list( PSI=diag(rep(0.01,I)), PHI=matrix(0.01,1,1) ) #*** joint parameters group0 <- list(est=est, index=index, lower=lower) #*** group1 est <- list( ALPHA=matrix( c(0), ncol=1), NU=matrix( 0, nrow=I, ncol=1), LAM=matrix(0, nrow=I, ncol=1), PHI=matrix(1,nrow=1,ncol=1) ) # parameter index index <- list( ALPHA=0*est$ALPHA, NU=0*est$NU, LAM=1*est$LAM, PHI=0*est$PHI ) group1 <- list(est=est, index=index, lower=lower) #*** group 2 and group 3 # modify parameter index index$ALPHA <- 1+0*est$ALPHA index$PHI <- 1+0*est$PHI group3 <- group2 <- list(est=est, index=index, lower=lower) #*** define model model <- list(group0=group0, group1=group1, group2=group2, group3=group3) #-- estimate model with ML res1 <- sirt::mgsem( suffstat=suffstat, model=model2, eps_approx=1e-4, estimator="ML", technical=list(maxiter=500, optimizer="optim"), hessian=FALSE, comp_se=FALSE, control=list(trace=1) ) str(res1) #-- robust moment estimation with p=0.5 optimizer <- "optim" technical <- list(maxiter=500, optimizer=optimizer) eps_approx <- 1e-3 res2 <- sirt::mgsem( suffstat=suffstat, model=res1$model, p_me=0.5, eps_approx=eps_approx, estimator="ME", technical=technical, hessian=FALSE, comp_se=FALSE, control=list(trace=1) ) #---- regularized estimation nu_lam <- 0.1 # regularization parameter # redefine model define_model <- function(model, nu_lam) { pen_lp <- list( NU=nu_lam+0*model$group1$est$NU) ee <- "group1" for (ee in c("group1","group2","group3")) { model[[ee]]$index$NU <- 1+0*index$NU model[[ee]]$pen_lp <- pen_lp } return(model) } model3 <- define_model(model=model, nu_lam=nu_lam) pen_type <- "scad" res3 <- sirt::mgsem( suffstat=suffstat, model=model3, p_pen=1, pen_type=pen_type, eps_approx=eps_approx, estimator="ML", technical=list(maxiter=500, optimizer="optim"), hessian=FALSE, comp_se=FALSE, control=list(trace=1) ) str(res3) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Noninvariant item intercepts in a multiple-group SEM ############################################################################# #---- simulate data set.seed(65) G <- 3 # number of groups I <- 5 # number of items # define lambda and nu parameters lambda <- matrix(1, nrow=G, ncol=I) nu <- matrix(0, nrow=G, ncol=I) err_var <- matrix(1, nrow=G, ncol=I) # define extent of noninvariance dif_int <- .5 #- 1st group: N(0,1) nu[1,4] <- dif_int #- 2nd group: N(0.3,1.5) gg <- 2 ; nu[gg,1] <- -dif_int #- 3nd group: N(.8,1.2) gg <- 3 nu[gg,2] <- -dif_int #- define distributions of groups mu <- c(0,.3,.8) sigma <- sqrt(c(1,1.5,1.2)) N <- rep(1000,3) # sample sizes per group exact <- FALSE suffstat <- sirt::invariance_alignment_simulate(nu, lambda, err_var, mu, sigma, N, output="suffstat", groupwise=TRUE, exact=exact) #---- model specification # model specifications joint group est <- list( ALPHA=matrix( c(0), ncol=1), NU=matrix( 0, nrow=I, ncol=1), LAM=matrix(1, nrow=I, ncol=1), PHI=matrix(0,nrow=1,ncol=1), PSI=diag(rep(1,I)) ) # parameter index index <- list( ALPHA=0*est$ALPHA, NU=1+0*est$NU, LAM=1+0*est$LAM, PHI=0*est$PHI, PSI=diag(1,I) ) # lower bounds lower <- list( PSI=diag(rep(0.01,I)), PHI=matrix(0.01,1,1) ) #*** joint parameters group0 <- list(est=est, index=index, lower=lower) #*** group1 est <- list( ALPHA=matrix( c(0), ncol=1), NU=matrix( 0, nrow=I, ncol=1), LAM=matrix(0, nrow=I, ncol=1), PHI=matrix(1,nrow=1,ncol=1) ) # parameter index index <- list( ALPHA=0*est$ALPHA, NU=0*est$NU, LAM=1*est$LAM, PHI=0*est$PHI ) group1 <- list(est=est, index=index, lower=lower) #*** group 2 and group 3 # modify parameter index index$ALPHA <- 1+0*est$ALPHA index$PHI <- 1+0*est$PHI group3 <- group2 <- list(est=est, index=index, lower=lower) #*** define model model <- list(group0=group0, group1=group1, group2=group2, group3=group3) #-- estimate model with ML res1 <- sirt::mgsem( suffstat=suffstat, model=model2, eps_approx=1e-4, estimator="ML", technical=list(maxiter=500, optimizer="optim"), hessian=FALSE, comp_se=FALSE, control=list(trace=1) ) str(res1) #-- robust moment estimation with p=0.5 optimizer <- "optim" technical <- list(maxiter=500, optimizer=optimizer) eps_approx <- 1e-3 res2 <- sirt::mgsem( suffstat=suffstat, model=res1$model, p_me=0.5, eps_approx=eps_approx, estimator="ME", technical=technical, hessian=FALSE, comp_se=FALSE, control=list(trace=1) ) #---- regularized estimation nu_lam <- 0.1 # regularization parameter # redefine model define_model <- function(model, nu_lam) { pen_lp <- list( NU=nu_lam+0*model$group1$est$NU) ee <- "group1" for (ee in c("group1","group2","group3")) { model[[ee]]$index$NU <- 1+0*index$NU model[[ee]]$pen_lp <- pen_lp } return(model) } model3 <- define_model(model=model, nu_lam=nu_lam) pen_type <- "scad" res3 <- sirt::mgsem( suffstat=suffstat, model=model3, p_pen=1, pen_type=pen_type, eps_approx=eps_approx, estimator="ML", technical=list(maxiter=500, optimizer="optim"), hessian=FALSE, comp_se=FALSE, control=list(trace=1) ) str(res3) ## End(Not run)
Specify or modify a parameter table in mirt.
mirt.specify.partable(mirt.partable, parlist, verbose=TRUE)
mirt.specify.partable(mirt.partable, parlist, verbose=TRUE)
mirt.partable |
Parameter table in mirt package |
parlist |
List of parameters which are used for specification in the parameter table. See Examples. |
verbose |
An optional logical indicating whether the some warnings should be printed. |
A modified parameter table
Alexander Robitzsch, Phil Chalmers
############################################################################# # EXAMPLE 1: Modifying a parameter table for single group ############################################################################# library(mirt) data(LSAT7,package="mirt") data <- mirt::expand.table(LSAT7) mirt.partable <- mirt::mirt(data, 1, pars="values") colnames(mirt.partable) ## > colnames(mirt.partable) [1] 'group' 'item' 'class' 'name' 'parnum' 'value' ## 'lbound' 'ubound' 'est' 'prior.type' 'prior_1' 'prior_2' # specify some values of item parameters value <- data.frame(d=c(0.7, -1, NA), a1=c(1, 1.2, 1.3), g=c(NA, 0.25, 0.25)) rownames(value) <- c("Item.1", "Item.4", "Item.3") # fix some item paramters est1 <- data.frame(d=c(TRUE, NA), a1=c(FALSE, TRUE)) rownames(est1) <- c("Item.4", "Item.3") # estimate all guessing parameters est2 <- data.frame(g=rep(TRUE, 5)) rownames(est2) <- colnames(data) # prior distributions prior.type <- data.frame(g=rep("norm", 4)) rownames(prior.type) <- c("Item.1", "Item.2", "Item.4", "Item.5") prior_1 <- data.frame(g=rep(-1.38, 4)) rownames(prior_1) <- c("Item.1", "Item.2", "Item.4", "Item.5") prior_2 <- data.frame(g=rep(0.5, 4)) rownames(prior_2) <- c("Item.1", "Item.2", "Item.4", "Item.5") # misspecify some entries rownames(prior_2)[c(3,2)] <- c("A", "B") rownames(est1)[2] <- c("B") # define complete list with parameter specification parlist <- list(value=value, est=est1, est=est2, prior.type=prior.type, prior_1=prior_1, prior_2=prior_2) # modify parameter table mirt.specify.partable(mirt.partable, parlist)
############################################################################# # EXAMPLE 1: Modifying a parameter table for single group ############################################################################# library(mirt) data(LSAT7,package="mirt") data <- mirt::expand.table(LSAT7) mirt.partable <- mirt::mirt(data, 1, pars="values") colnames(mirt.partable) ## > colnames(mirt.partable) [1] 'group' 'item' 'class' 'name' 'parnum' 'value' ## 'lbound' 'ubound' 'est' 'prior.type' 'prior_1' 'prior_2' # specify some values of item parameters value <- data.frame(d=c(0.7, -1, NA), a1=c(1, 1.2, 1.3), g=c(NA, 0.25, 0.25)) rownames(value) <- c("Item.1", "Item.4", "Item.3") # fix some item paramters est1 <- data.frame(d=c(TRUE, NA), a1=c(FALSE, TRUE)) rownames(est1) <- c("Item.4", "Item.3") # estimate all guessing parameters est2 <- data.frame(g=rep(TRUE, 5)) rownames(est2) <- colnames(data) # prior distributions prior.type <- data.frame(g=rep("norm", 4)) rownames(prior.type) <- c("Item.1", "Item.2", "Item.4", "Item.5") prior_1 <- data.frame(g=rep(-1.38, 4)) rownames(prior_1) <- c("Item.1", "Item.2", "Item.4", "Item.5") prior_2 <- data.frame(g=rep(0.5, 4)) rownames(prior_2) <- c("Item.1", "Item.2", "Item.4", "Item.5") # misspecify some entries rownames(prior_2)[c(3,2)] <- c("A", "B") rownames(est1)[2] <- c("B") # define complete list with parameter specification parlist <- list(value=value, est=est1, est=est2, prior.type=prior.type, prior_1=prior_1, prior_2=prior_2) # modify parameter table mirt.specify.partable(mirt.partable, parlist)
Some functions for wrapping with the mirt package.
# extract coefficients mirt.wrapper.coef(mirt.obj) # summary output mirt_summary(object, digits=4, file=NULL, ...) # extract posterior, likelihood, ... mirt.wrapper.posterior(mirt.obj, weights=NULL, group=NULL) ## S3 method for class 'SingleGroupClass' IRT.likelihood(object, ...) ## S3 method for class 'MultipleGroupClass' IRT.likelihood(object, ...) ## S3 method for class 'SingleGroupClass' IRT.posterior(object, ...) ## S3 method for class 'MultipleGroupClass' IRT.posterior(object, ...) ## S3 method for class 'SingleGroupClass' IRT.expectedCounts(object, ...) ## S3 method for class 'MultipleGroupClass' IRT.expectedCounts(object, ...) # S3 method for extracting item response functions ## S3 method for class 'SingleGroupClass' IRT.irfprob(object, ...) ## S3 method for class 'MultipleGroupClass' IRT.irfprob(object, group=1, ...) # compute factor scores mirt.wrapper.fscores(mirt.obj, weights=NULL) # convenience function for itemplot mirt.wrapper.itemplot( mirt.obj, ask=TRUE, ...)
# extract coefficients mirt.wrapper.coef(mirt.obj) # summary output mirt_summary(object, digits=4, file=NULL, ...) # extract posterior, likelihood, ... mirt.wrapper.posterior(mirt.obj, weights=NULL, group=NULL) ## S3 method for class 'SingleGroupClass' IRT.likelihood(object, ...) ## S3 method for class 'MultipleGroupClass' IRT.likelihood(object, ...) ## S3 method for class 'SingleGroupClass' IRT.posterior(object, ...) ## S3 method for class 'MultipleGroupClass' IRT.posterior(object, ...) ## S3 method for class 'SingleGroupClass' IRT.expectedCounts(object, ...) ## S3 method for class 'MultipleGroupClass' IRT.expectedCounts(object, ...) # S3 method for extracting item response functions ## S3 method for class 'SingleGroupClass' IRT.irfprob(object, ...) ## S3 method for class 'MultipleGroupClass' IRT.irfprob(object, group=1, ...) # compute factor scores mirt.wrapper.fscores(mirt.obj, weights=NULL) # convenience function for itemplot mirt.wrapper.itemplot( mirt.obj, ask=TRUE, ...)
mirt.obj |
A fitted model in mirt package |
object |
A fitted object in mirt package of class
|
group |
Group index for |
digits |
Number of digits after decimal used for rounding |
file |
File name for sinking summary output |
weights |
Optional vector of student weights |
ask |
Optional logical indicating whether each new plot should be confirmed. |
... |
Further arguments to be passed. |
The function mirt.wrapper.coef
collects all item parameters
in a data frame.
The function mirt.wrapper.posterior
extracts the individual
likelihood, individual likelihood and expected counts. This function does not
yet cover the case of multiple groups.
The function mirt.wrapper.fscores
computes factor scores
EAP, MAP and MLE. The factor scores are computed on the
discrete grid of latent traits (contrary to the computation in mirt
) as
specified in mirt.obj@Theta
. This function does also not work
for multiple groups.
The function mirt.wrapper.itemplot
displays all item plots
after each other.
Function mirt.wrapper.coef
– List with entries
coef |
Data frame with item parameters |
GroupPars |
Data frame or list with distribution parameters |
Function mirt.wrapper.posterior
– List with entries
theta.k |
Grid of theta points |
pi.k |
Trait distribution on |
f.yi.qk |
Individual likelihood |
f.qk.yi |
Individual posterior |
n.ik |
Expected counts |
data |
Used dataset |
Function mirt.wrapper.fscores
– List with entries
person |
Data frame with person parameter estimates (factor scores) EAP, MAP and MLE for all dimensions. |
EAP.rel |
EAP reliabilities |
Latent class analysis (data.read
, Model 7)
Mixed Rasch model (data.read
, Model 8)
Located unidimensional and multidimensional
latent class models / Multidimensional latent class IRT models
(data.read
, Model 12;
rasch.mirtlc
, Example 4)
Multidimensional IRT model with discrete latent traits
(data.read
, Model 13)
Unidimensional IRT model with non-normal distribution
(data.read
, Model 15)
Grade of membership model (gom.em
, Example 2)
Rasch copula model (rasch.copula2
, Example 5)
Additive GDINA model
(data.dcm
, CDM, Model 6m)
Longitudinal Rasch model (data.long
, Model 3)
Normally distributed residuals (data.big5
, Example 1, Model 5)
Nedelsky model (nedelsky.irf
,
Examples 1, 2)
Beta item response model (brm.irf
, Example 1)
See the mirt package manual for more information.
See for the main estimation functions in mirt:
mirt::mirt
,
mirt::multipleGroup
and mirt::bfactor
.
See mirt::coef-method
for extracting
coefficients.
See mirt::mod2values
for collecting
parameter values in a mirt parameter table.
See lavaan2mirt
for converting lavaan
syntax
to mirt
syntax.
See tam2mirt
for converting fitted tam
models
into mirt
objects.
See also CDM::IRT.likelihood
,
CDM::IRT.posterior
and
CDM::IRT.irfprob
for general
extractor functions.
## Not run: # A development version can be installed from GitHub if (FALSE){ # default is set to FALSE, use the installed version library(devtools) devtools::install_github("philchalmers/mirt") } # now, load mirt library(mirt) ############################################################################# # EXAMPLE 1: Extracting item parameters and posterior LSAT data ############################################################################# data(LSAT7, package="mirt") data <- mirt::expand.table(LSAT7) #*** Model 1: 3PL model for item 5 only, other items 2PL mod1 <- mirt::mirt(data, 1, itemtype=c("2PL","2PL","2PL","2PL","3PL"), verbose=TRUE) print(mod1) summary(mod1) # extracting coefficients coef(mod1) mirt.wrapper.coef(mod1)$coef # summary output mirt_summary(mod1) # extract parameter values in mirt mirt::mod2values(mod1) # extract posterior post1 <- sirt::mirt.wrapper.posterior(mod1) # extract item response functions probs1 <- IRT.irfprob(mod1) str(probs1) # extract individual likelihood likemod1 <- IRT.likelihood(mod1) str(likemod1) # extract individual posterior postmod1 <- IRT.posterior(mod1) str(postmod1) #*** Model 2: Confirmatory model with two factors cmodel <- mirt::mirt.model(" F1=1,4,5 F2=2,3 ") mod2 <- mirt::mirt(data, cmodel, verbose=TRUE) print(mod2) summary(mod2) # extract coefficients coef(mod2) mirt.wrapper.coef(mod2)$coef # extract posterior post2 <- sirt::mirt.wrapper.posterior(mod2) ############################################################################# # EXAMPLE 2: Extracting item parameters and posterior for differering # number of response catagories | Dataset Science ############################################################################# data(Science,package="mirt") library(psych) psych::describe(Science) # modify dataset dat <- Science dat[ dat[,1] > 3,1] <- 3 psych::describe(dat) # estimate generalized partial credit model mod1 <- mirt::mirt(dat, 1, itemtype="gpcm") print(mod1) # extract coefficients coef(mod1) mirt.wrapper.coef(mod1)$coef # extract posterior post1 <- sirt::mirt.wrapper.posterior(mod1) ############################################################################# # EXAMPLE 3: Multiple group model; simulated dataset from mirt package ############################################################################# #*** simulate data (copy from the multipleGroup manual site in mirt package) set.seed(1234) a <- matrix(c(abs( stats::rnorm(5,1,.3)), rep(0,15),abs( stats::rnorm(5,1,.3)), rep(0,15),abs( stats::rnorm(5,1,.3))), 15, 3) d <- matrix( stats::rnorm(15,0,.7),ncol=1) mu <- c(-.4, -.7, .1) sigma <- matrix(c(1.21,.297,1.232,.297,.81,.252,1.232,.252,1.96),3,3) itemtype <- rep("dich", nrow(a)) N <- 1000 dataset1 <- mirt::simdata(a, d, N, itemtype) dataset2 <- mirt::simdata(a, d, N, itemtype, mu=mu, sigma=sigma) dat <- rbind(dataset1, dataset2) group <- c(rep("D1", N), rep("D2", N)) #group models model <- mirt::mirt.model(" F1=1-5 F2=6-10 F3=11-15 ") # separate analysis mod_configural <- mirt::multipleGroup(dat, model, group=group, verbose=TRUE) mirt.wrapper.coef(mod_configural) # equal slopes (metric invariance) mod_metric <- mirt::multipleGroup(dat, model, group=group, invariance=c("slopes"), verbose=TRUE) mirt.wrapper.coef(mod_metric) # equal slopes and intercepts (scalar invariance) mod_scalar <- mirt::multipleGroup(dat, model, group=group, invariance=c("slopes","intercepts","free_means","free_varcov"), verbose=TRUE) mirt.wrapper.coef(mod_scalar) # full constraint mod_fullconstrain <- mirt::multipleGroup(dat, model, group=group, invariance=c("slopes", "intercepts", "free_means", "free_var"), verbose=TRUE ) mirt.wrapper.coef(mod_fullconstrain) ############################################################################# # EXAMPLE 4: Nonlinear item response model ############################################################################# data(data.read) dat <- data.read # specify mirt model with some interactions mirtmodel <- mirt.model(" A=1-4 B=5-8 C=9-12 (A*B)=4,8 (C*C)=9 (A*B*C)=12 " ) # estimate model res <- mirt::mirt( dat, mirtmodel, verbose=TRUE, technical=list(NCYCLES=3) ) # look at estimated parameters mirt.wrapper.coef(res) coef(res) mirt::mod2values(res) # model specification res@model ############################################################################# # EXAMPLE 5: Extracting factor scores ############################################################################# data(data.read) dat <- data.read # define lavaan model and convert syntax to mirt lavmodel <- " A=~ a*A1+a*A2+1.3*A3+A4 # set loading of A3 to 1.3 B=~ B1+1*B2+b3*B3+B4 C=~ c*C1+C2+c*C3+C4 A1 | da*t1 A3 | da*t1 C4 | dg*t1 B1 | 0*t1 B3 | -1.4*t1 # fix item threshold of B3 to -1.4 A ~~ B # estimate covariance between A and B A ~~ .6 * C # fix covariance to .6 B ~~ B # estimate variance of B A ~ .5*1 # set mean of A to .5 B ~ 1 # estimate mean of B " res <- sirt::lavaan2mirt( dat, lavmodel, verbose=TRUE, technical=list(NCYCLES=3) ) # estimated coefficients mirt.wrapper.coef(res$mirt) # extract factor scores fres <- sirt::mirt.wrapper.fscores(res$mirt) # look at factor scores head( round(fres$person,2)) ## case M EAP.Var1 SE.EAP.Var1 EAP.Var2 SE.EAP.Var2 EAP.Var3 SE.EAP.Var3 MLE.Var1 ## 1 1 0.92 1.26 0.67 1.61 0.60 0.05 0.69 2.65 ## 2 2 0.58 0.06 0.59 1.14 0.55 -0.80 0.56 0.00 ## 3 3 0.83 0.86 0.66 1.15 0.55 0.48 0.74 0.53 ## 4 4 1.00 1.52 0.67 1.57 0.60 0.73 0.76 2.65 ## 5 5 0.50 -0.13 0.58 0.85 0.48 -0.82 0.55 -0.53 ## 6 6 0.75 0.41 0.63 1.09 0.54 0.27 0.71 0.00 ## MLE.Var2 MLE.Var3 MAP.Var1 MAP.Var2 MAP.Var3 ## 1 2.65 -0.53 1.06 1.59 0.00 ## 2 1.06 -1.06 0.00 1.06 -1.06 ## 3 1.06 2.65 1.06 1.06 0.53 ## 4 2.65 2.65 1.59 1.59 0.53 ## 5 0.53 -1.06 -0.53 0.53 -1.06 ## 6 1.06 2.65 0.53 1.06 0.00 # EAP reliabilities round(fres$EAP.rel,3) ## Var1 Var2 Var3 ## 0.574 0.452 0.541 ## End(Not run)
## Not run: # A development version can be installed from GitHub if (FALSE){ # default is set to FALSE, use the installed version library(devtools) devtools::install_github("philchalmers/mirt") } # now, load mirt library(mirt) ############################################################################# # EXAMPLE 1: Extracting item parameters and posterior LSAT data ############################################################################# data(LSAT7, package="mirt") data <- mirt::expand.table(LSAT7) #*** Model 1: 3PL model for item 5 only, other items 2PL mod1 <- mirt::mirt(data, 1, itemtype=c("2PL","2PL","2PL","2PL","3PL"), verbose=TRUE) print(mod1) summary(mod1) # extracting coefficients coef(mod1) mirt.wrapper.coef(mod1)$coef # summary output mirt_summary(mod1) # extract parameter values in mirt mirt::mod2values(mod1) # extract posterior post1 <- sirt::mirt.wrapper.posterior(mod1) # extract item response functions probs1 <- IRT.irfprob(mod1) str(probs1) # extract individual likelihood likemod1 <- IRT.likelihood(mod1) str(likemod1) # extract individual posterior postmod1 <- IRT.posterior(mod1) str(postmod1) #*** Model 2: Confirmatory model with two factors cmodel <- mirt::mirt.model(" F1=1,4,5 F2=2,3 ") mod2 <- mirt::mirt(data, cmodel, verbose=TRUE) print(mod2) summary(mod2) # extract coefficients coef(mod2) mirt.wrapper.coef(mod2)$coef # extract posterior post2 <- sirt::mirt.wrapper.posterior(mod2) ############################################################################# # EXAMPLE 2: Extracting item parameters and posterior for differering # number of response catagories | Dataset Science ############################################################################# data(Science,package="mirt") library(psych) psych::describe(Science) # modify dataset dat <- Science dat[ dat[,1] > 3,1] <- 3 psych::describe(dat) # estimate generalized partial credit model mod1 <- mirt::mirt(dat, 1, itemtype="gpcm") print(mod1) # extract coefficients coef(mod1) mirt.wrapper.coef(mod1)$coef # extract posterior post1 <- sirt::mirt.wrapper.posterior(mod1) ############################################################################# # EXAMPLE 3: Multiple group model; simulated dataset from mirt package ############################################################################# #*** simulate data (copy from the multipleGroup manual site in mirt package) set.seed(1234) a <- matrix(c(abs( stats::rnorm(5,1,.3)), rep(0,15),abs( stats::rnorm(5,1,.3)), rep(0,15),abs( stats::rnorm(5,1,.3))), 15, 3) d <- matrix( stats::rnorm(15,0,.7),ncol=1) mu <- c(-.4, -.7, .1) sigma <- matrix(c(1.21,.297,1.232,.297,.81,.252,1.232,.252,1.96),3,3) itemtype <- rep("dich", nrow(a)) N <- 1000 dataset1 <- mirt::simdata(a, d, N, itemtype) dataset2 <- mirt::simdata(a, d, N, itemtype, mu=mu, sigma=sigma) dat <- rbind(dataset1, dataset2) group <- c(rep("D1", N), rep("D2", N)) #group models model <- mirt::mirt.model(" F1=1-5 F2=6-10 F3=11-15 ") # separate analysis mod_configural <- mirt::multipleGroup(dat, model, group=group, verbose=TRUE) mirt.wrapper.coef(mod_configural) # equal slopes (metric invariance) mod_metric <- mirt::multipleGroup(dat, model, group=group, invariance=c("slopes"), verbose=TRUE) mirt.wrapper.coef(mod_metric) # equal slopes and intercepts (scalar invariance) mod_scalar <- mirt::multipleGroup(dat, model, group=group, invariance=c("slopes","intercepts","free_means","free_varcov"), verbose=TRUE) mirt.wrapper.coef(mod_scalar) # full constraint mod_fullconstrain <- mirt::multipleGroup(dat, model, group=group, invariance=c("slopes", "intercepts", "free_means", "free_var"), verbose=TRUE ) mirt.wrapper.coef(mod_fullconstrain) ############################################################################# # EXAMPLE 4: Nonlinear item response model ############################################################################# data(data.read) dat <- data.read # specify mirt model with some interactions mirtmodel <- mirt.model(" A=1-4 B=5-8 C=9-12 (A*B)=4,8 (C*C)=9 (A*B*C)=12 " ) # estimate model res <- mirt::mirt( dat, mirtmodel, verbose=TRUE, technical=list(NCYCLES=3) ) # look at estimated parameters mirt.wrapper.coef(res) coef(res) mirt::mod2values(res) # model specification res@model ############################################################################# # EXAMPLE 5: Extracting factor scores ############################################################################# data(data.read) dat <- data.read # define lavaan model and convert syntax to mirt lavmodel <- " A=~ a*A1+a*A2+1.3*A3+A4 # set loading of A3 to 1.3 B=~ B1+1*B2+b3*B3+B4 C=~ c*C1+C2+c*C3+C4 A1 | da*t1 A3 | da*t1 C4 | dg*t1 B1 | 0*t1 B3 | -1.4*t1 # fix item threshold of B3 to -1.4 A ~~ B # estimate covariance between A and B A ~~ .6 * C # fix covariance to .6 B ~~ B # estimate variance of B A ~ .5*1 # set mean of A to .5 B ~ 1 # estimate mean of B " res <- sirt::lavaan2mirt( dat, lavmodel, verbose=TRUE, technical=list(NCYCLES=3) ) # estimated coefficients mirt.wrapper.coef(res$mirt) # extract factor scores fres <- sirt::mirt.wrapper.fscores(res$mirt) # look at factor scores head( round(fres$person,2)) ## case M EAP.Var1 SE.EAP.Var1 EAP.Var2 SE.EAP.Var2 EAP.Var3 SE.EAP.Var3 MLE.Var1 ## 1 1 0.92 1.26 0.67 1.61 0.60 0.05 0.69 2.65 ## 2 2 0.58 0.06 0.59 1.14 0.55 -0.80 0.56 0.00 ## 3 3 0.83 0.86 0.66 1.15 0.55 0.48 0.74 0.53 ## 4 4 1.00 1.52 0.67 1.57 0.60 0.73 0.76 2.65 ## 5 5 0.50 -0.13 0.58 0.85 0.48 -0.82 0.55 -0.53 ## 6 6 0.75 0.41 0.63 1.09 0.54 0.27 0.71 0.00 ## MLE.Var2 MLE.Var3 MAP.Var1 MAP.Var2 MAP.Var3 ## 1 2.65 -0.53 1.06 1.59 0.00 ## 2 1.06 -1.06 0.00 1.06 -1.06 ## 3 1.06 2.65 1.06 1.06 0.53 ## 4 2.65 2.65 1.59 1.59 0.53 ## 5 0.53 -1.06 -0.53 0.53 -1.06 ## 6 1.06 2.65 0.53 1.06 0.00 # EAP reliabilities round(fres$EAP.rel,3) ## Var1 Var2 Var3 ## 0.574 0.452 0.541 ## End(Not run)
This function estimates person or group parameters in the partial credit model (see Details).
mle.pcm.group(dat, b, a=rep(1, ncol(dat)), group=NULL, pid=NULL, adj_eps=0.3, conv=1e-04, maxiter=30)
mle.pcm.group(dat, b, a=rep(1, ncol(dat)), group=NULL, pid=NULL, adj_eps=0.3, conv=1e-04, maxiter=30)
dat |
A numeric |
b |
Matrix with item thresholds |
a |
Vector of item slopes |
group |
Vector of group identifiers |
pid |
Vector of person identifiers |
adj_eps |
Numeric value which is used in |
conv |
Convergence criterion |
maxiter |
Maximum number of iterations |
It is assumed that the generalized partial credit model holds.
In case one estimates a person parameter ,
the log-likelihood is maximized and the following
estimating equation results: (see Penfield & Bergeron, 2005):
where denotes the expected item response
conditionally on
.
With the method of -adjustment (Bertoli-Barsotti & Punzo, 2012;
Bertoli-Barsotti, Lando & Punzo, 2014),
the observed item responses
are transformed such that
no perfect scores arise and bias is reduced. If
is the sum score of person
and
the maximum
score of this person, then the transformed sum scores
are
However, the adjustment is directly conducted on item responses to also handle the case of the generalized partial credit model with item slope parameters different from 1.
In case one estimates a group parameter ,
the following estimating equation is used:
where persons are nested within a group
.
The
-adjustment is then performed at the
group level, not at the individual level.
A list with following entries:
person |
Data frame with person or group parameters |
data_adjeps |
Modified dataset according to the
|
Bertoli-Barsotti, L., & Punzo, A. (2012). Comparison of two bias reduction techniques for the Rasch model. Electronic Journal of Applied Statistical Analysis, 5, 360-366.
Bertoli-Barsotti, L., Lando, T., & Punzo, A. (2014). Estimating a Rasch Model via fuzzy empirical probability functions. In D. Vicari, A. Okada, G. Ragozini & C. Weihs (Eds.). Analysis and Modeling of Complex Data in Behavioral and Social Sciences, Springer.
Penfield, R. D., & Bergeron, J. M. (2005). Applying a weighted maximum likelihood latent trait estimator to the generalized partial credit model. Applied Psychological Measurement, 29, 218-233.
## Not run: ############################################################################# # EXAMPLE 1: Estimation of a group parameter for only one item per group ############################################################################# data(data.si01) dat <- data.si01 # item parameter estimation (partial credit model) in TAM library(TAM) mod <- TAM::tam.mml( dat[,2:3], irtmodel="PCM") # extract item difficulties b <- matrix( mod$xsi$xsi, nrow=2, byrow=TRUE ) # groupwise estimation res1 <- sirt::mle.pcm.group( dat[,2:3], b=b, group=dat$idgroup ) # individual estimation res2 <- sirt::mle.pcm.group( dat[,2:3], b=b ) ############################################################################# # EXAMPLE 2: Data Reading data.read ############################################################################# data(data.read) # estimate Rasch model mod <- sirt::rasch.mml2( data.read ) score <- rowSums( data.read ) data.read <- data.read[ order(score), ] score <- score[ order(score) ] # compare different epsilon-adjustments res30 <- sirt::mle.pcm.group( data.read, b=matrix( mod$item$b, 12, 1 ), adj_eps=.3 )$person res10 <- sirt::mle.pcm.group( data.read, b=matrix( mod$item$b, 12, 1 ), adj_eps=.1 )$person res05 <- sirt::mle.pcm.group( data.read, b=matrix( mod$item$b, 12, 1 ), adj_eps=.05 )$person # plot different scorings plot( score, res05$theta, type="l", xlab="Raw score", ylab=expression(theta[epsilon]), main="Scoring with different epsilon-adjustments") lines( score, res10$theta, col=2, lty=2 ) lines( score, res30$theta, col=4, lty=3 ) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Estimation of a group parameter for only one item per group ############################################################################# data(data.si01) dat <- data.si01 # item parameter estimation (partial credit model) in TAM library(TAM) mod <- TAM::tam.mml( dat[,2:3], irtmodel="PCM") # extract item difficulties b <- matrix( mod$xsi$xsi, nrow=2, byrow=TRUE ) # groupwise estimation res1 <- sirt::mle.pcm.group( dat[,2:3], b=b, group=dat$idgroup ) # individual estimation res2 <- sirt::mle.pcm.group( dat[,2:3], b=b ) ############################################################################# # EXAMPLE 2: Data Reading data.read ############################################################################# data(data.read) # estimate Rasch model mod <- sirt::rasch.mml2( data.read ) score <- rowSums( data.read ) data.read <- data.read[ order(score), ] score <- score[ order(score) ] # compare different epsilon-adjustments res30 <- sirt::mle.pcm.group( data.read, b=matrix( mod$item$b, 12, 1 ), adj_eps=.3 )$person res10 <- sirt::mle.pcm.group( data.read, b=matrix( mod$item$b, 12, 1 ), adj_eps=.1 )$person res05 <- sirt::mle.pcm.group( data.read, b=matrix( mod$item$b, 12, 1 ), adj_eps=.05 )$person # plot different scorings plot( score, res05$theta, type="l", xlab="Raw score", ylab=expression(theta[epsilon]), main="Scoring with different epsilon-adjustments") lines( score, res10$theta, col=2, lty=2 ) lines( score, res30$theta, col=4, lty=3 ) ## End(Not run)
This function computes several measures of absolute model fit and local
dependence indices for dichotomous item responses which are
based on comparing observed and expected frequencies of item pairs
(Chen, de la Torre & Zhang, 2013; see modelfit.cor
for more details).
modelfit.sirt(object) modelfit.cor.poly( data, probs, theta.k, f.qk.yi) ## S3 method for class 'sirt' IRT.modelfit(object, mod, ...)
modelfit.sirt(object) modelfit.cor.poly( data, probs, theta.k, f.qk.yi) ## S3 method for class 'sirt' IRT.modelfit(object, mod, ...)
object |
An object generated by |
data |
Dataset with polytomous item responses |
probs |
Item response probabilities at grid |
theta.k |
Grid of theta vector |
f.qk.yi |
Individual posterior |
mod |
Model name |
... |
Further arguments to be passed |
A list with following entries:
modelfit |
Model fit statistics:
|
itempairs |
Fit of every item pair |
The function modelfit.cor.poly
is just a wrapper to
TAM::tam.modelfit
in the TAM package.
Chen, W., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265-289.
DiBello, L. V., Roussos, L. A., & Stout, W. F. (2007) Review of cognitively diagnostic assessment and a summary of psychometric models. In C. R. Rao and S. Sinharay (Eds.), Handbook of Statistics, Vol. 26 (pp. 979–1030). Amsterdam: Elsevier.
Maydeu-Olivares, A. (2013). Goodness-of-fit assessment of item response theory models (with discussion). Measurement: Interdisciplinary Research and Perspectives, 11, 71-137.
Maydeu-Olivares, A., & Joe, H. (2014). Assessing approximate fit in categorical data analysis. Multivariate Behavioral Research, 49, 305-328.
McDonald, R. P., & Mok, M. M.-C. (1995). Goodness of fit in item response models. Multivariate Behavioral Research, 30, 23-40.
Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8, 125-145.
Supported classes: rasch.mml2
,
rasch.mirtlc
, rasch.pml3
(rasch.pml2
),
smirt
, R2noharm
, noharm.sirt
,
gom.em
,
TAM::tam.mml
,
TAM::tam.mml.2pl
,
TAM::tam.fa
,
mirt::mirt
For more details on fit statistics of this function
see CDM::modelfit.cor
.
## Not run: ############################################################################# # EXAMPLE 1: Reading data ############################################################################# data(data.read) dat <- data.read I <- ncol(dat) #*** Model 1: Rasch model mod1 <- sirt::rasch.mml2(dat) fmod1 <- sirt::modelfit.sirt( mod1 ) summary(fmod1) #*** Model 1b: Rasch model in TAM package library(TAM) mod1b <- TAM::tam.mml(dat) fmod1b <- sirt::modelfit.sirt( mod1b ) summary(fmod1b) #*** Model 2: Rasch model with smoothed distribution mod2 <- sirt::rasch.mml2( dat, distribution.trait="smooth3" ) fmod2 <- sirt::modelfit.sirt( mod2 ) summary(fmod2 ) #*** Model 3: 2PL model mod3 <- sirt::rasch.mml2( dat, distribution.trait="normal", est.a=1:I ) fmod3 <- sirt::modelfit.sirt( mod3 ) summary(fmod3 ) #*** Model 3: 2PL model in TAM package mod3b <- TAM::tam.mml.2pl( dat ) fmod3b <- sirt::modelfit.sirt(mod3b) summary(fmod3b) # model fit in TAM package tmod3b <- TAM::tam.modelfit(mod3b) summary(tmod3b) # model fit in mirt package library(mirt) mmod3b <- sirt::tam2mirt(mod3b) # convert to mirt object mirt::M2(mmod3b$mirt) # global fit statistic mirt::residuals( mmod3b$mirt, type="LD") # local dependence statistics #*** Model 4: 3PL model with equal guessing parameter mod4 <- TAM::rasch.mml2( dat, distribution.trait="smooth3", est.a=1:I, est.c=rep(1,I) ) fmod4 <- sirt::modelfit.sirt( mod4 ) summary(fmod4 ) #*** Model 5: Latent class model with 2 classes mod5 <- sirt::rasch.mirtlc( dat, Nclasses=2 ) fmod5 <- sirt::modelfit.sirt( mod5 ) summary(fmod5 ) #*** Model 6: Rasch latent class model with 3 classes mod6 <- sirt::rasch.mirtlc( dat, Nclasses=3, modeltype="MLC1", mmliter=100) fmod6 <- sirt::modelfit.sirt( mod6 ) summary(fmod6 ) #*** Model 7: PML estimation mod7 <- sirt::rasch.pml3( dat ) fmod7 <- sirt::modelfit.sirt( mod7 ) summary(fmod7 ) #*** Model 8: PML estimation # Modelling error correlations: # joint residual correlations for each item cluster error.corr <- diag(1,ncol(dat)) itemcluster <- rep( 1:4,each=3 ) for ( ii in 1:3){ ind.ii <- which( itemcluster==ii ) error.corr[ ind.ii, ind.ii ] <- ii } mod8 <- sirt::rasch.pml3( dat, error.corr=error.corr ) fmod8 <- sirt::modelfit.sirt( mod8 ) summary(fmod8 ) #*** Model 9: 1PL in smirt Qmatrix <- matrix( 1, nrow=I, ncol=1 ) mod9 <- sirt::smirt( dat, Qmatrix=Qmatrix ) fmod9 <- sirt::modelfit.sirt( mod9 ) summary(fmod9 ) #*** Model 10: 3-dimensional Rasch model in NOHARM noharm.path <- "c:/NOHARM" Q <- matrix( 0, nrow=12, ncol=3 ) Q[ cbind(1:12, rep(1:3,each=4) ) ] <- 1 rownames(Q) <- colnames(dat) colnames(Q) <- c("A","B","C") # covariance matrix P.pattern <- matrix( 1, ncol=3, nrow=3 ) P.init <- 0.8+0*P.pattern diag(P.init) <- 1 # loading matrix F.pattern <- 0*Q F.init <- Q # estimate model mod10 <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex4e", noharm.path=noharm.path, dec="," ) fmod10 <- sirt::modelfit.sirt( mod10 ) summary(fmod10) #*** Model 11: Rasch model in mirt package library(mirt) mod11 <- mirt::mirt(dat, 1, itemtype="Rasch",verbose=TRUE) fmod11 <- sirt::modelfit.sirt( mod11 ) summary(fmod11) # model fit in mirt package mirt::M2(mod11) mirt::residuals(mod11) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Reading data ############################################################################# data(data.read) dat <- data.read I <- ncol(dat) #*** Model 1: Rasch model mod1 <- sirt::rasch.mml2(dat) fmod1 <- sirt::modelfit.sirt( mod1 ) summary(fmod1) #*** Model 1b: Rasch model in TAM package library(TAM) mod1b <- TAM::tam.mml(dat) fmod1b <- sirt::modelfit.sirt( mod1b ) summary(fmod1b) #*** Model 2: Rasch model with smoothed distribution mod2 <- sirt::rasch.mml2( dat, distribution.trait="smooth3" ) fmod2 <- sirt::modelfit.sirt( mod2 ) summary(fmod2 ) #*** Model 3: 2PL model mod3 <- sirt::rasch.mml2( dat, distribution.trait="normal", est.a=1:I ) fmod3 <- sirt::modelfit.sirt( mod3 ) summary(fmod3 ) #*** Model 3: 2PL model in TAM package mod3b <- TAM::tam.mml.2pl( dat ) fmod3b <- sirt::modelfit.sirt(mod3b) summary(fmod3b) # model fit in TAM package tmod3b <- TAM::tam.modelfit(mod3b) summary(tmod3b) # model fit in mirt package library(mirt) mmod3b <- sirt::tam2mirt(mod3b) # convert to mirt object mirt::M2(mmod3b$mirt) # global fit statistic mirt::residuals( mmod3b$mirt, type="LD") # local dependence statistics #*** Model 4: 3PL model with equal guessing parameter mod4 <- TAM::rasch.mml2( dat, distribution.trait="smooth3", est.a=1:I, est.c=rep(1,I) ) fmod4 <- sirt::modelfit.sirt( mod4 ) summary(fmod4 ) #*** Model 5: Latent class model with 2 classes mod5 <- sirt::rasch.mirtlc( dat, Nclasses=2 ) fmod5 <- sirt::modelfit.sirt( mod5 ) summary(fmod5 ) #*** Model 6: Rasch latent class model with 3 classes mod6 <- sirt::rasch.mirtlc( dat, Nclasses=3, modeltype="MLC1", mmliter=100) fmod6 <- sirt::modelfit.sirt( mod6 ) summary(fmod6 ) #*** Model 7: PML estimation mod7 <- sirt::rasch.pml3( dat ) fmod7 <- sirt::modelfit.sirt( mod7 ) summary(fmod7 ) #*** Model 8: PML estimation # Modelling error correlations: # joint residual correlations for each item cluster error.corr <- diag(1,ncol(dat)) itemcluster <- rep( 1:4,each=3 ) for ( ii in 1:3){ ind.ii <- which( itemcluster==ii ) error.corr[ ind.ii, ind.ii ] <- ii } mod8 <- sirt::rasch.pml3( dat, error.corr=error.corr ) fmod8 <- sirt::modelfit.sirt( mod8 ) summary(fmod8 ) #*** Model 9: 1PL in smirt Qmatrix <- matrix( 1, nrow=I, ncol=1 ) mod9 <- sirt::smirt( dat, Qmatrix=Qmatrix ) fmod9 <- sirt::modelfit.sirt( mod9 ) summary(fmod9 ) #*** Model 10: 3-dimensional Rasch model in NOHARM noharm.path <- "c:/NOHARM" Q <- matrix( 0, nrow=12, ncol=3 ) Q[ cbind(1:12, rep(1:3,each=4) ) ] <- 1 rownames(Q) <- colnames(dat) colnames(Q) <- c("A","B","C") # covariance matrix P.pattern <- matrix( 1, ncol=3, nrow=3 ) P.init <- 0.8+0*P.pattern diag(P.init) <- 1 # loading matrix F.pattern <- 0*Q F.init <- Q # estimate model mod10 <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex4e", noharm.path=noharm.path, dec="," ) fmod10 <- sirt::modelfit.sirt( mod10 ) summary(fmod10) #*** Model 11: Rasch model in mirt package library(mirt) mod11 <- mirt::mirt(dat, 1, itemtype="Rasch",verbose=TRUE) fmod11 <- sirt::modelfit.sirt( mod11 ) summary(fmod11) # model fit in mirt package mirt::M2(mod11) mirt::residuals(mod11) ## End(Not run)
Monotone (isotone) regression for rows (monoreg.rowwise
) or
columns (monoreg.colwise
) in a matrix.
monoreg.rowwise(yM, wM) monoreg.colwise(yM, wM)
monoreg.rowwise(yM, wM) monoreg.colwise(yM, wM)
yM |
Matrix with dependent variable for the regression. Values are assumed to be sorted. |
wM |
Matrix with weights for every entry in the |
Matrix with fitted values
This function is used for fitting the ISOP model
(see isop.dich
).
Alexander Robitzsch
The monoreg
function from the fdrtool
package is simply extended to handle matrix input.
See also the monoreg
function from the fdrtool
package.
y <- c(22.5, 23.33, 20.83, 24.25 ) w <- c( 3,3,3,2) # define matrix input yM <- matrix( 0, nrow=2, ncol=4 ) wM <- yM yM[1,] <- yM[2,] <- y wM[1,] <- w wM[2,] <- c(1,3,4, 3 ) # fit rowwise monotone regression monoreg.rowwise( yM, wM ) # compare results with monoreg function from fdrtool package ## Not run: miceadds::library_install("fdrtool") fdrtool::monoreg(x=yM[1,], w=wM[1,])$yf fdrtool::monoreg(x=yM[2,], w=wM[2,])$yf ## End(Not run)
y <- c(22.5, 23.33, 20.83, 24.25 ) w <- c( 3,3,3,2) # define matrix input yM <- matrix( 0, nrow=2, ncol=4 ) wM <- yM yM[1,] <- yM[2,] <- y wM[1,] <- w wM[2,] <- c(1,3,4, 3 ) # fit rowwise monotone regression monoreg.rowwise( yM, wM ) # compare results with monoreg function from fdrtool package ## Not run: miceadds::library_install("fdrtool") fdrtool::monoreg(x=yM[1,], w=wM[1,])$yf fdrtool::monoreg(x=yM[2,], w=wM[2,])$yf ## End(Not run)
Functions for simulating and estimating the Nedelsky model
(Bechger et al., 2003, 2005). nedelsky.sim
can be used for
simulating the model, nedelsky.irf
computes the item response
function and can be used for example when estimating the
Nedelsky model in the mirt package or using the
xxirt
function in the sirt package.
# simulating the Nedelsky model nedelsky.sim(theta, b, a=NULL, tau=NULL) # creating latent responses of the Nedelsky model nedelsky.latresp(K) # computing the item response function of the Nedelsky model nedelsky.irf(Theta, K, b, a, tau, combis, thdim=1)
# simulating the Nedelsky model nedelsky.sim(theta, b, a=NULL, tau=NULL) # creating latent responses of the Nedelsky model nedelsky.latresp(K) # computing the item response function of the Nedelsky model nedelsky.irf(Theta, K, b, a, tau, combis, thdim=1)
theta |
Unidimensional ability (theta) |
b |
Matrix of category difficulties |
a |
Vector of item discriminations |
tau |
Category attractivity parameters |
K |
(Maximum) Number of distractors of the used multiple choice items |
Theta |
Theta vector. Note that the Nedelsky model can be only specified
as models with between item dimensionality (defined in |
combis |
Latent response classes as produced by |
thdim |
Theta dimension at which the item loads |
Assume that for item there exists
categories
.
The category 0 denotes the correct alternative. The Nedelsky model assumes
that a respondent eliminates all distractors which are thought to be
incorrect and guesses the solution from the remaining alternatives.
This means, that for item
,
latent variables
are defined which indicate whether alternative
has been correctly
identified as a distractor. By definition, the correct alternative is never
been judged as wrong by the respondent.
Formally, the Nedelsky model assumes a 2PL model for eliminating each of the distractors
where is the person ability and
are
distractor difficulties.
The guessing process of the Nedelsky model is defined as
where are attractivity parameters of alternative
.
By definition
is set to 1. By default, all attractivity parameters
are set to 1.
Bechger, T. M., Maris, G., Verstralen, H. H. F. M., & Verhelst, N. D. (2003). The Nedelsky model for multiple-choice items. CITO Research Report, 2003-5.
Bechger, T. M., Maris, G., Verstralen, H. H. F. M., & Verhelst, N. D. (2005). The Nedelsky model for multiple-choice items. In L. van der Ark, M. Croon, & Sijtsma, K. (Eds.). New developments in categorical data analysis for the social and behavioral sciences, pp. 187-206. Mahwah, Lawrence Erlbaum.
## Not run: ############################################################################# # EXAMPLE 1: Simulated data according to the Nedelsky model ############################################################################# #*** simulate data set.seed(123) I <- 20 # number of items b <- matrix(NA,I,ncol=3) b[,1] <- -0.5 + stats::runif( I, -.75, .75 ) b[,2] <- -1.5 + stats::runif( I, -.75, .75 ) b[,3] <- -2.5 + stats::runif( I, -.75, .75 ) K <- 3 # number of distractors N <- 2000 # number of persons # apply simulation function dat <- sirt::nedelsky.sim( theta=stats::rnorm(N,sd=1.2), b=b ) #*** latent response patterns K <- 3 combis <- sirt::nedelsky.latresp(K=3) #*** defining the Nedelsky item response function for estimation in mirt par <- c( 3, rep(-1,K), 1, rep(1,K+1),1) names(par) <- c("K", paste0("b",1:K), "a", paste0("tau", 0:K),"thdim") est <- c( FALSE, rep(TRUE,K), rep(FALSE, K+1 + 2 ) ) names(est) <- names(par) nedelsky.icc <- function( par, Theta, ncat ){ K <- par[1] b <- par[ 1:K + 1] a <- par[ K+2] tau <- par[1:(K+1) + (K+2) ] thdim <- par[ K+2+K+1 +1 ] probs <- sirt::nedelsky.irf( Theta, K=K, b=b, a=a, tau=tau, combis, thdim=thdim )$probs return(probs) } name <- "nedelsky" # create item response function nedelsky.itemfct <- mirt::createItem(name, par=par, est=est, P=nedelsky.icc) #*** define model in mirt mirtmodel <- mirt::mirt.model(" F1=1-20 COV=F1*F1 # define some prior distributions PRIOR=(1-20,b1,norm,-1,2),(1-20,b2,norm,-1,2), (1-20,b3,norm,-1,2) " ) itemtype <- rep("nedelsky", I ) customItems <- list("nedelsky"=nedelsky.itemfct) # define parameters to be estimated mod1.pars <- mirt::mirt(dat, mirtmodel, itemtype=itemtype, customItems=customItems, pars="values") # estimate model mod1 <- mirt::mirt(dat,mirtmodel, itemtype=itemtype, customItems=customItems, pars=mod1.pars, verbose=TRUE ) # model summaries print(mod1) summary(mod1) mirt.wrapper.coef( mod1 )$coef mirt.wrapper.itemplot(mod1,ask=TRUE) #****************************************************** # fit Nedelsky model with xxirt function in sirt # define item class for xxirt item_nedelsky <- sirt::xxirt_createDiscItem( name="nedelsky", par=par, est=est, P=nedelsky.icc, prior=c( b1="dnorm", b2="dnorm", b3="dnorm" ), prior_par1=c( b1=-1, b2=-1, b3=-1), prior_par2=c(b1=2, b2=2, b3=2) ) customItems <- list( item_nedelsky ) #---- definition theta distribution #** theta grid Theta <- matrix( seq(-6,6,length=21), ncol=1 ) #** theta distribution P_Theta1 <- function( par, Theta, G){ mu <- par[1] sigma <- max( par[2], .01 ) TP <- nrow(Theta) pi_Theta <- matrix( 0, nrow=TP, ncol=G) pi1 <- dnorm( Theta[,1], mean=mu, sd=sigma ) pi1 <- pi1 / sum(pi1) pi_Theta[,1] <- pi1 return(pi_Theta) } #** create distribution class par_Theta <- c( "mu"=0, "sigma"=1 ) customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE), P=P_Theta1 ) #-- create parameter table itemtype <- rep( "nedelsky", I ) partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems) # estimate model mod2 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta) summary(mod2) # compare sirt::xxirt and mirt::mirt logLik(mod2) mod1@Fit$logLik ############################################################################# # EXAMPLE 2: Multiple choice dataset data.si06 ############################################################################# data(data.si06) dat <- data.si06 #*** create latent responses combis <- sirt::nedelsky.latresp(K) I <- ncol(dat) #*** define item response function K <- 3 par <- c( 3, rep(-1,K), 1, rep(1,K+1),1) names(par) <- c("K", paste0("b",1:K), "a", paste0("tau", 0:K),"thdim") est <- c( FALSE, rep(TRUE,K), rep(FALSE, K+1 + 2 ) ) names(est) <- names(par) nedelsky.icc <- function( par, Theta, ncat ){ K <- par[1] b <- par[ 1:K + 1] a <- par[ K+2] tau <- par[1:(K+1) + (K+2) ] thdim <- par[ K+2+K+1 +1 ] probs <- sirt::nedelsky.irf( Theta, K=K, b=b, a=a, tau=tau, combis, thdim=thdim )$probs return(probs) } name <- "nedelsky" # create item response function nedelsky.itemfct <- mirt::createItem(name, par=par, est=est, P=nedelsky.icc) #*** define model in mirt mirtmodel <- mirt::mirt.model(" F1=1-14 COV=F1*F1 PRIOR=(1-14,b1,norm,-1,2),(1-14,b2,norm,-1,2), (1-14,b3,norm,-1,2) " ) itemtype <- rep("nedelsky", I ) customItems <- list("nedelsky"=nedelsky.itemfct) # define parameters to be estimated mod1.pars <- mirt::mirt(dat, mirtmodel, itemtype=itemtype, customItems=customItems, pars="values") #*** estimate model mod1 <- mirt::mirt(dat,mirtmodel, itemtype=itemtype, customItems=customItems, pars=mod1.pars, verbose=TRUE ) #*** summaries print(mod1) summary(mod1) mirt.wrapper.coef( mod1 )$coef mirt.wrapper.itemplot(mod1,ask=TRUE) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Simulated data according to the Nedelsky model ############################################################################# #*** simulate data set.seed(123) I <- 20 # number of items b <- matrix(NA,I,ncol=3) b[,1] <- -0.5 + stats::runif( I, -.75, .75 ) b[,2] <- -1.5 + stats::runif( I, -.75, .75 ) b[,3] <- -2.5 + stats::runif( I, -.75, .75 ) K <- 3 # number of distractors N <- 2000 # number of persons # apply simulation function dat <- sirt::nedelsky.sim( theta=stats::rnorm(N,sd=1.2), b=b ) #*** latent response patterns K <- 3 combis <- sirt::nedelsky.latresp(K=3) #*** defining the Nedelsky item response function for estimation in mirt par <- c( 3, rep(-1,K), 1, rep(1,K+1),1) names(par) <- c("K", paste0("b",1:K), "a", paste0("tau", 0:K),"thdim") est <- c( FALSE, rep(TRUE,K), rep(FALSE, K+1 + 2 ) ) names(est) <- names(par) nedelsky.icc <- function( par, Theta, ncat ){ K <- par[1] b <- par[ 1:K + 1] a <- par[ K+2] tau <- par[1:(K+1) + (K+2) ] thdim <- par[ K+2+K+1 +1 ] probs <- sirt::nedelsky.irf( Theta, K=K, b=b, a=a, tau=tau, combis, thdim=thdim )$probs return(probs) } name <- "nedelsky" # create item response function nedelsky.itemfct <- mirt::createItem(name, par=par, est=est, P=nedelsky.icc) #*** define model in mirt mirtmodel <- mirt::mirt.model(" F1=1-20 COV=F1*F1 # define some prior distributions PRIOR=(1-20,b1,norm,-1,2),(1-20,b2,norm,-1,2), (1-20,b3,norm,-1,2) " ) itemtype <- rep("nedelsky", I ) customItems <- list("nedelsky"=nedelsky.itemfct) # define parameters to be estimated mod1.pars <- mirt::mirt(dat, mirtmodel, itemtype=itemtype, customItems=customItems, pars="values") # estimate model mod1 <- mirt::mirt(dat,mirtmodel, itemtype=itemtype, customItems=customItems, pars=mod1.pars, verbose=TRUE ) # model summaries print(mod1) summary(mod1) mirt.wrapper.coef( mod1 )$coef mirt.wrapper.itemplot(mod1,ask=TRUE) #****************************************************** # fit Nedelsky model with xxirt function in sirt # define item class for xxirt item_nedelsky <- sirt::xxirt_createDiscItem( name="nedelsky", par=par, est=est, P=nedelsky.icc, prior=c( b1="dnorm", b2="dnorm", b3="dnorm" ), prior_par1=c( b1=-1, b2=-1, b3=-1), prior_par2=c(b1=2, b2=2, b3=2) ) customItems <- list( item_nedelsky ) #---- definition theta distribution #** theta grid Theta <- matrix( seq(-6,6,length=21), ncol=1 ) #** theta distribution P_Theta1 <- function( par, Theta, G){ mu <- par[1] sigma <- max( par[2], .01 ) TP <- nrow(Theta) pi_Theta <- matrix( 0, nrow=TP, ncol=G) pi1 <- dnorm( Theta[,1], mean=mu, sd=sigma ) pi1 <- pi1 / sum(pi1) pi_Theta[,1] <- pi1 return(pi_Theta) } #** create distribution class par_Theta <- c( "mu"=0, "sigma"=1 ) customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE), P=P_Theta1 ) #-- create parameter table itemtype <- rep( "nedelsky", I ) partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems) # estimate model mod2 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta) summary(mod2) # compare sirt::xxirt and mirt::mirt logLik(mod2) mod1@Fit$logLik ############################################################################# # EXAMPLE 2: Multiple choice dataset data.si06 ############################################################################# data(data.si06) dat <- data.si06 #*** create latent responses combis <- sirt::nedelsky.latresp(K) I <- ncol(dat) #*** define item response function K <- 3 par <- c( 3, rep(-1,K), 1, rep(1,K+1),1) names(par) <- c("K", paste0("b",1:K), "a", paste0("tau", 0:K),"thdim") est <- c( FALSE, rep(TRUE,K), rep(FALSE, K+1 + 2 ) ) names(est) <- names(par) nedelsky.icc <- function( par, Theta, ncat ){ K <- par[1] b <- par[ 1:K + 1] a <- par[ K+2] tau <- par[1:(K+1) + (K+2) ] thdim <- par[ K+2+K+1 +1 ] probs <- sirt::nedelsky.irf( Theta, K=K, b=b, a=a, tau=tau, combis, thdim=thdim )$probs return(probs) } name <- "nedelsky" # create item response function nedelsky.itemfct <- mirt::createItem(name, par=par, est=est, P=nedelsky.icc) #*** define model in mirt mirtmodel <- mirt::mirt.model(" F1=1-14 COV=F1*F1 PRIOR=(1-14,b1,norm,-1,2),(1-14,b2,norm,-1,2), (1-14,b3,norm,-1,2) " ) itemtype <- rep("nedelsky", I ) customItems <- list("nedelsky"=nedelsky.itemfct) # define parameters to be estimated mod1.pars <- mirt::mirt(dat, mirtmodel, itemtype=itemtype, customItems=customItems, pars="values") #*** estimate model mod1 <- mirt::mirt(dat,mirtmodel, itemtype=itemtype, customItems=customItems, pars=mod1.pars, verbose=TRUE ) #*** summaries print(mod1) summary(mod1) mirt.wrapper.coef( mod1 )$coef mirt.wrapper.itemplot(mod1,ask=TRUE) ## End(Not run)
The function is an R implementation of the normal ogive harmonic analysis robust method (the NOHARM model; McDonald, 1997). Exploratory and confirmatory multidimensional item response models for dichotomous data using the probit link function can be estimated. Lower asymptotes (guessing parameters) and upper asymptotes (one minus slipping parameters) can be provided as fixed values.
noharm.sirt(dat, pm=NULL, N=NULL, weights=NULL, Fval=NULL, Fpatt=NULL, Pval=NULL, Ppatt=NULL, Psival=NULL, Psipatt=NULL, dimensions=NULL, lower=0, upper=1, wgtm=NULL, pos.loading=FALSE, pos.variance=FALSE, pos.residcorr=FALSE, maxiter=1000, conv=1e-6, optimizer="nlminb", par_lower=NULL, reliability=FALSE, ...) ## S3 method for class 'noharm.sirt' summary(object, file=NULL, ...)
noharm.sirt(dat, pm=NULL, N=NULL, weights=NULL, Fval=NULL, Fpatt=NULL, Pval=NULL, Ppatt=NULL, Psival=NULL, Psipatt=NULL, dimensions=NULL, lower=0, upper=1, wgtm=NULL, pos.loading=FALSE, pos.variance=FALSE, pos.residcorr=FALSE, maxiter=1000, conv=1e-6, optimizer="nlminb", par_lower=NULL, reliability=FALSE, ...) ## S3 method for class 'noharm.sirt' summary(object, file=NULL, ...)
dat |
Matrix of dichotomous item responses. This matrix may contain missing data (indicated
by |
pm |
Optional product-moment matrix |
N |
Sample size if |
weights |
Optional vector of student weights. |
Fval |
Initial or fixed values of the loading matrix |
Fpatt |
Pattern matrix of the loading matrix |
Pval |
Initial or fixed values for the covariance matrix |
Ppatt |
Pattern matrix for the covariance matrix |
Psival |
Initial or fixed values for the matrix of residual correlations |
Psipatt |
Pattern matrix for the matrix of residual correlations |
dimensions |
Number of dimensions if an exploratory factor analysis should be estimated. |
lower |
Fixed vector (or numeric) of lower asymptotes |
upper |
Fixed vector (or numeric) of upper asymptotes |
wgtm |
Matrix with positive entries which indicates by a positive entry which item pairs should be used for estimation. |
pos.loading |
An optional logical indicating whether all entries in the
loading matrix |
pos.variance |
An optional logical indicating whether all variances (i.e.
diagonal entries in |
pos.residcorr |
An optional logical indicating whether all
entries in the matrix of residual correlations |
par_lower |
Optional vector of lower parameter bounds |
maxiter |
Maximum number of iterations |
conv |
Convergence criterion for parameters |
optimizer |
Optimization function to be used. Can be |
reliability |
Logical indicating whether reliability should be computed. |
... |
Further arguments to be passed. |
object |
Object of class |
file |
String indicating a file name for summary. |
The NOHARM item response model follows the response equation
for item responses of person
on
item
,
is a loading matrix and
the covariance matrix of
. The lower
asymptotes
and upper asymptotes
must be
provided as fixed values.
The response equation can be equivalently written by introducing a latent
continuous item response
with a standard normally distributed residual . These residuals
have a correlation matrix
with ones in the diagonal.
In this R implementation of the NOHARM model, correlations between residuals
are allowed.
The estimation relies on a Hermite series approximation of the normal ogive item response functions. In more detail, a series expansion
is used
(McDonald, 1982a).
This enables to express cross products as a function of
unknown model parameters
where ,
,
,
and
.
The least squares criterion is used
for estimating unknown model parameters (McDonald, 1982a, 1982b, 1997).
For derivations of standard errors and fit statistics see Maydeu-Olivares (2001) and Swaminathan and Rogers (2016).
For the statistical properties of the NOHARM approach see Knol and Berger (1991), Finch (2011) or Svetina and Levy (2016).
A list. The most important entries are
tanaka |
Tanaka fit statistic |
rmsr |
RMSR fit statistic |
N.itempair |
Sample size per item pair |
pm |
Product moment matrix |
wgtm |
Matrix of weights for each item pair |
sumwgtm |
Sum of lower triangle matrix |
lower |
Lower asymptotes |
upper |
Upper asymptotes |
residuals |
Residual matrix from approximation of the |
final.constants |
Final constants |
factor.cor |
Covariance matrix |
thresholds |
Threshold parameters |
uniquenesses |
Uniquenesses |
loadings |
Matrix of standardized factor loadings (delta parametrization) |
loadings.theta |
Matrix of factor loadings |
residcorr |
Matrix of residual correlations |
Nobs |
Number of observations |
Nitems |
Number of items |
Fpatt |
Pattern loading matrix for |
Ppatt |
Pattern loading matrix for |
Psipatt |
Pattern loading matrix for |
dat |
Used dataset |
dimensions |
Number of dimensions |
iter |
Number of iterations |
Nestpars |
Number of estimated parameters |
chisquare |
Statistic |
df |
Degrees of freedom |
chisquare_df |
Ratio |
rmsea |
RMSEA statistic |
p.chisquare |
Significance for |
omega.rel |
Reliability of the sum score according to Green and Yang (2009) |
Finch, H. (2011). Multidimensional item response theory parameter estimation with nonsimple structure items. Applied Psychological Measurement, 35(1), 67-82. doi:10.1177/0146621610367787
Fraser, C., & McDonald, R. P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral Research, 23, 267-269. doi:10.1207/s15327906mbr2302_9
Fraser, C., & McDonald, R. P. (2012). NOHARM 4 Manual.
http://noharm.niagararesearch.ca/nh4man/nhman.html.
Knol, D. L., & Berger, M. P. (1991). Empirical comparison between factor analysis and multidimensional item response models. Multivariate Behavioral Research, 26(3), 457-477. doi:10.1207/s15327906mbr2603_5
Maydeu-Olivares, A. (2001). Multidimensional item response theory modeling of binary data: Large sample properties of NOHARM estimates. Journal of Educational and Behavioral Statistics, 26(1), 51-71. doi:10.3102/10769986026001051
McDonald, R. P. (1982a). Linear versus nonlinear models in item response theory. Applied Psychological Measurement, 6(4), 379-396. doi:10.1177/014662168200600402
McDonald, R. P. (1982b). Unidimensional and multidimensional models for item response theory. I.R.T., C.A.T. conference, Minneapolis, 1982, Proceedings.
McDonald, R. P. (1997). Normal-ogive multidimensional model. In W. van der Linden & R. K. Hambleton (1997): Handbook of modern item response theory (pp. 257-269). New York: Springer. doi:10.1007/978-1-4757-2691-6
Svetina, D., & Levy, R. (2016). Dimensionality in compensatory MIRT when complex structure exists: Evaluation of DETECT and NOHARM. The Journal of Experimental Education, 84(2), 398-420. doi:10.1080/00220973.2015.1048845
Swaminathan, H., & Rogers, H. J. (2016). Normal-ogive multidimensional models. In W. J. van der Linden (Ed.). Handbook of item response theory. Volume One: Models (pp. 167-187). Boca Raton: CRC Press. doi:10.1201/9781315374512
EAP person parameter estimates can be obtained by R2noharm.EAP
.
Model fit can be assessed by modelfit.sirt
.
See R2noharm
for running the NOHARM software from within R.
See Fraser and McDonald (1988, 2012) for an implementation of the NOHARM model which is available as freeware (http://noharm.niagararesearch.ca/; the link seems to be broken in the meanwhile).
############################################################################# # EXAMPLE 1: Two-dimensional IRT model with 10 items ############################################################################# #**** data simulation set.seed(9776) N <- 3400 # sample size # define difficulties f0 <- c( .5, .25, -.25, -.5, 0, -.5, -.25, .25, .5, 0 ) I <- length(f0) # define loadings f1 <- matrix( 0, I, 2 ) f1[ 1:5,1] <- c(.8,.7,.6,.5, .5) f1[ 6:10,2] <- c(.8,.7,.6,.5, .5 ) # covariance matrix Pval <- matrix( c(1,.5,.5,1), 2, 2 ) # simulate theta library(mvtnorm) theta <- mvtnorm::rmvnorm(N, mean=c(0,0), sigma=Pval ) # simulate item responses dat <- matrix( NA, N, I ) for (ii in 1:I){ # ii <- 1 dat[,ii] <- 1*( stats::pnorm(f0[ii]+theta[,1]*f1[ii,1]+theta[,2]*f1[ii,2])> stats::runif(N) ) } colnames(dat) <- paste0("I", 1:I) #**** Model 1: Two-dimensional CFA with estimated item loadings # define pattern matrices Pval <- .3+0*Pval Ppatt <- 1*(Pval>0) diag(Ppatt) <- 0 diag(Pval) <- 1 Fval <- .7 * ( f1>0) Fpatt <- 1 * ( Fval > 0 ) # estimate model mod1 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt, Fpatt=Fpatt, Fval=Fval, Pval=Pval ) summary(mod1) # EAP ability estimates pmod1 <- sirt::R2noharm.EAP(mod1, theta.k=seq(-4,4,len=10) ) # model fit summary( sirt::modelfit.sirt(mod1) ) ## Not run: #*** compare results with NOHARM software noharm.path <- "c:/NOHARM" # specify path for noharm software mod1a <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=Fpatt, F.init=Fval, P.pattern=Ppatt, P.init=Pval, writename="r2noharm_example", noharm.path=noharm.path, dec="," ) summary(mod1a) #**** Model 1c: put some equality constraints Fpatt[ c(1,4),1] <- 3 Fpatt[ cbind( c(3,7), c(1,2)) ] <- 4 mod1c <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt, Fpatt=Fpatt, Fval=Fval, Pval=Pval) summary(mod1c) #**** Model 2: Two-dimensional CFA with correlated residuals # define pattern matrix for residual correlation Psipatt <- 0*diag(I) Psipatt[1,2] <- 1 Psival <- 0*Psipatt # estimate model mod2 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval, Psival=Psival, Psipatt=Psipatt ) summary(mod2) #**** Model 3: Two-dimensional Rasch model # pattern matrices Fval <- matrix(0,10,2) Fval[1:5,1] <- Fval[6:10,2] <- 1 Fpatt <- 0*Fval Ppatt <- Pval <- matrix(1,2,2) Pval[1,2] <- Pval[2,1] <- 0 # estimate model mod3 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval ) summary(mod3) # model fit summary( sirt::modelfit.sirt( mod3 )) #** compare fit with NOHARM noharm.path <- "c:/NOHARM" P.pattern <- Ppatt ; P.init <- Pval F.pattern <- Fpatt ; F.init <- Fval mod3b <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="example_sim_2dim_rasch", noharm.path=noharm.path, dec="," ) summary(mod3b) ############################################################################# # EXAMPLE 2: data.read ############################################################################# data(data.read) dat <- data.read I <- ncol(dat) #**** Model 1: Unidimensional Rasch model Fpatt <- matrix( 0, I, 1 ) Fval <- 1 + 0*Fpatt Ppatt <- Pval <- matrix(1,1,1) # estimate model mod1 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval ) summary(mod1) plot(mod1) # semPaths plot #**** Model 2: Rasch model in which item pairs within a testlet are excluded wgtm <- matrix( 1, I, I ) wgtm[1:4,1:4] <- wgtm[5:8,5:8] <- wgtm[ 9:12, 9:12] <- 0 # estimation mod2 <- sirt::noharm.sirt(dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval, wgtm=wgtm) summary(mod2) #**** Model 3: Rasch model with correlated residuals Psipatt <- Psival <- 0*diag(I) Psipatt[1:4,1:4] <- Psipatt[5:8,5:8] <- Psipatt[ 9:12, 9:12] <- 1 diag(Psipatt) <- 0 Psival <- .6*(Psipatt>0) # estimation mod3 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval, Psival=Psival, Psipatt=Psipatt ) summary(mod3) # allow only positive residual correlations mod3b <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt, Fpatt=Fpatt, Fval=Fval, Pval=Pval, Psival=Psival, Psipatt=Psipatt, pos.residcorr=TRUE) summary(mod3b) #* constrain residual correlations Psipatt[1:4,1:4] <- 2 Psipatt[5:8,5:8] <- 3 Psipatt[ 9:12, 9:12] <- 4 mod3c <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt, Fpatt=Fpatt, Fval=Fval, Pval=Pval, Psival=Psival, Psipatt=Psipatt, pos.residcorr=TRUE) summary(mod3c) #**** Model 4: Rasch testlet model Fval <- Fpatt <- matrix( 0, I, 4 ) Fval[,1] <- Fval[1:4,2] <- Fval[5:8,3] <- Fval[9:12,4 ] <- 1 Ppatt <- Pval <- diag(4) colnames(Ppatt) <- c("g", "A", "B","C") Pval <- .5*Pval # estimation mod4 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval ) summary(mod4) # allow only positive variance entries mod4b <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval, pos.variance=TRUE ) summary(mod4b) #**** Model 5: Bifactor model Fval <- matrix( 0, I, 4 ) Fval[,1] <- Fval[1:4,2] <- Fval[5:8,3] <- Fval[9:12,4 ] <- .6 Fpatt <- 1 * ( Fval > 0 ) Pval <- diag(4) Ppatt <- 0*Pval colnames(Ppatt) <- c("g", "A", "B","C") # estimation mod5 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval ) summary(mod5) # allow only positive loadings mod5b <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval, pos.loading=TRUE ) summary(mod5b) summary( sirt::modelfit.sirt(mod5b)) #**** Model 6: 3-dimensional Rasch model Fval <- matrix( 0, I, 3 ) Fval[1:4,1] <- Fval[5:8,2] <- Fval[9:12,3 ] <- 1 Fpatt <- 0*Fval Pval <- .6*diag(3) diag(Pval) <- 1 Ppatt <- 1+0*Pval colnames(Ppatt) <- c("A", "B","C") # estimation mod6 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval ) summary(mod6) summary( sirt::modelfit.sirt(mod6) ) # model fit #**** Model 7: 3-dimensional 2PL model Fval <- matrix( 0, I, 3 ) Fval[1:4,1] <- Fval[5:8,2] <- Fval[9:12,3 ] <- 1 Fpatt <- Fval Pval <- .6*diag(3) diag(Pval) <- 1 Ppatt <- 1+0*Pval diag(Ppatt) <- 0 colnames(Ppatt) <- c("A", "B","C") # estimation mod7 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval ) summary(mod7) summary( sirt::modelfit.sirt(mod7) ) #**** Model 8: Exploratory factor analysis with 3 dimensions # estimation mod8 <- sirt::noharm.sirt( dat=dat, dimensions=3 ) summary(mod8) ############################################################################# # EXAMPLE 3: Product-moment matrix input, McDonald (1997) ############################################################################# # data from Table 1 of McDonald (1997, p. 266) pm0 <- " 0.828 0.567 0.658 0.664 0.560 0.772 0.532 0.428 0.501 0.606 0.718 0.567 0.672 0.526 0.843 " pm <- miceadds::string_to_matrix(x=pm0, as_numeric=TRUE, extend=TRUE) I <- nrow(pm) rownames(pm) <- colnames(pm) <- paste0("I", 1:I) #- Model 1: Unidimensional model Fval <- matrix(.7, nrow=I, ncol=1) Fpatt <- 1+0*Fval Pval <- matrix(1, nrow=1,ncol=1) Ppatt <- 0*Pval mod1 <- sirt::noharm.sirt(pm=pm, N=1000, Fval=Fval, Fpatt=Fpatt, Pval=Pval, Ppatt=Ppatt) summary(mod1) #- Model 2: Twodimensional exploratory model mod2 <- sirt::noharm.sirt(pm=pm, N=1000, dimensions=2) summary(mod2) #- Model 3: Unidimensional model with correlated residuals Psival <- matrix(0, nrow=I, ncol=I) Psipatt <- 0*Psival Psipatt[5,1] <- 1 mod3 <- sirt::noharm.sirt(pm=pm, N=1000, Fval=Fval, Fpatt=Fpatt, Pval=Pval, Ppatt=Ppatt, Psival=Psival, Psipatt=Psipatt) summary(mod3) ## End(Not run)
############################################################################# # EXAMPLE 1: Two-dimensional IRT model with 10 items ############################################################################# #**** data simulation set.seed(9776) N <- 3400 # sample size # define difficulties f0 <- c( .5, .25, -.25, -.5, 0, -.5, -.25, .25, .5, 0 ) I <- length(f0) # define loadings f1 <- matrix( 0, I, 2 ) f1[ 1:5,1] <- c(.8,.7,.6,.5, .5) f1[ 6:10,2] <- c(.8,.7,.6,.5, .5 ) # covariance matrix Pval <- matrix( c(1,.5,.5,1), 2, 2 ) # simulate theta library(mvtnorm) theta <- mvtnorm::rmvnorm(N, mean=c(0,0), sigma=Pval ) # simulate item responses dat <- matrix( NA, N, I ) for (ii in 1:I){ # ii <- 1 dat[,ii] <- 1*( stats::pnorm(f0[ii]+theta[,1]*f1[ii,1]+theta[,2]*f1[ii,2])> stats::runif(N) ) } colnames(dat) <- paste0("I", 1:I) #**** Model 1: Two-dimensional CFA with estimated item loadings # define pattern matrices Pval <- .3+0*Pval Ppatt <- 1*(Pval>0) diag(Ppatt) <- 0 diag(Pval) <- 1 Fval <- .7 * ( f1>0) Fpatt <- 1 * ( Fval > 0 ) # estimate model mod1 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt, Fpatt=Fpatt, Fval=Fval, Pval=Pval ) summary(mod1) # EAP ability estimates pmod1 <- sirt::R2noharm.EAP(mod1, theta.k=seq(-4,4,len=10) ) # model fit summary( sirt::modelfit.sirt(mod1) ) ## Not run: #*** compare results with NOHARM software noharm.path <- "c:/NOHARM" # specify path for noharm software mod1a <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=Fpatt, F.init=Fval, P.pattern=Ppatt, P.init=Pval, writename="r2noharm_example", noharm.path=noharm.path, dec="," ) summary(mod1a) #**** Model 1c: put some equality constraints Fpatt[ c(1,4),1] <- 3 Fpatt[ cbind( c(3,7), c(1,2)) ] <- 4 mod1c <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt, Fpatt=Fpatt, Fval=Fval, Pval=Pval) summary(mod1c) #**** Model 2: Two-dimensional CFA with correlated residuals # define pattern matrix for residual correlation Psipatt <- 0*diag(I) Psipatt[1,2] <- 1 Psival <- 0*Psipatt # estimate model mod2 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval, Psival=Psival, Psipatt=Psipatt ) summary(mod2) #**** Model 3: Two-dimensional Rasch model # pattern matrices Fval <- matrix(0,10,2) Fval[1:5,1] <- Fval[6:10,2] <- 1 Fpatt <- 0*Fval Ppatt <- Pval <- matrix(1,2,2) Pval[1,2] <- Pval[2,1] <- 0 # estimate model mod3 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval ) summary(mod3) # model fit summary( sirt::modelfit.sirt( mod3 )) #** compare fit with NOHARM noharm.path <- "c:/NOHARM" P.pattern <- Ppatt ; P.init <- Pval F.pattern <- Fpatt ; F.init <- Fval mod3b <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="example_sim_2dim_rasch", noharm.path=noharm.path, dec="," ) summary(mod3b) ############################################################################# # EXAMPLE 2: data.read ############################################################################# data(data.read) dat <- data.read I <- ncol(dat) #**** Model 1: Unidimensional Rasch model Fpatt <- matrix( 0, I, 1 ) Fval <- 1 + 0*Fpatt Ppatt <- Pval <- matrix(1,1,1) # estimate model mod1 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval ) summary(mod1) plot(mod1) # semPaths plot #**** Model 2: Rasch model in which item pairs within a testlet are excluded wgtm <- matrix( 1, I, I ) wgtm[1:4,1:4] <- wgtm[5:8,5:8] <- wgtm[ 9:12, 9:12] <- 0 # estimation mod2 <- sirt::noharm.sirt(dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval, wgtm=wgtm) summary(mod2) #**** Model 3: Rasch model with correlated residuals Psipatt <- Psival <- 0*diag(I) Psipatt[1:4,1:4] <- Psipatt[5:8,5:8] <- Psipatt[ 9:12, 9:12] <- 1 diag(Psipatt) <- 0 Psival <- .6*(Psipatt>0) # estimation mod3 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval, Psival=Psival, Psipatt=Psipatt ) summary(mod3) # allow only positive residual correlations mod3b <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt, Fpatt=Fpatt, Fval=Fval, Pval=Pval, Psival=Psival, Psipatt=Psipatt, pos.residcorr=TRUE) summary(mod3b) #* constrain residual correlations Psipatt[1:4,1:4] <- 2 Psipatt[5:8,5:8] <- 3 Psipatt[ 9:12, 9:12] <- 4 mod3c <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt, Fpatt=Fpatt, Fval=Fval, Pval=Pval, Psival=Psival, Psipatt=Psipatt, pos.residcorr=TRUE) summary(mod3c) #**** Model 4: Rasch testlet model Fval <- Fpatt <- matrix( 0, I, 4 ) Fval[,1] <- Fval[1:4,2] <- Fval[5:8,3] <- Fval[9:12,4 ] <- 1 Ppatt <- Pval <- diag(4) colnames(Ppatt) <- c("g", "A", "B","C") Pval <- .5*Pval # estimation mod4 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval ) summary(mod4) # allow only positive variance entries mod4b <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval, pos.variance=TRUE ) summary(mod4b) #**** Model 5: Bifactor model Fval <- matrix( 0, I, 4 ) Fval[,1] <- Fval[1:4,2] <- Fval[5:8,3] <- Fval[9:12,4 ] <- .6 Fpatt <- 1 * ( Fval > 0 ) Pval <- diag(4) Ppatt <- 0*Pval colnames(Ppatt) <- c("g", "A", "B","C") # estimation mod5 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval ) summary(mod5) # allow only positive loadings mod5b <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval, pos.loading=TRUE ) summary(mod5b) summary( sirt::modelfit.sirt(mod5b)) #**** Model 6: 3-dimensional Rasch model Fval <- matrix( 0, I, 3 ) Fval[1:4,1] <- Fval[5:8,2] <- Fval[9:12,3 ] <- 1 Fpatt <- 0*Fval Pval <- .6*diag(3) diag(Pval) <- 1 Ppatt <- 1+0*Pval colnames(Ppatt) <- c("A", "B","C") # estimation mod6 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval ) summary(mod6) summary( sirt::modelfit.sirt(mod6) ) # model fit #**** Model 7: 3-dimensional 2PL model Fval <- matrix( 0, I, 3 ) Fval[1:4,1] <- Fval[5:8,2] <- Fval[9:12,3 ] <- 1 Fpatt <- Fval Pval <- .6*diag(3) diag(Pval) <- 1 Ppatt <- 1+0*Pval diag(Ppatt) <- 0 colnames(Ppatt) <- c("A", "B","C") # estimation mod7 <- sirt::noharm.sirt( dat=dat, Ppatt=Ppatt,Fpatt=Fpatt, Fval=Fval, Pval=Pval ) summary(mod7) summary( sirt::modelfit.sirt(mod7) ) #**** Model 8: Exploratory factor analysis with 3 dimensions # estimation mod8 <- sirt::noharm.sirt( dat=dat, dimensions=3 ) summary(mod8) ############################################################################# # EXAMPLE 3: Product-moment matrix input, McDonald (1997) ############################################################################# # data from Table 1 of McDonald (1997, p. 266) pm0 <- " 0.828 0.567 0.658 0.664 0.560 0.772 0.532 0.428 0.501 0.606 0.718 0.567 0.672 0.526 0.843 " pm <- miceadds::string_to_matrix(x=pm0, as_numeric=TRUE, extend=TRUE) I <- nrow(pm) rownames(pm) <- colnames(pm) <- paste0("I", 1:I) #- Model 1: Unidimensional model Fval <- matrix(.7, nrow=I, ncol=1) Fpatt <- 1+0*Fval Pval <- matrix(1, nrow=1,ncol=1) Ppatt <- 0*Pval mod1 <- sirt::noharm.sirt(pm=pm, N=1000, Fval=Fval, Fpatt=Fpatt, Pval=Pval, Ppatt=Ppatt) summary(mod1) #- Model 2: Twodimensional exploratory model mod2 <- sirt::noharm.sirt(pm=pm, N=1000, dimensions=2) summary(mod2) #- Model 3: Unidimensional model with correlated residuals Psival <- matrix(0, nrow=I, ncol=I) Psipatt <- 0*Psival Psipatt[5,1] <- 1 mod3 <- sirt::noharm.sirt(pm=pm, N=1000, Fval=Fval, Fpatt=Fpatt, Pval=Pval, Ppatt=Ppatt, Psival=Psival, Psipatt=Psipatt) summary(mod3) ## End(Not run)
This function does nonparametric item response function estimation (Ramsay, 1991).
np.dich(dat, theta, thetagrid, progress=FALSE, bwscale=1.1, method="normal")
np.dich(dat, theta, thetagrid, progress=FALSE, bwscale=1.1, method="normal")
dat |
An |
theta |
Estimated theta values, for example weighted likelihood
estimates from |
thetagrid |
A vector of theta values where the nonparametric item response functions shall be evaluated. |
progress |
Display progress? |
bwscale |
The bandwidth parameter |
method |
The default |
A list with following entries
dat |
Original data frame |
thetagrid |
Vector of theta values at which the item response functions are evaluated |
theta |
Used theta values as person parameter estimates |
estimate |
Estimated item response functions |
... |
Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611-630.
############################################################################# # EXAMPLE 1: Reading dataset ############################################################################# data( data.read ) dat <- data.read # estimate Rasch model mod <- sirt::rasch.mml2( dat ) # WLE estimation wle1 <- sirt::wle.rasch( dat=dat, b=mod$item$b )$theta # nonparametric function estimation np1 <- sirt::np.dich( dat=dat, theta=wle1, thetagrid=seq(-2.5, 2.5, len=100 ) ) print( str(np1)) # plot nonparametric item response curves plot( np1, b=mod$item$b )
############################################################################# # EXAMPLE 1: Reading dataset ############################################################################# data( data.read ) dat <- data.read # estimate Rasch model mod <- sirt::rasch.mml2( dat ) # WLE estimation wle1 <- sirt::wle.rasch( dat=dat, b=mod$item$b )$theta # nonparametric function estimation np1 <- sirt::np.dich( dat=dat, theta=wle1, thetagrid=seq(-2.5, 2.5, len=100 ) ) print( str(np1)) # plot nonparametric item response curves plot( np1, b=mod$item$b )
Includes confidence interval in parameter summary table.
parmsummary_extend(dfr, level=.95, est_label="est", se_label="se", df_label="df")
parmsummary_extend(dfr, level=.95, est_label="est", se_label="se", df_label="df")
dfr |
Data frame containing parameter summary |
level |
Significance level |
est_label |
Label for parameter estimate |
se_label |
Label for standard error |
df_label |
Label for degrees of freedom |
Extended parameter summary table
############################################################################# ## EXAMPLE 1: Toy example parameter summary table ############################################################################# dfr <- data.frame( "parm"=c("b0", "b1" ), "est"=c(0.1, 1.3 ), "se"=c(.21, .32) ) print( sirt::parmsummary_extend(dfr), digits=4 ) ## parm est se t p lower95 upper95 ## 1 b0 0.1 0.21 0.4762 6.339e-01 -0.3116 0.5116 ## 2 b1 1.3 0.32 4.0625 4.855e-05 0.6728 1.9272
############################################################################# ## EXAMPLE 1: Toy example parameter summary table ############################################################################# dfr <- data.frame( "parm"=c("b0", "b1" ), "est"=c(0.1, 1.3 ), "se"=c(.21, .32) ) print( sirt::parmsummary_extend(dfr), digits=4 ) ## parm est se t p lower95 upper95 ## 1 b0 0.1 0.21 0.4762 6.339e-01 -0.3116 0.5116 ## 2 b1 1.3 0.32 4.0625 4.855e-05 0.6728 1.9272
This function evaluates the bivariate normal distribution
assuming zero means and unit variances. It uses a simple approximation
by Cox and Wermuth (1991) with corrected formulas in Hong (1999).
pbivnorm2(x, y, rho)
pbivnorm2(x, y, rho)
x |
Vector of |
y |
Vector of |
rho |
Vector of correlations between random normal variates |
Vector of probabilities
The function is less precise for correlations near 1 or -1.
Cox, D. R., & Wermuth, N. (1991). A simple approximation for bivariate and trivariate normal integrals. International Statistical Review, 59(2), 263-269.
Hong, H. P. (1999). An approximation to bivariate and trivariate normal integrals. Engineering and Environmental Systems, 16(2), 115-127. doi:10.1080/02630259908970256
See also the
pbivnorm::pbivnorm
function in the pbivnorm package.
library(pbivnorm) # define input x <- c(0, 0, .5, 1, 1 ) y <- c( 0, -.5, 1, 3, .5 ) rho <- c( .2, .8, -.4, .6, .5 ) # compare pbivnorm2 and pbivnorm functions pbiv2 <- sirt::pbivnorm2( x=x, y=y, rho=rho ) pbiv <- pbivnorm::pbivnorm( x, y, rho=rho ) max( abs(pbiv-pbiv2)) ## [1] 0.0030626 round( cbind( x, y, rho,pbiv, pbiv2 ), 4 ) ## x y rho pbiv pbiv2 ## [1,] 0.0 0.0 0.2 0.2820 0.2821 ## [2,] 0.0 -0.5 0.8 0.2778 0.2747 ## [3,] 0.5 1.0 -0.4 0.5514 0.5514 ## [4,] 1.0 3.0 0.6 0.8412 0.8412 ## [5,] 1.0 0.5 0.5 0.6303 0.6304
library(pbivnorm) # define input x <- c(0, 0, .5, 1, 1 ) y <- c( 0, -.5, 1, 3, .5 ) rho <- c( .2, .8, -.4, .6, .5 ) # compare pbivnorm2 and pbivnorm functions pbiv2 <- sirt::pbivnorm2( x=x, y=y, rho=rho ) pbiv <- pbivnorm::pbivnorm( x, y, rho=rho ) max( abs(pbiv-pbiv2)) ## [1] 0.0030626 round( cbind( x, y, rho,pbiv, pbiv2 ), 4 ) ## x y rho pbiv pbiv2 ## [1,] 0.0 0.0 0.2 0.2820 0.2821 ## [2,] 0.0 -0.5 0.8 0.2778 0.2747 ## [3,] 0.5 1.0 -0.4 0.5514 0.5514 ## [4,] 1.0 3.0 0.6 0.8412 0.8412 ## [5,] 1.0 0.5 0.5 0.6303 0.6304
Converts a parameterization of the partial credit model (see Details).
pcm.conversion(b)
pcm.conversion(b)
b |
Matrix of item-category-wise intercepts |
Assume that the input matrix b
containing parameters
is defined according to the following parametrization of the partial credit
model
if item possesses
categories.
The transformed parameterization is defined as
The function pcm.conversion
has the and
parameters as values. The
parameter is simply
.
List with the following entries
delta |
Vector of |
tau |
Matrix of |
## Not run: ############################################################################# # EXAMPLE 1: Transformation PCM for data.mg ############################################################################# library(CDM) data(data.mg,package="CDM") dat <- data.mg[ 1:1000, paste0("I",1:11) ] #*** Model 1: estimate partial credit model in parameterization "PCM" mod1a <- TAM::tam.mml( dat, irtmodel="PCM") # use parameterization "PCM2" mod1b <- TAM::tam.mml( dat, irtmodel="PCM2") summary(mod1a) summary(mod1b) # convert parameterization of Model 1a into parameterization of Model 1b b <- mod1a$item[, c("AXsi_.Cat1","AXsi_.Cat2","AXsi_.Cat3") ] # compare results pcm.conversion(b) mod1b$xsi ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Transformation PCM for data.mg ############################################################################# library(CDM) data(data.mg,package="CDM") dat <- data.mg[ 1:1000, paste0("I",1:11) ] #*** Model 1: estimate partial credit model in parameterization "PCM" mod1a <- TAM::tam.mml( dat, irtmodel="PCM") # use parameterization "PCM2" mod1b <- TAM::tam.mml( dat, irtmodel="PCM2") summary(mod1a) summary(mod1b) # convert parameterization of Model 1a into parameterization of Model 1b b <- mod1a$item[, c("AXsi_.Cat1","AXsi_.Cat2","AXsi_.Cat3") ] # compare results pcm.conversion(b) mod1b$xsi ## End(Not run)
Computes item and person fit statistics in the partial credit model (Wright & Masters, 1990). The rating scale model is accommodated as a particular partial credit model (see Example 3).
pcm.fit(b, theta, dat)
pcm.fit(b, theta, dat)
b |
Matrix with item category parameters (see Examples) |
theta |
Vector with estimated person parameters |
dat |
Dataset with item responses |
A list with entries
itemfit |
Item fit statistics |
personfit |
Person fit statistics |
Wright, B. D., & Masters, G. N. (1990). Computation of outfit and infit statistics. Rasch Measurement Transactions, 3:4, 84-85.
See also personfit.stat
for person fit statistics for dichotomous
item responses. See also the PerFit package for further person
fit statistics.
Item fit in other R packages:
eRm::itemfit
,
TAM::tam.fit
,
mirt::itemfit
,
ltm::item.fit
,
Person fit in other R packages:
eRm::itemfit
,
mirt::itemfit
,
ltm::person.fit
,
See pcm.conversion
for conversions of different
parametrizations of the partial credit model.
## Not run: ############################################################################# # EXAMPLE 1: Partial credit model ############################################################################# data(data.Students,package="CDM") dat <- data.Students # select items items <- c(paste0("sc", 1:4 ), paste0("mj", 1:4 ) ) dat <- dat[,items] dat <- dat[ rowSums( 1 - is.na(dat) ) > 0, ] #*** Model 1a: Partial credit model in TAM # estimate model mod1a <- TAM::tam.mml( resp=dat ) summary(mod1a) # estimate person parameters wle1a <- TAM::tam.wle(mod1a) # extract item parameters b1 <- - mod1a$AXsi[, -1 ] # parametrization in xsi parameters b2 <- matrix( mod1a$xsi$xsi, ncol=3, byrow=TRUE ) # convert b2 to b1 b1b <- 0*b1 b1b[,1] <- b2[,1] b1b[,2] <- rowSums( b2[,1:2] ) b1b[,3] <- rowSums( b2[,1:3] ) # assess fit fit1a <- sirt::pcm.fit(b=b1, theta=wle1a$theta, dat) fit1a$item ############################################################################# # EXAMPLE 2: Rasch model ############################################################################# data(data.read) dat <- data.read #*** Rasch model in TAM # estimate model mod <- TAM::tam.mml( resp=dat ) summary(mod) # estimate person parameters wle <- TAM::tam.wle(mod) # extract item parameters b1 <- - mod$AXsi[, -1 ] # assess fit fit1a <- sirt::pcm.fit(b=b1, theta=wle$theta, dat) fit1a$item ############################################################################# # EXAMPLE 3: Rating scale model ############################################################################# data(data.Students,package="CDM") dat <- data.Students items <- paste0("sc", 1:4 ) dat <- dat[,items] dat <- dat[ rowSums( 1 - is.na(dat) ) > 0, ] #*** Model 1: Rating scale model in TAM # estimate model mod1 <- tam.mml( resp=dat, irtmodel="RSM") summary(mod1) # estimate person parameters wle1 <- tam.wle(mod1) # extract item parameters b1 <- - mod1a$AXsi[, -1 ] # fit statistic pcm.fit(b=b1, theta=wle1$theta, dat) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Partial credit model ############################################################################# data(data.Students,package="CDM") dat <- data.Students # select items items <- c(paste0("sc", 1:4 ), paste0("mj", 1:4 ) ) dat <- dat[,items] dat <- dat[ rowSums( 1 - is.na(dat) ) > 0, ] #*** Model 1a: Partial credit model in TAM # estimate model mod1a <- TAM::tam.mml( resp=dat ) summary(mod1a) # estimate person parameters wle1a <- TAM::tam.wle(mod1a) # extract item parameters b1 <- - mod1a$AXsi[, -1 ] # parametrization in xsi parameters b2 <- matrix( mod1a$xsi$xsi, ncol=3, byrow=TRUE ) # convert b2 to b1 b1b <- 0*b1 b1b[,1] <- b2[,1] b1b[,2] <- rowSums( b2[,1:2] ) b1b[,3] <- rowSums( b2[,1:3] ) # assess fit fit1a <- sirt::pcm.fit(b=b1, theta=wle1a$theta, dat) fit1a$item ############################################################################# # EXAMPLE 2: Rasch model ############################################################################# data(data.read) dat <- data.read #*** Rasch model in TAM # estimate model mod <- TAM::tam.mml( resp=dat ) summary(mod) # estimate person parameters wle <- TAM::tam.wle(mod) # extract item parameters b1 <- - mod$AXsi[, -1 ] # assess fit fit1a <- sirt::pcm.fit(b=b1, theta=wle$theta, dat) fit1a$item ############################################################################# # EXAMPLE 3: Rating scale model ############################################################################# data(data.Students,package="CDM") dat <- data.Students items <- paste0("sc", 1:4 ) dat <- dat[,items] dat <- dat[ rowSums( 1 - is.na(dat) ) > 0, ] #*** Model 1: Rating scale model in TAM # estimate model mod1 <- tam.mml( resp=dat, irtmodel="RSM") summary(mod1) # estimate person parameters wle1 <- tam.wle(mod1) # extract item parameters b1 <- - mod1a$AXsi[, -1 ] # fit statistic pcm.fit(b=b1, theta=wle1$theta, dat) ## End(Not run)
Ability estimates as maximum likelihood estimates (MLE) are provided by the Rasch copula model.
person.parameter.rasch.copula(raschcopula.object, numdiff.parm=0.001, conv.parm=0.001, maxiter=20, stepwidth=1, print.summary=TRUE, ...)
person.parameter.rasch.copula(raschcopula.object, numdiff.parm=0.001, conv.parm=0.001, maxiter=20, stepwidth=1, print.summary=TRUE, ...)
raschcopula.object |
Object which is generated by the |
numdiff.parm |
Parameter |
conv.parm |
Convergence criterion |
maxiter |
Maximum number of iterations |
stepwidth |
Maximal increment in iterations |
print.summary |
Print summary? |
... |
Further arguments to be passed |
A list with following entries
person |
Estimated person parameters |
se.inflat |
Inflation of individual standard errors due to local dependence |
theta.table |
Ability estimates for each unique response pattern |
pattern.in.data |
Item response pattern |
summary.theta.table |
Summary statistics of person parameter estimates |
See rasch.copula2
for estimating Rasch copula models.
############################################################################# # EXAMPLE 1: Reading Data ############################################################################# data(data.read) dat <- data.read # define item cluster itemcluster <- rep( 1:3, each=4 ) mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster ) summary(mod1) # person parameter estimation under the Rasch copula model pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 ) ## Mean percentage standard error inflation ## missing.pattern Mperc.seinflat ## 1 1 6.35 ## Not run: ############################################################################# # EXAMPLE 2: 12 items nested within 3 item clusters (testlets) # Cluster 1 -> Items 1-4; Cluster 2 -> Items 6-9; Cluster 3 -> Items 10-12 ############################################################################# set.seed(967) I <- 12 # number of items n <- 450 # number of persons b <- seq(-2,2, len=I) # item difficulties b <- sample(b) # sample item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ 1:4 ] <- 1 itemcluster[ 6:9 ] <- 2 itemcluster[ 10:12 ] <- 3 # residual correlations rho <- c( .35, .25, .30 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # estimate Rasch copula model mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster ) summary(mod1) # person parameter estimation under the Rasch copula model pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 ) ## Mean percentage standard error inflation ## missing.pattern Mperc.seinflat ## 1 1 10.48 ## End(Not run)
############################################################################# # EXAMPLE 1: Reading Data ############################################################################# data(data.read) dat <- data.read # define item cluster itemcluster <- rep( 1:3, each=4 ) mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster ) summary(mod1) # person parameter estimation under the Rasch copula model pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 ) ## Mean percentage standard error inflation ## missing.pattern Mperc.seinflat ## 1 1 6.35 ## Not run: ############################################################################# # EXAMPLE 2: 12 items nested within 3 item clusters (testlets) # Cluster 1 -> Items 1-4; Cluster 2 -> Items 6-9; Cluster 3 -> Items 10-12 ############################################################################# set.seed(967) I <- 12 # number of items n <- 450 # number of persons b <- seq(-2,2, len=I) # item difficulties b <- sample(b) # sample item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ 1:4 ] <- 1 itemcluster[ 6:9 ] <- 2 itemcluster[ 10:12 ] <- 3 # residual correlations rho <- c( .35, .25, .30 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # estimate Rasch copula model mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster ) summary(mod1) # person parameter estimation under the Rasch copula model pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 ) ## Mean percentage standard error inflation ## missing.pattern Mperc.seinflat ## 1 1 10.48 ## End(Not run)
This function collects some person fit statistics for the Rasch model (Karabatsos, 2003; Meijer & Sijtsma, 2001).
personfit.stat(dat, abil, b)
personfit.stat(dat, abil, b)
dat |
An |
abil |
An ability estimate, e.g. the WLE |
b |
Estimated item difficulty |
A data frame with following columns (see Meijer & Sijtsma 2001 for a review of different person fit statistics):
case |
Case index |
abil |
Ability estimate |
mean |
Person mean of correctly solved items |
caution |
Caution index |
depend |
Dependability index |
ECI1 |
|
ECI2 |
|
ECI3 |
|
ECI4 |
|
ECI5 |
|
ECI6 |
|
l0 |
Fit statistic |
lz |
Fit statistic |
outfit |
Person outfit statistic |
infit |
Person infit statistic |
rpbis |
Point biserial correlation of item responses
and item |
rpbis.itemdiff |
Point biserial correlation of item responses
and item difficulties |
U3 |
Fit statistic |
Karabatsos, G. (2003). Comparing the aberrant response detection performance of thirty-six person-fit statistics. Applied Measurement in Education, 16, 277-298.
Meijer, R. R., & Sijtsma, K. (2001). Methodology review: Evaluating person fit. Applied Psychological Measurement, 25, 107-135.
See pcm.fit
for person fit in the partial credit model.
See the irtProb and PerFit packages for person fit statistics
and person response curves and functions included in other packages:
mirt::personfit
,
eRm::personfit
and
ltm::person.fit
.
############################################################################# # EXAMPLE 1: Person fit Reading Data ############################################################################# data(data.read) dat <- data.read # estimate Rasch model mod <- sirt::rasch.mml2( dat ) # WLE wle1 <- sirt::wle.rasch( dat,b=mod$item$b )$theta b <- mod$item$b # item difficulty # evaluate person fit pf1 <- sirt::personfit.stat( dat=dat, abil=wle1, b=b) ## Not run: # dimensional analysis of person fit statistics x0 <- stats::na.omit(pf1[, -c(1:3) ] ) stats::factanal( x=x0, factors=2, rotation="promax" ) ## Loadings: ## Factor1 Factor2 ## caution 0.914 ## depend 0.293 0.750 ## ECI1 0.869 0.160 ## ECI2 0.869 0.162 ## ECI3 1.011 ## ECI4 1.159 -0.269 ## ECI5 1.012 ## ECI6 0.879 0.130 ## l0 0.409 -1.255 ## lz -0.504 -0.529 ## outfit 0.297 0.702 ## infit 0.362 0.695 ## rpbis -1.014 ## rpbis.itemdiff 1.032 ## U3 0.735 0.309 ## ## Factor Correlations: ## Factor1 Factor2 ## Factor1 1.000 -0.727 ## Factor2 -0.727 1.000 ## ## End(Not run)
############################################################################# # EXAMPLE 1: Person fit Reading Data ############################################################################# data(data.read) dat <- data.read # estimate Rasch model mod <- sirt::rasch.mml2( dat ) # WLE wle1 <- sirt::wle.rasch( dat,b=mod$item$b )$theta b <- mod$item$b # item difficulty # evaluate person fit pf1 <- sirt::personfit.stat( dat=dat, abil=wle1, b=b) ## Not run: # dimensional analysis of person fit statistics x0 <- stats::na.omit(pf1[, -c(1:3) ] ) stats::factanal( x=x0, factors=2, rotation="promax" ) ## Loadings: ## Factor1 Factor2 ## caution 0.914 ## depend 0.293 0.750 ## ECI1 0.869 0.160 ## ECI2 0.869 0.162 ## ECI3 1.011 ## ECI4 1.159 -0.269 ## ECI5 1.012 ## ECI6 0.879 0.130 ## l0 0.409 -1.255 ## lz -0.504 -0.529 ## outfit 0.297 0.702 ## infit 0.362 0.695 ## rpbis -1.014 ## rpbis.itemdiff 1.032 ## U3 0.735 0.309 ## ## Factor Correlations: ## Factor1 Factor2 ## Factor1 1.000 -0.727 ## Factor2 -0.727 1.000 ## ## End(Not run)
Calculation of probabilities and moments for the generalized logistic item response model (Stukel, 1988).
pgenlogis(x, alpha1=0, alpha2=0) genlogis.moments(alpha1, alpha2)
pgenlogis(x, alpha1=0, alpha2=0) genlogis.moments(alpha1, alpha2)
x |
Vector |
alpha1 |
Upper tail parameter |
alpha2 |
Lower tail parameter |
The class of generalized logistic link functions contain the most important link functions using the specifications (Stukel, 1988):
logistic link function :
probit link function :
loglog link function :
cloglog link function :
Vector of probabilities or moments
Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Association, 83(402), 426-431. doi:10.1080/01621459.1988.10478613
sirt::pgenlogis( x=c(-.3, 0, .25, 1 ), alpha1=0, alpha2=.6 ) ## [1] 0.4185580 0.5000000 0.5621765 0.7310586 #################################################################### # compare link functions x <- seq( -3,3, .1 ) #*** # logistic link y <- sirt::pgenlogis( x, alpha1=0, alpha2=0 ) plot( x, stats::plogis(x), type="l", main="Logistic Link", lwd=2) points( x, y, pch=1, col=2 ) #*** # probit link round( sirt::genlogis.moments( alpha1=.165, alpha2=.165 ), 3 ) ## M SD Var ## 0.000 1.472 2.167 # SD of generalized logistic link function is 1.472 y <- sirt::pgenlogis( x * 1.47, alpha1=.165, alpha2=.165 ) plot( x, stats::pnorm(x), type="l", main="Probit Link", lwd=2) points( x, y, pch=1, col=2 ) #*** # loglog link y <- sirt::pgenlogis( -.39 + 1.20*x -.007*x^2, alpha1=-.037, alpha2=.62 ) plot( x, exp( - exp( -x ) ), type="l", main="Loglog Link", lwd=2, ylab="loglog(x)=exp(-exp(-x))" ) points( x, y, pch=17, col=2 ) #*** # cloglog link y <- sirt::pgenlogis( .54+1.64*x +.28*x^2 + .046*x^3, alpha1=.062, alpha2=-.037 ) plot( x, 1-exp( - exp(x) ), type="l", main="Cloglog Link", lwd=2, ylab="loglog(x)=1-exp(-exp(x))" ) points( x, y, pch=17, col=2 )
sirt::pgenlogis( x=c(-.3, 0, .25, 1 ), alpha1=0, alpha2=.6 ) ## [1] 0.4185580 0.5000000 0.5621765 0.7310586 #################################################################### # compare link functions x <- seq( -3,3, .1 ) #*** # logistic link y <- sirt::pgenlogis( x, alpha1=0, alpha2=0 ) plot( x, stats::plogis(x), type="l", main="Logistic Link", lwd=2) points( x, y, pch=1, col=2 ) #*** # probit link round( sirt::genlogis.moments( alpha1=.165, alpha2=.165 ), 3 ) ## M SD Var ## 0.000 1.472 2.167 # SD of generalized logistic link function is 1.472 y <- sirt::pgenlogis( x * 1.47, alpha1=.165, alpha2=.165 ) plot( x, stats::pnorm(x), type="l", main="Probit Link", lwd=2) points( x, y, pch=1, col=2 ) #*** # loglog link y <- sirt::pgenlogis( -.39 + 1.20*x -.007*x^2, alpha1=-.037, alpha2=.62 ) plot( x, exp( - exp( -x ) ), type="l", main="Loglog Link", lwd=2, ylab="loglog(x)=exp(-exp(-x))" ) points( x, y, pch=17, col=2 ) #*** # cloglog link y <- sirt::pgenlogis( .54+1.64*x +.28*x^2 + .046*x^3, alpha1=.062, alpha2=-.037 ) plot( x, 1-exp( - exp(x) ), type="l", main="Cloglog Link", lwd=2, ylab="loglog(x)=1-exp(-exp(x))" ) points( x, y, pch=17, col=2 )
This function performs unidimensional plausible value imputation (Adams & Wu, 2007; Mislevy, 1991).
plausible.value.imputation.raschtype(data=NULL, f.yi.qk=NULL, X, Z=NULL, beta0=rep(0, ncol(X)), sig0=1, b=rep(1, ncol(X)), a=rep(1, length(b)), c=rep(0, length(b)), d=1+0*b, alpha1=0, alpha2=0, theta.list=seq(-5, 5, len=50), cluster=NULL, iter, burnin, nplausible=1, printprogress=TRUE)
plausible.value.imputation.raschtype(data=NULL, f.yi.qk=NULL, X, Z=NULL, beta0=rep(0, ncol(X)), sig0=1, b=rep(1, ncol(X)), a=rep(1, length(b)), c=rep(0, length(b)), d=1+0*b, alpha1=0, alpha2=0, theta.list=seq(-5, 5, len=50), cluster=NULL, iter, burnin, nplausible=1, printprogress=TRUE)
data |
An |
f.yi.qk |
An optional matrix which contains the individual likelihood.
This matrix is produced by |
X |
A matrix of individual covariates for the latent
regression of |
Z |
A matrix of individual covariates for the regression
of individual residual variances on |
beta0 |
Initial vector of regression coefficients |
sig0 |
Initial vector of coefficients for the variance heterogeneity model |
b |
Vector of item difficulties. It must not be provided
if the individual likelihood |
a |
Optional vector of item slopes |
c |
Optional vector of lower item asymptotes |
d |
Optional vector of upper item asymptotes |
alpha1 |
Parameter |
alpha2 |
Parameter |
theta.list |
Vector of theta values at which the ability distribution should be evaluated |
cluster |
Cluster identifier (e.g. schools or classes) for including theta means in the plausible imputation. |
iter |
Number of iterations |
burnin |
Number of burn-in iterations for plausible value imputation |
nplausible |
Number of plausible values |
printprogress |
A logical indicated whether iteration progress should be displayed at the console. |
Plausible values are drawn from the latent regression model with heterogeneous variances:
A list with following entries:
coefs.X |
Sampled regression coefficients for covariates |
coefs.Z |
Sampled coefficients for modeling variance heterogeneity
for covariates |
pvdraws |
Matrix with drawn plausible values |
posterior |
Posterior distribution from last iteration |
EAP |
Individual EAP estimate |
SE.EAP |
Standard error of the EAP estimate |
pv.indexes |
Index of iterations for which plausible values were drawn |
Adams, R., & Wu. M. (2007). The mixed-coefficients multinomial logit model: A generalized form of the Rasch model. In M. von Davier & C. H. Carstensen: Multivariate and Mixture Distribution Rasch Models: Extensions and Applications (pp. 57-76). New York: Springer.
Mislevy, R. J. (1991). Randomization-based inference about latent variables from complex samples. Psychometrika, 56, 177-196.
For estimating the latent regression model see
latent.regression.em.raschtype
.
############################################################################# # EXAMPLE 1: Rasch model with covariates ############################################################################# set.seed(899) I <- 21 # number of items b <- seq(-2,2, len=I) # item difficulties n <- 2000 # number of students # simulate theta and covariates theta <- stats::rnorm( n ) x <- .7 * theta + stats::rnorm( n, .5 ) y <- .2 * x+ .3*theta + stats::rnorm( n, .4 ) dfr <- data.frame( theta, 1, x, y ) # simulate Rasch model dat1 <- sirt::sim.raschtype( theta=theta, b=b ) # Plausible value draws pv1 <- sirt::plausible.value.imputation.raschtype(data=dat1, X=dfr[,-1], b=b, nplausible=3, iter=10, burnin=5) # estimate linear regression based on first plausible value mod1 <- stats::lm( pv1$pvdraws[,1] ~ x+y ) summary(mod1) ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -0.27755 0.02121 -13.09 <2e-16 *** ## x 0.40483 0.01640 24.69 <2e-16 *** ## y 0.20307 0.01822 11.15 <2e-16 *** # true regression estimate summary( stats::lm( theta ~ x + y ) ) ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -0.27821 0.01984 -14.02 <2e-16 *** ## x 0.40747 0.01534 26.56 <2e-16 *** ## y 0.18189 0.01704 10.67 <2e-16 *** ## Not run: ############################################################################# # EXAMPLE 2: Classical test theory, homogeneous regression variance ############################################################################# set.seed(899) n <- 3000 # number of students x <- round( stats::runif( n, 0,1 ) ) y <- stats::rnorm(n) # simulate true score theta theta <- .4*x + .5 * y + stats::rnorm(n) # simulate observed score by adding measurement error sig.e <- rep( sqrt(.40), n ) theta_obs <- theta + stats::rnorm( n, sd=sig.e) # define theta grid for evaluation of density theta.list <- mean(theta_obs) + stats::sd(theta_obs) * seq( - 5, 5, length=21) # compute individual likelihood f.yi.qk <- stats::dnorm( outer( theta_obs, theta.list, "-" ) / sig.e ) f.yi.qk <- f.yi.qk / rowSums(f.yi.qk) # define covariates X <- cbind( 1, x, y ) # draw plausible values mod2 <- sirt::plausible.value.imputation.raschtype( f.yi.qk=f.yi.qk, theta.list=theta.list, X=X, iter=10, burnin=5) # linear regression mod1 <- stats::lm( mod2$pvdraws[,1] ~ x+y ) summary(mod1) ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -0.01393 0.02655 -0.525 0.6 ## x 0.35686 0.03739 9.544 <2e-16 *** ## y 0.53759 0.01872 28.718 <2e-16 *** # true regression model summary( stats::lm( theta ~ x + y ) ) ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 0.002931 0.026171 0.112 0.911 ## x 0.359954 0.036864 9.764 <2e-16 *** ## y 0.509073 0.018456 27.584 <2e-16 *** ############################################################################# # EXAMPLE 3: Classical test theory, heterogeneous regression variance ############################################################################# set.seed(899) n <- 5000 # number of students x <- round( stats::runif( n, 0,1 ) ) y <- stats::rnorm(n) # simulate true score theta theta <- .4*x + .5 * y + stats::rnorm(n) * ( 1 - .4 * x ) # simulate observed score by adding measurement error sig.e <- rep( sqrt(.40), n ) theta_obs <- theta + stats::rnorm( n, sd=sig.e) # define theta grid for evaluation of density theta.list <- mean(theta_obs) + stats::sd(theta_obs) * seq( - 5, 5, length=21) # compute individual likelihood f.yi.qk <- stats::dnorm( outer( theta_obs, theta.list, "-" ) / sig.e ) f.yi.qk <- f.yi.qk / rowSums(f.yi.qk) # define covariates X <- cbind( 1, x, y ) # draw plausible values (assuming variance homogeneity) mod3a <- sirt::plausible.value.imputation.raschtype( f.yi.qk=f.yi.qk, theta.list=theta.list, X=X, iter=10, burnin=5) # draw plausible values (assuming variance heterogeneity) # -> include predictor Z mod3b <- sirt::plausible.value.imputation.raschtype( f.yi.qk=f.yi.qk, theta.list=theta.list, X=X, Z=X, iter=10, burnin=5) # investigate variance of theta conditional on x res3 <- sapply( 0:1, FUN=function(vv){ c( stats::var(theta[x==vv]), stats::var(mod3b$pvdraw[x==vv,1]), stats::var(mod3a$pvdraw[x==vv,1]))}) rownames(res3) <- c("true", "pv(hetero)", "pv(homog)" ) colnames(res3) <- c("x=0","x=1") ## > round( res3, 2 ) ## x=0 x=1 ## true 1.30 0.58 ## pv(hetero) 1.29 0.55 ## pv(homog) 1.06 0.77 ## -> assuming heteroscedastic variances recovers true conditional variance ## End(Not run)
############################################################################# # EXAMPLE 1: Rasch model with covariates ############################################################################# set.seed(899) I <- 21 # number of items b <- seq(-2,2, len=I) # item difficulties n <- 2000 # number of students # simulate theta and covariates theta <- stats::rnorm( n ) x <- .7 * theta + stats::rnorm( n, .5 ) y <- .2 * x+ .3*theta + stats::rnorm( n, .4 ) dfr <- data.frame( theta, 1, x, y ) # simulate Rasch model dat1 <- sirt::sim.raschtype( theta=theta, b=b ) # Plausible value draws pv1 <- sirt::plausible.value.imputation.raschtype(data=dat1, X=dfr[,-1], b=b, nplausible=3, iter=10, burnin=5) # estimate linear regression based on first plausible value mod1 <- stats::lm( pv1$pvdraws[,1] ~ x+y ) summary(mod1) ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -0.27755 0.02121 -13.09 <2e-16 *** ## x 0.40483 0.01640 24.69 <2e-16 *** ## y 0.20307 0.01822 11.15 <2e-16 *** # true regression estimate summary( stats::lm( theta ~ x + y ) ) ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -0.27821 0.01984 -14.02 <2e-16 *** ## x 0.40747 0.01534 26.56 <2e-16 *** ## y 0.18189 0.01704 10.67 <2e-16 *** ## Not run: ############################################################################# # EXAMPLE 2: Classical test theory, homogeneous regression variance ############################################################################# set.seed(899) n <- 3000 # number of students x <- round( stats::runif( n, 0,1 ) ) y <- stats::rnorm(n) # simulate true score theta theta <- .4*x + .5 * y + stats::rnorm(n) # simulate observed score by adding measurement error sig.e <- rep( sqrt(.40), n ) theta_obs <- theta + stats::rnorm( n, sd=sig.e) # define theta grid for evaluation of density theta.list <- mean(theta_obs) + stats::sd(theta_obs) * seq( - 5, 5, length=21) # compute individual likelihood f.yi.qk <- stats::dnorm( outer( theta_obs, theta.list, "-" ) / sig.e ) f.yi.qk <- f.yi.qk / rowSums(f.yi.qk) # define covariates X <- cbind( 1, x, y ) # draw plausible values mod2 <- sirt::plausible.value.imputation.raschtype( f.yi.qk=f.yi.qk, theta.list=theta.list, X=X, iter=10, burnin=5) # linear regression mod1 <- stats::lm( mod2$pvdraws[,1] ~ x+y ) summary(mod1) ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -0.01393 0.02655 -0.525 0.6 ## x 0.35686 0.03739 9.544 <2e-16 *** ## y 0.53759 0.01872 28.718 <2e-16 *** # true regression model summary( stats::lm( theta ~ x + y ) ) ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 0.002931 0.026171 0.112 0.911 ## x 0.359954 0.036864 9.764 <2e-16 *** ## y 0.509073 0.018456 27.584 <2e-16 *** ############################################################################# # EXAMPLE 3: Classical test theory, heterogeneous regression variance ############################################################################# set.seed(899) n <- 5000 # number of students x <- round( stats::runif( n, 0,1 ) ) y <- stats::rnorm(n) # simulate true score theta theta <- .4*x + .5 * y + stats::rnorm(n) * ( 1 - .4 * x ) # simulate observed score by adding measurement error sig.e <- rep( sqrt(.40), n ) theta_obs <- theta + stats::rnorm( n, sd=sig.e) # define theta grid for evaluation of density theta.list <- mean(theta_obs) + stats::sd(theta_obs) * seq( - 5, 5, length=21) # compute individual likelihood f.yi.qk <- stats::dnorm( outer( theta_obs, theta.list, "-" ) / sig.e ) f.yi.qk <- f.yi.qk / rowSums(f.yi.qk) # define covariates X <- cbind( 1, x, y ) # draw plausible values (assuming variance homogeneity) mod3a <- sirt::plausible.value.imputation.raschtype( f.yi.qk=f.yi.qk, theta.list=theta.list, X=X, iter=10, burnin=5) # draw plausible values (assuming variance heterogeneity) # -> include predictor Z mod3b <- sirt::plausible.value.imputation.raschtype( f.yi.qk=f.yi.qk, theta.list=theta.list, X=X, Z=X, iter=10, burnin=5) # investigate variance of theta conditional on x res3 <- sapply( 0:1, FUN=function(vv){ c( stats::var(theta[x==vv]), stats::var(mod3b$pvdraw[x==vv,1]), stats::var(mod3a$pvdraw[x==vv,1]))}) rownames(res3) <- c("true", "pv(hetero)", "pv(homog)" ) colnames(res3) <- c("x=0","x=1") ## > round( res3, 2 ) ## x=0 x=1 ## true 1.30 0.58 ## pv(hetero) 1.29 0.55 ## pv(homog) 1.06 0.77 ## -> assuming heteroscedastic variances recovers true conditional variance ## End(Not run)
mcmc.sirt
Plot function for objects of class mcmc.sirt
. These objects are generated
by: mcmc.2pno
, mcmc.2pnoh
,
mcmc.3pno.testlet
, mcmc.2pno.ml
## S3 method for class 'mcmc.sirt' plot( x, layout=1, conflevel=0.9, round.summ=3, lag.max=.1, col.smooth="red", lwd.smooth=2, col.ci="orange", cex.summ=1, ask=FALSE, ...)
## S3 method for class 'mcmc.sirt' plot( x, layout=1, conflevel=0.9, round.summ=3, lag.max=.1, col.smooth="red", lwd.smooth=2, col.ci="orange", cex.summ=1, ask=FALSE, ...)
x |
Object of class |
layout |
Layout type. |
conflevel |
Confidence level (only applies to |
round.summ |
Number of digits to be rounded in summary (only applies to |
lag.max |
Maximum lag for autocorrelation plot (only applies to |
col.smooth |
Color of smooth trend in traceplot (only applies to |
lwd.smooth |
Line type of smooth trend in traceplot (only applies to |
col.ci |
Color for displaying confidence interval (only applies to |
cex.summ |
Cex size for descriptive summary (only applies to |
ask |
Ask for a new plot (only applies to |
... |
Further arguments to be passed |
mcmc.2pno
, mcmc.2pnoh
,
mcmc.3pno.testlet
, mcmc.2pno.ml
np.dich
This function plots nonparametric item response
functions estimated with dich.np
.
## S3 method for class 'np.dich' plot(x, b, infit=NULL, outfit=NULL, nsize=100, askplot=TRUE, progress=TRUE, bands=FALSE, plot.b=FALSE, shade=FALSE, shadecol="burlywood1", ...)
## S3 method for class 'np.dich' plot(x, b, infit=NULL, outfit=NULL, nsize=100, askplot=TRUE, progress=TRUE, bands=FALSE, plot.b=FALSE, shade=FALSE, shadecol="burlywood1", ...)
x |
Object of class |
b |
Estimated item difficulty (threshold) |
infit |
Infit (optional) |
outfit |
Outfit (optional) |
nsize |
XXX |
askplot |
Ask for new plot? |
progress |
Display progress? |
bands |
Draw confidence bands? |
plot.b |
Plot difficulty parameter? |
shade |
Shade curves? |
shadecol |
Shade color |
... |
Further arguments to be passed |
For examples see np.dich
.
This function estimates the polychoric correlation coefficient using maximum likelihood estimation (Olsson, 1979).
polychoric2(dat, maxiter=100, cor.smooth=TRUE, use_pbv=1, conv=1e-10, rho_init=NULL, weights=NULL) ## exported Rcpp function sirt_rcpp_polychoric2( dat, maxK, maxiter, use_pbv, conv, rho_init, weights)
polychoric2(dat, maxiter=100, cor.smooth=TRUE, use_pbv=1, conv=1e-10, rho_init=NULL, weights=NULL) ## exported Rcpp function sirt_rcpp_polychoric2( dat, maxK, maxiter, use_pbv, conv, rho_init, weights)
dat |
A dataset with integer values |
maxiter |
Maximum number of iterations |
cor.smooth |
An optional logical indicating whether the polychoric correlation matrix should be smooth to ensure positive definiteness. |
use_pbv |
Integer indicating whether the pbv package is used
for computation of bivariate normal distribution. |
conv |
Convergence criterion |
rho_init |
Optional matrix of initial values for polychoric correlations |
weights |
Optional vector of sampling weights |
maxK |
Maximum number of categories |
A list with following entries
tau |
Matrix of thresholds |
rho |
Polychoric correlation matrix |
Nobs |
Sample size for every item pair |
maxcat |
Maximum number of categories per item |
Cox, D. R., & Wermuth, N. (1991). A simple approximation for bivariate and trivariate normal integrals. International Statistical Review, 59(2), 263-269.
Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44(4), 443-460. doi:10.1007/BF02296207
See the psych::polychoric
function in the psych package.
For estimating tetrachoric correlations see tetrachoric2
.
############################################################################# # EXAMPLE 1: data.Students | activity scale ############################################################################# data(data.Students, package="CDM") dat <- data.Students[, paste0("act", 1:5 ) ] # tetrachoric correlation from psych package library(psych) t0 <- psych::polychoric(dat)$rho # Olsson method (maximum likelihood estimation) t1 <- sirt::polychoric2(dat)$rho # maximum absolute difference max( abs( t0 - t1 ) ) ## [1] 0.004102429
############################################################################# # EXAMPLE 1: data.Students | activity scale ############################################################################# data(data.Students, package="CDM") dat <- data.Students[, paste0("act", 1:5 ) ] # tetrachoric correlation from psych package library(psych) t0 <- psych::polychoric(dat)$rho # Olsson method (maximum likelihood estimation) t1 <- sirt::polychoric2(dat)$rho # maximum absolute difference max( abs( t0 - t1 ) ) ## [1] 0.004102429
Parses a string specifying a prior model which is needed
for the prior
argument in LAM::amh
prior_model_parse(prior_model)
prior_model_parse(prior_model)
prior_model |
String specifying the prior conforming to R syntax. |
List with specified prior distributions for parameters
as needed for the prior
argument in LAM::amh
LAM::amh
############################################################################# # EXAMPLE 1: Toy example prior distributions ############################################################################# #*** define prior model as a string prior_model <- " # prior distributions means mu1 ~ dnorm( NA, mean=0, sd=1 ) mu2 ~ dnorm(NA) # mean T2 and T3 # prior distribution standard deviation sig1 ~ dunif(NA,0, max=10) " #*** convert priors into a list res <- sirt::prior_model_parse( prior_model ) str(res) ## List of 3 ## $ mu1 :List of 2 ## ..$ : chr "dnorm" ## ..$ :List of 3 ## .. ..$ NA : num NA ## .. ..$ mean: num 0 ## .. ..$ sd : num 1 ## $ mu2 :List of 2 ## ..$ : chr "dnorm" ## ..$ :List of 1 ## .. ..$ : num NA ## $ sig1:List of 2 ## ..$ : chr "dunif" ## ..$ :List of 3 ## .. ..$ NA : num NA ## .. ..$ NA : num 0 ## .. ..$ max: num 10
############################################################################# # EXAMPLE 1: Toy example prior distributions ############################################################################# #*** define prior model as a string prior_model <- " # prior distributions means mu1 ~ dnorm( NA, mean=0, sd=1 ) mu2 ~ dnorm(NA) # mean T2 and T3 # prior distribution standard deviation sig1 ~ dunif(NA,0, max=10) " #*** convert priors into a list res <- sirt::prior_model_parse( prior_model ) str(res) ## List of 3 ## $ mu1 :List of 2 ## ..$ : chr "dnorm" ## ..$ :List of 3 ## .. ..$ NA : num NA ## .. ..$ mean: num 0 ## .. ..$ sd : num 1 ## $ mu2 :List of 2 ## ..$ : chr "dnorm" ## ..$ :List of 1 ## .. ..$ : num NA ## $ sig1:List of 2 ## ..$ : chr "dunif" ## ..$ :List of 3 ## .. ..$ NA : num NA ## .. ..$ NA : num 0 ## .. ..$ max: num 10
This function estimates the proportional reduction of mean squared error (PRMSE) according to Haberman (Haberman 2008; Haberman, Sinharay & Puhan, 2008; see Meijer et al. 2017 for an overview).
prmse.subscores.scales(data, subscale)
prmse.subscores.scales(data, subscale)
data |
An |
subscale |
Vector of labels corresponding to subscales |
Matrix with columns corresponding to subscales
The symbol X
denotes the subscale and Z
the whole scale (see also in the Examples section for the structure of
this matrix).
Haberman, S. J. (2008). When can subscores have value? Journal of Educational and Behavioral Statistics, 33, 204-229.
Haberman, S., Sinharay, S., & Puhan, G. (2008). Reporting subscores for institutions. British Journal of Mathematical and Statistical Psychology, 62, 79-95.
Meijer, R. R., Boeve, A. J., Tendeiro, J. N., Bosker, R. J., & Albers, C. J. (2017). The use of subscores in higher education: When is this useful?. Frontiers in Psychology | Educational Psychology, 8.
See the subscore package for computing subscores and the PRMSE measures,
especially subscore::CTTsub
.
############################################################################# # EXAMPLE 1: PRMSE Reading data data.read ############################################################################# data( data.read ) p1 <- sirt::prmse.subscores.scales(data=data.read, subscale=substring( colnames(data.read), 1,1 ) ) print( p1, digits=3 ) ## A B C ## N 328.000 328.000 328.000 ## nX 4.000 4.000 4.000 ## M.X 2.616 2.811 3.253 ## Var.X 1.381 1.059 1.107 ## SD.X 1.175 1.029 1.052 ## alpha.X 0.545 0.381 0.640 ## [...] ## nZ 12.000 12.000 12.000 ## M.Z 8.680 8.680 8.680 ## Var.Z 5.668 5.668 5.668 ## SD.Z 2.381 2.381 2.381 ## alpha.Z 0.677 0.677 0.677 ## [...] ## cor.TX_Z 0.799 0.835 0.684 ## rmse.X 0.585 0.500 0.505 ## rmse.Z 0.522 0.350 0.614 ## rmse.XZ 0.495 0.350 0.478 ## prmse.X 0.545 0.381 0.640 ## prmse.Z 0.638 0.697 0.468 ## prmse.XZ 0.674 0.697 0.677 #-> Scales A and B do not have lower RMSE, # but for scale C the RMSE is smaller than the RMSE of a # prediction based on a whole scale.
############################################################################# # EXAMPLE 1: PRMSE Reading data data.read ############################################################################# data( data.read ) p1 <- sirt::prmse.subscores.scales(data=data.read, subscale=substring( colnames(data.read), 1,1 ) ) print( p1, digits=3 ) ## A B C ## N 328.000 328.000 328.000 ## nX 4.000 4.000 4.000 ## M.X 2.616 2.811 3.253 ## Var.X 1.381 1.059 1.107 ## SD.X 1.175 1.029 1.052 ## alpha.X 0.545 0.381 0.640 ## [...] ## nZ 12.000 12.000 12.000 ## M.Z 8.680 8.680 8.680 ## Var.Z 5.668 5.668 5.668 ## SD.Z 2.381 2.381 2.381 ## alpha.Z 0.677 0.677 0.677 ## [...] ## cor.TX_Z 0.799 0.835 0.684 ## rmse.X 0.585 0.500 0.505 ## rmse.Z 0.522 0.350 0.614 ## rmse.XZ 0.495 0.350 0.478 ## prmse.X 0.545 0.381 0.640 ## prmse.Z 0.638 0.697 0.468 ## prmse.XZ 0.674 0.697 0.677 #-> Scales A and B do not have lower RMSE, # but for scale C the RMSE is smaller than the RMSE of a # prediction based on a whole scale.
This function estimates the probabilistic Guttman model which is a special case of an ordered latent trait model (Hanson, 2000; Proctor, 1970).
prob.guttman(dat, pid=NULL, guess.equal=FALSE, slip.equal=FALSE, itemlevel=NULL, conv1=0.001, glob.conv=0.001, mmliter=500) ## S3 method for class 'prob.guttman' summary(object,...) ## S3 method for class 'prob.guttman' anova(object,...) ## S3 method for class 'prob.guttman' logLik(object,...) ## S3 method for class 'prob.guttman' IRT.irfprob(object,...) ## S3 method for class 'prob.guttman' IRT.likelihood(object,...) ## S3 method for class 'prob.guttman' IRT.posterior(object,...)
prob.guttman(dat, pid=NULL, guess.equal=FALSE, slip.equal=FALSE, itemlevel=NULL, conv1=0.001, glob.conv=0.001, mmliter=500) ## S3 method for class 'prob.guttman' summary(object,...) ## S3 method for class 'prob.guttman' anova(object,...) ## S3 method for class 'prob.guttman' logLik(object,...) ## S3 method for class 'prob.guttman' IRT.irfprob(object,...) ## S3 method for class 'prob.guttman' IRT.likelihood(object,...) ## S3 method for class 'prob.guttman' IRT.posterior(object,...)
dat |
An |
pid |
Optional vector of person identifiers |
guess.equal |
Should the same guessing parameters for all the items estimated? |
slip.equal |
Should the same slipping parameters for all the items estimated? |
itemlevel |
A vector of item levels of the Guttman scale for each item. If there
are |
conv1 |
Convergence criterion for item parameters |
glob.conv |
Global convergence criterion for the deviance |
mmliter |
Maximum number of iterations |
object |
Object of class |
... |
Further arguments to be passed |
An object of class prob.guttman
person |
Estimated person parameters |
item |
Estimated item parameters |
theta.k |
Ability levels |
trait |
Estimated trait distribution |
ic |
Information criteria |
deviance |
Deviance |
iter |
Number of iterations |
itemdesign |
Specified allocation of items to trait levels |
Hanson, B. (2000). IRT parameter estimation using the EM algorithm. Technical Report.
Proctor, C. H. (1970). A probabilistic formulation and statistical analysis for Guttman scaling. Psychometrika, 35, 73-78.
############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data(data.read) dat <- data.read #*** # Model 1: estimate probabilistic Guttman model mod1 <- sirt::prob.guttman( dat ) summary(mod1) #*** # Model 2: probabilistic Guttman model with equal guessing and slipping parameters mod2 <- sirt::prob.guttman( dat, guess.equal=TRUE, slip.equal=TRUE) summary(mod2) #*** # Model 3: Guttman model with three a priori specified item levels itemlevel <- rep(1,12) itemlevel[ c(2,5,8,10,12) ] <- 2 itemlevel[ c(3,4,6) ] <- 3 mod3 <- sirt::prob.guttman( dat, itemlevel=itemlevel ) summary(mod3) ## Not run: #*** # Model3m: estimate Model 3 in mirt library(mirt) # define four ordered latent classes Theta <- scan(nlines=1) 0 0 0 1 0 0 1 1 0 1 1 1 Theta <- matrix( Theta, nrow=4, ncol=3,byrow=TRUE) # define mirt model I <- ncol(dat) # I=12 mirtmodel <- mirt::mirt.model(" # specify factors for each item level C1=1,7,9,11 C2=2,5,8,10,12 C3=3,4,6 ") # get initial parameter values mod.pars <- mirt::mirt(dat, model=mirtmodel, pars="values") # redefine initial parameter values mod.pars[ mod.pars$name=="d","value" ] <- -1 mod.pars[ mod.pars$name %in% paste0("a",1:3) & mod.pars$est,"value" ] <- 2 mod.pars # define prior for latent class analysis lca_prior <- function(Theta,Etable){ # number of latent Theta classes TP <- nrow(Theta) # prior in initial iteration if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) } # process Etable (this is correct for datasets without missing data) if ( ! is.null(Etable) ){ # sum over correct and incorrect expected responses prior <- ( rowSums(Etable[, seq(1,2*I,2)]) + rowSums(Etable[,seq(2,2*I,2)]) )/I } prior <- prior / sum(prior) return(prior) } # estimate model in mirt mod3m <- mirt::mirt(dat, mirtmodel, pars=mod.pars, verbose=TRUE, technical=list( customTheta=Theta, customPriorFun=lca_prior) ) # correct number of estimated parameters mod3m@nest <- as.integer(sum(mod.pars$est) + nrow(Theta)-1 ) # extract log-likelihood and compute AIC and BIC mod3m@logLik ( AIC <- -2*mod3m@logLik+2*mod3m@nest ) ( BIC <- -2*mod3m@logLik+log(mod3m@Data$N)*mod3m@nest ) # compare with information criteria from prob.guttman mod3$ic # model fit in mirt mirt::M2(mod3m) # extract coefficients ( cmod3m <- sirt::mirt.wrapper.coef(mod3m) ) # compare estimated distributions round( cbind( "sirt"=mod3$trait$prob, "mirt"=mod3m@Prior[[1]] ), 5 ) ## sirt mirt ## [1,] 0.13709 0.13765 ## [2,] 0.30266 0.30303 ## [3,] 0.15239 0.15085 ## [4,] 0.40786 0.40846 # compare estimated item parameters ipars <- data.frame( "guess.sirt"=mod3$item$guess, "guess.mirt"=plogis( cmod3m$coef$d ) ) ipars$slip.sirt <- mod3$item$slip ipars$slip.mirt <- 1-plogis( rowSums(cmod3m$coef[, c("a1","a2","a3","d") ] ) ) round( ipars, 4 ) ## guess.sirt guess.mirt slip.sirt slip.mirt ## 1 0.7810 0.7804 0.1383 0.1382 ## 2 0.4513 0.4517 0.0373 0.0368 ## 3 0.3203 0.3200 0.0747 0.0751 ## 4 0.3009 0.3007 0.3082 0.3087 ## 5 0.5776 0.5779 0.1800 0.1798 ## 6 0.3758 0.3759 0.3047 0.3051 ## 7 0.7262 0.7259 0.0625 0.0623 ## [...] #*** # Model 4: Monotone item response function estimated in mirt # define four ordered latent classes Theta <- scan(nlines=1) 0 0 0 1 0 0 1 1 0 1 1 1 Theta <- matrix( Theta, nrow=4, ncol=3,byrow=TRUE) # define mirt model I <- ncol(dat) # I=12 mirtmodel <- mirt::mirt.model(" # specify factors for each item level C1=1-12 C2=1-12 C3=1-12 ") # get initial parameter values mod.pars <- mirt::mirt(dat, model=mirtmodel, pars="values") # redefine initial parameter values mod.pars[ mod.pars$name=="d","value" ] <- -1 mod.pars[ mod.pars$name %in% paste0("a",1:3) & mod.pars$est,"value" ] <- .6 # set lower bound to zero ton ensure monotonicity mod.pars[ mod.pars$name %in% paste0("a",1:3),"lbound" ] <- 0 mod.pars # estimate model in mirt mod4 <- mirt::mirt(dat, mirtmodel, pars=mod.pars, verbose=TRUE, technical=list( customTheta=Theta, customPriorFun=lca_prior) ) # correct number of estimated parameters mod4@nest <- as.integer(sum(mod.pars$est) + nrow(Theta)-1 ) # extract coefficients cmod4 <- sirt::mirt.wrapper.coef(mod4) cmod4 # compute item response functions cmod4c <- cmod4$coef[, c("d", "a1", "a2", "a3" ) ] probs4 <- t( apply( cmod4c, 1, FUN=function(ll){ plogis(cumsum(as.numeric(ll))) } ) ) matplot( 1:4, t(probs4), type="b", pch=1:I) ## End(Not run)
############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data(data.read) dat <- data.read #*** # Model 1: estimate probabilistic Guttman model mod1 <- sirt::prob.guttman( dat ) summary(mod1) #*** # Model 2: probabilistic Guttman model with equal guessing and slipping parameters mod2 <- sirt::prob.guttman( dat, guess.equal=TRUE, slip.equal=TRUE) summary(mod2) #*** # Model 3: Guttman model with three a priori specified item levels itemlevel <- rep(1,12) itemlevel[ c(2,5,8,10,12) ] <- 2 itemlevel[ c(3,4,6) ] <- 3 mod3 <- sirt::prob.guttman( dat, itemlevel=itemlevel ) summary(mod3) ## Not run: #*** # Model3m: estimate Model 3 in mirt library(mirt) # define four ordered latent classes Theta <- scan(nlines=1) 0 0 0 1 0 0 1 1 0 1 1 1 Theta <- matrix( Theta, nrow=4, ncol=3,byrow=TRUE) # define mirt model I <- ncol(dat) # I=12 mirtmodel <- mirt::mirt.model(" # specify factors for each item level C1=1,7,9,11 C2=2,5,8,10,12 C3=3,4,6 ") # get initial parameter values mod.pars <- mirt::mirt(dat, model=mirtmodel, pars="values") # redefine initial parameter values mod.pars[ mod.pars$name=="d","value" ] <- -1 mod.pars[ mod.pars$name %in% paste0("a",1:3) & mod.pars$est,"value" ] <- 2 mod.pars # define prior for latent class analysis lca_prior <- function(Theta,Etable){ # number of latent Theta classes TP <- nrow(Theta) # prior in initial iteration if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) } # process Etable (this is correct for datasets without missing data) if ( ! is.null(Etable) ){ # sum over correct and incorrect expected responses prior <- ( rowSums(Etable[, seq(1,2*I,2)]) + rowSums(Etable[,seq(2,2*I,2)]) )/I } prior <- prior / sum(prior) return(prior) } # estimate model in mirt mod3m <- mirt::mirt(dat, mirtmodel, pars=mod.pars, verbose=TRUE, technical=list( customTheta=Theta, customPriorFun=lca_prior) ) # correct number of estimated parameters mod3m@nest <- as.integer(sum(mod.pars$est) + nrow(Theta)-1 ) # extract log-likelihood and compute AIC and BIC mod3m@logLik ( AIC <- -2*mod3m@logLik+2*mod3m@nest ) ( BIC <- -2*mod3m@logLik+log(mod3m@Data$N)*mod3m@nest ) # compare with information criteria from prob.guttman mod3$ic # model fit in mirt mirt::M2(mod3m) # extract coefficients ( cmod3m <- sirt::mirt.wrapper.coef(mod3m) ) # compare estimated distributions round( cbind( "sirt"=mod3$trait$prob, "mirt"=mod3m@Prior[[1]] ), 5 ) ## sirt mirt ## [1,] 0.13709 0.13765 ## [2,] 0.30266 0.30303 ## [3,] 0.15239 0.15085 ## [4,] 0.40786 0.40846 # compare estimated item parameters ipars <- data.frame( "guess.sirt"=mod3$item$guess, "guess.mirt"=plogis( cmod3m$coef$d ) ) ipars$slip.sirt <- mod3$item$slip ipars$slip.mirt <- 1-plogis( rowSums(cmod3m$coef[, c("a1","a2","a3","d") ] ) ) round( ipars, 4 ) ## guess.sirt guess.mirt slip.sirt slip.mirt ## 1 0.7810 0.7804 0.1383 0.1382 ## 2 0.4513 0.4517 0.0373 0.0368 ## 3 0.3203 0.3200 0.0747 0.0751 ## 4 0.3009 0.3007 0.3082 0.3087 ## 5 0.5776 0.5779 0.1800 0.1798 ## 6 0.3758 0.3759 0.3047 0.3051 ## 7 0.7262 0.7259 0.0625 0.0623 ## [...] #*** # Model 4: Monotone item response function estimated in mirt # define four ordered latent classes Theta <- scan(nlines=1) 0 0 0 1 0 0 1 1 0 1 1 1 Theta <- matrix( Theta, nrow=4, ncol=3,byrow=TRUE) # define mirt model I <- ncol(dat) # I=12 mirtmodel <- mirt::mirt.model(" # specify factors for each item level C1=1-12 C2=1-12 C3=1-12 ") # get initial parameter values mod.pars <- mirt::mirt(dat, model=mirtmodel, pars="values") # redefine initial parameter values mod.pars[ mod.pars$name=="d","value" ] <- -1 mod.pars[ mod.pars$name %in% paste0("a",1:3) & mod.pars$est,"value" ] <- .6 # set lower bound to zero ton ensure monotonicity mod.pars[ mod.pars$name %in% paste0("a",1:3),"lbound" ] <- 0 mod.pars # estimate model in mirt mod4 <- mirt::mirt(dat, mirtmodel, pars=mod.pars, verbose=TRUE, technical=list( customTheta=Theta, customPriorFun=lca_prior) ) # correct number of estimated parameters mod4@nest <- as.integer(sum(mod.pars$est) + nrow(Theta)-1 ) # extract coefficients cmod4 <- sirt::mirt.wrapper.coef(mod4) cmod4 # compute item response functions cmod4c <- cmod4$coef[, c("d", "a1", "a2", "a3" ) ] probs4 <- t( apply( cmod4c, 1, FUN=function(ll){ plogis(cumsum(as.numeric(ll))) } ) ) matplot( 1:4, t(probs4), type="b", pch=1:I) ## End(Not run)
Statistic (Yen, 1984)
This function estimates the statistic according to Yen (1984).
The statistic
is calculated for every item pair
which is the correlation between item residuals after fitting the Rasch model.
Q3(dat, theta, b, progress=TRUE)
Q3(dat, theta, b, progress=TRUE)
dat |
An |
theta |
Vector of length |
b |
Vector of length |
progress |
Should iteration progress be displayed? |
A list with following entries
q3.matrix |
An |
q3.long |
Just the |
expected |
An |
residual |
An |
Q3.stat |
Vector with descriptive statistics of |
Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8, 125-145.
For the estimation of the average statistic within testlets see
Q3.testlet
.
For modeling testlet effects see mcmc.3pno.testlet
.
For handling local dependencies in IRT models see
rasch.copula2
, rasch.pml3
or rasch.pairwise.itemcluster
.
############################################################################# # EXAMPLE 1: data.read. The 12 items are arranged in 4 testlets ############################################################################# data(data.read) # estimate the Rasch model mod <- sirt::rasch.mml2( data.read) # estmate WLEs mod.wle <- sirt::wle.rasch( dat=data.read, b=mod$item$b ) # calculate Yen's Q3 statistic mod.q3 <- sirt::Q3( dat=data.read, theta=mod.wle$theta, b=mod$item$b ) ## Yen's Q3 Statistic based on an estimated theta score ## *** 12 Items | 66 item pairs ## *** Q3 Descriptives ## M SD Min 10% 25% 50% 75% 90% Max ## -0.085 0.110 -0.261 -0.194 -0.152 -0.107 -0.051 0.041 0.412 # plot Q3 statistics I <- ncol(data.read) image( 1:I, 1:I, mod.q3$q3.matrix, col=gray( 1 - (0:32)/32), xlab="Item", ylab="Item") abline(v=c(5,9)) # borders for testlets abline(h=c(5,9)) ## Not run: # obtain Q3 statistic from modelfit.sirt function which is based on the # posterior distribution of theta and not on observed values fitmod <- sirt::modelfit.sirt( mod ) # extract Q3 statistic q3stat <- fitmod$itempairs$Q3 ## > summary(q3stat) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## -0.21760 -0.11590 -0.07280 -0.05545 -0.01220 0.44710 ## > sd(q3stat) ## [1] 0.1101451 ## End(Not run)
############################################################################# # EXAMPLE 1: data.read. The 12 items are arranged in 4 testlets ############################################################################# data(data.read) # estimate the Rasch model mod <- sirt::rasch.mml2( data.read) # estmate WLEs mod.wle <- sirt::wle.rasch( dat=data.read, b=mod$item$b ) # calculate Yen's Q3 statistic mod.q3 <- sirt::Q3( dat=data.read, theta=mod.wle$theta, b=mod$item$b ) ## Yen's Q3 Statistic based on an estimated theta score ## *** 12 Items | 66 item pairs ## *** Q3 Descriptives ## M SD Min 10% 25% 50% 75% 90% Max ## -0.085 0.110 -0.261 -0.194 -0.152 -0.107 -0.051 0.041 0.412 # plot Q3 statistics I <- ncol(data.read) image( 1:I, 1:I, mod.q3$q3.matrix, col=gray( 1 - (0:32)/32), xlab="Item", ylab="Item") abline(v=c(5,9)) # borders for testlets abline(h=c(5,9)) ## Not run: # obtain Q3 statistic from modelfit.sirt function which is based on the # posterior distribution of theta and not on observed values fitmod <- sirt::modelfit.sirt( mod ) # extract Q3 statistic q3stat <- fitmod$itempairs$Q3 ## > summary(q3stat) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## -0.21760 -0.11590 -0.07280 -0.05545 -0.01220 0.44710 ## > sd(q3stat) ## [1] 0.1101451 ## End(Not run)
Statistic of Yen (1984) for Testlets
This function calculates the average statistic (Yen, 1984) within and
between testlets.
Q3.testlet(q3.res, testlet.matrix, progress=TRUE)
Q3.testlet(q3.res, testlet.matrix, progress=TRUE)
q3.res |
An object generated by |
testlet.matrix |
A matrix with two columns. The first column contains names of the testlets and the second names of the items. See the examples for the definition of such matrices. |
progress |
Logical indicating whether computation progress should be displayed. |
A list with following entries
testlet.q3 |
Data frame with average |
testlet.q3.korr |
Matrix of average |
Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8, 125-145.
For estimating all statistics between item pairs use
Q3
.
############################################################################# # EXAMPLE 1: data.read. The 12 items are arranged in 4 testlets ############################################################################# data(data.read) # estimate the Rasch model mod <- sirt::rasch.mml2( data.read) mod$item # estmate WLEs mod.wle <- sirt::wle.rasch( dat=data.read, b=mod$item$b ) # Yen's Q3 statistic mod.q3 <- sirt::Q3( dat=data.read, theta=mod.wle$theta, b=mod$item$b ) # Yen's Q3 statistic with testlets items <- colnames(data.read) testlet.matrix <- cbind( substring( items,1,1), items ) mod.testletq3 <- sirt::Q3.testlet( q3.res=mod.q3,testlet.matrix=testlet.matrix) mod.testletq3
############################################################################# # EXAMPLE 1: data.read. The 12 items are arranged in 4 testlets ############################################################################# data(data.read) # estimate the Rasch model mod <- sirt::rasch.mml2( data.read) mod$item # estmate WLEs mod.wle <- sirt::wle.rasch( dat=data.read, b=mod$item$b ) # Yen's Q3 statistic mod.q3 <- sirt::Q3( dat=data.read, theta=mod.wle$theta, b=mod$item$b ) # Yen's Q3 statistic with testlets items <- colnames(data.read) testlet.matrix <- cbind( substring( items,1,1), items ) mod.testletq3 <- sirt::Q3.testlet( q3.res=mod.q3,testlet.matrix=testlet.matrix) mod.testletq3
This function calculates integration nodes based on the multivariate normal distribution with zero mean vector and identity covariance matrix. See Pan and Thompson (2007) and Gonzales et al. (2006) for details.
qmc.nodes(snodes, ndim)
qmc.nodes(snodes, ndim)
snodes |
Number of integration nodes |
ndim |
Number of dimensions |
theta |
A matrix of integration points |
This function uses the
sfsmisc::QUnif
function from
the sfsmisc package.
Gonzalez, J., Tuerlinckx, F., De Boeck, P., & Cools, R. (2006). Numerical integration in logistic-normal models. Computational Statistics & Data Analysis, 51, 1535-1548.
Pan, J., & Thompson, R. (2007). Quasi-Monte Carlo estimation in generalized linear mixed models. Computational Statistics & Data Analysis, 51, 5765-5775.
## some toy examples # 5 nodes on one dimension qmc.nodes( snodes=5, ndim=1 ) ## [,1] ## [1,] 0.0000000 ## [2,] -0.3863753 ## [3,] 0.8409238 ## [4,] -0.8426682 ## [5,] 0.3850568 # 7 nodes on two dimensions qmc.nodes( snodes=7, ndim=2 ) ## [,1] [,2] ## [1,] 0.00000000 -0.43072730 ## [2,] -0.38637529 0.79736332 ## [3,] 0.84092380 -1.73230641 ## [4,] -0.84266815 -0.03840544 ## [5,] 0.38505683 1.51466109 ## [6,] -0.00122394 -0.86704605 ## [7,] 1.35539115 0.33491073
## some toy examples # 5 nodes on one dimension qmc.nodes( snodes=5, ndim=1 ) ## [,1] ## [1,] 0.0000000 ## [2,] -0.3863753 ## [3,] 0.8409238 ## [4,] -0.8426682 ## [5,] 0.3850568 # 7 nodes on two dimensions qmc.nodes( snodes=7, ndim=2 ) ## [,1] [,2] ## [1,] 0.00000000 -0.43072730 ## [2,] -0.38637529 0.79736332 ## [3,] 0.84092380 -1.73230641 ## [4,] -0.84266815 -0.03840544 ## [5,] 0.38505683 1.51466109 ## [6,] -0.00122394 -0.86704605 ## [7,] 1.35539115 0.33491073
The function R2conquest
runs the IRT software ConQuest
(Wu, Adams, Wilson & Haldane, 2007) from within R.
Other functions are utility functions for reading item parameters, plausible values or person-item maps.
R2conquest(dat, path.conquest, conquest.name="console", converge=0.001, deviancechange=1e-04, iter=800, nodes=20, minnode=-6, maxnode=6, show.conquestoutput=FALSE, name="rasch", pid=1:(nrow(dat)), wgt=NULL, X=NULL, set.constraints=NULL, model="item", regression=NULL, itemcodes=seq(0,max(dat,na.rm=TRUE)), constraints=NULL, digits=5, onlysyntax=FALSE, qmatrix=NULL, import.regression=NULL, anchor.regression=NULL, anchor.covariance=NULL, pv=TRUE, designmatrix=NULL, only.calibration=FALSE, init_parameters=NULL, n_plausible=10, persons.elim=TRUE, est.wle=TRUE, save.bat=TRUE, use.bat=FALSE, read.output=TRUE, ignore.pid=FALSE) ## S3 method for class 'R2conquest' summary(object, ...) # read all terms in a show file or only some terms read.show(showfile) read.show.term(showfile, term) # read regression parameters in a show file read.show.regression(showfile) # read unidimensional plausible values form a pv file read.pv(pvfile, npv=5) # read multidimensional plausible values read.multidimpv(pvfile, ndim, npv=5) # read person-item map read.pimap(showfile)
R2conquest(dat, path.conquest, conquest.name="console", converge=0.001, deviancechange=1e-04, iter=800, nodes=20, minnode=-6, maxnode=6, show.conquestoutput=FALSE, name="rasch", pid=1:(nrow(dat)), wgt=NULL, X=NULL, set.constraints=NULL, model="item", regression=NULL, itemcodes=seq(0,max(dat,na.rm=TRUE)), constraints=NULL, digits=5, onlysyntax=FALSE, qmatrix=NULL, import.regression=NULL, anchor.regression=NULL, anchor.covariance=NULL, pv=TRUE, designmatrix=NULL, only.calibration=FALSE, init_parameters=NULL, n_plausible=10, persons.elim=TRUE, est.wle=TRUE, save.bat=TRUE, use.bat=FALSE, read.output=TRUE, ignore.pid=FALSE) ## S3 method for class 'R2conquest' summary(object, ...) # read all terms in a show file or only some terms read.show(showfile) read.show.term(showfile, term) # read regression parameters in a show file read.show.regression(showfile) # read unidimensional plausible values form a pv file read.pv(pvfile, npv=5) # read multidimensional plausible values read.multidimpv(pvfile, ndim, npv=5) # read person-item map read.pimap(showfile)
dat |
Data frame of item responses |
path.conquest |
Directory where the ConQuest executable file is located |
conquest.name |
Name of the ConQuest executable. |
converge |
Maximal change in parameters |
deviancechange |
Maximal change in deviance |
iter |
Maximum number of iterations |
nodes |
Number of nodes for integration |
minnode |
Minimum value of discrete grid of |
maxnode |
Maximum value of discrete grid of |
show.conquestoutput |
Show ConQuest run log file on console? |
name |
Name of the output files. The default is |
pid |
Person identifier |
wgt |
Vector of person weights |
X |
Matrix of covariates for the latent regression model (e.g. gender, socioeconomic status, ..) or for the item design (e.g. raters, booklets, ...) |
set.constraints |
This is the set.constraints in ConQuest. It can be
|
model |
Definition model statement. It can be for example
|
regression |
The ConQuest regression statement (for example |
itemcodes |
Vector of valid codes for item responses. E.g. for partial credit
data with at most 3 points it must be |
constraints |
Matrix of item parameter constraints. 1st column: Item names, 2nd column: Item parameters. It only works correctly for dichotomous data. |
digits |
Number of digits for covariates in the latent regression model |
onlysyntax |
Should only be ConQuest syntax generated? |
qmatrix |
Matrix of item loadings on dimensions in a multidimensional IRT model |
import.regression |
Name of an file with initial covariance parameters (follow the ConQuest specification rules!) |
anchor.regression |
Name of an file with anchored regression parameters |
anchor.covariance |
Name of an file with anchored covariance parameters (follow the ConQuest specification rules!) |
pv |
Draw plausible values? |
designmatrix |
Design matrix for item parameters (see the ConQuest manual) |
only.calibration |
Estimate only item parameters and not person parameters (no WLEs or plausible values are estimated)? |
init_parameters |
Name of an file with initial item parameters (follow the ConQuest specification rules!) |
n_plausible |
Number of plausible values |
persons.elim |
Eliminate persons with only missing item responses? |
est.wle |
Estimate weighted likelihood estimate? |
save.bat |
Save bat file? |
use.bat |
Run ConQuest from within R due a direct call via the |
read.output |
Should ConQuest output files be processed? Default is |
ignore.pid |
Logical indicating whether person identifiers ( |
object |
Object of class |
showfile |
A ConQuest show file ( |
term |
Name of the term to be extracted in the show file |
pvfile |
File with plausible values |
ndim |
Number of dimensions |
npv |
Number of plausible values |
... |
Further arguments to be passed |
Consult the ConQuest manual (Wu et al., 2007) for specification details.
A list with several entries
item |
Data frame with item parameters and item statistics |
person |
Data frame with person parameters |
shw.itemparameter |
ConQuest output table for item parameters |
shw.regrparameter |
ConQuest output table for regression parameters |
... |
More values |
Wu, M. L., Adams, R. J., Wilson, M. R. & Haldane, S. (2007). ACER ConQuest Version 2.0. Mulgrave. https://shop.acer.edu.au/acer-shop/group/CON3.
See also the eat package (https://r-forge.r-project.org/projects/eat/) for elaborate functionality of using ConQuest from within R. See also the conquestr package for another R wrapper to the ConQuest software (at least version 4 of ConQuest has to be installed).
See also the TAM package for similar (and even extended) functionality for specifying item response models.
## Not run: # define ConQuest path path.conquest <- "C:/Conquest/" ############################################################################# # EXAMPLE 1: Dichotomous data (data.pisaMath) ############################################################################# library(sirt) data(data.pisaMath) dat <- data.pisaMath$data # select items items <- colnames(dat)[ which( substring( colnames(dat), 1, 1)=="M" ) ] #*** # Model 11: Rasch model mod11 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, pid=dat$idstud, name="mod11") summary(mod11) # read show file shw11 <- sirt::read.show( "mod11.shw" ) # read person-item map pi11 <- sirt::read.pimap(showfile="mod11.shw") #*** # Model 12: Rasch model with fixed item difficulties (from Model 1) mod12 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, pid=dat$idstud, constraints=mod11$item[, c("item","itemdiff")], name="mod12") summary(mod12) #*** # Model 13: Latent regression model with predictors female, hisei and migra mod13a <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, pid=dat$idstud, X=dat[, c("female", "hisei", "migra") ], name="mod13a") summary(mod13a) # latent regression with a subset of predictors mod13b <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, pid=dat$idstud, X=dat[, c("female", "hisei", "migra") ], regression="hisei migra", name="mod13b") #*** # Model 14: Differential item functioning (female) mod14 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, pid=dat$idstud, X=dat[, c("female"), drop=FALSE], model="item+female+item*female", regression="", name="mod14") ############################################################################# # EXAMPLE 2: Polytomous data (data.Students) ############################################################################# library(CDM) data(data.Students) dat <- data.Students # select items items <- grep.vec( "act", colnames(dat) )$x #*** # Model 21: Partial credit model mod21 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, model="item+item*step", name="mod21") #*** # Model 22: Rating scale model mod22 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, model="item+step", name="mod22") #*** # Model 23: Multidimensional model items <- grep.vec( c("act", "sc" ), colnames(dat), "OR" )$x qmatrix <- matrix( 0, nrow=length(items), 2 ) qmatrix[1:5,1] <- 1 qmatrix[6:9,2] <- 1 mod23 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, model="item+item*step", qmatrix=qmatrix, name="mod23") ############################################################################# # EXAMPLE 3: Multi facet models (data.ratings1) ############################################################################# library(sirt) data(data.ratings1) dat <- data.ratings1 items <- paste0("k",1:5) # use numeric rater ID's raters <- as.numeric( substring( paste( dat$rater ), 3 ) ) #*** # Model 31: Rater model 'item+item*step+rater' mod31 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, itemcodes=0:3, model="item+item*step+rater", pid=dat$idstud, X=data.frame("rater"=raters), regression="", name="mod31") #*** # Model 32: Rater model 'item+item*step+rater+item*rater' mod32 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, model="item+item*step+rater+item*rater", pid=dat$idstud, X=data.frame("rater"=raters), regression="", name="mod32") ## End(Not run)
## Not run: # define ConQuest path path.conquest <- "C:/Conquest/" ############################################################################# # EXAMPLE 1: Dichotomous data (data.pisaMath) ############################################################################# library(sirt) data(data.pisaMath) dat <- data.pisaMath$data # select items items <- colnames(dat)[ which( substring( colnames(dat), 1, 1)=="M" ) ] #*** # Model 11: Rasch model mod11 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, pid=dat$idstud, name="mod11") summary(mod11) # read show file shw11 <- sirt::read.show( "mod11.shw" ) # read person-item map pi11 <- sirt::read.pimap(showfile="mod11.shw") #*** # Model 12: Rasch model with fixed item difficulties (from Model 1) mod12 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, pid=dat$idstud, constraints=mod11$item[, c("item","itemdiff")], name="mod12") summary(mod12) #*** # Model 13: Latent regression model with predictors female, hisei and migra mod13a <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, pid=dat$idstud, X=dat[, c("female", "hisei", "migra") ], name="mod13a") summary(mod13a) # latent regression with a subset of predictors mod13b <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, pid=dat$idstud, X=dat[, c("female", "hisei", "migra") ], regression="hisei migra", name="mod13b") #*** # Model 14: Differential item functioning (female) mod14 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, pid=dat$idstud, X=dat[, c("female"), drop=FALSE], model="item+female+item*female", regression="", name="mod14") ############################################################################# # EXAMPLE 2: Polytomous data (data.Students) ############################################################################# library(CDM) data(data.Students) dat <- data.Students # select items items <- grep.vec( "act", colnames(dat) )$x #*** # Model 21: Partial credit model mod21 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, model="item+item*step", name="mod21") #*** # Model 22: Rating scale model mod22 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, model="item+step", name="mod22") #*** # Model 23: Multidimensional model items <- grep.vec( c("act", "sc" ), colnames(dat), "OR" )$x qmatrix <- matrix( 0, nrow=length(items), 2 ) qmatrix[1:5,1] <- 1 qmatrix[6:9,2] <- 1 mod23 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, model="item+item*step", qmatrix=qmatrix, name="mod23") ############################################################################# # EXAMPLE 3: Multi facet models (data.ratings1) ############################################################################# library(sirt) data(data.ratings1) dat <- data.ratings1 items <- paste0("k",1:5) # use numeric rater ID's raters <- as.numeric( substring( paste( dat$rater ), 3 ) ) #*** # Model 31: Rater model 'item+item*step+rater' mod31 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, itemcodes=0:3, model="item+item*step+rater", pid=dat$idstud, X=data.frame("rater"=raters), regression="", name="mod31") #*** # Model 32: Rater model 'item+item*step+rater+item*rater' mod32 <- sirt::R2conquest(dat=dat[,items], path.conquest=path.conquest, model="item+item*step+rater+item*rater", pid=dat$idstud, X=data.frame("rater"=raters), regression="", name="mod32") ## End(Not run)
This function enables the estimation of a NOHARM analysis (Fraser & McDonald, 1988; McDonald, 1982a, 1982b, 1997) from within R. NOHARM estimates a compensatory multidimensional factor analysis for dichotomous response data. Arguments of this function strictly follow the rules of the NOHARM manual (see Fraser & McDonald, 2012; Lee & Lee, 2016).
R2noharm(dat=NULL,pm=NULL, n=NULL, model.type, weights=NULL, dimensions=NULL, guesses=NULL, noharm.path, F.pattern=NULL, F.init=NULL, P.pattern=NULL, P.init=NULL, digits.pm=4, writename=NULL, display.fit=5, dec=".", display=TRUE) ## S3 method for class 'R2noharm' summary(object, logfile=NULL, ...)
R2noharm(dat=NULL,pm=NULL, n=NULL, model.type, weights=NULL, dimensions=NULL, guesses=NULL, noharm.path, F.pattern=NULL, F.init=NULL, P.pattern=NULL, P.init=NULL, digits.pm=4, writename=NULL, display.fit=5, dec=".", display=TRUE) ## S3 method for class 'R2noharm' summary(object, logfile=NULL, ...)
dat |
An |
pm |
A matrix or a vector containing product-moment correlations |
n |
Sample size. This value must only be included if |
model.type |
Can be |
weights |
Optional vector of student weights |
dimensions |
Number of dimensions in exploratory factor analysis |
guesses |
An optional vector of fixed guessing parameters of length |
noharm.path |
Local path where the NOHARM 4 command line 64-bit version is located. |
F.pattern |
Pattern matrix for |
F.init |
Initial matrix for |
P.pattern |
Pattern matrix for |
P.init |
Initial matrix for |
digits.pm |
Number of digits after decimal separator which are used for estimation |
writename |
Name for NOHARM input and output files |
display.fit |
How many digits (after decimal separator) should be used for printing results on the R console? |
dec |
Decimal separator ( |
display |
Display output? |
object |
Object of class |
logfile |
File name if the summary should be sunk into a file |
... |
Further arguments to be passed |
NOHARM estimates a multidimensional compensatory
item response model with the probit link function .
For item responses
of person
on
item
the model equation is defined as
where is a loading matrix and
the covariance matrix of
. The guessing
parameters
must be provided as fixed values.
For the definition of and
matrices, please
consult the NOHARM manual.
This function needs the 64-bit command line version which can be downloaded
from (some links may be broken in the meantime)
http://noharm.niagararesearch.ca/nh4cldl.html
https://noharm.software.informer.com/4.0/
https://cehs.unl.edu/edpsych/software-urls-and-other-interesting-sites/
A list with following entries
tanaka |
Tanaka index |
rmsr |
RMSR statistic |
N.itempair |
Sample sizes of pairwise item observations |
pm |
Product moment matrix |
weights |
Used student weights |
guesses |
Fixed guessing parameters |
residuals |
Residual covariance matrix |
final.constants |
Vector of final constants |
thresholds |
Threshold parameters |
uniquenesses |
Item uniquenesses |
loadings.theta |
Matrix of loadings in theta parametrization (common factor parametrization) |
factor.cor |
Covariance matrix of factors |
difficulties |
Item difficulties (for unidimensional models) |
discriminations |
Item discriminations (for unidimensional models) |
loadings |
Loading matrix (latent trait parametrization) |
model.type |
Used model type |
Nobs |
Number of observations |
Nitems |
Number of items |
modtype |
Model type according to the NOHARM specification (see NOHARM manual) |
F.init |
Initial loading matrix for |
F.pattern |
Pattern loading matrix for |
P.init |
Initial covariance matrix for |
P.pattern |
Pattern covariance matrix for |
dat |
Original data frame |
systime |
System time |
noharm.path |
Used NOHARM directory |
digits.pm |
Number of digits in product moment matrix |
dec |
Used decimal symbol |
display.fit |
Number of digits for fit display |
dimensions |
Number of dimensions |
chisquare |
Statistic |
Nestpars |
Number of estimated parameters |
df |
Degrees of freedom |
chisquare_df |
Ratio |
rmsea |
RMSEA statistic |
p.chisquare |
Significance for |
Possible errors often occur due to wrong dec
specification.
Fraser, C., & McDonald, R. P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral Research, 23, 267-269. https://doi.org/10.1207/s15327906mbr2302_9
Fraser, C., & McDonald, R. P. (2012). NOHARM 4 Manual.
http://noharm.niagararesearch.ca/nh4man/nhman.html.
Lee, J. J., & Lee, M. K. (2016). An overview of the normal ogive harmonic analysis robust method (NOHARM) approach to item response theory. Tutorials in Quantitative Methods for Psychology, 12(1), 1-8. https://doi.org/10.20982/tqmp.12.1.p001
McDonald, R. P. (1982a). Linear versus nonlinear models in item response theory. Applied Psychological Measurement, 6(4), 379-396. doi:10.1177/014662168200600402
McDonald, R. P. (1982b). Unidimensional and multidimensional models for item response theory. I.R.T., C.A.T. conference, Minneapolis, 1982, Proceedings.
McDonald, R. P. (1997). Normal-ogive multidimensional model. In W. van der Linden & R. K. Hambleton (1997): Handbook of modern item response theory (pp. 257-269). New York: Springer. http://dx.doi.org/10.1007/978-1-4757-2691-6
For estimating standard errors see R2noharm.jackknife
.
For EAP person parameter estimates see R2noharm.EAP
.
For an R implementation of the NOHARM model see noharm.sirt
.
## Not run: ############################################################################# # EXAMPLE 1: Data data.noharm18 with 18 items ############################################################################# # load data data(data.noharm18) dat <- data.noharm18 I <- ncol(dat) # number of items # locate noharm.path noharm.path <- "c:/NOHARM" #**************************************** # Model 1: 1-dimensional Rasch model (1-PL model) # estimate one factor variance P.pattern <- matrix( 1, ncol=1, nrow=1 ) P.init <- P.pattern # fix all entries in the loading matrix to 1 F.pattern <- matrix( 0, nrow=I, ncol=1 ) F.init <- 1 + 0*F.pattern # # estimate model mod <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex1__1dim_1pl", noharm.path=noharm.path, dec="," ) # summary summary(mod, logfile="ex1__1dim_1pl__SUMMARY") # jackknife jmod <- sirt::R2noharm.jackknife( mod, jackunits=20 ) summary(jmod, logfile="ex1__1dim_1pl__JACKKNIFE") # compute factor scores (EAPs) emod <- sirt::R2noharm.EAP(mod) #*****----- # Model 1b: Include student weights in estimation N <- nrow(dat) weights <- stats::runif( N, 1, 5 ) mod1b <- sirt::R2noharm( dat=dat, model.type="CFA", weights=weights, F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex1__1dim_1pl_w", noharm.path=noharm.path, dec="," ) summary(mod1b) #**************************************** # Model 2: 1-dimensional 2PL Model # set trait variance equal to 1 P.pattern <- matrix( 0, ncol=1, nrow=1 ) P.init <- 1+0*P.pattern # loading matrix F.pattern <- matrix( 1, nrow=I, ncol=1 ) F.init <- 1 + 0*F.pattern mod <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex2__1dim_2pl", noharm.path=noharm.path, dec="," ) summary(mod) jmod <- sirt::R2noharm.jackknife( mod, jackunits=20 ) summary(jmod) #**************************************** # Model 3: 1-dimensional 3PL Model with fixed guessing parameters # set trait variance equal to 1 P.pattern <- matrix( 0, ncol=1, nrow=1 ) P.init <- 1+0*P.pattern # loading matrix F.pattern <- matrix( 1, nrow=I, ncol=1 ) F.init <- 1 + 0*F.pattern # # fix guessing parameters equal to .2 (for all items) guesses <- rep( .1, I ) mod <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, guesses=guesses, writename="ex3__1dim_3pl", noharm.path=noharm.path, dec="," ) summary(mod) jmod <- sirt::R2noharm.jackknife( mod, jackunits=20 ) summary(jmod) #**************************************** # Model 4: 3-dimensional Rasch model # estimate one factor variance P.pattern <- matrix( 1, ncol=3, nrow=3 ) P.init <- .8*P.pattern diag(P.init) <- 1 # fix all entries in the loading matrix to 1 F.init <- F.pattern <- matrix( 0, nrow=I, ncol=3 ) F.init[1:6,1] <- 1 F.init[7:12,2] <- 1 F.init[13:18,3] <- 1 mod <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex4__3dim_1pl", noharm.path=noharm.path, dec="," ) # write output from R console in a file summary(mod, logfile="ex4__3dim_1pl__SUMMARY.Rout") jmod <- sirt::R2noharm.jackknife( mod, jackunits=20 ) summary(jmod) # extract factor scores emod <- sirt::R2noharm.EAP(mod) #**************************************** # Model 5: 3-dimensional 2PL model # estimate one factor variance P.pattern <- matrix( 1, ncol=3, nrow=3 ) P.init <- .8*P.pattern diag(P.init) <- 0 # fix all entries in the loading matrix to 1 F.pattern <- matrix( 0, nrow=I, ncol=3 ) F.pattern[1:6,1] <- 1 F.pattern[7:12,2] <- 1 F.pattern[13:18,3] <- 1 F.init <- F.pattern mod <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex5__3dim_2pl", noharm.path=noharm.path, dec="," ) summary(mod) # use 50 jackknife units with 4 persons within a unit jmod <- sirt::R2noharm.jackknife( mod, jackunits=seq( 1:50, each=4 ) ) summary(jmod) #**************************************** # Model 6: Exploratory Factor Analysis with 3 factors mod <- sirt::R2noharm( dat=dat, model.type="EFA", dimensions=3, writename="ex6__3dim_efa", noharm.path=noharm.path,dec=",") summary(mod) jmod <- sirt::R2noharm.jackknife( mod, jackunits=20 ) ############################################################################# # EXAMPLE 2: NOHARM manual Example A ############################################################################# # See NOHARM manual: http://noharm.niagararesearch.ca/nh4man/nhman.html # The following text and data is copied from this manual. # # In the first example, we demonstrate how to prepare the input for a 2-dimensional # model using exploratory analysis. Data from a 9 item test were collected from # 200 students and the 9x9 product-moment matrix of the responses was computed. # # Our hypothesis is for a 2-dimensional model with no guessing, # i.e., all guesses are equal to zero. However, because we are unsure of any # particular pattern for matrix F, we wish to prescribe an exploratory analysis, i.e., # set EX=1. Also, we will content ourselves with letting the program supply all # initial values. # # We would like both the sample product-moment matrix and the residual matrix to # be included in the output. # scan product-moment matrix copied from the NOHARM manual pm <- scan() 0.8967 0.2278 0.2356 0.6857 0.2061 0.7459 0.8146 0.2310 0.6873 0.8905 0.4505 0.1147 0.3729 0.4443 0.5000 0.7860 0.2080 0.6542 0.7791 0.4624 0.8723 0.2614 0.0612 0.2140 0.2554 0.1914 0.2800 0.2907 0.7549 0.1878 0.6236 0.7465 0.4505 0.7590 0.2756 0.8442 0.6191 0.1588 0.5131 0.6116 0.3845 0.6302 0.2454 0.6129 0.6879 ex2 <- sirt::R2noharm( pm=pm, n=200, model.type="EFA", dimensions=2, noharm.path=noharm.path, writename="ex2_noharmExA", dec=",") summary(ex2) ############################################################################# # EXAMPLE 3: NOHARM manual Example B ############################################################################# # See NOHARM manual: http://noharm.niagararesearch.ca/nh4man/nhman.html # The following text and data is copied from this manual. # Suppose we have the product-moment matrix of data from 125 students on 9 items. # Our hypothesis is for 2 dimensions with simple structure. In this case, # items 1 to 5 have coefficients of theta which are to be estimated for one # latent trait but are to be fixed at zero for the other one. # For the latent trait for which items 1 to 5 have zero coefficients, # items 6 to 9 have coefficients which are to be estimated. For the other # latent trait, items 6 to 9 will have zero coefficients. # We also wish to estimate the correlation between the latent traits, # so we prescribe P as a 2x2 correlation matrix. # # Our hypothesis prescribes that there was no guessing involved, i.e., # all guesses are equal to zero. For demonstration purposes, # let us not have the program print out the sample product-moment matrix. # Also let us not supply any starting values but, rather, use the defaults # supplied by the program. pm <- scan() 0.930 0.762 0.797 0.541 0.496 0.560 0.352 0.321 0.261 0.366 0.205 0.181 0.149 0.110 0.214 0.858 0.747 0.521 0.336 0.203 0.918 0.773 0.667 0.465 0.308 0.184 0.775 0.820 0.547 0.474 0.347 0.233 0.132 0.563 0.524 0.579 0.329 0.290 0.190 0.140 0.087 0.333 0.308 0.252 0.348 I <- 9 # number of items # define loading matrix F.pattern <- matrix(0,I,2) F.pattern[1:5,1] <- 1 F.pattern[6:9,2] <- 1 F.init <- F.pattern # define covariance matrix P.pattern <- matrix(1,2,2) diag(P.pattern) <- 0 P.init <- 1+P.pattern ex3 <- sirt::R2noharm( pm=pm, n=125,, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex3_noharmExB", noharm.path=noharm.path, dec="," ) summary(ex3) ############################################################################# # EXAMPLE 4: NOHARM manual Example C ############################################################################# data(data.noharmExC) # See NOHARM manual: http://noharm.niagararesearch.ca/nh4man/nhman.html # The following text and data is copied from this manual. # In this example, suppose that from 300 respondents we have item # responses scored dichotomously, 1 or 0, for 8 items. # # Our hypothesis is for a unidimensional model where all eight items # have coefficients of theta which are to be estimated. # Suppose that since the items were multiple choice with 5 options each, # we set the fixed guesses all to 0.2 (not necessarily good reasoning!) # # Let's supply initial values for the coefficients of theta (F matrix) # as .75 for items 1 to 4 and .6 for items 5 to 8. I <- 8 guesses <- rep(.2,I) F.pattern <- matrix(1,I,1) F.init <- F.pattern F.init[1:4,1] <- .75 F.init[5:8,1] <- .6 P.pattern <- matrix(0,1,1) P.init <- 1 + 0 * P.pattern ex4 <- sirt::R2noharm( dat=data.noharmExC,, model.type="CFA", guesses=guesses, F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex3_noharmExC", noharm.path=noharm.path, dec="," ) summary(ex4) # modify F pattern matrix # f11=f51 (since both have equal pattern values of 2), # f21=f61 (since both have equal pattern values of 3), # f31=f71 (since both have equal pattern values of 4), # f41=f81 (since both have equal pattern values of 5). F.pattern[ c(1,5) ] <- 2 F.pattern[ c(2,6) ] <- 3 F.pattern[ c(3,7) ] <- 4 F.pattern[ c(4,8) ] <- 5 F.init <- .5+0*F.init ex4a <- sirt::R2noharm( dat=data.noharmExC,, model.type="CFA", guesses=guesses, F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex3_noharmExC1", noharm.path=noharm.path, dec="," ) summary(ex4a) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Data data.noharm18 with 18 items ############################################################################# # load data data(data.noharm18) dat <- data.noharm18 I <- ncol(dat) # number of items # locate noharm.path noharm.path <- "c:/NOHARM" #**************************************** # Model 1: 1-dimensional Rasch model (1-PL model) # estimate one factor variance P.pattern <- matrix( 1, ncol=1, nrow=1 ) P.init <- P.pattern # fix all entries in the loading matrix to 1 F.pattern <- matrix( 0, nrow=I, ncol=1 ) F.init <- 1 + 0*F.pattern # # estimate model mod <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex1__1dim_1pl", noharm.path=noharm.path, dec="," ) # summary summary(mod, logfile="ex1__1dim_1pl__SUMMARY") # jackknife jmod <- sirt::R2noharm.jackknife( mod, jackunits=20 ) summary(jmod, logfile="ex1__1dim_1pl__JACKKNIFE") # compute factor scores (EAPs) emod <- sirt::R2noharm.EAP(mod) #*****----- # Model 1b: Include student weights in estimation N <- nrow(dat) weights <- stats::runif( N, 1, 5 ) mod1b <- sirt::R2noharm( dat=dat, model.type="CFA", weights=weights, F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex1__1dim_1pl_w", noharm.path=noharm.path, dec="," ) summary(mod1b) #**************************************** # Model 2: 1-dimensional 2PL Model # set trait variance equal to 1 P.pattern <- matrix( 0, ncol=1, nrow=1 ) P.init <- 1+0*P.pattern # loading matrix F.pattern <- matrix( 1, nrow=I, ncol=1 ) F.init <- 1 + 0*F.pattern mod <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex2__1dim_2pl", noharm.path=noharm.path, dec="," ) summary(mod) jmod <- sirt::R2noharm.jackknife( mod, jackunits=20 ) summary(jmod) #**************************************** # Model 3: 1-dimensional 3PL Model with fixed guessing parameters # set trait variance equal to 1 P.pattern <- matrix( 0, ncol=1, nrow=1 ) P.init <- 1+0*P.pattern # loading matrix F.pattern <- matrix( 1, nrow=I, ncol=1 ) F.init <- 1 + 0*F.pattern # # fix guessing parameters equal to .2 (for all items) guesses <- rep( .1, I ) mod <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, guesses=guesses, writename="ex3__1dim_3pl", noharm.path=noharm.path, dec="," ) summary(mod) jmod <- sirt::R2noharm.jackknife( mod, jackunits=20 ) summary(jmod) #**************************************** # Model 4: 3-dimensional Rasch model # estimate one factor variance P.pattern <- matrix( 1, ncol=3, nrow=3 ) P.init <- .8*P.pattern diag(P.init) <- 1 # fix all entries in the loading matrix to 1 F.init <- F.pattern <- matrix( 0, nrow=I, ncol=3 ) F.init[1:6,1] <- 1 F.init[7:12,2] <- 1 F.init[13:18,3] <- 1 mod <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex4__3dim_1pl", noharm.path=noharm.path, dec="," ) # write output from R console in a file summary(mod, logfile="ex4__3dim_1pl__SUMMARY.Rout") jmod <- sirt::R2noharm.jackknife( mod, jackunits=20 ) summary(jmod) # extract factor scores emod <- sirt::R2noharm.EAP(mod) #**************************************** # Model 5: 3-dimensional 2PL model # estimate one factor variance P.pattern <- matrix( 1, ncol=3, nrow=3 ) P.init <- .8*P.pattern diag(P.init) <- 0 # fix all entries in the loading matrix to 1 F.pattern <- matrix( 0, nrow=I, ncol=3 ) F.pattern[1:6,1] <- 1 F.pattern[7:12,2] <- 1 F.pattern[13:18,3] <- 1 F.init <- F.pattern mod <- sirt::R2noharm( dat=dat, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex5__3dim_2pl", noharm.path=noharm.path, dec="," ) summary(mod) # use 50 jackknife units with 4 persons within a unit jmod <- sirt::R2noharm.jackknife( mod, jackunits=seq( 1:50, each=4 ) ) summary(jmod) #**************************************** # Model 6: Exploratory Factor Analysis with 3 factors mod <- sirt::R2noharm( dat=dat, model.type="EFA", dimensions=3, writename="ex6__3dim_efa", noharm.path=noharm.path,dec=",") summary(mod) jmod <- sirt::R2noharm.jackknife( mod, jackunits=20 ) ############################################################################# # EXAMPLE 2: NOHARM manual Example A ############################################################################# # See NOHARM manual: http://noharm.niagararesearch.ca/nh4man/nhman.html # The following text and data is copied from this manual. # # In the first example, we demonstrate how to prepare the input for a 2-dimensional # model using exploratory analysis. Data from a 9 item test were collected from # 200 students and the 9x9 product-moment matrix of the responses was computed. # # Our hypothesis is for a 2-dimensional model with no guessing, # i.e., all guesses are equal to zero. However, because we are unsure of any # particular pattern for matrix F, we wish to prescribe an exploratory analysis, i.e., # set EX=1. Also, we will content ourselves with letting the program supply all # initial values. # # We would like both the sample product-moment matrix and the residual matrix to # be included in the output. # scan product-moment matrix copied from the NOHARM manual pm <- scan() 0.8967 0.2278 0.2356 0.6857 0.2061 0.7459 0.8146 0.2310 0.6873 0.8905 0.4505 0.1147 0.3729 0.4443 0.5000 0.7860 0.2080 0.6542 0.7791 0.4624 0.8723 0.2614 0.0612 0.2140 0.2554 0.1914 0.2800 0.2907 0.7549 0.1878 0.6236 0.7465 0.4505 0.7590 0.2756 0.8442 0.6191 0.1588 0.5131 0.6116 0.3845 0.6302 0.2454 0.6129 0.6879 ex2 <- sirt::R2noharm( pm=pm, n=200, model.type="EFA", dimensions=2, noharm.path=noharm.path, writename="ex2_noharmExA", dec=",") summary(ex2) ############################################################################# # EXAMPLE 3: NOHARM manual Example B ############################################################################# # See NOHARM manual: http://noharm.niagararesearch.ca/nh4man/nhman.html # The following text and data is copied from this manual. # Suppose we have the product-moment matrix of data from 125 students on 9 items. # Our hypothesis is for 2 dimensions with simple structure. In this case, # items 1 to 5 have coefficients of theta which are to be estimated for one # latent trait but are to be fixed at zero for the other one. # For the latent trait for which items 1 to 5 have zero coefficients, # items 6 to 9 have coefficients which are to be estimated. For the other # latent trait, items 6 to 9 will have zero coefficients. # We also wish to estimate the correlation between the latent traits, # so we prescribe P as a 2x2 correlation matrix. # # Our hypothesis prescribes that there was no guessing involved, i.e., # all guesses are equal to zero. For demonstration purposes, # let us not have the program print out the sample product-moment matrix. # Also let us not supply any starting values but, rather, use the defaults # supplied by the program. pm <- scan() 0.930 0.762 0.797 0.541 0.496 0.560 0.352 0.321 0.261 0.366 0.205 0.181 0.149 0.110 0.214 0.858 0.747 0.521 0.336 0.203 0.918 0.773 0.667 0.465 0.308 0.184 0.775 0.820 0.547 0.474 0.347 0.233 0.132 0.563 0.524 0.579 0.329 0.290 0.190 0.140 0.087 0.333 0.308 0.252 0.348 I <- 9 # number of items # define loading matrix F.pattern <- matrix(0,I,2) F.pattern[1:5,1] <- 1 F.pattern[6:9,2] <- 1 F.init <- F.pattern # define covariance matrix P.pattern <- matrix(1,2,2) diag(P.pattern) <- 0 P.init <- 1+P.pattern ex3 <- sirt::R2noharm( pm=pm, n=125,, model.type="CFA", F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex3_noharmExB", noharm.path=noharm.path, dec="," ) summary(ex3) ############################################################################# # EXAMPLE 4: NOHARM manual Example C ############################################################################# data(data.noharmExC) # See NOHARM manual: http://noharm.niagararesearch.ca/nh4man/nhman.html # The following text and data is copied from this manual. # In this example, suppose that from 300 respondents we have item # responses scored dichotomously, 1 or 0, for 8 items. # # Our hypothesis is for a unidimensional model where all eight items # have coefficients of theta which are to be estimated. # Suppose that since the items were multiple choice with 5 options each, # we set the fixed guesses all to 0.2 (not necessarily good reasoning!) # # Let's supply initial values for the coefficients of theta (F matrix) # as .75 for items 1 to 4 and .6 for items 5 to 8. I <- 8 guesses <- rep(.2,I) F.pattern <- matrix(1,I,1) F.init <- F.pattern F.init[1:4,1] <- .75 F.init[5:8,1] <- .6 P.pattern <- matrix(0,1,1) P.init <- 1 + 0 * P.pattern ex4 <- sirt::R2noharm( dat=data.noharmExC,, model.type="CFA", guesses=guesses, F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex3_noharmExC", noharm.path=noharm.path, dec="," ) summary(ex4) # modify F pattern matrix # f11=f51 (since both have equal pattern values of 2), # f21=f61 (since both have equal pattern values of 3), # f31=f71 (since both have equal pattern values of 4), # f41=f81 (since both have equal pattern values of 5). F.pattern[ c(1,5) ] <- 2 F.pattern[ c(2,6) ] <- 3 F.pattern[ c(3,7) ] <- 4 F.pattern[ c(4,8) ] <- 5 F.init <- .5+0*F.init ex4a <- sirt::R2noharm( dat=data.noharmExC,, model.type="CFA", guesses=guesses, F.pattern=F.pattern, F.init=F.init, P.pattern=P.pattern, P.init=P.init, writename="ex3_noharmExC1", noharm.path=noharm.path, dec="," ) summary(ex4a) ## End(Not run)
This function performs EAP factor score estimation of an item response model estimated with NOHARM.
R2noharm.EAP(noharmobj, theta.k=seq(-6, 6, len=21), print.output=TRUE)
R2noharm.EAP(noharmobj, theta.k=seq(-6, 6, len=21), print.output=TRUE)
noharmobj |
Object of class |
theta.k |
Vector of discretized theta values on which the posterior is evaluated. This vector applies to all dimensions. |
print.output |
An optional logical indicating whether output should be displayed at the console |
A list with following entries
person |
Data frame of person parameter EAP estimates and their corresponding standard errors |
theta |
Grid of multidimensional theta values where the posterior is evaluated. |
posterior |
Individual posterior distribution evaluated at |
like |
Individual likelihood |
EAP.rel |
EAP reliabilities of all dimensions |
probs |
Item response probabilities evaluated at |
For examples see R2noharm
and noharm.sirt
.
This function performs a jackknife estimation of NOHARM analysis to get standard errors based on a replication method (see Christoffersson, 1977).
R2noharm.jackknife(object, jackunits=NULL) ## S3 method for class 'R2noharm.jackknife' summary(object, logfile=NULL, ...)
R2noharm.jackknife(object, jackunits=NULL) ## S3 method for class 'R2noharm.jackknife' summary(object, logfile=NULL, ...)
object |
Object of class |
jackunits |
A vector of integers or a number. If it is a number, then it refers to the number of jackknife units. If it is a vector of integers, then this vector defines the allocation of persons jackknife units. Integers corresponds to row indexes in the data set. |
logfile |
File name if the summary should be sunk into a file |
... |
Further arguments to be passed |
A list of lists with following entries:
partable |
Data frame with parameters |
se.pars |
List of estimated standard errors for all parameter estimates:
|
jackknife.pars |
List with obtained results by jackknifing for all parameters:
|
u.jacknunits |
Unique jackknife elements |
Christoffersson, A. (1977). Two-step weighted least squares factor analysis of dichotomized variables. Psychometrika, 42, 433-438.
This function handles local dependence by specifying copulas for residuals in multidimensional item response models for dichotomous item responses (Braeken, 2011; Braeken, Tuerlinckx & de Boeck, 2007; Schroeders, Robitzsch & Schipolowski, 2014). Estimation is allowed for item difficulties, item slopes and a generalized logistic link function (Stukel, 1988).
The function rasch.copula3
allows the estimation of multidimensional
models while rasch.copula2
only handles unidimensional models.
rasch.copula2(dat, itemcluster, weights=NULL, copula.type="bound.mixt", progress=TRUE, mmliter=1000, delta=NULL, theta.k=seq(-4, 4, len=21), alpha1=0, alpha2=0, numdiff.parm=1e-06, est.b=seq(1, ncol(dat)), est.a=rep(1, ncol(dat)), est.delta=NULL, b.init=NULL, a.init=NULL, est.alpha=FALSE, glob.conv=0.0001, alpha.conv=1e-04, conv1=0.001, dev.crit=.2, increment.factor=1.01) rasch.copula3(dat, itemcluster, dims=NULL, copula.type="bound.mixt", progress=TRUE, mmliter=1000, delta=NULL, theta.k=seq(-4, 4, len=21), alpha1=0, alpha2=0, numdiff.parm=1e-06, est.b=seq(1, ncol(dat)), est.a=rep(1, ncol(dat)), est.delta=NULL, b.init=NULL, a.init=NULL, est.alpha=FALSE, glob.conv=0.0001, alpha.conv=1e-04, conv1=0.001, dev.crit=.2, rho.init=.5, increment.factor=1.01) ## S3 method for class 'rasch.copula2' summary(object, file=NULL, digits=3, ...) ## S3 method for class 'rasch.copula3' summary(object, file=NULL, digits=3, ...) ## S3 method for class 'rasch.copula2' anova(object,...) ## S3 method for class 'rasch.copula3' anova(object,...) ## S3 method for class 'rasch.copula2' logLik(object,...) ## S3 method for class 'rasch.copula3' logLik(object,...) ## S3 method for class 'rasch.copula2' IRT.likelihood(object,...) ## S3 method for class 'rasch.copula3' IRT.likelihood(object,...) ## S3 method for class 'rasch.copula2' IRT.posterior(object,...) ## S3 method for class 'rasch.copula3' IRT.posterior(object,...)
rasch.copula2(dat, itemcluster, weights=NULL, copula.type="bound.mixt", progress=TRUE, mmliter=1000, delta=NULL, theta.k=seq(-4, 4, len=21), alpha1=0, alpha2=0, numdiff.parm=1e-06, est.b=seq(1, ncol(dat)), est.a=rep(1, ncol(dat)), est.delta=NULL, b.init=NULL, a.init=NULL, est.alpha=FALSE, glob.conv=0.0001, alpha.conv=1e-04, conv1=0.001, dev.crit=.2, increment.factor=1.01) rasch.copula3(dat, itemcluster, dims=NULL, copula.type="bound.mixt", progress=TRUE, mmliter=1000, delta=NULL, theta.k=seq(-4, 4, len=21), alpha1=0, alpha2=0, numdiff.parm=1e-06, est.b=seq(1, ncol(dat)), est.a=rep(1, ncol(dat)), est.delta=NULL, b.init=NULL, a.init=NULL, est.alpha=FALSE, glob.conv=0.0001, alpha.conv=1e-04, conv1=0.001, dev.crit=.2, rho.init=.5, increment.factor=1.01) ## S3 method for class 'rasch.copula2' summary(object, file=NULL, digits=3, ...) ## S3 method for class 'rasch.copula3' summary(object, file=NULL, digits=3, ...) ## S3 method for class 'rasch.copula2' anova(object,...) ## S3 method for class 'rasch.copula3' anova(object,...) ## S3 method for class 'rasch.copula2' logLik(object,...) ## S3 method for class 'rasch.copula3' logLik(object,...) ## S3 method for class 'rasch.copula2' IRT.likelihood(object,...) ## S3 method for class 'rasch.copula3' IRT.likelihood(object,...) ## S3 method for class 'rasch.copula2' IRT.posterior(object,...) ## S3 method for class 'rasch.copula3' IRT.posterior(object,...)
dat |
An |
itemcluster |
An integer vector of length |
weights |
Optional vector of sampling weights |
dims |
A vector indicating to which dimension an item is allocated. The default is that all items load on the first dimension. |
copula.type |
A character or a vector containing one of the following copula
types: |
progress |
Print progress? Default is |
mmliter |
Maximum number of iterations. |
delta |
An optional vector of starting values for the dependency parameter |
theta.k |
Discretized trait distribution |
alpha1 |
|
alpha2 |
|
numdiff.parm |
Parameter for numerical differentiation |
est.b |
Integer vector of item difficulties to be estimated |
est.a |
Integer vector of item discriminations to be estimated |
est.delta |
Integer vector of length |
b.init |
Initial |
a.init |
Initial |
est.alpha |
Should both alpha parameters be estimated? Default is |
glob.conv |
Convergence criterion for all parameters |
alpha.conv |
Maximal change in alpha parameters for convergence |
conv1 |
Maximal change in item parameters for convergence |
dev.crit |
Maximal change in the deviance. Default is |
rho.init |
Initial value for off-diagonal elements in correlation matrix |
increment.factor |
A numeric value larger than one which controls the size of increments in iterations. To stabilize convergence, choose values 1.05 or 1.1 in some situations. |
object |
Object of class |
file |
Optional file name for |
digits |
Number of digits after decimal in |
... |
Further arguments to be passed |
A list with following entries
N.itemclusters |
Number of item clusters |
item |
Estimated item parameters |
iter |
Number of iterations |
dev |
Deviance |
delta |
Estimated dependency parameters |
b |
Estimated item difficulties |
a |
Estimated item slopes |
mu |
Mean |
sigma |
Standard deviation |
alpha1 |
Parameter |
alpha2 |
Parameter |
ic |
Information criteria |
theta.k |
Discretized ability distribution |
pi.k |
Fixed |
deviance |
Deviance |
pattern |
Item response patterns with frequencies and posterior distribution |
person |
Data frame with person parameters |
datalist |
List of generated data frames during estimation |
EAP.rel |
Reliability of the EAP |
copula.type |
Type of copula |
summary.delta |
Summary for estimated |
f.qk.yi |
Individual posterior |
f.yi.qk |
Individual likelihood |
... |
Further values |
Braeken, J. (2011). A boundary mixture approach to violations of conditional independence. Psychometrika, 76(1), 57-76. doi:10.1007/s11336-010-9190-4
Braeken, J., Kuppens, P., De Boeck, P., & Tuerlinckx, F. (2013). Contextualized personality questionnaires: A case for copulas in structural equation models for categorical data. Multivariate Behavioral Research, 48(6), 845-870. doi:10.1080/00273171.2013.827965
Braeken, J., & Tuerlinckx, F. (2009). Investigating latent constructs with item response models: A MATLAB IRTm toolbox. Behavior Research Methods, 41(4), 1127-1137.
Braeken, J., Tuerlinckx, F., & De Boeck, P. (2007). Copula functions for residual dependency. Psychometrika, 72(3), 393-411. doi:10.1007/s11336-007-9005-4
Schroeders, U., Robitzsch, A., & Schipolowski, S. (2014). A comparison of different psychometric approaches to modeling testlet structures: An example with C-tests. Journal of Educational Measurement, 51(4), 400-418. doi:10.1111/jedm.12054
Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Association, 83(402), 426-431. doi:10.1080/01621459.1988.10478613
For a summary see summary.rasch.copula2
.
For simulating locally dependent item responses see sim.rasch.dep
.
Person parameters estimates are obtained by person.parameter.rasch.copula
.
See rasch.mml2
for the generalized logistic link function.
See also Braeken and Tuerlinckx (2009) for alternative (and more expanded) copula models implemented in the MATLAB software. See https://ppw.kuleuven.be/okp/software/irtm/.
See Braeken, Kuppens, De Boeck and Tuerlinckx (2013) for an extension of the copula modeling approach to polytomous data.
############################################################################# # EXAMPLE 1: Reading Data ############################################################################# data(data.read) dat <- data.read # define item clusters itemcluster <- rep( 1:3, each=4 ) # estimate Copula model mod1 <- sirt::rasch.copula2( dat=dat, itemcluster=itemcluster) ## Not run: # estimate Rasch model mod2 <- sirt::rasch.copula2( dat=dat, itemcluster=itemcluster, delta=rep(0,3), est.delta=rep(0,3) ) summary(mod1) summary(mod2) # estimate copula 2PL model I <- ncol(dat) mod3 <- sirt::rasch.copula2( dat=dat, itemcluster=itemcluster, est.a=1:I, increment.factor=1.05) summary(mod3) ############################################################################# # EXAMPLE 2: 11 items nested within 2 item clusters (testlets) # with 2 resp. 3 dependent and 6 independent items ############################################################################# set.seed(5698) I <- 11 # number of items n <- 3000 # number of persons b <- seq(-2,2, len=I) # item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # define item clusters itemcluster <- rep(0,I) itemcluster[ c(3,5 )] <- 1 itemcluster[c(2,4,9)] <- 2 # residual correlations rho <- c( .7, .5 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # estimate Rasch copula model mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster ) summary(mod1) # both item clusters have Cook-Johnson copula as dependency mod1c <- sirt::rasch.copula2( dat, itemcluster=itemcluster, copula.type="cook.johnson") summary(mod1c) # first item boundary mixture and second item Cook-Johnson copula mod1d <- sirt::rasch.copula2( dat, itemcluster=itemcluster, copula.type=c( "bound.mixt", "cook.johnson" ) ) summary(mod1d) # compare result with Rasch model estimation in rasch.copula2 # delta must be set to zero mod2 <- sirt::rasch.copula2( dat, itemcluster=itemcluster, delta=c(0,0), est.delta=c(0,0) ) summary(mod2) ############################################################################# # EXAMPLE 3: 12 items nested within 3 item clusters (testlets) # Cluster 1 -> Items 1-4; Cluster 2 -> Items 6-9; Cluster 3 -> Items 10-12 ############################################################################# set.seed(967) I <- 12 # number of items n <- 450 # number of persons b <- seq(-2,2, len=I) # item difficulties b <- sample(b) # sample item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ 1:4 ] <- 1 itemcluster[ 6:9 ] <- 2 itemcluster[ 10:12 ] <- 3 # residual correlations rho <- c( .35, .25, .30 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # estimate Rasch copula model mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster ) summary(mod1) # person parameter estimation assuming the Rasch copula model pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 ) # Rasch model estimation mod2 <- sirt::rasch.copula2( dat, itemcluster=itemcluster, delta=rep(0,3), est.delta=rep(0,3) ) summary(mod1) summary(mod2) ############################################################################# # EXAMPLE 4: Two-dimensional copula model ############################################################################# set.seed(5698) I <- 9 n <- 1500 # number of persons b <- seq(-2,2, len=I) # item difficulties theta0 <- stats::rnorm( n, sd=sqrt( .6 ) ) #*** Dimension 1 theta <- theta0 + stats::rnorm( n, sd=sqrt( .4 ) ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ c(3,5 )] <- 1 itemcluster[c(2,4,9)] <- 2 itemcluster1 <- itemcluster # residual correlations rho <- c( .7, .5 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("A", seq(1,ncol(dat)), sep="") dat1 <- dat # estimate model of dimension 1 mod0a <- sirt::rasch.copula2( dat1, itemcluster=itemcluster1) summary(mod0a) #*** Dimension 2 theta <- theta0 + stats::rnorm( n, sd=sqrt( .8 ) ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ c(3,7,8 )] <- 1 itemcluster[c(4,6)] <- 2 itemcluster2 <- itemcluster # residual correlations rho <- c( .2, .4 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("B", seq(1,ncol(dat)), sep="") dat2 <- dat # estimate model of dimension 2 mod0b <- sirt::rasch.copula2( dat2, itemcluster=itemcluster2) summary(mod0b) # both dimensions dat <- cbind( dat1, dat2 ) itemcluster2 <- ifelse( itemcluster2 > 0, itemcluster2 + 2, 0 ) itemcluster <- c( itemcluster1, itemcluster2 ) dims <- rep( 1:2, each=I) # estimate two-dimensional copula model mod1 <- sirt::rasch.copula3( dat, itemcluster=itemcluster, dims=dims, est.a=dims, theta.k=seq(-5,5,len=15) ) summary(mod1) ############################################################################# # EXAMPLE 5: Subset of data Example 2 ############################################################################# set.seed(5698) I <- 11 # number of items n <- 3000 # number of persons b <- seq(-2,2, len=I) # item difficulties theta <- stats::rnorm( n, sd=1.3 ) # person abilities # define item clusters itemcluster <- rep(0,I) itemcluster[ c(3,5)] <- 1 itemcluster[c(2,4,9)] <- 2 # residual correlations rho <- c( .7, .5 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # select subdataset with only one dependent item cluster item.sel <- scan( what="character", nlines=1 ) I1 I6 I7 I8 I10 I11 I3 I5 dat1 <- dat[,item.sel] #****************** #*** Model 1a: estimate Copula model in sirt itemcluster <- rep(0,8) itemcluster[c(7,8)] <- 1 mod1a <- sirt::rasch.copula2( dat3, itemcluster=itemcluster ) summary(mod1a) #****************** #*** Model 1b: estimate Copula model in mirt library(mirt) #*** redefine dataset for estimation in mirt dat2 <- dat1[, itemcluster==0 ] dat2 <- as.data.frame(dat2) # combine items 3 and 5 dat2$C35 <- dat1[,"I3"] + 2*dat1[,"I5"] table( dat2$C35, paste0( dat1[,"I3"],dat1[,"I5"]) ) #* define mirt model mirtmodel <- mirt::mirt.model(" F=1-7 CONSTRAIN=(1-7,a1) " ) #-- Copula function with two dependent items # define item category function for pseudo-items like C35 P.copula2 <- function(par,Theta, ncat){ b1 <- par[1] b2 <- par[2] a1 <- par[3] ldelta <- par[4] P1 <- stats::plogis( a1*(Theta - b1 ) ) P2 <- stats::plogis( a1*(Theta - b2 ) ) Q1 <- 1-P1 Q2 <- 1-P2 # define vector-wise minimum function minf2 <- function( x1, x2 ){ ifelse( x1 < x2, x1, x2 ) } # distribution under independence F00 <- Q1*Q2 F10 <- Q1*Q2 + P1*Q2 F01 <- Q1*Q2 + Q1*P2 F11 <- 1+0*Q1 F_ind <- c(F00,F10,F01,F11) # distribution under maximal dependence F00 <- minf2(Q1,Q2) F10 <- Q2 #=minf2(1,Q2) F01 <- Q1 #=minf2(Q1,1) F11 <- 1+0*Q1 #=minf2(1,1) F_dep <- c(F00,F10,F01,F11) # compute mixture distribution delta <- stats::plogis(ldelta) F_tot <- (1-delta)*F_ind + delta * F_dep # recalculate probabilities of mixture distribution L1 <- length(Q1) v1 <- 1:L1 F00 <- F_tot[v1] F10 <- F_tot[v1+L1] F01 <- F_tot[v1+2*L1] F11 <- F_tot[v1+3*L1] P00 <- F00 P10 <- F10 - F00 P01 <- F01 - F00 P11 <- 1 - F10 - F01 + F00 prob_tot <- c( P00, P10, P01, P11 ) return(prob_tot) } # create item copula2 <- mirt::createItem(name="copula2", par=c(b1=0, b2=0.2, a1=1, ldelta=0), est=c(TRUE,TRUE,TRUE,TRUE), P=P.copula2, lbound=c(-Inf,-Inf,0,-Inf), ubound=c(Inf,Inf,Inf,Inf) ) # define item types itemtype <- c( rep("2PL",6), "copula2" ) customItems <- list("copula2"=copula2) # parameter table mod.pars <- mirt::mirt(dat2, 1, itemtype=itemtype, customItems=customItems, pars='values') # estimate model mod1b <- mirt::mirt(dat2, mirtmodel, itemtype=itemtype, customItems=customItems, verbose=TRUE, pars=mod.pars, technical=list(customTheta=as.matrix(seq(-4,4,len=21)) ) ) # estimated coefficients cmod <- sirt::mirt.wrapper.coef(mod)$coef # compare common item discrimination round( c("sirt"=mod1a$item$a[1], "mirt"=cmod$a1[1] ), 4 ) ## sirt mirt ## 1.2845 1.2862 # compare delta parameter round( c("sirt"=mod1a$item$delta[7], "mirt"=stats::plogis( cmod$ldelta[7] ) ), 4 ) ## sirt mirt ## 0.6298 0.6297 # compare thresholds a*b dfr <- cbind( "sirt"=mod1a$item$thresh, "mirt"=c(- cmod$d[-7],cmod$b1[7]*cmod$a1[1], cmod$b2[7]*cmod$a1[1])) round(dfr,4) ## sirt mirt ## [1,] -1.9236 -1.9231 ## [2,] -0.0565 -0.0562 ## [3,] 0.3993 0.3996 ## [4,] 0.8058 0.8061 ## [5,] 1.5293 1.5295 ## [6,] 1.9569 1.9572 ## [7,] -1.1414 -1.1404 ## [8,] -0.4005 -0.3996 ## End(Not run)
############################################################################# # EXAMPLE 1: Reading Data ############################################################################# data(data.read) dat <- data.read # define item clusters itemcluster <- rep( 1:3, each=4 ) # estimate Copula model mod1 <- sirt::rasch.copula2( dat=dat, itemcluster=itemcluster) ## Not run: # estimate Rasch model mod2 <- sirt::rasch.copula2( dat=dat, itemcluster=itemcluster, delta=rep(0,3), est.delta=rep(0,3) ) summary(mod1) summary(mod2) # estimate copula 2PL model I <- ncol(dat) mod3 <- sirt::rasch.copula2( dat=dat, itemcluster=itemcluster, est.a=1:I, increment.factor=1.05) summary(mod3) ############################################################################# # EXAMPLE 2: 11 items nested within 2 item clusters (testlets) # with 2 resp. 3 dependent and 6 independent items ############################################################################# set.seed(5698) I <- 11 # number of items n <- 3000 # number of persons b <- seq(-2,2, len=I) # item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # define item clusters itemcluster <- rep(0,I) itemcluster[ c(3,5 )] <- 1 itemcluster[c(2,4,9)] <- 2 # residual correlations rho <- c( .7, .5 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # estimate Rasch copula model mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster ) summary(mod1) # both item clusters have Cook-Johnson copula as dependency mod1c <- sirt::rasch.copula2( dat, itemcluster=itemcluster, copula.type="cook.johnson") summary(mod1c) # first item boundary mixture and second item Cook-Johnson copula mod1d <- sirt::rasch.copula2( dat, itemcluster=itemcluster, copula.type=c( "bound.mixt", "cook.johnson" ) ) summary(mod1d) # compare result with Rasch model estimation in rasch.copula2 # delta must be set to zero mod2 <- sirt::rasch.copula2( dat, itemcluster=itemcluster, delta=c(0,0), est.delta=c(0,0) ) summary(mod2) ############################################################################# # EXAMPLE 3: 12 items nested within 3 item clusters (testlets) # Cluster 1 -> Items 1-4; Cluster 2 -> Items 6-9; Cluster 3 -> Items 10-12 ############################################################################# set.seed(967) I <- 12 # number of items n <- 450 # number of persons b <- seq(-2,2, len=I) # item difficulties b <- sample(b) # sample item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ 1:4 ] <- 1 itemcluster[ 6:9 ] <- 2 itemcluster[ 10:12 ] <- 3 # residual correlations rho <- c( .35, .25, .30 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # estimate Rasch copula model mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster ) summary(mod1) # person parameter estimation assuming the Rasch copula model pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 ) # Rasch model estimation mod2 <- sirt::rasch.copula2( dat, itemcluster=itemcluster, delta=rep(0,3), est.delta=rep(0,3) ) summary(mod1) summary(mod2) ############################################################################# # EXAMPLE 4: Two-dimensional copula model ############################################################################# set.seed(5698) I <- 9 n <- 1500 # number of persons b <- seq(-2,2, len=I) # item difficulties theta0 <- stats::rnorm( n, sd=sqrt( .6 ) ) #*** Dimension 1 theta <- theta0 + stats::rnorm( n, sd=sqrt( .4 ) ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ c(3,5 )] <- 1 itemcluster[c(2,4,9)] <- 2 itemcluster1 <- itemcluster # residual correlations rho <- c( .7, .5 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("A", seq(1,ncol(dat)), sep="") dat1 <- dat # estimate model of dimension 1 mod0a <- sirt::rasch.copula2( dat1, itemcluster=itemcluster1) summary(mod0a) #*** Dimension 2 theta <- theta0 + stats::rnorm( n, sd=sqrt( .8 ) ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ c(3,7,8 )] <- 1 itemcluster[c(4,6)] <- 2 itemcluster2 <- itemcluster # residual correlations rho <- c( .2, .4 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("B", seq(1,ncol(dat)), sep="") dat2 <- dat # estimate model of dimension 2 mod0b <- sirt::rasch.copula2( dat2, itemcluster=itemcluster2) summary(mod0b) # both dimensions dat <- cbind( dat1, dat2 ) itemcluster2 <- ifelse( itemcluster2 > 0, itemcluster2 + 2, 0 ) itemcluster <- c( itemcluster1, itemcluster2 ) dims <- rep( 1:2, each=I) # estimate two-dimensional copula model mod1 <- sirt::rasch.copula3( dat, itemcluster=itemcluster, dims=dims, est.a=dims, theta.k=seq(-5,5,len=15) ) summary(mod1) ############################################################################# # EXAMPLE 5: Subset of data Example 2 ############################################################################# set.seed(5698) I <- 11 # number of items n <- 3000 # number of persons b <- seq(-2,2, len=I) # item difficulties theta <- stats::rnorm( n, sd=1.3 ) # person abilities # define item clusters itemcluster <- rep(0,I) itemcluster[ c(3,5)] <- 1 itemcluster[c(2,4,9)] <- 2 # residual correlations rho <- c( .7, .5 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # select subdataset with only one dependent item cluster item.sel <- scan( what="character", nlines=1 ) I1 I6 I7 I8 I10 I11 I3 I5 dat1 <- dat[,item.sel] #****************** #*** Model 1a: estimate Copula model in sirt itemcluster <- rep(0,8) itemcluster[c(7,8)] <- 1 mod1a <- sirt::rasch.copula2( dat3, itemcluster=itemcluster ) summary(mod1a) #****************** #*** Model 1b: estimate Copula model in mirt library(mirt) #*** redefine dataset for estimation in mirt dat2 <- dat1[, itemcluster==0 ] dat2 <- as.data.frame(dat2) # combine items 3 and 5 dat2$C35 <- dat1[,"I3"] + 2*dat1[,"I5"] table( dat2$C35, paste0( dat1[,"I3"],dat1[,"I5"]) ) #* define mirt model mirtmodel <- mirt::mirt.model(" F=1-7 CONSTRAIN=(1-7,a1) " ) #-- Copula function with two dependent items # define item category function for pseudo-items like C35 P.copula2 <- function(par,Theta, ncat){ b1 <- par[1] b2 <- par[2] a1 <- par[3] ldelta <- par[4] P1 <- stats::plogis( a1*(Theta - b1 ) ) P2 <- stats::plogis( a1*(Theta - b2 ) ) Q1 <- 1-P1 Q2 <- 1-P2 # define vector-wise minimum function minf2 <- function( x1, x2 ){ ifelse( x1 < x2, x1, x2 ) } # distribution under independence F00 <- Q1*Q2 F10 <- Q1*Q2 + P1*Q2 F01 <- Q1*Q2 + Q1*P2 F11 <- 1+0*Q1 F_ind <- c(F00,F10,F01,F11) # distribution under maximal dependence F00 <- minf2(Q1,Q2) F10 <- Q2 #=minf2(1,Q2) F01 <- Q1 #=minf2(Q1,1) F11 <- 1+0*Q1 #=minf2(1,1) F_dep <- c(F00,F10,F01,F11) # compute mixture distribution delta <- stats::plogis(ldelta) F_tot <- (1-delta)*F_ind + delta * F_dep # recalculate probabilities of mixture distribution L1 <- length(Q1) v1 <- 1:L1 F00 <- F_tot[v1] F10 <- F_tot[v1+L1] F01 <- F_tot[v1+2*L1] F11 <- F_tot[v1+3*L1] P00 <- F00 P10 <- F10 - F00 P01 <- F01 - F00 P11 <- 1 - F10 - F01 + F00 prob_tot <- c( P00, P10, P01, P11 ) return(prob_tot) } # create item copula2 <- mirt::createItem(name="copula2", par=c(b1=0, b2=0.2, a1=1, ldelta=0), est=c(TRUE,TRUE,TRUE,TRUE), P=P.copula2, lbound=c(-Inf,-Inf,0,-Inf), ubound=c(Inf,Inf,Inf,Inf) ) # define item types itemtype <- c( rep("2PL",6), "copula2" ) customItems <- list("copula2"=copula2) # parameter table mod.pars <- mirt::mirt(dat2, 1, itemtype=itemtype, customItems=customItems, pars='values') # estimate model mod1b <- mirt::mirt(dat2, mirtmodel, itemtype=itemtype, customItems=customItems, verbose=TRUE, pars=mod.pars, technical=list(customTheta=as.matrix(seq(-4,4,len=21)) ) ) # estimated coefficients cmod <- sirt::mirt.wrapper.coef(mod)$coef # compare common item discrimination round( c("sirt"=mod1a$item$a[1], "mirt"=cmod$a1[1] ), 4 ) ## sirt mirt ## 1.2845 1.2862 # compare delta parameter round( c("sirt"=mod1a$item$delta[7], "mirt"=stats::plogis( cmod$ldelta[7] ) ), 4 ) ## sirt mirt ## 0.6298 0.6297 # compare thresholds a*b dfr <- cbind( "sirt"=mod1a$item$thresh, "mirt"=c(- cmod$d[-7],cmod$b1[7]*cmod$a1[1], cmod$b2[7]*cmod$a1[1])) round(dfr,4) ## sirt mirt ## [1,] -1.9236 -1.9231 ## [2,] -0.0565 -0.0562 ## [3,] 0.3993 0.3996 ## [4,] 0.8058 0.8061 ## [5,] 1.5293 1.5295 ## [6,] 1.9569 1.9572 ## [7,] -1.1414 -1.1404 ## [8,] -0.4005 -0.3996 ## End(Not run)
This function performs the eigenvector approach to estimate item parameters which is based on a pairwise estimation approach (Garner & Engelhard, 2002). No assumption about person parameters is required for item parameter estimation. Statistical inference is performed by Jackknifing. If a group identifier is provided, tests for differential item functioning are performed.
rasch.evm.pcm(dat, jackunits=20, weights=NULL, pid=NULL, group=NULL, powB=2, adj_eps=0.3, progress=TRUE ) ## S3 method for class 'rasch.evm.pcm' summary(object, digits=3, file=NULL, ...) ## S3 method for class 'rasch.evm.pcm' coef(object,...) ## S3 method for class 'rasch.evm.pcm' vcov(object,...)
rasch.evm.pcm(dat, jackunits=20, weights=NULL, pid=NULL, group=NULL, powB=2, adj_eps=0.3, progress=TRUE ) ## S3 method for class 'rasch.evm.pcm' summary(object, digits=3, file=NULL, ...) ## S3 method for class 'rasch.evm.pcm' coef(object,...) ## S3 method for class 'rasch.evm.pcm' vcov(object,...)
dat |
Data frame with dichotomous or polytomous item responses |
jackunits |
A number of Jackknife units (if an integer is provided as the argument value) or a vector in which the Jackknife units are already defined. |
weights |
Optional vector of sample weights |
pid |
Optional vector of person identifiers |
group |
Optional vector of group identifiers. In this case, item parameters are group wise estimated and tests for differential item functioning are performed. |
powB |
Power created in |
adj_eps |
Adjustment parameter for person parameter estimation
(see |
progress |
An optional logical indicating whether progress should be displayed |
object |
Object of class |
digits |
Number of digits after decimals for rounding in |
file |
Optional file name if |
... |
Further arguments to be passed |
A list with following entries
item |
Data frame with item parameters. The item parameter estimate
is denoted by |
b |
Item threshold parameters |
person |
Data frame with person parameters obtained (MLE) |
B |
Paired comparison matrix |
D |
Transformed paired comparison matrix |
coef |
Vector of estimated coefficients |
vcov |
Covariance matrix of estimated item parameters |
JJ |
Number of jackknife units |
JJadj |
Reduced number of jackknife units |
powB |
Used power of comparison matrix |
maxK |
Maximum number of categories per item |
G |
Number of groups |
desc |
Some descriptives |
difstats |
Statistics for differential item functioning if |
Choppin, B. (1985). A fully conditional estimation procedure for Rasch Model parameters. Evaluation in Education, 9, 29-42.
Garner, M., & Engelhard, G. J. (2002). An eigenvector method for estimating item parameters of the dichotomous and polytomous Rasch models. Journal of Applied Measurement, 3, 107-128.
Wang, J., & Engelhard, G. (2014). A pairwise algorithm in R for rater-mediated assessments. Rasch Measurement Transactions, 28(1), 1457-1459.
See the pairwise package for the alternative row averaging approach of Choppin (1985) and Wang and Engelhard (2014) for an alternative R implementation.
############################################################################# # EXAMPLE 1: Dataset Liking for Science ############################################################################# data(data.liking.science) dat <- data.liking.science # estimate partial credit model using 10 Jackknife units mod1 <- sirt::rasch.evm.pcm( dat, jackunits=10 ) summary(mod1) ## Not run: # compare results with TAM library(TAM) mod2 <- TAM::tam.mml( dat ) r1 <- mod2$xsi$xsi r1 <- r1 - mean(r1) # item parameters are similar dfr <- data.frame( "b_TAM"=r1, mod1$item[,c( "est","est_jack") ] ) round( dfr, 3 ) ## b_TAM est est_jack ## 1 -2.496 -2.599 -2.511 ## 2 0.687 0.824 1.030 ## 3 -0.871 -0.975 -0.943 ## 4 -0.360 -0.320 -0.131 ## 5 -0.833 -0.970 -0.856 ## 6 1.298 1.617 1.444 ## 7 0.476 0.465 0.646 ## 8 2.808 3.194 3.439 ## 9 1.611 1.460 1.433 ## 10 2.396 1.230 1.095 ## [...] # partial credit model in eRm package miceadds::library_install("eRm") mod3 <- eRm::PCM(X=dat) summary(mod3) eRm::plotINFO(mod3) # plot item and test information eRm::plotICC(mod3) # plot ICCs eRm::plotPImap(mod3) # plot person-item maps ############################################################################# # EXAMPLE 2: Garner and Engelhard (2002) toy example dichotomous data ############################################################################# dat <- scan() 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 dat <- matrix( dat, 10, 4, byrow=TRUE) colnames(dat) <- paste0("I", 1:4 ) # estimate Rasch model with no jackknifing mod1 <- sirt::rasch.evm.pcm( dat, jackunits=0 ) # paired comparison matrix mod1$B ## I1_Cat1 I2_Cat1 I3_Cat1 I4_Cat1 ## I1_Cat1 0 3 4 5 ## I2_Cat1 1 0 3 3 ## I3_Cat1 1 2 0 2 ## I4_Cat1 1 1 1 0 ############################################################################# # EXAMPLE 3: Garner and Engelhard (2002) toy example polytomous data ############################################################################# dat <- scan() 2 2 1 1 1 2 1 2 0 0 1 0 0 0 0 0 1 1 2 0 1 2 2 1 1 2 2 0 2 1 2 2 1 1 0 1 0 1 0 0 2 1 2 2 2 2 1 0 0 1 dat <- matrix( dat, 10, 5, byrow=TRUE) colnames(dat) <- paste0("I", 1:5 ) # estimate partial credit model with no jackknifing mod1 <- sirt::rasch.evm.pcm( dat, jackunits=0, powB=3 ) # paired comparison matrix mod1$B ## I1_Cat1 I1_Cat2 I2_Cat1 I2_Cat2 I3_Cat1 I3_Cat2 I4_Cat1 I4_Cat2 I5_Cat1 I5_Cat2 ## I1_Cat1 0 0 2 0 1 1 2 1 2 1 ## I1_Cat2 0 0 0 3 2 2 2 2 2 3 ## I2_Cat1 1 0 0 0 1 1 2 0 2 1 ## I2_Cat2 0 1 0 0 1 2 0 3 1 3 ## I3_Cat1 1 1 1 1 0 0 1 2 3 1 ## I3_Cat2 0 1 0 2 0 0 1 1 1 1 ## I4_Cat1 0 1 0 0 0 2 0 0 1 2 ## I4_Cat2 1 0 0 2 1 1 0 0 1 1 ## I5_Cat1 0 1 0 1 2 1 1 2 0 0 ## I5_Cat2 0 0 0 1 0 0 0 0 0 0 ############################################################################# # EXAMPLE 4: Partial credit model for dataset data.mg from CDM package ############################################################################# library(CDM) data(data.mg,package="CDM") dat <- data.mg[, paste0("I",1:11) ] #*** Model 1: estimate partial credit model mod1 <- sirt::rasch.evm.pcm( dat ) # item parameters round( mod1$b, 3 ) ## Cat1 Cat2 Cat3 ## I1 -1.537 NA NA ## I2 -2.360 NA NA ## I3 -0.574 NA NA ## I4 -0.971 -2.086 NA ## I5 -0.104 0.201 NA ## I6 0.470 0.806 NA ## I7 -1.027 0.756 1.969 ## I8 0.897 NA NA ## I9 0.766 NA NA ## I10 0.069 NA NA ## I11 -1.122 1.159 2.689 #*** Model 2: estimate PCM with pairwise package miceadds::library_install("pairwise") mod2 <- pairwise::pair(daten=dat) summary(mod2) plot(mod2) # compute standard errors semod2 <- pairwise::pairSE(daten=dat, nsample=20) semod2 ############################################################################# # EXAMPLE 5: Differential item functioning for dataset data.mg ############################################################################# library(CDM) data(data.mg,package="CDM") dat <- data.mg[ data.mg$group %in% c(2,3,11), ] # define items items <- paste0("I",1:11) # estimate model mod1 <- sirt::rasch.evm.pcm( dat[,items], weights=dat$weight, group=dat$group ) summary(mod1) ############################################################################# # EXAMPLE 6: Differential item functioning for Rasch model ############################################################################# # simulate some data set.seed(9776) N <- 1000 # number of persons I <- 10 # number of items # simulate data for first group b <- seq(-1.5,1.5,len=I) dat1 <- sirt::sim.raschtype( stats::rnorm(N), b ) # simulate data for second group b1 <- b b1[4] <- b1[4] + .5 # introduce DIF for fourth item dat2 <- sirt::sim.raschtype( stats::rnorm(N,mean=.3), b1 ) dat <- rbind(dat1, dat2 ) group <- rep( 1:2, each=N ) # estimate model mod1 <- sirt::rasch.evm.pcm( dat, group=group ) summary(mod1) ## End(Not run)
############################################################################# # EXAMPLE 1: Dataset Liking for Science ############################################################################# data(data.liking.science) dat <- data.liking.science # estimate partial credit model using 10 Jackknife units mod1 <- sirt::rasch.evm.pcm( dat, jackunits=10 ) summary(mod1) ## Not run: # compare results with TAM library(TAM) mod2 <- TAM::tam.mml( dat ) r1 <- mod2$xsi$xsi r1 <- r1 - mean(r1) # item parameters are similar dfr <- data.frame( "b_TAM"=r1, mod1$item[,c( "est","est_jack") ] ) round( dfr, 3 ) ## b_TAM est est_jack ## 1 -2.496 -2.599 -2.511 ## 2 0.687 0.824 1.030 ## 3 -0.871 -0.975 -0.943 ## 4 -0.360 -0.320 -0.131 ## 5 -0.833 -0.970 -0.856 ## 6 1.298 1.617 1.444 ## 7 0.476 0.465 0.646 ## 8 2.808 3.194 3.439 ## 9 1.611 1.460 1.433 ## 10 2.396 1.230 1.095 ## [...] # partial credit model in eRm package miceadds::library_install("eRm") mod3 <- eRm::PCM(X=dat) summary(mod3) eRm::plotINFO(mod3) # plot item and test information eRm::plotICC(mod3) # plot ICCs eRm::plotPImap(mod3) # plot person-item maps ############################################################################# # EXAMPLE 2: Garner and Engelhard (2002) toy example dichotomous data ############################################################################# dat <- scan() 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 dat <- matrix( dat, 10, 4, byrow=TRUE) colnames(dat) <- paste0("I", 1:4 ) # estimate Rasch model with no jackknifing mod1 <- sirt::rasch.evm.pcm( dat, jackunits=0 ) # paired comparison matrix mod1$B ## I1_Cat1 I2_Cat1 I3_Cat1 I4_Cat1 ## I1_Cat1 0 3 4 5 ## I2_Cat1 1 0 3 3 ## I3_Cat1 1 2 0 2 ## I4_Cat1 1 1 1 0 ############################################################################# # EXAMPLE 3: Garner and Engelhard (2002) toy example polytomous data ############################################################################# dat <- scan() 2 2 1 1 1 2 1 2 0 0 1 0 0 0 0 0 1 1 2 0 1 2 2 1 1 2 2 0 2 1 2 2 1 1 0 1 0 1 0 0 2 1 2 2 2 2 1 0 0 1 dat <- matrix( dat, 10, 5, byrow=TRUE) colnames(dat) <- paste0("I", 1:5 ) # estimate partial credit model with no jackknifing mod1 <- sirt::rasch.evm.pcm( dat, jackunits=0, powB=3 ) # paired comparison matrix mod1$B ## I1_Cat1 I1_Cat2 I2_Cat1 I2_Cat2 I3_Cat1 I3_Cat2 I4_Cat1 I4_Cat2 I5_Cat1 I5_Cat2 ## I1_Cat1 0 0 2 0 1 1 2 1 2 1 ## I1_Cat2 0 0 0 3 2 2 2 2 2 3 ## I2_Cat1 1 0 0 0 1 1 2 0 2 1 ## I2_Cat2 0 1 0 0 1 2 0 3 1 3 ## I3_Cat1 1 1 1 1 0 0 1 2 3 1 ## I3_Cat2 0 1 0 2 0 0 1 1 1 1 ## I4_Cat1 0 1 0 0 0 2 0 0 1 2 ## I4_Cat2 1 0 0 2 1 1 0 0 1 1 ## I5_Cat1 0 1 0 1 2 1 1 2 0 0 ## I5_Cat2 0 0 0 1 0 0 0 0 0 0 ############################################################################# # EXAMPLE 4: Partial credit model for dataset data.mg from CDM package ############################################################################# library(CDM) data(data.mg,package="CDM") dat <- data.mg[, paste0("I",1:11) ] #*** Model 1: estimate partial credit model mod1 <- sirt::rasch.evm.pcm( dat ) # item parameters round( mod1$b, 3 ) ## Cat1 Cat2 Cat3 ## I1 -1.537 NA NA ## I2 -2.360 NA NA ## I3 -0.574 NA NA ## I4 -0.971 -2.086 NA ## I5 -0.104 0.201 NA ## I6 0.470 0.806 NA ## I7 -1.027 0.756 1.969 ## I8 0.897 NA NA ## I9 0.766 NA NA ## I10 0.069 NA NA ## I11 -1.122 1.159 2.689 #*** Model 2: estimate PCM with pairwise package miceadds::library_install("pairwise") mod2 <- pairwise::pair(daten=dat) summary(mod2) plot(mod2) # compute standard errors semod2 <- pairwise::pairSE(daten=dat, nsample=20) semod2 ############################################################################# # EXAMPLE 5: Differential item functioning for dataset data.mg ############################################################################# library(CDM) data(data.mg,package="CDM") dat <- data.mg[ data.mg$group %in% c(2,3,11), ] # define items items <- paste0("I",1:11) # estimate model mod1 <- sirt::rasch.evm.pcm( dat[,items], weights=dat$weight, group=dat$group ) summary(mod1) ############################################################################# # EXAMPLE 6: Differential item functioning for Rasch model ############################################################################# # simulate some data set.seed(9776) N <- 1000 # number of persons I <- 10 # number of items # simulate data for first group b <- seq(-1.5,1.5,len=I) dat1 <- sirt::sim.raschtype( stats::rnorm(N), b ) # simulate data for second group b1 <- b b1[4] <- b1[4] + .5 # introduce DIF for fourth item dat2 <- sirt::sim.raschtype( stats::rnorm(N,mean=.3), b1 ) dat <- rbind(dat1, dat2 ) group <- rep( 1:2, each=N ) # estimate model mod1 <- sirt::rasch.evm.pcm( dat, group=group ) summary(mod1) ## End(Not run)
This function estimates the Rasch model using joint maximum likelihood estimation (Lincare, 1994). The PROX algorithm (Lincare, 1994) is used for the generation of starting values of item parameters.
rasch.jml(dat, method="MLE", b.init=NULL, constraints=NULL, weights=NULL, center="persons", glob.conv=10^(-6), conv1=1e-05, conv2=0.001, progress=TRUE, bsteps=4, thetasteps=2, wle.adj=0, jmliter=100, prox=TRUE, proxiter=30, proxconv=0.01, dp=NULL, theta.init=NULL, calc.fit=TRUE, prior_sd=NULL) ## S3 method for class 'rasch.jml' summary(object, digits=3, ...)
rasch.jml(dat, method="MLE", b.init=NULL, constraints=NULL, weights=NULL, center="persons", glob.conv=10^(-6), conv1=1e-05, conv2=0.001, progress=TRUE, bsteps=4, thetasteps=2, wle.adj=0, jmliter=100, prox=TRUE, proxiter=30, proxconv=0.01, dp=NULL, theta.init=NULL, calc.fit=TRUE, prior_sd=NULL) ## S3 method for class 'rasch.jml' summary(object, digits=3, ...)
dat |
An |
method |
Method for estimating person parameters during JML iterations.
|
b.init |
Initial values of item difficulties |
constraints |
Optional matrix or data.frame with two columns. First column is an integer of
item indexes or item names ( |
weights |
Person sample weights. Default is |
center |
Character indicator whether persons ( |
glob.conv |
Global convergence criterion with respect to the log-likelihood function |
conv1 |
Convergence criterion for estimation of item parameters |
conv2 |
Convergence criterion for estimation of person parameters |
progress |
Display progress? Default is |
bsteps |
Number of steps for b parameter estimation |
thetasteps |
Number of steps for theta parameter estimation |
wle.adj |
Score adjustment for WLE estimation |
jmliter |
Number of maximal iterations during JML estimation |
prox |
Should the PROX algorithm (see |
proxiter |
Number of maximal PROX iterations |
proxconv |
Convergence criterion for PROX iterations |
dp |
Object created from data preparation function ( |
theta.init |
Initial person parameter estimate |
calc.fit |
Should itemfit being calculated? |
prior_sd |
Optional value for standard deviation of prior distribution for ability values if penalized JML should be utilized |
object |
Object of class |
digits |
Number of digits used for rounding |
... |
Further arguments to be passed |
The estimation is known to have a bias in item parameters for
a fixed (finite) number of items. In literature (Lincare, 1994), a simple
bias correction formula is proposed and included in the value
item$itemdiff.correction
in this function. If denotes the number
of items, then the correction factor is
.
A list with following entries
item |
Estimated item parameters |
person |
Estimated person parameters |
method |
Person parameter estimation method |
dat |
Original data frame |
deviance |
Deviance |
data.proc |
Processed data frames excluding persons with extreme scores |
dp |
Value of data preparation (it is used in the function
|
Linacre, J. M. (1994). Many-Facet Rasch Measurement. Chicago: MESA Press.
Warm, T. A. (1989). Weighted likelihood estimation of ability in the item response theory. Psychometrika, 54, 427-450.
Get a summary with summary.rasch.jml
.
See rasch.prox
for the PROX algorithm as initial iterations.
For a bias correction of the JML method try rasch.jml.jackknife1
.
JML estimation can also be conducted with the TAM
(TAM::tam.jml
)
and immer (immer::immer_jml
)
packages.
See also marginal maximum likelihood estimation with rasch.mml2
or the R package ltm.
############################################################################# # EXAMPLE 1: Simulated data from the Rasch model ############################################################################# set.seed(789) N <- 500 # number of persons I <- 11 # number of items b <- seq( -2, 2, length=I ) dat <- sirt::sim.raschtype( stats::rnorm( N, mean=.5 ), b ) colnames(dat) <- paste( "I", 1:I, sep="") # JML estimation of the Rasch model (centering persons) mod1 <- sirt::rasch.jml( dat ) summary(mod1) # JML estimation of the Rasch model (centering items) mod1b <- sirt::rasch.jml( dat, center="items" ) summary(mod1b) # MML estimation with rasch.mml2 function mod2 <- sirt::rasch.mml2( dat ) summary(mod2) # Pairwise method of Fischer mod3 <- sirt::rasch.pairwise( dat ) summary(mod3) # JML estimation in TAM ## Not run: library(TAM) mod4 <- TAM::tam.jml( resp=dat ) #****** # item parameter constraints in JML estimation # fix item difficulties: b[4]=-.76 and b[6]=.10 constraints <- matrix( cbind( 4, -.76, 6, .10 ), ncol=2, byrow=TRUE ) mod6 <- sirt::rasch.jml( dat, constraints=constraints ) summary(mod6) # For constrained item parameters, it this not obvious # how to calculate a 'right correction' of item parameter bias ## End(Not run)
############################################################################# # EXAMPLE 1: Simulated data from the Rasch model ############################################################################# set.seed(789) N <- 500 # number of persons I <- 11 # number of items b <- seq( -2, 2, length=I ) dat <- sirt::sim.raschtype( stats::rnorm( N, mean=.5 ), b ) colnames(dat) <- paste( "I", 1:I, sep="") # JML estimation of the Rasch model (centering persons) mod1 <- sirt::rasch.jml( dat ) summary(mod1) # JML estimation of the Rasch model (centering items) mod1b <- sirt::rasch.jml( dat, center="items" ) summary(mod1b) # MML estimation with rasch.mml2 function mod2 <- sirt::rasch.mml2( dat ) summary(mod2) # Pairwise method of Fischer mod3 <- sirt::rasch.pairwise( dat ) summary(mod3) # JML estimation in TAM ## Not run: library(TAM) mod4 <- TAM::tam.jml( resp=dat ) #****** # item parameter constraints in JML estimation # fix item difficulties: b[4]=-.76 and b[6]=.10 constraints <- matrix( cbind( 4, -.76, 6, .10 ), ncol=2, byrow=TRUE ) mod6 <- sirt::rasch.jml( dat, constraints=constraints ) summary(mod6) # For constrained item parameters, it this not obvious # how to calculate a 'right correction' of item parameter bias ## End(Not run)
This function computes an analytical bias correction for the Rasch model according to the method of Arellano and Hahn (2007).
rasch.jml.biascorr(jmlobj,itemfac=NULL)
rasch.jml.biascorr(jmlobj,itemfac=NULL)
jmlobj |
An object which is the output of the |
itemfac |
Number of items which are used for bias correction. By default it is the average number of item responses per person. |
A list with following entries
b.biascorr |
Matrix of item difficulty estimates. The column
|
b.bias1 |
Estimated bias by Method 1 |
b.bias2 |
Estimated bias by Method 2 |
itemfac |
Number of items which are used as the factor for bias correction |
Arellano, M., & Hahn, J. (2007). Understanding bias in nonlinear panel models: Some recent developments. In R. Blundell, W. Newey & T. Persson (Eds.): Advances in Economics and Econometrics, Ninth World Congress, Cambridge University Press.
See rasch.jml.jackknife1
for bias correction based on
Jackknife.
See also the bife R package for analytical bias corrections.
############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data(data.read) dat <- data( data.read ) # estimate Rasch model mod <- sirt::rasch.jml( data.read ) # JML with analytical bias correction res1 <- sirt::rasch.jml.biascorr( jmlobj=mod ) print( res1$b.biascorr, digits=3 ) ## b.JML b.JMLcorr b.analytcorr1 b.analytcorr2 ## 1 -2.0086 -1.8412 -1.908 -1.922 ## 2 -1.1121 -1.0194 -1.078 -1.088 ## 3 -0.0718 -0.0658 -0.150 -0.127 ## 4 0.5457 0.5002 0.393 0.431 ## 5 -0.9504 -0.8712 -0.937 -0.936 ## [...]
############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data(data.read) dat <- data( data.read ) # estimate Rasch model mod <- sirt::rasch.jml( data.read ) # JML with analytical bias correction res1 <- sirt::rasch.jml.biascorr( jmlobj=mod ) print( res1$b.biascorr, digits=3 ) ## b.JML b.JMLcorr b.analytcorr1 b.analytcorr2 ## 1 -2.0086 -1.8412 -1.908 -1.922 ## 2 -1.1121 -1.0194 -1.078 -1.088 ## 3 -0.0718 -0.0658 -0.150 -0.127 ## 4 0.5457 0.5002 0.393 0.431 ## 5 -0.9504 -0.8712 -0.937 -0.936 ## [...]
Jackknife estimation is an alternative to other ad hoc proposed methods for bias correction (Hahn & Newey, 2004).
rasch.jml.jackknife1(jmlobj)
rasch.jml.jackknife1(jmlobj)
jmlobj |
Output of |
Note that items are used for jackknifing (Hahn & Newey, 2004).
By default, all items in the data frame are used as
jackknife units.
A list with following entries
item |
A data frame with item parameters
|
jack.itemdiff |
A matrix containing all item difficulties obtained by Jackknife |
Hahn, J., & Newey, W. (2004). Jackknife and analytical bias reduction for nonlinear panel models. Econometrica, 72, 1295-1319.
For JML estimation rasch.jml
.
For analytical bias correction methods see rasch.jml.biascorr
.
## Not run: ############################################################################# # EXAMPLE 1: Simulated data from the Rasch model ############################################################################# set.seed(7655) N <- 5000 # number of persons I <- 11 # number of items b <- seq( -2, 2, length=I ) dat <- sirt::sim.raschtype( rnorm( N ), b ) colnames(dat) <- paste( "I", 1:I, sep="") # estimate the Rasch model with JML mod <- sirt::rasch.jml(dat) summary(mod) # re-estimate the Rasch model using Jackknife mod2 <- sirt::rasch.jml.jackknife1( mod ) ## ## Joint Maximum Likelihood Estimation ## Jackknife Estimation ## 11 Jackknife Units are used ## |--------------------PROGRESS--------------------| ## |------------------------------------------------| ## ## N p b.JML b.JMLcorr b.jack b.jackse b.JMLse ## I1 4929 0.853 -2.345 -2.131 -2.078 0.079 0.045 ## I2 4929 0.786 -1.749 -1.590 -1.541 0.075 0.039 ## I3 4929 0.723 -1.298 -1.180 -1.144 0.065 0.036 ## I4 4929 0.657 -0.887 -0.806 -0.782 0.059 0.035 ## I5 4929 0.576 -0.420 -0.382 -0.367 0.055 0.033 ## I6 4929 0.492 0.041 0.038 0.043 0.054 0.033 ## I7 4929 0.409 0.502 0.457 0.447 0.056 0.034 ## I8 4929 0.333 0.939 0.854 0.842 0.058 0.035 ## I9 4929 0.264 1.383 1.257 1.229 0.065 0.037 ## I10 4929 0.210 1.778 1.617 1.578 0.071 0.040 ## I11 4929 0.154 2.266 2.060 2.011 0.077 0.044 #-> Item parameters obtained by jackknife seem to be acceptable. ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Simulated data from the Rasch model ############################################################################# set.seed(7655) N <- 5000 # number of persons I <- 11 # number of items b <- seq( -2, 2, length=I ) dat <- sirt::sim.raschtype( rnorm( N ), b ) colnames(dat) <- paste( "I", 1:I, sep="") # estimate the Rasch model with JML mod <- sirt::rasch.jml(dat) summary(mod) # re-estimate the Rasch model using Jackknife mod2 <- sirt::rasch.jml.jackknife1( mod ) ## ## Joint Maximum Likelihood Estimation ## Jackknife Estimation ## 11 Jackknife Units are used ## |--------------------PROGRESS--------------------| ## |------------------------------------------------| ## ## N p b.JML b.JMLcorr b.jack b.jackse b.JMLse ## I1 4929 0.853 -2.345 -2.131 -2.078 0.079 0.045 ## I2 4929 0.786 -1.749 -1.590 -1.541 0.075 0.039 ## I3 4929 0.723 -1.298 -1.180 -1.144 0.065 0.036 ## I4 4929 0.657 -0.887 -0.806 -0.782 0.059 0.035 ## I5 4929 0.576 -0.420 -0.382 -0.367 0.055 0.033 ## I6 4929 0.492 0.041 0.038 0.043 0.054 0.033 ## I7 4929 0.409 0.502 0.457 0.447 0.056 0.034 ## I8 4929 0.333 0.939 0.854 0.842 0.058 0.035 ## I9 4929 0.264 1.383 1.257 1.229 0.065 0.037 ## I10 4929 0.210 1.778 1.617 1.578 0.071 0.040 ## I11 4929 0.154 2.266 2.060 2.011 0.077 0.044 #-> Item parameters obtained by jackknife seem to be acceptable. ## End(Not run)
This function estimates the multidimensional latent class Rasch (1PL) and 2PL model (Bartolucci, 2007; Bartolucci, Montanari & Pandolfi, 2012) for dichotomous data which emerges from the original latent class model (Goodman, 1974) and a multidimensional IRT model.
rasch.mirtlc(dat, Nclasses=NULL, modeltype="LC", dimensions=NULL, group=NULL, weights=rep(1,nrow(dat)), theta.k=NULL, ref.item=NULL, distribution.trait=FALSE, range.b=c(-8,8), range.a=c(.2, 6 ), progress=TRUE, glob.conv=10^(-5), conv1=10^(-5), mmliter=1000, mstep.maxit=3, seed=0, nstarts=1, fac.iter=.35) ## S3 method for class 'rasch.mirtlc' summary(object,...) ## S3 method for class 'rasch.mirtlc' anova(object,...) ## S3 method for class 'rasch.mirtlc' logLik(object,...) ## S3 method for class 'rasch.mirtlc' IRT.irfprob(object,...) ## S3 method for class 'rasch.mirtlc' IRT.likelihood(object,...) ## S3 method for class 'rasch.mirtlc' IRT.posterior(object,...) ## S3 method for class 'rasch.mirtlc' IRT.modelfit(object,...) ## S3 method for class 'IRT.modelfit.rasch.mirtlc' summary(object,...)
rasch.mirtlc(dat, Nclasses=NULL, modeltype="LC", dimensions=NULL, group=NULL, weights=rep(1,nrow(dat)), theta.k=NULL, ref.item=NULL, distribution.trait=FALSE, range.b=c(-8,8), range.a=c(.2, 6 ), progress=TRUE, glob.conv=10^(-5), conv1=10^(-5), mmliter=1000, mstep.maxit=3, seed=0, nstarts=1, fac.iter=.35) ## S3 method for class 'rasch.mirtlc' summary(object,...) ## S3 method for class 'rasch.mirtlc' anova(object,...) ## S3 method for class 'rasch.mirtlc' logLik(object,...) ## S3 method for class 'rasch.mirtlc' IRT.irfprob(object,...) ## S3 method for class 'rasch.mirtlc' IRT.likelihood(object,...) ## S3 method for class 'rasch.mirtlc' IRT.posterior(object,...) ## S3 method for class 'rasch.mirtlc' IRT.modelfit(object,...) ## S3 method for class 'IRT.modelfit.rasch.mirtlc' summary(object,...)
dat |
An |
Nclasses |
Number of latent classes. If the trait vector (or matrix)
|
modeltype |
Modeltype. |
dimensions |
Vector of dimension integers which allocate items to dimensions. |
group |
A group identifier for multiple group estimation |
weights |
Vector of sample weights |
theta.k |
A grid of theta values can be specified if theta
should not be estimated. In the one-dimensional case, it
must be a vector, in the |
ref.item |
An optional vector of integers which indicate the items whose intercept and slope are fixed at 0 and 1, respectively. |
distribution.trait |
A type of the assumed theta distribution can
be specified. One alternative is |
range.b |
Range of item difficulties which are allowed for estimation |
range.a |
Range of item slopes which are allowed for estimation |
progress |
Display progress? Default is |
glob.conv |
Global relative deviance convergence criterion |
conv1 |
Item parameter convergence criterion |
mmliter |
Maximum number of iterations |
mstep.maxit |
Maximum number of iterations within an M step |
seed |
Set random seed for latent class estimation. A seed can be specified. If the seed is negative, then the function will generate a random seed. |
nstarts |
If a positive integer is provided, then a |
fac.iter |
A parameter between 0 and 1 to control the maximum increment in each iteration. The larger the parameter the more increments will become smaller from iteration to iteration. |
object |
Object of class |
... |
Further arguments to be passed |
The multidimensional latent class Rasch model (Bartolucci, 2007)
is an item response model which combines ideas from
latent class analysis and item response models with continuous variables.
With modeltype="MLC2"
the following -dimensional
item response model is estimated
Besides the item thresholds and item slopes
,
for a prespecified number of latent classes
a set of
-dimensional
vectors are estimated.
These vectors represent the locations of latent classes. If the user
provides a grid of theta distribution
theta.k
as an argument in
rasch.mirtlc
, then the ability distribution is fixed.
In the unidimensional Rasch model with items,
(if
odd) or
(if
even) trait location
parameters are identified (see De Leeuw & Verhelst, 1986;
Lindsay et al., 1991; for a review see Formann, 2007).
A list with following entries
pjk |
Item probabilities evaluated at discretized ability distribution |
rprobs |
Item response probabilities like in |
pi.k |
Estimated trait distribution |
theta.k |
Discretized ability distribution |
item |
Estimated item parameters |
trait |
Estimated ability distribution ( |
mean.trait |
Estimated mean of ability distribution |
sd.trait |
Estimated standard deviation of ability distribution |
skewness.trait |
Estimated skewness of ability distribution |
cor.trait |
Estimated correlation between abilities (only applies for multidimensional models) |
ic |
Information criteria |
D |
Number of dimensions |
G |
Number of groups |
deviance |
Deviance |
ll |
Log-likelihood |
Nclasses |
Number of classes |
modeltype |
Used model type |
estep.res |
Result from E step: |
dat |
Original data frame |
devL |
Vector of deviances if multiple random starts were conducted |
seedL |
Vector of seed if multiple random starts were conducted |
iter |
Number of iterations |
For the estimation of latent class models, rerunning the model with different starting values (different random seeds) is recommended.
Bartolucci, F. (2007). A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika, 72(2), 141-157. doi:10.1007/s11336-005-1376-9
Bartolucci, F., Montanari, G. E., & Pandolfi, S. (2012). Dimensionality of the latent structure and item selection via latent class multidimensional IRT models. Psychometrika, 77(4), 782-802. doi:10.1007/s11336-012-9278-0
De Leeuw, J., & Verhelst, N. (1986). Maximum likelihood estimation in generalized Rasch models. Journal of Educational and Behavioral Statistics, 11(3), 183-196. doi:10.3102/10769986011003183
Formann, A. K. (2007). (Almost) Equivalence between conditional and mixture maximum likelihood estimates for some models of the Rasch type. In M. von Davier & C. H. Carstensen: Multivariate and Mixture Distribution Rasch Models (pp. 177-189). Springer: New York. doi:10.1007/978-0-387-49839-3_11
Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61(2), 215-231. doi:10.1093/biomet/61.2.215
Lindsay, B., Clogg, C. C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86(413), 96-107. doi:10.1080/01621459.1991.10475008
Xu, X., & von Davier, M. (2008). Fitting the structured general diagnostic model to NAEP data. ETS Research Report ETS RR-08-27. Princeton, ETS. doi:10.1002/j.2333-8504.2008.tb02113.x
See also the CDM::gdm
function in the CDM package.
For an assessment of global model fit see modelfit.sirt
.
The estimation of the multidimensional latent class item response model for polytomous data can be conducted in the MultiLCIRT package. Latent class analysis can be carried out with poLCA and randomLCA packages.
############################################################################# # EXAMPLE 1: Reading data ############################################################################# data( data.read ) dat <- data.read #*************** # latent class models # latent class model with 1 class mod1 <- sirt::rasch.mirtlc( dat, Nclasses=1 ) summary(mod1) # latent class model with 2 classes mod2 <- sirt::rasch.mirtlc( dat, Nclasses=2 ) summary(mod2) ## Not run: # latent class model with 3 classes mod3 <- sirt::rasch.mirtlc( dat, Nclasses=3, seed=- 30) summary(mod3) # extract individual likelihood lmod3 <- IRT.likelihood(mod3) str(lmod3) # extract likelihood value logLik(mod3) # extract item response functions IRT.irfprob(mod3) # compare models 1, 2 and 3 anova(mod2,mod3) IRT.compareModels(mod1,mod2,mod3) # avsolute and relative model fit smod2 <- IRT.modelfit(mod2) smod3 <- IRT.modelfit(mod3) summary(smod2) IRT.compareModels(smod2,smod3) # latent class model with 4 classes and 3 starts with different seeds mod4 <- sirt::rasch.mirtlc( dat, Nclasses=4,seed=-30, nstarts=3 ) # display different solutions sort(mod4$devL) summary(mod4) # latent class multiple group model # define group identifier group <- rep( 1, nrow(dat)) group[ 1:150 ] <- 2 mod5 <- sirt::rasch.mirtlc( dat, Nclasses=3, group=group ) summary(mod5) #************* # Unidimensional IRT models with ordered trait # 1PL model with 3 classes mod11 <- sirt::rasch.mirtlc( dat, Nclasses=3, modeltype="MLC1", mmliter=30) summary(mod11) # 1PL model with 11 classes mod12 <- sirt::rasch.mirtlc( dat, Nclasses=11,modeltype="MLC1", mmliter=30) summary(mod12) # 1PL model with 11 classes and fixed specified theta values mod13 <- sirt::rasch.mirtlc( dat, modeltype="MLC1", theta.k=seq( -4, 4, len=11 ), mmliter=100) summary(mod13) # 1PL model with fixed theta values and normal distribution mod14 <- sirt::rasch.mirtlc( dat, modeltype="MLC1", mmliter=30, theta.k=seq( -4, 4, len=11 ), distribution.trait="normal") summary(mod14) # 1PL model with a smoothed trait distribution (up to 3 moments) mod15 <- sirt::rasch.mirtlc( dat, modeltype="MLC1", mmliter=30, theta.k=seq( -4, 4, len=11 ), distribution.trait="smooth3") summary(mod15) # 2PL with 3 classes mod16 <- sirt::rasch.mirtlc( dat, Nclasses=3, modeltype="MLC2", mmliter=30 ) summary(mod16) # 2PL with fixed theta and smoothed distribution mod17 <- sirt::rasch.mirtlc( dat, theta.k=seq(-4,4,len=12), mmliter=30, modeltype="MLC2", distribution.trait="smooth4" ) summary(mod17) # 1PL multiple group model with 8 classes # define group identifier group <- rep( 1, nrow(dat)) group[ 1:150 ] <- 2 mod21 <- sirt::rasch.mirtlc( dat, Nclasses=8, modeltype="MLC1", group=group ) summary(mod21) #*************** # multidimensional latent class IRT models # define vector of dimensions dimensions <- rep( 1:3, each=4 ) # 3-dimensional model with 8 classes and seed 145 mod31 <- sirt::rasch.mirtlc( dat, Nclasses=8, mmliter=30, modeltype="MLC1", seed=145, dimensions=dimensions ) summary(mod31) # try the model above with different starting values mod31s <- sirt::rasch.mirtlc( dat, Nclasses=8, modeltype="MLC1", seed=-30, nstarts=30, dimensions=dimensions ) summary(mod31s) # estimation with fixed theta vectors #=> 4^3=216 classes theta.k <- seq(-4, 4, len=6 ) theta.k <- as.matrix( expand.grid( theta.k, theta.k, theta.k ) ) mod32 <- sirt::rasch.mirtlc( dat, dimensions=dimensions, theta.k=theta.k, modeltype="MLC1" ) summary(mod32) # 3-dimensional 2PL model mod33 <- sirt::rasch.mirtlc( dat, dimensions=dimensions, theta.k=theta.k, modeltype="MLC2") summary(mod33) ############################################################################# # EXAMPLE 2: Skew trait distribution ############################################################################# set.seed(789) N <- 1000 # number of persons I <- 20 # number of items theta <- sqrt( exp( stats::rnorm( N ) ) ) theta <- theta - mean(theta ) # calculate skewness of theta distribution mean( theta^3 ) / stats::sd(theta)^3 # simulate item responses dat <- sirt::sim.raschtype( theta, b=seq(-2,2,len=I ) ) # normal distribution mod1 <- sirt::rasch.mirtlc( dat, theta.k=seq(-4,4,len=15), modeltype="MLC1", distribution.trait="normal", mmliter=30) # allow for skew distribution with smoothed distribution mod2 <- sirt::rasch.mirtlc( dat, theta.k=seq(-4,4,len=15), modeltype="MLC1", distribution.trait="smooth3", mmliter=30) # nonparametric distribution mod3 <- sirt::rasch.mirtlc( dat, theta.k=seq(-4,4,len=15), modeltype="MLC1", mmliter=30) summary(mod1) summary(mod2) summary(mod3) ############################################################################# # EXAMPLE 3: Stouffer-Toby dataset data.si02 with 5 items ############################################################################# data(dat.si02) dat <- data.si02$data weights <- data.si02$weights # extract weights # Model 1: 2 classes Rasch model mod1 <- sirt::rasch.mirtlc( dat, Nclasses=2, modeltype="MLC1", weights=weights, ref.item=4, nstarts=5) summary(mod1) # Model 2: 3 classes Rasch model: not all parameters are identified mod2 <- sirt::rasch.mirtlc( dat, Nclasses=3, modeltype="MLC1", weights=weights, ref.item=4, nstarts=5) summary(mod2) # Model 3: Latent class model with 2 classes mod3 <- sirt::rasch.mirtlc( dat, Nclasses=2, modeltype="LC", weights=weights, nstarts=5) summary(mod3) # Model 4: Rasch model with normal distribution mod4 <- sirt::rasch.mirtlc( dat, modeltype="MLC1", weights=weights, theta.k=seq( -6, 6, len=21 ), distribution.trait="normal", ref.item=4) summary(mod4) ## End(Not run) ############################################################################# # EXAMPLE 4: 5 classes, 3 dimensions and 27 items ############################################################################# set.seed(979) I <- 9 N <- 5000 b <- seq( - 1.5, 1.5, len=I) b <- rep(b,3) # define class locations theta.k <- c(-3.0, -4.1, -2.8, 1.7, 2.3, 1.8, 0.2, 0.4, -0.1, 2.6, 0.1, -0.9, -1.1,-0.7, 0.9 ) Nclasses <- 5 theta.k0 <- theta.k <- matrix( theta.k, Nclasses, 3, byrow=TRUE ) pi.k <- c(.20,.25,.25,.10,.15) theta <- theta.k[ rep( 1:Nclasses, round(N*pi.k) ), ] dimensions <- rep( 1:3, each=I) # simulate item responses dat <- matrix( NA, nrow=N, ncol=I*3) for (ii in 1:(3*I) ){ dat[,ii] <- 1 * ( stats::runif(N) < stats::plogis( theta[,dimensions[ii]] - b[ii])) } colnames(dat) <- paste0( rep( LETTERS[1:3], each=I ), 1:(3*I) ) # estimate model mod1 <- sirt::rasch.mirtlc( dat, Nclasses=Nclasses, dimensions=dimensions, modeltype="MLC1", ref.item=c(5,14,23), glob.conv=.0005, conv1=.0005) round( cbind( mod1$theta.k, mod1$pi.k ), 3 ) ## [,1] [,2] [,3] [,4] ## [1,] -2.776 -3.791 -2.667 0.250 ## [2,] -0.989 -0.605 0.957 0.151 ## [3,] 0.332 0.418 -0.046 0.246 ## [4,] 2.601 0.171 -0.854 0.101 ## [5,] 1.791 2.330 1.844 0.252 cbind( theta.k, pi.k ) ## pi.k ## [1,] -3.0 -4.1 -2.8 0.20 ## [2,] 1.7 2.3 1.8 0.25 ## [3,] 0.2 0.4 -0.1 0.25 ## [4,] 2.6 0.1 -0.9 0.10 ## [5,] -1.1 -0.7 0.9 0.15 # plot class locations plot( 1:3, mod1$theta.k[1,], xlim=c(1,3), ylim=c(-5,3), col=1, pch=1, type="n", axes=FALSE, xlab="Dimension", ylab="Location") axis(1, 1:3 ) ; axis(2) ; axis(4) for (cc in 1:Nclasses){ # cc <- 1 lines(1:3, mod1$theta.k[cc,], col=cc, lty=cc ) points(1:3, mod1$theta.k[cc,], col=cc, pch=cc ) } ## Not run: #------ # estimate model with gdm function in CDM package library(CDM) # define Q-matrix Qmatrix <- matrix(0,3*I,3) Qmatrix[ cbind( 1:(3*I), rep(1:3, each=I) ) ] <- 1 set.seed(9176) # random starting values for theta locations theta.k <- matrix( 2*stats::rnorm(5*3), 5, 3 ) colnames(theta.k) <- c("Dim1","Dim2","Dim3") # try possibly different starting values # estimate model in CDM b.constraint <- cbind( c(5,14,23), 1, 0 ) mod2 <- CDM::gdm( dat, theta.k=theta.k, b.constraint=b.constraint, skillspace="est", irtmodel="1PL", Qmatrix=Qmatrix) summary(mod2) #------ # estimate model with MultiLCIRT package miceadds::library_install("MultiLCIRT") # define matrix to allocate each item to one dimension multi1 <- matrix( 1:(3*I), nrow=3, byrow=TRUE ) # define reference items in item-dimension allocation matrix multi1[ 1, c(1,5) ] <- c(5,1) multi1[ 2, c(10,14) - 9 ] <- c(14,9) multi1[ 3, c(19,23) - 18 ] <- c(23,19) # Rasch model with 5 latent classes (random start: start=1) mod3 <- MultiLCIRT::est_multi_poly(S=dat,k=5, # k=5 ability levels start=1,link=1,multi=multi1,tol=10^-5, output=TRUE, disp=TRUE, fort=TRUE) # estimated location points and class probabilities in MultiLCIRT cbind( t( mod3$Th ), mod3$piv ) # compare results with rasch.mirtlc cbind( mod1$theta.k, mod1$pi.k ) # simulated data parameters cbind( theta.k, pi.k ) #---- # estimate model with cutomized input in mirt library(mirt) #-- define Theta design matrix for 5 classes Theta <- diag(5) Theta <- cbind( Theta, Theta, Theta ) r1 <- rownames(Theta) <- paste0("C",1:5) colnames(Theta) <- c( paste0(r1, "D1"), paste0(r1, "D2"), paste0(r1, "D3") ) ## C1D1 C2D1 C3D1 C4D1 C5D1 C1D2 C2D2 C3D2 C4D2 C5D2 C1D3 C2D3 C3D3 C4D3 C5D3 ## C1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 ## C2 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 ## C3 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 ## C4 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 ## C5 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 #-- define mirt model I <- ncol(dat) # I=27 mirtmodel <- mirt::mirt.model(" C1D1=1-9 \n C2D1=1-9 \n C3D1=1-9 \n C4D1=1-9 \n C5D1=1-9 C1D2=10-18 \n C2D2=10-18 \n C3D2=10-18 \n C4D2=10-18 \n C5D2=10-18 C1D3=19-27 \n C2D3=19-27 \n C3D3=19-27 \n C4D3=19-27 \n C5D3=19-27 CONSTRAIN=(1-9,a1),(1-9,a2),(1-9,a3),(1-9,a4),(1-9,a5), (10-18,a6),(10-18,a7),(10-18,a8),(10-18,a9),(10-18,a10), (19-27,a11),(19-27,a12),(19-27,a13),(19-27,a14),(19-27,a15) ") #-- get initial parameter values mod.pars <- mirt::mirt(dat, model=mirtmodel, pars="values") #-- redefine initial parameter values # set all d parameters initially to zero ind <- which( ( mod.pars$name=="d" ) ) mod.pars[ ind,"value" ] <- 0 # fix item difficulties of reference items to zero mod.pars[ ind[ c(5,14,23) ], "est"] <- FALSE mod.pars[ind,] # initial item parameters of cluster locations (a1,...,a15) ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11) ) ) & ( mod.pars$est ) ) mod.pars[ind,"value"] <- -2 ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11)+1 ) ) & ( mod.pars$est ) ) mod.pars[ind,"value"] <- -1 ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11)+2 ) ) & ( mod.pars$est ) ) mod.pars[ind,"value"] <- 0 ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11)+3 ) ) & ( mod.pars$est ) ) mod.pars[ind,"value"] <- 1 ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11)+4 ) ) & ( mod.pars$est ) ) mod.pars[ind,"value"] <- 0 #-- define prior for latent class analysis lca_prior <- function(Theta,Etable){ TP <- nrow(Theta) if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) } if ( ! is.null(Etable) ){ prior <- ( rowSums(Etable[, seq(1,2*I,2)]) + rowSums(Etable[,seq(2,2*I,2)]) )/I } prior <- prior / sum(prior) return(prior) } #-- estimate model in mirt mod4 <- mirt::mirt(dat, mirtmodel, pars=mod.pars, verbose=TRUE, technical=list( customTheta=Theta, customPriorFun=lca_prior, MAXQUAD=1E20) ) # correct number of estimated parameters mod4@nest <- as.integer(sum(mod.pars$est) + nrow(Theta)-1 ) # extract coefficients # source.all(pfsirt) cmod4 <- sirt::mirt.wrapper.coef(mod4) # estimated item difficulties dfr <- data.frame( "sim"=b, "mirt"=-cmod4$coef$d, "sirt"=mod1$item$thresh ) round( dfr, 4 ) ## sim mirt sirt ## 1 -1.500 -1.3782 -1.3382 ## 2 -1.125 -1.0059 -0.9774 ## 3 -0.750 -0.6157 -0.6016 ## 4 -0.375 -0.2099 -0.2060 ## 5 0.000 0.0000 0.0000 ## 6 0.375 0.5085 0.4984 ## 7 0.750 0.8661 0.8504 ## 8 1.125 1.3079 1.2847 ## 9 1.500 1.5891 1.5620 ## [...] #-- reordering estimated latent clusters to make solutions comparable #* extract estimated cluster locations from sirt order.sirt <- c(1,5,3,4,2) # sort(order.sirt) round(mod1$trait[,1:3],3) dfr <- data.frame( "sim"=theta.k, mod1$trait[order.sirt,1:3] ) colnames(dfr)[4:6] <- paste0("sirt",1:3) #* extract estimated cluster locations from mirt c4 <- cmod4$coef[, paste0("a",1:15) ] c4 <- apply( c4,2, FUN=function(ll){ ll[ ll!=0 ][1] } ) trait.loc <- matrix(c4,5,3) order.mirt <- c(1,4,3,5,2) # sort(order.mirt) dfr <- cbind( dfr, trait.loc[ order.mirt, ] ) colnames(dfr)[7:9] <- paste0("mirt",1:3) # compare estimated cluster locations round(dfr,3) ## sim.1 sim.2 sim.3 sirt1 sirt2 sirt3 mirt1 mirt2 mirt3 ## 1 -3.0 -4.1 -2.8 -2.776 -3.791 -2.667 -2.856 -4.023 -2.741 ## 5 1.7 2.3 1.8 1.791 2.330 1.844 1.817 2.373 1.869 ## 3 0.2 0.4 -0.1 0.332 0.418 -0.046 0.349 0.421 -0.051 ## 4 2.6 0.1 -0.9 2.601 0.171 -0.854 2.695 0.166 -0.876 ## 2 -1.1 -0.7 0.9 -0.989 -0.605 0.957 -1.009 -0.618 0.962 #* compare estimated cluster sizes dfr <- data.frame( "sim"=pi.k, "sirt"=mod1$pi.k[order.sirt,1], "mirt"=mod4@Prior[[1]][ order.mirt] ) round(dfr,4) ## sim sirt mirt ## 1 0.20 0.2502 0.2500 ## 2 0.25 0.2522 0.2511 ## 3 0.25 0.2458 0.2494 ## 4 0.10 0.1011 0.0986 ## 5 0.15 0.1507 0.1509 ############################################################################# # EXAMPLE 5: Dataset data.si04 from Bartolucci et al. (2012) ############################################################################# data(data.si04) # define reference items ref.item <- c(7,17,25,44,64) dimensions <- data.si04$itempars$dim # estimate a Rasch latent class with 9 classes mod1 <- sirt::rasch.mirtlc( data.si04$data, Nclasses=9, dimensions=dimensions, modeltype="MLC1", ref.item=ref.item, glob.conv=.005, conv1=.005, nstarts=1, mmliter=200 ) # compare estimated distribution with simulated distribution round( cbind( mod1$theta.k, mod1$pi.k ), 4 ) # estimated ## [,1] [,2] [,3] [,4] [,5] [,6] ## [1,] -3.6043 -5.1323 -5.3022 -6.8255 -4.3611 0.1341 ## [2,] 0.2083 -2.7422 -2.8754 -5.3416 -2.5085 0.1573 ## [3,] -2.8641 -4.0272 -5.0580 -0.0340 -0.9113 0.1163 ## [4,] -0.3575 -2.0081 -1.7431 1.2992 -0.1616 0.0751 ## [5,] 2.9329 0.3662 -1.6516 -3.0284 0.1844 0.1285 ## [6,] 1.5092 -2.0461 -4.3093 1.0481 1.0806 0.1094 ## [7,] 3.9899 3.1955 -4.0010 1.8879 2.2988 0.1460 ## [8,] 4.3062 0.7080 -1.2324 1.4351 2.0893 0.1332 ## [9,] 5.0855 4.1214 -0.9141 2.2744 1.5314 0.0000 round(d2,4) # simulated ## class A B C D E pi ## [1,] 1 -3.832 -5.399 -5.793 -7.042 -4.511 0.1323 ## [2,] 2 -2.899 -4.217 -5.310 -0.055 -0.915 0.1162 ## [3,] 3 -0.376 -2.137 -1.847 1.273 -0.078 0.0752 ## [4,] 4 0.208 -2.934 -3.011 -5.526 -2.511 0.1583 ## [5,] 5 1.536 -2.137 -4.606 1.045 1.143 0.1092 ## [6,] 6 2.042 -0.573 -0.404 -4.331 -1.044 0.0471 ## [7,] 7 3.853 0.841 -2.993 -2.746 0.803 0.0822 ## [8,] 8 4.204 3.296 -4.328 1.892 2.419 0.1453 ## [9,] 9 4.466 0.700 -1.334 1.439 2.161 0.1343 ## End(Not run)
############################################################################# # EXAMPLE 1: Reading data ############################################################################# data( data.read ) dat <- data.read #*************** # latent class models # latent class model with 1 class mod1 <- sirt::rasch.mirtlc( dat, Nclasses=1 ) summary(mod1) # latent class model with 2 classes mod2 <- sirt::rasch.mirtlc( dat, Nclasses=2 ) summary(mod2) ## Not run: # latent class model with 3 classes mod3 <- sirt::rasch.mirtlc( dat, Nclasses=3, seed=- 30) summary(mod3) # extract individual likelihood lmod3 <- IRT.likelihood(mod3) str(lmod3) # extract likelihood value logLik(mod3) # extract item response functions IRT.irfprob(mod3) # compare models 1, 2 and 3 anova(mod2,mod3) IRT.compareModels(mod1,mod2,mod3) # avsolute and relative model fit smod2 <- IRT.modelfit(mod2) smod3 <- IRT.modelfit(mod3) summary(smod2) IRT.compareModels(smod2,smod3) # latent class model with 4 classes and 3 starts with different seeds mod4 <- sirt::rasch.mirtlc( dat, Nclasses=4,seed=-30, nstarts=3 ) # display different solutions sort(mod4$devL) summary(mod4) # latent class multiple group model # define group identifier group <- rep( 1, nrow(dat)) group[ 1:150 ] <- 2 mod5 <- sirt::rasch.mirtlc( dat, Nclasses=3, group=group ) summary(mod5) #************* # Unidimensional IRT models with ordered trait # 1PL model with 3 classes mod11 <- sirt::rasch.mirtlc( dat, Nclasses=3, modeltype="MLC1", mmliter=30) summary(mod11) # 1PL model with 11 classes mod12 <- sirt::rasch.mirtlc( dat, Nclasses=11,modeltype="MLC1", mmliter=30) summary(mod12) # 1PL model with 11 classes and fixed specified theta values mod13 <- sirt::rasch.mirtlc( dat, modeltype="MLC1", theta.k=seq( -4, 4, len=11 ), mmliter=100) summary(mod13) # 1PL model with fixed theta values and normal distribution mod14 <- sirt::rasch.mirtlc( dat, modeltype="MLC1", mmliter=30, theta.k=seq( -4, 4, len=11 ), distribution.trait="normal") summary(mod14) # 1PL model with a smoothed trait distribution (up to 3 moments) mod15 <- sirt::rasch.mirtlc( dat, modeltype="MLC1", mmliter=30, theta.k=seq( -4, 4, len=11 ), distribution.trait="smooth3") summary(mod15) # 2PL with 3 classes mod16 <- sirt::rasch.mirtlc( dat, Nclasses=3, modeltype="MLC2", mmliter=30 ) summary(mod16) # 2PL with fixed theta and smoothed distribution mod17 <- sirt::rasch.mirtlc( dat, theta.k=seq(-4,4,len=12), mmliter=30, modeltype="MLC2", distribution.trait="smooth4" ) summary(mod17) # 1PL multiple group model with 8 classes # define group identifier group <- rep( 1, nrow(dat)) group[ 1:150 ] <- 2 mod21 <- sirt::rasch.mirtlc( dat, Nclasses=8, modeltype="MLC1", group=group ) summary(mod21) #*************** # multidimensional latent class IRT models # define vector of dimensions dimensions <- rep( 1:3, each=4 ) # 3-dimensional model with 8 classes and seed 145 mod31 <- sirt::rasch.mirtlc( dat, Nclasses=8, mmliter=30, modeltype="MLC1", seed=145, dimensions=dimensions ) summary(mod31) # try the model above with different starting values mod31s <- sirt::rasch.mirtlc( dat, Nclasses=8, modeltype="MLC1", seed=-30, nstarts=30, dimensions=dimensions ) summary(mod31s) # estimation with fixed theta vectors #=> 4^3=216 classes theta.k <- seq(-4, 4, len=6 ) theta.k <- as.matrix( expand.grid( theta.k, theta.k, theta.k ) ) mod32 <- sirt::rasch.mirtlc( dat, dimensions=dimensions, theta.k=theta.k, modeltype="MLC1" ) summary(mod32) # 3-dimensional 2PL model mod33 <- sirt::rasch.mirtlc( dat, dimensions=dimensions, theta.k=theta.k, modeltype="MLC2") summary(mod33) ############################################################################# # EXAMPLE 2: Skew trait distribution ############################################################################# set.seed(789) N <- 1000 # number of persons I <- 20 # number of items theta <- sqrt( exp( stats::rnorm( N ) ) ) theta <- theta - mean(theta ) # calculate skewness of theta distribution mean( theta^3 ) / stats::sd(theta)^3 # simulate item responses dat <- sirt::sim.raschtype( theta, b=seq(-2,2,len=I ) ) # normal distribution mod1 <- sirt::rasch.mirtlc( dat, theta.k=seq(-4,4,len=15), modeltype="MLC1", distribution.trait="normal", mmliter=30) # allow for skew distribution with smoothed distribution mod2 <- sirt::rasch.mirtlc( dat, theta.k=seq(-4,4,len=15), modeltype="MLC1", distribution.trait="smooth3", mmliter=30) # nonparametric distribution mod3 <- sirt::rasch.mirtlc( dat, theta.k=seq(-4,4,len=15), modeltype="MLC1", mmliter=30) summary(mod1) summary(mod2) summary(mod3) ############################################################################# # EXAMPLE 3: Stouffer-Toby dataset data.si02 with 5 items ############################################################################# data(dat.si02) dat <- data.si02$data weights <- data.si02$weights # extract weights # Model 1: 2 classes Rasch model mod1 <- sirt::rasch.mirtlc( dat, Nclasses=2, modeltype="MLC1", weights=weights, ref.item=4, nstarts=5) summary(mod1) # Model 2: 3 classes Rasch model: not all parameters are identified mod2 <- sirt::rasch.mirtlc( dat, Nclasses=3, modeltype="MLC1", weights=weights, ref.item=4, nstarts=5) summary(mod2) # Model 3: Latent class model with 2 classes mod3 <- sirt::rasch.mirtlc( dat, Nclasses=2, modeltype="LC", weights=weights, nstarts=5) summary(mod3) # Model 4: Rasch model with normal distribution mod4 <- sirt::rasch.mirtlc( dat, modeltype="MLC1", weights=weights, theta.k=seq( -6, 6, len=21 ), distribution.trait="normal", ref.item=4) summary(mod4) ## End(Not run) ############################################################################# # EXAMPLE 4: 5 classes, 3 dimensions and 27 items ############################################################################# set.seed(979) I <- 9 N <- 5000 b <- seq( - 1.5, 1.5, len=I) b <- rep(b,3) # define class locations theta.k <- c(-3.0, -4.1, -2.8, 1.7, 2.3, 1.8, 0.2, 0.4, -0.1, 2.6, 0.1, -0.9, -1.1,-0.7, 0.9 ) Nclasses <- 5 theta.k0 <- theta.k <- matrix( theta.k, Nclasses, 3, byrow=TRUE ) pi.k <- c(.20,.25,.25,.10,.15) theta <- theta.k[ rep( 1:Nclasses, round(N*pi.k) ), ] dimensions <- rep( 1:3, each=I) # simulate item responses dat <- matrix( NA, nrow=N, ncol=I*3) for (ii in 1:(3*I) ){ dat[,ii] <- 1 * ( stats::runif(N) < stats::plogis( theta[,dimensions[ii]] - b[ii])) } colnames(dat) <- paste0( rep( LETTERS[1:3], each=I ), 1:(3*I) ) # estimate model mod1 <- sirt::rasch.mirtlc( dat, Nclasses=Nclasses, dimensions=dimensions, modeltype="MLC1", ref.item=c(5,14,23), glob.conv=.0005, conv1=.0005) round( cbind( mod1$theta.k, mod1$pi.k ), 3 ) ## [,1] [,2] [,3] [,4] ## [1,] -2.776 -3.791 -2.667 0.250 ## [2,] -0.989 -0.605 0.957 0.151 ## [3,] 0.332 0.418 -0.046 0.246 ## [4,] 2.601 0.171 -0.854 0.101 ## [5,] 1.791 2.330 1.844 0.252 cbind( theta.k, pi.k ) ## pi.k ## [1,] -3.0 -4.1 -2.8 0.20 ## [2,] 1.7 2.3 1.8 0.25 ## [3,] 0.2 0.4 -0.1 0.25 ## [4,] 2.6 0.1 -0.9 0.10 ## [5,] -1.1 -0.7 0.9 0.15 # plot class locations plot( 1:3, mod1$theta.k[1,], xlim=c(1,3), ylim=c(-5,3), col=1, pch=1, type="n", axes=FALSE, xlab="Dimension", ylab="Location") axis(1, 1:3 ) ; axis(2) ; axis(4) for (cc in 1:Nclasses){ # cc <- 1 lines(1:3, mod1$theta.k[cc,], col=cc, lty=cc ) points(1:3, mod1$theta.k[cc,], col=cc, pch=cc ) } ## Not run: #------ # estimate model with gdm function in CDM package library(CDM) # define Q-matrix Qmatrix <- matrix(0,3*I,3) Qmatrix[ cbind( 1:(3*I), rep(1:3, each=I) ) ] <- 1 set.seed(9176) # random starting values for theta locations theta.k <- matrix( 2*stats::rnorm(5*3), 5, 3 ) colnames(theta.k) <- c("Dim1","Dim2","Dim3") # try possibly different starting values # estimate model in CDM b.constraint <- cbind( c(5,14,23), 1, 0 ) mod2 <- CDM::gdm( dat, theta.k=theta.k, b.constraint=b.constraint, skillspace="est", irtmodel="1PL", Qmatrix=Qmatrix) summary(mod2) #------ # estimate model with MultiLCIRT package miceadds::library_install("MultiLCIRT") # define matrix to allocate each item to one dimension multi1 <- matrix( 1:(3*I), nrow=3, byrow=TRUE ) # define reference items in item-dimension allocation matrix multi1[ 1, c(1,5) ] <- c(5,1) multi1[ 2, c(10,14) - 9 ] <- c(14,9) multi1[ 3, c(19,23) - 18 ] <- c(23,19) # Rasch model with 5 latent classes (random start: start=1) mod3 <- MultiLCIRT::est_multi_poly(S=dat,k=5, # k=5 ability levels start=1,link=1,multi=multi1,tol=10^-5, output=TRUE, disp=TRUE, fort=TRUE) # estimated location points and class probabilities in MultiLCIRT cbind( t( mod3$Th ), mod3$piv ) # compare results with rasch.mirtlc cbind( mod1$theta.k, mod1$pi.k ) # simulated data parameters cbind( theta.k, pi.k ) #---- # estimate model with cutomized input in mirt library(mirt) #-- define Theta design matrix for 5 classes Theta <- diag(5) Theta <- cbind( Theta, Theta, Theta ) r1 <- rownames(Theta) <- paste0("C",1:5) colnames(Theta) <- c( paste0(r1, "D1"), paste0(r1, "D2"), paste0(r1, "D3") ) ## C1D1 C2D1 C3D1 C4D1 C5D1 C1D2 C2D2 C3D2 C4D2 C5D2 C1D3 C2D3 C3D3 C4D3 C5D3 ## C1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 ## C2 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 ## C3 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 ## C4 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 ## C5 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 #-- define mirt model I <- ncol(dat) # I=27 mirtmodel <- mirt::mirt.model(" C1D1=1-9 \n C2D1=1-9 \n C3D1=1-9 \n C4D1=1-9 \n C5D1=1-9 C1D2=10-18 \n C2D2=10-18 \n C3D2=10-18 \n C4D2=10-18 \n C5D2=10-18 C1D3=19-27 \n C2D3=19-27 \n C3D3=19-27 \n C4D3=19-27 \n C5D3=19-27 CONSTRAIN=(1-9,a1),(1-9,a2),(1-9,a3),(1-9,a4),(1-9,a5), (10-18,a6),(10-18,a7),(10-18,a8),(10-18,a9),(10-18,a10), (19-27,a11),(19-27,a12),(19-27,a13),(19-27,a14),(19-27,a15) ") #-- get initial parameter values mod.pars <- mirt::mirt(dat, model=mirtmodel, pars="values") #-- redefine initial parameter values # set all d parameters initially to zero ind <- which( ( mod.pars$name=="d" ) ) mod.pars[ ind,"value" ] <- 0 # fix item difficulties of reference items to zero mod.pars[ ind[ c(5,14,23) ], "est"] <- FALSE mod.pars[ind,] # initial item parameters of cluster locations (a1,...,a15) ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11) ) ) & ( mod.pars$est ) ) mod.pars[ind,"value"] <- -2 ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11)+1 ) ) & ( mod.pars$est ) ) mod.pars[ind,"value"] <- -1 ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11)+2 ) ) & ( mod.pars$est ) ) mod.pars[ind,"value"] <- 0 ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11)+3 ) ) & ( mod.pars$est ) ) mod.pars[ind,"value"] <- 1 ind <- which( ( mod.pars$name %in% paste0("a", c(1,6,11)+4 ) ) & ( mod.pars$est ) ) mod.pars[ind,"value"] <- 0 #-- define prior for latent class analysis lca_prior <- function(Theta,Etable){ TP <- nrow(Theta) if ( is.null(Etable) ){ prior <- rep( 1/TP, TP ) } if ( ! is.null(Etable) ){ prior <- ( rowSums(Etable[, seq(1,2*I,2)]) + rowSums(Etable[,seq(2,2*I,2)]) )/I } prior <- prior / sum(prior) return(prior) } #-- estimate model in mirt mod4 <- mirt::mirt(dat, mirtmodel, pars=mod.pars, verbose=TRUE, technical=list( customTheta=Theta, customPriorFun=lca_prior, MAXQUAD=1E20) ) # correct number of estimated parameters mod4@nest <- as.integer(sum(mod.pars$est) + nrow(Theta)-1 ) # extract coefficients # source.all(pfsirt) cmod4 <- sirt::mirt.wrapper.coef(mod4) # estimated item difficulties dfr <- data.frame( "sim"=b, "mirt"=-cmod4$coef$d, "sirt"=mod1$item$thresh ) round( dfr, 4 ) ## sim mirt sirt ## 1 -1.500 -1.3782 -1.3382 ## 2 -1.125 -1.0059 -0.9774 ## 3 -0.750 -0.6157 -0.6016 ## 4 -0.375 -0.2099 -0.2060 ## 5 0.000 0.0000 0.0000 ## 6 0.375 0.5085 0.4984 ## 7 0.750 0.8661 0.8504 ## 8 1.125 1.3079 1.2847 ## 9 1.500 1.5891 1.5620 ## [...] #-- reordering estimated latent clusters to make solutions comparable #* extract estimated cluster locations from sirt order.sirt <- c(1,5,3,4,2) # sort(order.sirt) round(mod1$trait[,1:3],3) dfr <- data.frame( "sim"=theta.k, mod1$trait[order.sirt,1:3] ) colnames(dfr)[4:6] <- paste0("sirt",1:3) #* extract estimated cluster locations from mirt c4 <- cmod4$coef[, paste0("a",1:15) ] c4 <- apply( c4,2, FUN=function(ll){ ll[ ll!=0 ][1] } ) trait.loc <- matrix(c4,5,3) order.mirt <- c(1,4,3,5,2) # sort(order.mirt) dfr <- cbind( dfr, trait.loc[ order.mirt, ] ) colnames(dfr)[7:9] <- paste0("mirt",1:3) # compare estimated cluster locations round(dfr,3) ## sim.1 sim.2 sim.3 sirt1 sirt2 sirt3 mirt1 mirt2 mirt3 ## 1 -3.0 -4.1 -2.8 -2.776 -3.791 -2.667 -2.856 -4.023 -2.741 ## 5 1.7 2.3 1.8 1.791 2.330 1.844 1.817 2.373 1.869 ## 3 0.2 0.4 -0.1 0.332 0.418 -0.046 0.349 0.421 -0.051 ## 4 2.6 0.1 -0.9 2.601 0.171 -0.854 2.695 0.166 -0.876 ## 2 -1.1 -0.7 0.9 -0.989 -0.605 0.957 -1.009 -0.618 0.962 #* compare estimated cluster sizes dfr <- data.frame( "sim"=pi.k, "sirt"=mod1$pi.k[order.sirt,1], "mirt"=mod4@Prior[[1]][ order.mirt] ) round(dfr,4) ## sim sirt mirt ## 1 0.20 0.2502 0.2500 ## 2 0.25 0.2522 0.2511 ## 3 0.25 0.2458 0.2494 ## 4 0.10 0.1011 0.0986 ## 5 0.15 0.1507 0.1509 ############################################################################# # EXAMPLE 5: Dataset data.si04 from Bartolucci et al. (2012) ############################################################################# data(data.si04) # define reference items ref.item <- c(7,17,25,44,64) dimensions <- data.si04$itempars$dim # estimate a Rasch latent class with 9 classes mod1 <- sirt::rasch.mirtlc( data.si04$data, Nclasses=9, dimensions=dimensions, modeltype="MLC1", ref.item=ref.item, glob.conv=.005, conv1=.005, nstarts=1, mmliter=200 ) # compare estimated distribution with simulated distribution round( cbind( mod1$theta.k, mod1$pi.k ), 4 ) # estimated ## [,1] [,2] [,3] [,4] [,5] [,6] ## [1,] -3.6043 -5.1323 -5.3022 -6.8255 -4.3611 0.1341 ## [2,] 0.2083 -2.7422 -2.8754 -5.3416 -2.5085 0.1573 ## [3,] -2.8641 -4.0272 -5.0580 -0.0340 -0.9113 0.1163 ## [4,] -0.3575 -2.0081 -1.7431 1.2992 -0.1616 0.0751 ## [5,] 2.9329 0.3662 -1.6516 -3.0284 0.1844 0.1285 ## [6,] 1.5092 -2.0461 -4.3093 1.0481 1.0806 0.1094 ## [7,] 3.9899 3.1955 -4.0010 1.8879 2.2988 0.1460 ## [8,] 4.3062 0.7080 -1.2324 1.4351 2.0893 0.1332 ## [9,] 5.0855 4.1214 -0.9141 2.2744 1.5314 0.0000 round(d2,4) # simulated ## class A B C D E pi ## [1,] 1 -3.832 -5.399 -5.793 -7.042 -4.511 0.1323 ## [2,] 2 -2.899 -4.217 -5.310 -0.055 -0.915 0.1162 ## [3,] 3 -0.376 -2.137 -1.847 1.273 -0.078 0.0752 ## [4,] 4 0.208 -2.934 -3.011 -5.526 -2.511 0.1583 ## [5,] 5 1.536 -2.137 -4.606 1.045 1.143 0.1092 ## [6,] 6 2.042 -0.573 -0.404 -4.331 -1.044 0.0471 ## [7,] 7 3.853 0.841 -2.993 -2.746 0.803 0.0822 ## [8,] 8 4.204 3.296 -4.328 1.892 2.419 0.1453 ## [9,] 9 4.466 0.700 -1.334 1.439 2.161 0.1343 ## End(Not run)
This function employs marginal maximum likelihood estimation
of item response models for dichotomous data.
First, the Rasch type model (generalized
item response model) can be estimated. The generalized logistic
link function (Stukel, 1988) can be estimated or fixed for conducting
IRT with different link functions than the logistic one. The Four-Parameter
logistic item response model is a special case of this model
(Loken & Rulison, 2010). Second, Ramsay's quotient model (Ramsay, 1989)
can be estimated by specifying irtmodel="ramsay.qm"
.
Third, quite general item response functions can be estimated
in a nonparametric framework (Rossi, Wang & Ramsay, 2002).
Fourth, pseudo-likelihood estimation for fractional item responses can be
conducted for Rasch type models. Fifth, a simple two-dimensional
missing data item response model (irtmodel='missing1'
;
Mislevy & Wu, 1996) can be estimated.
See Details for more explanations.
rasch.mml2( dat, theta.k=seq(-6,6,len=21), group=NULL, weights=NULL, constraints=NULL, glob.conv=10^(-5), parm.conv=10^(-4), mitermax=4, mmliter=1000, progress=TRUE, fixed.a=rep(1,ncol(dat)), fixed.c=rep(0,ncol(dat)), fixed.d=rep(1,ncol(dat)), fixed.K=rep(3,ncol(dat)), b.init=NULL, est.a=NULL, est.b=NULL, est.c=NULL, est.d=NULL, min.b=-99, max.b=99, min.a=-99, max.a=99, min.c=0, max.c=1, min.d=0, max.d=1, prior.b=NULL, prior.a=NULL, prior.c=NULL, prior.d=NULL, est.K=NULL, min.K=1, max.K=20, min.delta=-20, max.delta=20, beta.init=NULL, min.beta=-8, pid=1:(nrow(dat)), trait.weights=NULL, center.trait=TRUE, center.b=FALSE, alpha1=0, alpha2=0,est.alpha=FALSE, equal.alpha=FALSE, designmatrix=NULL, alpha.conv=parm.conv, numdiff.parm=0.00001, numdiff.alpha.parm=numdiff.parm, distribution.trait="normal", Qmatrix=NULL, variance.fixed=NULL, variance.init=NULL, mu.fixed=cbind(seq(1,ncol(Qmatrix)),rep(0,ncol(Qmatrix))), irtmodel="raschtype", npformula=NULL, npirt.monotone=TRUE, use.freqpatt=is.null(group), delta.miss=0, est.delta=rep(NA,ncol(dat)), nimps=0, ... ) ## S3 method for class 'rasch.mml' summary(object, file=NULL, ...) ## S3 method for class 'rasch.mml' plot(x, items=NULL, xlim=NULL, main=NULL, ...) ## S3 method for class 'rasch.mml' anova(object,...) ## S3 method for class 'rasch.mml' logLik(object,...) ## S3 method for class 'rasch.mml' IRT.irfprob(object,...) ## S3 method for class 'rasch.mml' IRT.likelihood(object,...) ## S3 method for class 'rasch.mml' IRT.posterior(object,...) ## S3 method for class 'rasch.mml' IRT.modelfit(object,...) ## S3 method for class 'rasch.mml' IRT.expectedCounts(object,...) ## S3 method for class 'IRT.modelfit.rasch.mml' summary(object,...)
rasch.mml2( dat, theta.k=seq(-6,6,len=21), group=NULL, weights=NULL, constraints=NULL, glob.conv=10^(-5), parm.conv=10^(-4), mitermax=4, mmliter=1000, progress=TRUE, fixed.a=rep(1,ncol(dat)), fixed.c=rep(0,ncol(dat)), fixed.d=rep(1,ncol(dat)), fixed.K=rep(3,ncol(dat)), b.init=NULL, est.a=NULL, est.b=NULL, est.c=NULL, est.d=NULL, min.b=-99, max.b=99, min.a=-99, max.a=99, min.c=0, max.c=1, min.d=0, max.d=1, prior.b=NULL, prior.a=NULL, prior.c=NULL, prior.d=NULL, est.K=NULL, min.K=1, max.K=20, min.delta=-20, max.delta=20, beta.init=NULL, min.beta=-8, pid=1:(nrow(dat)), trait.weights=NULL, center.trait=TRUE, center.b=FALSE, alpha1=0, alpha2=0,est.alpha=FALSE, equal.alpha=FALSE, designmatrix=NULL, alpha.conv=parm.conv, numdiff.parm=0.00001, numdiff.alpha.parm=numdiff.parm, distribution.trait="normal", Qmatrix=NULL, variance.fixed=NULL, variance.init=NULL, mu.fixed=cbind(seq(1,ncol(Qmatrix)),rep(0,ncol(Qmatrix))), irtmodel="raschtype", npformula=NULL, npirt.monotone=TRUE, use.freqpatt=is.null(group), delta.miss=0, est.delta=rep(NA,ncol(dat)), nimps=0, ... ) ## S3 method for class 'rasch.mml' summary(object, file=NULL, ...) ## S3 method for class 'rasch.mml' plot(x, items=NULL, xlim=NULL, main=NULL, ...) ## S3 method for class 'rasch.mml' anova(object,...) ## S3 method for class 'rasch.mml' logLik(object,...) ## S3 method for class 'rasch.mml' IRT.irfprob(object,...) ## S3 method for class 'rasch.mml' IRT.likelihood(object,...) ## S3 method for class 'rasch.mml' IRT.posterior(object,...) ## S3 method for class 'rasch.mml' IRT.modelfit(object,...) ## S3 method for class 'rasch.mml' IRT.expectedCounts(object,...) ## S3 method for class 'IRT.modelfit.rasch.mml' summary(object,...)
dat |
An |
theta.k |
Optional vector of discretized theta values. For multidimensional
IRT models with |
group |
Vector of integers with group identifiers in multiple group estimation.
The multiple group does not work for |
weights |
Optional vector of person weights (sample weights). |
constraints |
Constraints on |
glob.conv |
Convergence criterion for deviance |
parm.conv |
Convergence criterion for item parameters |
mitermax |
Maximum number of iterations in M step. This argument does only
apply for the estimation of the |
mmliter |
Maximum number of iterations |
progress |
Should progress be displayed at the console? |
fixed.a |
Fixed or initial |
fixed.c |
Fixed or initial |
fixed.d |
Fixed or initial |
fixed.K |
Fixed or initial |
b.init |
Initial |
est.a |
Vector of integers which indicate which |
est.b |
Vector of integers which indicate which |
est.c |
Vector of integers which indicate which |
est.d |
Vector of integers which indicate which |
min.b |
Minimal |
max.b |
Maximal |
min.a |
Minimal |
max.a |
Maximal |
min.c |
Minimal |
max.c |
Maximal |
min.d |
Minimal |
max.d |
Maximal |
prior.b |
Optional prior distribution for |
prior.a |
Optional prior distribution for |
prior.c |
Optional prior distribution for |
prior.d |
Optional prior distribution for |
est.K |
Vector of integers which indicate which |
min.K |
Minimal |
max.K |
Maximal |
min.delta |
Minimal |
max.delta |
Maximal |
beta.init |
Optional vector of initial |
min.beta |
Minimum |
pid |
Optional vector of person identifiers |
trait.weights |
Optional vector of trait weights for a fixing the trait distribution. |
center.trait |
Should the trait distribution be centered |
center.b |
An optional logical indicating whether |
alpha1 |
Fixed or initial |
alpha2 |
Fixed or initial |
est.alpha |
Should |
equal.alpha |
Estimate |
designmatrix |
Design matrix for item difficulties |
alpha.conv |
Convergence criterion for |
numdiff.parm |
Parameter for numerical differentiation |
numdiff.alpha.parm |
Parameter for numerical differentiation for |
distribution.trait |
Assumed trait distribution. The default is the normal
distribution ( |
Qmatrix |
The Q-matrix |
variance.fixed |
Matrix for fixing covariance matrix (See Examples) |
variance.init |
Optional initial covariance matrix |
mu.fixed |
Matrix for fixing mean vector (See Examples) |
irtmodel |
Specify estimable IRT models: |
npformula |
A string or a vector which contains R formula objects for specifying
the item response function. For example, |
npirt.monotone |
Should nonparametrically estimated item response functions
be monotone? The default is |
use.freqpatt |
A logical if frequencies of pattern should be used or not.
The default is |
delta.miss |
Missingness parameter |
est.delta |
Vector with indices indicating the |
nimps |
Number of imputed datasets of item responses |
object |
Object of class |
x |
Object of class |
items |
Vector of integer or item names which should be plotted |
xlim |
Specification for |
main |
Title of the plot |
file |
Optional file name for summary output |
... |
Further arguments to be passed |
The item response function of the generalized item response model
(irtmodel="raschtype"
; Stukel, 1988) can be written as
where is the generalized logistic link function depending
on parameters
and
.
For the most important link functions the specifications are (Stukel, 1988):
logistic link function: and
probit link function: and
loglog link function: and
cloglog link function: and
See pgenlogis
for exact transformation formulas of
the mentioned link functions.
A -dimensional model can also be specified
but only allows for between item dimensionality
(one item loads on one and only dimension).
Setting
,
and
for all items
,
an additive item response model
is estimated.
Ramsay's quotient model (irtmodel="qm.ramsay"
) uses
the item response function
Quite general unidimensional item response models can be estimated
in a nonparametric framework (irtmodel="npirt"
). The response
functions are a linear combination of transformed
values
Where is a design matrix of
and
are item parameters to be estimated.
The formula
can be specified in the R formula
framework (see Example 3, Model 3c).
Pseudo-likelihood estimation can be conducted for fractional item response data
as input (i.e. some item response do have values
between 0 and 1). Then the pseudo-likelihood
for person
is defined as
Note that for dichotomous responses this term corresponds to the ordinary likelihood. See Example 7.
A special two-dimensional missing data item response model (irtmodel="missing1"
)
is implemented according to Mislevy and Wu (1996).
Besides an unidimensional ability ,
an individual response propensity
is proposed. We define
item responses
and response indicators
indicating whether
item responses
are observed or not. Denoting the logistic function
by
, the item response model for ability is defined as
We also define a measurement model for response indicators which depends
on the item response
itself:
If , then the probability of responding to an item is independent
of the incompletely observed item
which is an
item response model with nonignorable missings (Holman & Glas, 2005;
see also Pohl, Graefe & Rose, 2014).
If
is a large negative number (e.g.
), then
it follows
and as a consequence it holds that
,
which is equivalent to treating
all missing item responses as incorrect. The missingness parameter
can be specified
by the user and studied as a sensitivity analysis under different
missing not at random assumptions or can be estimated by choosing
est.delta=TRUE
.
A list with following entries
dat |
Original data frame |
item |
Estimated item parameters in the generalized item response model |
item2 |
Estimated item parameters for Ramsay's quotient model |
trait.distr |
Discretized ability distribution points and probabilities |
mean.trait |
Estimated mean vector |
sd.trait |
Estimated standard deviations |
skewness.trait |
Estimated skewnesses |
deviance |
Deviance |
pjk |
Estimated probabilities of item correct evaluated at |
rprobs |
Item response probabilities like in |
person |
Person parameter estimates: mode ( |
pid |
Person identifier |
ability.est.pattern |
Response pattern estimates |
f.qk.yi |
Individual posterior distribution |
f.yi.qk |
Individual likelihood |
fixed.a |
Estimated |
fixed.c |
Estimated |
G |
Number of groups |
alpha1 |
Estimated |
alpha2 |
Estimated |
se.b |
Standard error of |
se.a |
Standard error of |
se.c |
Standard error of |
se.d |
Standard error of |
se.alpha |
Standard error of |
se.K |
Standard error of |
iter |
Number of iterations |
reliability |
EAP reliability |
irtmodel |
Type of estimated item response model |
D |
Number of dimensions |
mu |
Mean vector (for multidimensional models) |
Sigma.cov |
Covariance matrix (for multdimensional models) |
theta.k |
Grid of discretized ability distributions |
trait.weights |
Fixed vector of probabilities for the ability distribution |
pi.k |
Trait distribution |
ic |
Information criteria |
esttype |
Estimation type: |
... |
Multiple group estimation is not possible for Ramsay's quotient model and multdimensional models.
Holman, R., & Glas, C. A. (2005). Modelling non-ignorable missing-data mechanisms with item response theory models. British Journal of Mathematical and Statistical Psychology, 58(1), 1-17. doi:10.1348/000711005X47168
Loken, E., & Rulison, K. L. (2010). Estimation of a four-parameter item response theory model. British Journal of Mathematical and Statistical Psychology, 63(3), 509-525. doi:10.1348/000711009X474502
Mislevy, R. J., & Wu, P. K. (1996). Missing responses and IRT ability estimation: Omits, choice, time Limits, and adaptive testing. ETS Research Report ETS RR-96-30. Princeton, ETS. doi:10.1002/j.2333-8504.1996.tb01708.x
Pohl, S., Graefe, L., & Rose, N. (2014). Dealing with omitted and not-reached items in competence tests evaluating approaches accounting for missing responses in item response theory models. Educational and Psychological Measurement, 74(3), 423-452. doi:10.1177/0013164413504926
Ramsay, J. O. (1989). A comparison of three simple test theory models. Psychometrika, 54, 487-499. doi:10.1007/BF02294631
Rossi, N., Wang, X., & Ramsay, J. O. (2002). Nonparametric item response function estimates with the EM algorithm. Journal of Educational and Behavioral Statistics, 27(3), 291-317. doi:10.3102/10769986027003291
Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Association, 83(402), 426-431. doi:10.1080/01621459.1988.10478613
van der Maas, H. J. L., Molenaar, D., Maris, G., Kievit, R. A., & Borsboom, D. (2011). Cognitive psychology meets psychometric theory: On the relation between process models for decision making and latent variable models for individual differences. Psychological Review, 118(2), 339-356. doi: 10.1037/a0022749
Simulate the generalized logistic Rasch model with sim.raschtype
.
Simulate Ramsay's quotient model with sim.qm.ramsay
.
Simulate locally dependent item response data using sim.rasch.dep
.
For an assessment of global model fit see modelfit.sirt
.
See CDM::itemfit.sx2
for item fit
statistics.
############################################################################# # EXAMPLE 1: Reading dataset ############################################################################# library(CDM) data(data.read) dat <- data.read I <- ncol(dat) # number of items # Rasch model mod1 <- sirt::rasch.mml2( dat ) summary(mod1) plot( mod1 ) # plot all items # title 'Rasch model', display curves from -3 to 3 only for items 1, 5 and 8 plot(mod1, main="Rasch model Items 1, 5 and 8", xlim=c(-3,3), items=c(1,5,8) ) # Rasch model with constraints on item difficulties # set item parameters of A1 and C3 equal to -2 constraints <- data.frame( c("A1","C3"), c(-2,-2) ) mod1a <- sirt::rasch.mml2( dat, constraints=constraints) summary(mod1a) # estimate equal item parameters for 1st and 11th item est.b <- 1:I est.b[11] <- 1 mod1b <- sirt::rasch.mml2( dat, est.b=est.b ) summary(mod1b) # estimate Rasch model with skew trait distribution mod1c <- sirt::rasch.mml2( dat, distribution.trait="smooth3") summary(mod1c) # 2PL model mod2 <- sirt::rasch.mml2( dat, est.a=1:I ) summary(mod2) plot(mod2) # plot 2PL item response curves # extract individual likelihood llmod2 <- IRT.likelihood(mod2) str(llmod2) ## Not run: library(CDM) # model comparisons CDM::IRT.compareModels(mod1, mod1c, mod2 ) anova(mod1,mod2) # assess model fit smod1 <- IRT.modelfit(mod1) smod2 <- IRT.modelfit(mod2) IRT.compareModels(smod1, smod2) # set some bounds for a and b parameters mod2a <- sirt::rasch.mml2( dat, est.a=1:I, min.a=.7, max.a=2, min.b=-2 ) summary(mod2a) # 3PL model mod3 <- sirt::rasch.mml2( dat, est.a=1:I, est.c=1:I, mmliter=400 # maximal 400 iterations ) summary(mod3) # 3PL model with fixed guessing paramters of .25 and equal slopes mod4 <- sirt::rasch.mml2( dat, fixed.c=rep( .25, I ) ) summary(mod4) # 3PL model with equal guessing paramters for all items mod5 <- sirt::rasch.mml2( dat, est.c=rep(1, I ) ) summary(mod5) # difficulty + guessing model mod6 <- sirt::rasch.mml2( dat, est.c=1:I ) summary(mod6) # 4PL model mod7 <- sirt::rasch.mml2( dat, est.a=1:I, est.c=1:I, est.d=1:I, min.d=.95, max.c=.25) # set minimal d and maximal c parameter to .95 and .25 summary(mod7) # 4PL model with prior distributions mod7b <- sirt::rasch.mml2( dat, est.a=1:I, est.c=1:I, est.d=1:I, prior.a=c(1,2), prior.c=c(5,17), prior.d=c(20,2) ) summary(mod7b) # constrained 4PL model # equal slope, guessing and slipping parameters mod8 <- sirt::rasch.mml2( dat,est.c=rep(1,I), est.d=rep(1,I) ) summary(mod8) # estimation of an item response model with an # uniform theta distribution theta.k <- seq( 0.01, .99, len=20 ) trait.weights <- rep( 1/length(theta.k), length(theta.k) ) mod9 <- sirt::rasch.mml2( dat, theta.k=theta.k, trait.weights=trait.weights, normal.trait=FALSE, est.a=1:12 ) summary(mod9) ############################################################################# # EXAMPLE 2: Longitudinal data ############################################################################# data(data.long) dat <- data.long[,-1] # define Q loading matrix Qmatrix <- matrix( 0, 12, 2 ) Qmatrix[1:6,1] <- 1 # T1 items Qmatrix[7:12,2] <- 1 # T2 items # define restrictions on item difficulties est.b <- c(1,2,3,4,5,6, 3,4,5,6,7,8) mu.fixed <- cbind(1,0) # set first mean to 0 for identification reasons # Model 1: 2-dimensional Rasch model mod1 <- sirt::rasch.mml2( dat, Qmatrix=Qmatrix, miterstep=4, est.b=est.b, mu.fixed=mu.fixed, mmliter=30 ) summary(mod1) plot(mod1) ## Plot function is only applicable for unidimensional models ## End(Not run) ############################################################################# # EXAMPLE 3: One group, estimation of alpha parameter in the generalized logistic model ############################################################################# # simulate theta values set.seed(786) N <- 1000 # number of persons theta <- stats::rnorm( N, sd=1.5 ) # N persons with SD 1.5 b <- seq( -2, 2, len=15) # simulate data dat <- sirt::sim.raschtype( theta=theta, b=b, alpha1=0, alpha2=-0.3 ) # estimating alpha parameters mod1 <- sirt::rasch.mml2( dat, est.alpha=TRUE, mmliter=30 ) summary(mod1) plot(mod1) ## Not run: # fixed alpha parameters mod1b <- sirt::rasch.mml2( dat, est.alpha=FALSE, alpha1=0, alpha2=-.3 ) summary(mod1b) # estimation with equal alpha parameters mod1c <- sirt::rasch.mml2( dat, est.alpha=TRUE, equal.alpha=TRUE ) summary(mod1c) # Ramsay QM mod2a <- sirt::rasch.mml2( dat, irtmodel="ramsay.qm" ) summary(mod2a) ## End(Not run) # Ramsay QM with estimated K parameters mod2b <- sirt::rasch.mml2( dat, irtmodel="ramsay.qm", est.K=1:15, mmliter=30) summary(mod2b) plot(mod2b) ## Not run: # nonparametric estimation of monotone item response curves mod3a <- sirt::rasch.mml2( dat, irtmodel="npirt", mmliter=100, theta.k=seq( -3, 3, len=10) ) # evaluations at 10 theta grid points # nonparametric ICC of first 4 items round( t(mod3a$pjk)[1:4,], 3 ) summary(mod3a) plot(mod3a) # nonparametric IRT estimation without monotonicity assumption mod3b <- sirt::rasch.mml2( dat, irtmodel="npirt", mmliter=10, theta.k=seq( -3, 3, len=10), npirt.monotone=FALSE) plot(mod3b) # B-Spline estimation of ICCs library(splines) mod3c <- sirt::rasch.mml2( dat, irtmodel="npirt", npformula="y~bs(theta,df=3)", theta.k=seq(-3,3,len=15) ) summary(mod3c) round( t(mod3c$pjk)[1:6,], 3 ) plot(mod3c) # estimation of quadratic item response functions: ~ theta + I( theta^2) mod3d <- sirt::rasch.mml2( dat, irtmodel="npirt", npformula="y~theta + I(theta^2)" ) summary(mod3d) plot(mod3d) # estimation of a stepwise ICC function # ICCs are constant on the theta domains: [-Inf,-1], [-1,1], [1,Inf] mod3e <- sirt::rasch.mml2( dat, irtmodel="npirt", npformula="y~I(theta>-1 )+I(theta>1)" ) summary(mod3e) plot(mod3e, xlim=c(-2.5,2.5) ) # 2PL model mod4 <- sirt::rasch.mml2( dat, est.a=1:15) summary(mod4) ############################################################################# # EXAMPLE 4: Two groups, estimation of generalized logistic model ############################################################################# # simulate generalized logistic Rasch model in two groups set.seed(8765) N1 <- 1000 # N1=1000 persons in group 1 N2 <- 500 # N2=500 persons in group 2 dat1 <- sirt::sim.raschtype( theta=stats::rnorm( N1, sd=1.5 ), b=b, alpha1=-0.3, alpha2=0) dat2 <- sirt::sim.raschtype( theta=stats::rnorm( N2, mean=-.5, sd=.75), b=b, alpha1=-0.3, alpha2=0) dat1 <- rbind( dat1, dat2 ) group <- c( rep(1,N1), rep(2,N2)) mod1 <- sirt::rasch.mml2( dat1, parm.conv=.0001, group=group, est.alpha=TRUE ) summary(mod1) ############################################################################# # EXAMPLE 5: Multidimensional model ############################################################################# #*** # (1) simulate data set.seed(785) library(mvtnorm) N <- 500 theta <- mvtnorm::rmvnorm( N,mean=c(0,0), sigma=matrix( c(1.45,.5,.5,1.7), 2, 2 )) I <- 10 # 10 items load on the first dimension p1 <- stats::plogis( outer( theta[,1], seq( -2, 2, len=I ), "-" ) ) resp1 <- 1 * ( p1 > matrix( stats::runif( N*I ), nrow=N, ncol=I ) ) # 10 items load on the second dimension p1 <- stats::plogis( outer( theta[,2], seq( -2, 2, len=I ), "-" ) ) resp2 <- 1 * ( p1 > matrix( stats::runif( N*I ), nrow=N, ncol=I ) ) #Combine the two sets of items into one response matrix resp <- cbind(resp1,resp2) colnames(resp) <- paste("I", 1:(2*I), sep="") dat <- resp # define Q-matrix Qmatrix <- matrix( 0, 2*I, 2 ) Qmatrix[1:I,1] <- 1 Qmatrix[1:I+I,2] <- 1 #*** # (2) estimation of models # 2-dimensional Rasch model mod1 <- sirt::rasch.mml2( dat, Qmatrix=Qmatrix ) summary(mod1) # 2-dimensional 2PL model mod2 <- sirt::rasch.mml2( dat, Qmatrix=Qmatrix, est.a=1:(2*I) ) summary(mod2) # estimation with some fixed variances and covariances # set variance of 1st dimension to 1 and # covariance to zero variance.fixed <- matrix( cbind(c(1,1), c(1,2), c(1,0)), byrow=FALSE, ncol=3 ) mod3 <- sirt::rasch.mml2( dat, Qmatrix=Qmatrix, variance.fixed=variance.fixed ) summary(mod3) # constraints on item difficulties # useful for example in longitudinal linking est.b <- c( 1:I, 1:I ) # equal indices correspond to equally estimated item parameters mu.fixed <- cbind( 1, 0 ) mod4 <- sirt::rasch.mml2( dat, Qmatrix=Qmatrix, est.b=est.b, mu.fixed=mu.fixed ) summary(mod4) ############################################################################# # EXAMPLE 6: Two booklets with same items but with item context effects. # Therefore, item slopes and item difficulties are assumed to be shifted in the # second design group. ############################################################################# #*** # simulate data set.seed(987) I <- 10 # number of items # define person design groups 1 and 2 n1 <- 700 n2 <- 1500 # item difficulties group 1 b1 <- seq(-1.5,1.5,length=I) # item slopes group 1 a1 <- rep(1, I) # simulate data group 1 dat1 <- sirt::sim.raschtype( stats::rnorm(n1), b=b1, fixed.a=a1 ) colnames(dat1) <- paste0("I", 1:I, "des1" ) # group 2 b2 <- b1 - .15 a2 <- 1.1*a1 # Item parameters are slightly transformed in the second group # compared to the first group. This indicates possible item context effects. # simulate data group 2 dat2 <- sirt::sim.raschtype( stats::rnorm(n2), b=b2, fixed.a=a2 ) colnames(dat2) <- paste0("I", 1:I, "des2" ) # define joint dataset dat <- matrix( NA, nrow=n1+n2, ncol=2*I) colnames(dat) <- c( colnames(dat1), colnames(dat2) ) dat[ 1:n1, 1:I ] <- dat1 dat[ n1 + 1:n2, I + 1:I ] <- dat2 # define group identifier group <- c( rep(1,n1), rep(2,n2) ) #*** # Model 1: Rasch model two groups itemindex <- rep( 1:I, 2 ) mod1 <- sirt::rasch.mml2( dat, group=group, est.b=itemindex ) summary(mod1) #*** # Model 2: two item slope groups and designmatrix for intercepts designmatrix <- matrix( 0, 2*I, I+1) designmatrix[ ( 1:I )+ I,1:I] <- designmatrix[1:I,1:I] <- diag(I) designmatrix[ ( 1:I )+ I,I+1] <- 1 mod2 <- sirt::rasch.mml2( dat, est.a=rep(1:2,each=I), designmatrix=designmatrix ) summary(mod2) ############################################################################# # EXAMPLE 7: PIRLS dataset with missing responses ############################################################################# data(data.pirlsmissing) items <- grep( "R31", colnames(data.pirlsmissing), value=TRUE ) I <- length(items) dat <- data.pirlsmissing #**** # Model 1: recode missing responses as missing (missing are ignorable) # data recoding dat1 <- dat dat1[ dat1==9 ] <- NA # estimate Rasch model mod1 <- sirt::rasch.mml2( dat1[,items], weights=dat$studwgt, group=dat$country ) summary(mod1) ## Mean=0 0.341 -0.134 0.219 ## SD=1.142 1.166 1.197 0.959 #**** # Model 2: recode missing responses as wrong # data recoding dat2 <- dat dat2[ dat2==9 ] <- 0 # estimate Rasch model mod2 <- sirt::rasch.mml2( dat2[,items], weights=dat$studwgt, group=dat$country ) summary(mod2) ## Mean=0 0.413 -0.172 0.446 ## SD=1.199 1.263 1.32 0.996 #**** # Model 3: recode missing responses as rho * P_i( theta ) and # apply pseudo-log-likelihood estimation # Missing item responses are predicted by the model implied probability # P_i( theta ) where theta is the ability estimate when ignoring missings (Model 1) # and rho is an adjustment parameter. rho=0 is equivalent to Model 2 (treating # missing as wrong) and rho=1 is equivalent to Model 1 (treating missing as ignorable). # data recoding dat3 <- dat # simulate theta estimate from posterior distribution theta <- stats::rnorm( nrow(dat3), mean=mod1$person$EAP, sd=mod1$person$SE.EAP ) rho <- .3 # define a rho parameter value of .3 for (ii in items){ ind <- which( dat[,ii]==9 ) dat3[ind,ii] <- rho*stats::plogis( theta[ind] - mod1$item$b[ which( items==ii ) ] ) } # estimate Rasch model mod3 <- sirt::rasch.mml2( dat3[,items], weights=dat$studwgt, group=dat$country ) summary(mod3) ## Mean=0 0.392 -0.153 0.38 ## SD=1.154 1.209 1.246 0.973 #**** # Model 4: simulate missing responses as rho * P_i( theta ) # The definition is the same as in Model 3. But it is now assumed # that the missing responses are 'latent responses'. set.seed(789) # data recoding dat4 <- dat # simulate theta estimate from posterior distribution theta <- stats::rnorm( nrow(dat4), mean=mod1$person$EAP, sd=mod1$person$SE.EAP ) rho <- .3 # define a rho parameter value of .3 for (ii in items){ ind <- which( dat[,ii]==9 ) p3 <- rho*stats::plogis( theta[ind] - mod1$item$b[ which( items==ii ) ] ) dat4[ ind, ii ] <- 1*( stats::runif( length(ind), 0, 1 ) < p3) } # estimate Rasch model mod4 <- sirt::rasch.mml2( dat4[,items], weights=dat$studwgt, group=dat$country ) summary(mod4) ## Mean=0 0.396 -0.156 0.382 ## SD=1.16 1.216 1.253 0.979 #**** # Model 5: recode missing responses for multiple choice items with four alternatives # to 1/4 and apply pseudo-log-likelihood estimation. # Missings for constructed response items are treated as incorrect. # data recoding dat5 <- dat items_mc <- items[ substring( items, 7,7)=="M" ] items_cr <- items[ substring( items, 7,7)=="C" ] for (ii in items_mc){ ind <- which( dat[,ii]==9 ) dat5[ind,ii] <- 1/4 } for (ii in items_cr){ ind <- which( dat[,ii]==9 ) dat5[ind,ii] <- 0 } # estimate Rasch model mod5 <- sirt::rasch.mml2( dat5[,items], weights=dat$studwgt, group=dat$country ) summary(mod5) ## Mean=0 0.411 -0.165 0.435 ## SD=1.19 1.245 1.293 0.995 #*** For the following analyses, we ignore sample weights and the # country grouping. data(data.pirlsmissing) items <- grep( "R31", colnames(data.pirlsmissing), value=TRUE ) dat <- data.pirlsmissing dat1 <- dat dat1[ dat1==9 ] <- 0 #*** Model 6: estimate item difficulties assuming incorrect missing data treatment mod6 <- sirt::rasch.mml2( dat1[,items], mmliter=50 ) summary(mod6) #*** Model 7: reestimate model with constrained item difficulties I <- length(items) constraints <- cbind( 1:I, mod6$item$b ) mod7 <- sirt::rasch.mml2( dat1[,items], constraints=constraints) summary(mod7) #*** Model 8: score all missings responses as missing items dat2 <- dat[,items] dat2[ dat2==9 ] <- NA mod8 <- sirt::rasch.mml2( dat2, constraints=constraints, mu.fixed=NULL ) summary(mod8) #*** Model 9: estimate missing data model 'missing1' assuming a missingness # parameter delta.miss of zero dat2 <- dat[,items] # note that missing item responses must be defined by 9 mod9 <- sirt::rasch.mml2( dat2, constraints=constraints, irtmodel="missing1", theta.k=seq(-5,5,len=10), delta.miss=0, mitermax=4, mu.fixed=NULL ) summary(mod9) #*** Model 10: estimate missing data model with a large negative missing delta parameter #=> This model is equivalent to treating missing responses as wrong mod10 <- sirt::rasch.mml2( dat2, constraints=constraints, irtmodel="missing1", theta.k=seq(-5, 5, len=10), delta.miss=-10, mitermax=4, mmliter=200, mu.fixed=NULL ) summary(mod10) #*** Model 11: choose a missingness delta parameter of -1 mod11 <- sirt::rasch.mml2( dat2, constraints=constraints, irtmodel="missing1", theta.k=seq(-5, 5, len=10), delta.miss=-1, mitermax=4, mmliter=200, mu.fixed=NULL ) summary(mod11) #*** Model 12: estimate joint delta parameter mod12 <- sirt::rasch.mml2( dat2, irtmodel="missing1", mu.fixed=cbind( c(1,2), 0 ), theta.k=seq(-8, 8, len=10), delta.miss=0, mitermax=4, mmliter=30, est.delta=rep(1,I) ) summary(mod12) #*** Model 13: estimate delta parameter in item groups defined by item format est.delta <- 1 + 1 * ( substring( colnames(dat2),7,7 )=="M" ) mod13 <- sirt::rasch.mml2( dat2, irtmodel="missing1", mu.fixed=cbind( c(1,2), 0 ), theta.k=seq(-8, 8, len=10), delta.miss=0, mitermax=4, mmliter=30, est.delta=est.delta ) summary(mod13) #*** Model 14: estimate item specific delta parameter mod14 <- sirt::rasch.mml2( dat2, irtmodel="missing1", mu.fixed=cbind( c(1,2), 0 ), theta.k=seq(-8, 8, len=10), delta.miss=0, mitermax=4, mmliter=30, est.delta=1:I ) summary(mod14) ############################################################################# # EXAMPLE 8: Comparison of different models for polytomous data ############################################################################# data(data.Students, package="CDM") head(data.Students) dat <- data.Students[, paste0("act",1:5) ] I <- ncol(dat) #************************************************** #*** Model 1: Partial Credit Model (PCM) #*** Model 1a: PCM in TAM mod1a <- TAM::tam.mml( dat ) summary(mod1a) #*** Model 1b: PCM in sirt mod1b <- sirt::rm.facets( dat ) summary(mod1b) #*** Model 1c: PCM in mirt mod1c <- mirt::mirt( dat, 1, itemtype=rep("Rasch",I), verbose=TRUE ) print(mod1c) #************************************************** #*** Model 2: Sequential Model (SM): Equal Loadings #*** Model 2a: SM in sirt dat1 <- CDM::sequential.items(dat) resp <- dat1$dat.expand iteminfo <- dat1$iteminfo # fit model mod2a <- sirt::rasch.mml2( resp ) summary(mod2a) #************************************************** #*** Model 3: Sequential Model (SM): Different Loadings #*** Model 3a: SM in sirt mod3a <- sirt::rasch.mml2( resp, est.a=iteminfo$itemindex ) summary(mod3a) #************************************************** #*** Model 4: Generalized partial credit model (GPCM) #*** Model 4a: GPCM in TAM mod4a <- TAM::tam.mml.2pl( dat, irtmodel="GPCM") summary(mod4a) #************************************************** #*** Model 5: Graded response model (GRM) #*** Model 5a: GRM in mirt mod5a <- mirt::mirt( dat, 1, itemtype=rep("graded",I), verbose=TRUE) print(mod5a) # model comparison logLik(mod1a);logLik(mod1b);mod1c@logLik # PCM logLik(mod2a) # SM (Rasch) logLik(mod3a) # SM (GPCM) logLik(mod4a) # GPCM mod5a@logLik # GRM ## End(Not run)
############################################################################# # EXAMPLE 1: Reading dataset ############################################################################# library(CDM) data(data.read) dat <- data.read I <- ncol(dat) # number of items # Rasch model mod1 <- sirt::rasch.mml2( dat ) summary(mod1) plot( mod1 ) # plot all items # title 'Rasch model', display curves from -3 to 3 only for items 1, 5 and 8 plot(mod1, main="Rasch model Items 1, 5 and 8", xlim=c(-3,3), items=c(1,5,8) ) # Rasch model with constraints on item difficulties # set item parameters of A1 and C3 equal to -2 constraints <- data.frame( c("A1","C3"), c(-2,-2) ) mod1a <- sirt::rasch.mml2( dat, constraints=constraints) summary(mod1a) # estimate equal item parameters for 1st and 11th item est.b <- 1:I est.b[11] <- 1 mod1b <- sirt::rasch.mml2( dat, est.b=est.b ) summary(mod1b) # estimate Rasch model with skew trait distribution mod1c <- sirt::rasch.mml2( dat, distribution.trait="smooth3") summary(mod1c) # 2PL model mod2 <- sirt::rasch.mml2( dat, est.a=1:I ) summary(mod2) plot(mod2) # plot 2PL item response curves # extract individual likelihood llmod2 <- IRT.likelihood(mod2) str(llmod2) ## Not run: library(CDM) # model comparisons CDM::IRT.compareModels(mod1, mod1c, mod2 ) anova(mod1,mod2) # assess model fit smod1 <- IRT.modelfit(mod1) smod2 <- IRT.modelfit(mod2) IRT.compareModels(smod1, smod2) # set some bounds for a and b parameters mod2a <- sirt::rasch.mml2( dat, est.a=1:I, min.a=.7, max.a=2, min.b=-2 ) summary(mod2a) # 3PL model mod3 <- sirt::rasch.mml2( dat, est.a=1:I, est.c=1:I, mmliter=400 # maximal 400 iterations ) summary(mod3) # 3PL model with fixed guessing paramters of .25 and equal slopes mod4 <- sirt::rasch.mml2( dat, fixed.c=rep( .25, I ) ) summary(mod4) # 3PL model with equal guessing paramters for all items mod5 <- sirt::rasch.mml2( dat, est.c=rep(1, I ) ) summary(mod5) # difficulty + guessing model mod6 <- sirt::rasch.mml2( dat, est.c=1:I ) summary(mod6) # 4PL model mod7 <- sirt::rasch.mml2( dat, est.a=1:I, est.c=1:I, est.d=1:I, min.d=.95, max.c=.25) # set minimal d and maximal c parameter to .95 and .25 summary(mod7) # 4PL model with prior distributions mod7b <- sirt::rasch.mml2( dat, est.a=1:I, est.c=1:I, est.d=1:I, prior.a=c(1,2), prior.c=c(5,17), prior.d=c(20,2) ) summary(mod7b) # constrained 4PL model # equal slope, guessing and slipping parameters mod8 <- sirt::rasch.mml2( dat,est.c=rep(1,I), est.d=rep(1,I) ) summary(mod8) # estimation of an item response model with an # uniform theta distribution theta.k <- seq( 0.01, .99, len=20 ) trait.weights <- rep( 1/length(theta.k), length(theta.k) ) mod9 <- sirt::rasch.mml2( dat, theta.k=theta.k, trait.weights=trait.weights, normal.trait=FALSE, est.a=1:12 ) summary(mod9) ############################################################################# # EXAMPLE 2: Longitudinal data ############################################################################# data(data.long) dat <- data.long[,-1] # define Q loading matrix Qmatrix <- matrix( 0, 12, 2 ) Qmatrix[1:6,1] <- 1 # T1 items Qmatrix[7:12,2] <- 1 # T2 items # define restrictions on item difficulties est.b <- c(1,2,3,4,5,6, 3,4,5,6,7,8) mu.fixed <- cbind(1,0) # set first mean to 0 for identification reasons # Model 1: 2-dimensional Rasch model mod1 <- sirt::rasch.mml2( dat, Qmatrix=Qmatrix, miterstep=4, est.b=est.b, mu.fixed=mu.fixed, mmliter=30 ) summary(mod1) plot(mod1) ## Plot function is only applicable for unidimensional models ## End(Not run) ############################################################################# # EXAMPLE 3: One group, estimation of alpha parameter in the generalized logistic model ############################################################################# # simulate theta values set.seed(786) N <- 1000 # number of persons theta <- stats::rnorm( N, sd=1.5 ) # N persons with SD 1.5 b <- seq( -2, 2, len=15) # simulate data dat <- sirt::sim.raschtype( theta=theta, b=b, alpha1=0, alpha2=-0.3 ) # estimating alpha parameters mod1 <- sirt::rasch.mml2( dat, est.alpha=TRUE, mmliter=30 ) summary(mod1) plot(mod1) ## Not run: # fixed alpha parameters mod1b <- sirt::rasch.mml2( dat, est.alpha=FALSE, alpha1=0, alpha2=-.3 ) summary(mod1b) # estimation with equal alpha parameters mod1c <- sirt::rasch.mml2( dat, est.alpha=TRUE, equal.alpha=TRUE ) summary(mod1c) # Ramsay QM mod2a <- sirt::rasch.mml2( dat, irtmodel="ramsay.qm" ) summary(mod2a) ## End(Not run) # Ramsay QM with estimated K parameters mod2b <- sirt::rasch.mml2( dat, irtmodel="ramsay.qm", est.K=1:15, mmliter=30) summary(mod2b) plot(mod2b) ## Not run: # nonparametric estimation of monotone item response curves mod3a <- sirt::rasch.mml2( dat, irtmodel="npirt", mmliter=100, theta.k=seq( -3, 3, len=10) ) # evaluations at 10 theta grid points # nonparametric ICC of first 4 items round( t(mod3a$pjk)[1:4,], 3 ) summary(mod3a) plot(mod3a) # nonparametric IRT estimation without monotonicity assumption mod3b <- sirt::rasch.mml2( dat, irtmodel="npirt", mmliter=10, theta.k=seq( -3, 3, len=10), npirt.monotone=FALSE) plot(mod3b) # B-Spline estimation of ICCs library(splines) mod3c <- sirt::rasch.mml2( dat, irtmodel="npirt", npformula="y~bs(theta,df=3)", theta.k=seq(-3,3,len=15) ) summary(mod3c) round( t(mod3c$pjk)[1:6,], 3 ) plot(mod3c) # estimation of quadratic item response functions: ~ theta + I( theta^2) mod3d <- sirt::rasch.mml2( dat, irtmodel="npirt", npformula="y~theta + I(theta^2)" ) summary(mod3d) plot(mod3d) # estimation of a stepwise ICC function # ICCs are constant on the theta domains: [-Inf,-1], [-1,1], [1,Inf] mod3e <- sirt::rasch.mml2( dat, irtmodel="npirt", npformula="y~I(theta>-1 )+I(theta>1)" ) summary(mod3e) plot(mod3e, xlim=c(-2.5,2.5) ) # 2PL model mod4 <- sirt::rasch.mml2( dat, est.a=1:15) summary(mod4) ############################################################################# # EXAMPLE 4: Two groups, estimation of generalized logistic model ############################################################################# # simulate generalized logistic Rasch model in two groups set.seed(8765) N1 <- 1000 # N1=1000 persons in group 1 N2 <- 500 # N2=500 persons in group 2 dat1 <- sirt::sim.raschtype( theta=stats::rnorm( N1, sd=1.5 ), b=b, alpha1=-0.3, alpha2=0) dat2 <- sirt::sim.raschtype( theta=stats::rnorm( N2, mean=-.5, sd=.75), b=b, alpha1=-0.3, alpha2=0) dat1 <- rbind( dat1, dat2 ) group <- c( rep(1,N1), rep(2,N2)) mod1 <- sirt::rasch.mml2( dat1, parm.conv=.0001, group=group, est.alpha=TRUE ) summary(mod1) ############################################################################# # EXAMPLE 5: Multidimensional model ############################################################################# #*** # (1) simulate data set.seed(785) library(mvtnorm) N <- 500 theta <- mvtnorm::rmvnorm( N,mean=c(0,0), sigma=matrix( c(1.45,.5,.5,1.7), 2, 2 )) I <- 10 # 10 items load on the first dimension p1 <- stats::plogis( outer( theta[,1], seq( -2, 2, len=I ), "-" ) ) resp1 <- 1 * ( p1 > matrix( stats::runif( N*I ), nrow=N, ncol=I ) ) # 10 items load on the second dimension p1 <- stats::plogis( outer( theta[,2], seq( -2, 2, len=I ), "-" ) ) resp2 <- 1 * ( p1 > matrix( stats::runif( N*I ), nrow=N, ncol=I ) ) #Combine the two sets of items into one response matrix resp <- cbind(resp1,resp2) colnames(resp) <- paste("I", 1:(2*I), sep="") dat <- resp # define Q-matrix Qmatrix <- matrix( 0, 2*I, 2 ) Qmatrix[1:I,1] <- 1 Qmatrix[1:I+I,2] <- 1 #*** # (2) estimation of models # 2-dimensional Rasch model mod1 <- sirt::rasch.mml2( dat, Qmatrix=Qmatrix ) summary(mod1) # 2-dimensional 2PL model mod2 <- sirt::rasch.mml2( dat, Qmatrix=Qmatrix, est.a=1:(2*I) ) summary(mod2) # estimation with some fixed variances and covariances # set variance of 1st dimension to 1 and # covariance to zero variance.fixed <- matrix( cbind(c(1,1), c(1,2), c(1,0)), byrow=FALSE, ncol=3 ) mod3 <- sirt::rasch.mml2( dat, Qmatrix=Qmatrix, variance.fixed=variance.fixed ) summary(mod3) # constraints on item difficulties # useful for example in longitudinal linking est.b <- c( 1:I, 1:I ) # equal indices correspond to equally estimated item parameters mu.fixed <- cbind( 1, 0 ) mod4 <- sirt::rasch.mml2( dat, Qmatrix=Qmatrix, est.b=est.b, mu.fixed=mu.fixed ) summary(mod4) ############################################################################# # EXAMPLE 6: Two booklets with same items but with item context effects. # Therefore, item slopes and item difficulties are assumed to be shifted in the # second design group. ############################################################################# #*** # simulate data set.seed(987) I <- 10 # number of items # define person design groups 1 and 2 n1 <- 700 n2 <- 1500 # item difficulties group 1 b1 <- seq(-1.5,1.5,length=I) # item slopes group 1 a1 <- rep(1, I) # simulate data group 1 dat1 <- sirt::sim.raschtype( stats::rnorm(n1), b=b1, fixed.a=a1 ) colnames(dat1) <- paste0("I", 1:I, "des1" ) # group 2 b2 <- b1 - .15 a2 <- 1.1*a1 # Item parameters are slightly transformed in the second group # compared to the first group. This indicates possible item context effects. # simulate data group 2 dat2 <- sirt::sim.raschtype( stats::rnorm(n2), b=b2, fixed.a=a2 ) colnames(dat2) <- paste0("I", 1:I, "des2" ) # define joint dataset dat <- matrix( NA, nrow=n1+n2, ncol=2*I) colnames(dat) <- c( colnames(dat1), colnames(dat2) ) dat[ 1:n1, 1:I ] <- dat1 dat[ n1 + 1:n2, I + 1:I ] <- dat2 # define group identifier group <- c( rep(1,n1), rep(2,n2) ) #*** # Model 1: Rasch model two groups itemindex <- rep( 1:I, 2 ) mod1 <- sirt::rasch.mml2( dat, group=group, est.b=itemindex ) summary(mod1) #*** # Model 2: two item slope groups and designmatrix for intercepts designmatrix <- matrix( 0, 2*I, I+1) designmatrix[ ( 1:I )+ I,1:I] <- designmatrix[1:I,1:I] <- diag(I) designmatrix[ ( 1:I )+ I,I+1] <- 1 mod2 <- sirt::rasch.mml2( dat, est.a=rep(1:2,each=I), designmatrix=designmatrix ) summary(mod2) ############################################################################# # EXAMPLE 7: PIRLS dataset with missing responses ############################################################################# data(data.pirlsmissing) items <- grep( "R31", colnames(data.pirlsmissing), value=TRUE ) I <- length(items) dat <- data.pirlsmissing #**** # Model 1: recode missing responses as missing (missing are ignorable) # data recoding dat1 <- dat dat1[ dat1==9 ] <- NA # estimate Rasch model mod1 <- sirt::rasch.mml2( dat1[,items], weights=dat$studwgt, group=dat$country ) summary(mod1) ## Mean=0 0.341 -0.134 0.219 ## SD=1.142 1.166 1.197 0.959 #**** # Model 2: recode missing responses as wrong # data recoding dat2 <- dat dat2[ dat2==9 ] <- 0 # estimate Rasch model mod2 <- sirt::rasch.mml2( dat2[,items], weights=dat$studwgt, group=dat$country ) summary(mod2) ## Mean=0 0.413 -0.172 0.446 ## SD=1.199 1.263 1.32 0.996 #**** # Model 3: recode missing responses as rho * P_i( theta ) and # apply pseudo-log-likelihood estimation # Missing item responses are predicted by the model implied probability # P_i( theta ) where theta is the ability estimate when ignoring missings (Model 1) # and rho is an adjustment parameter. rho=0 is equivalent to Model 2 (treating # missing as wrong) and rho=1 is equivalent to Model 1 (treating missing as ignorable). # data recoding dat3 <- dat # simulate theta estimate from posterior distribution theta <- stats::rnorm( nrow(dat3), mean=mod1$person$EAP, sd=mod1$person$SE.EAP ) rho <- .3 # define a rho parameter value of .3 for (ii in items){ ind <- which( dat[,ii]==9 ) dat3[ind,ii] <- rho*stats::plogis( theta[ind] - mod1$item$b[ which( items==ii ) ] ) } # estimate Rasch model mod3 <- sirt::rasch.mml2( dat3[,items], weights=dat$studwgt, group=dat$country ) summary(mod3) ## Mean=0 0.392 -0.153 0.38 ## SD=1.154 1.209 1.246 0.973 #**** # Model 4: simulate missing responses as rho * P_i( theta ) # The definition is the same as in Model 3. But it is now assumed # that the missing responses are 'latent responses'. set.seed(789) # data recoding dat4 <- dat # simulate theta estimate from posterior distribution theta <- stats::rnorm( nrow(dat4), mean=mod1$person$EAP, sd=mod1$person$SE.EAP ) rho <- .3 # define a rho parameter value of .3 for (ii in items){ ind <- which( dat[,ii]==9 ) p3 <- rho*stats::plogis( theta[ind] - mod1$item$b[ which( items==ii ) ] ) dat4[ ind, ii ] <- 1*( stats::runif( length(ind), 0, 1 ) < p3) } # estimate Rasch model mod4 <- sirt::rasch.mml2( dat4[,items], weights=dat$studwgt, group=dat$country ) summary(mod4) ## Mean=0 0.396 -0.156 0.382 ## SD=1.16 1.216 1.253 0.979 #**** # Model 5: recode missing responses for multiple choice items with four alternatives # to 1/4 and apply pseudo-log-likelihood estimation. # Missings for constructed response items are treated as incorrect. # data recoding dat5 <- dat items_mc <- items[ substring( items, 7,7)=="M" ] items_cr <- items[ substring( items, 7,7)=="C" ] for (ii in items_mc){ ind <- which( dat[,ii]==9 ) dat5[ind,ii] <- 1/4 } for (ii in items_cr){ ind <- which( dat[,ii]==9 ) dat5[ind,ii] <- 0 } # estimate Rasch model mod5 <- sirt::rasch.mml2( dat5[,items], weights=dat$studwgt, group=dat$country ) summary(mod5) ## Mean=0 0.411 -0.165 0.435 ## SD=1.19 1.245 1.293 0.995 #*** For the following analyses, we ignore sample weights and the # country grouping. data(data.pirlsmissing) items <- grep( "R31", colnames(data.pirlsmissing), value=TRUE ) dat <- data.pirlsmissing dat1 <- dat dat1[ dat1==9 ] <- 0 #*** Model 6: estimate item difficulties assuming incorrect missing data treatment mod6 <- sirt::rasch.mml2( dat1[,items], mmliter=50 ) summary(mod6) #*** Model 7: reestimate model with constrained item difficulties I <- length(items) constraints <- cbind( 1:I, mod6$item$b ) mod7 <- sirt::rasch.mml2( dat1[,items], constraints=constraints) summary(mod7) #*** Model 8: score all missings responses as missing items dat2 <- dat[,items] dat2[ dat2==9 ] <- NA mod8 <- sirt::rasch.mml2( dat2, constraints=constraints, mu.fixed=NULL ) summary(mod8) #*** Model 9: estimate missing data model 'missing1' assuming a missingness # parameter delta.miss of zero dat2 <- dat[,items] # note that missing item responses must be defined by 9 mod9 <- sirt::rasch.mml2( dat2, constraints=constraints, irtmodel="missing1", theta.k=seq(-5,5,len=10), delta.miss=0, mitermax=4, mu.fixed=NULL ) summary(mod9) #*** Model 10: estimate missing data model with a large negative missing delta parameter #=> This model is equivalent to treating missing responses as wrong mod10 <- sirt::rasch.mml2( dat2, constraints=constraints, irtmodel="missing1", theta.k=seq(-5, 5, len=10), delta.miss=-10, mitermax=4, mmliter=200, mu.fixed=NULL ) summary(mod10) #*** Model 11: choose a missingness delta parameter of -1 mod11 <- sirt::rasch.mml2( dat2, constraints=constraints, irtmodel="missing1", theta.k=seq(-5, 5, len=10), delta.miss=-1, mitermax=4, mmliter=200, mu.fixed=NULL ) summary(mod11) #*** Model 12: estimate joint delta parameter mod12 <- sirt::rasch.mml2( dat2, irtmodel="missing1", mu.fixed=cbind( c(1,2), 0 ), theta.k=seq(-8, 8, len=10), delta.miss=0, mitermax=4, mmliter=30, est.delta=rep(1,I) ) summary(mod12) #*** Model 13: estimate delta parameter in item groups defined by item format est.delta <- 1 + 1 * ( substring( colnames(dat2),7,7 )=="M" ) mod13 <- sirt::rasch.mml2( dat2, irtmodel="missing1", mu.fixed=cbind( c(1,2), 0 ), theta.k=seq(-8, 8, len=10), delta.miss=0, mitermax=4, mmliter=30, est.delta=est.delta ) summary(mod13) #*** Model 14: estimate item specific delta parameter mod14 <- sirt::rasch.mml2( dat2, irtmodel="missing1", mu.fixed=cbind( c(1,2), 0 ), theta.k=seq(-8, 8, len=10), delta.miss=0, mitermax=4, mmliter=30, est.delta=1:I ) summary(mod14) ############################################################################# # EXAMPLE 8: Comparison of different models for polytomous data ############################################################################# data(data.Students, package="CDM") head(data.Students) dat <- data.Students[, paste0("act",1:5) ] I <- ncol(dat) #************************************************** #*** Model 1: Partial Credit Model (PCM) #*** Model 1a: PCM in TAM mod1a <- TAM::tam.mml( dat ) summary(mod1a) #*** Model 1b: PCM in sirt mod1b <- sirt::rm.facets( dat ) summary(mod1b) #*** Model 1c: PCM in mirt mod1c <- mirt::mirt( dat, 1, itemtype=rep("Rasch",I), verbose=TRUE ) print(mod1c) #************************************************** #*** Model 2: Sequential Model (SM): Equal Loadings #*** Model 2a: SM in sirt dat1 <- CDM::sequential.items(dat) resp <- dat1$dat.expand iteminfo <- dat1$iteminfo # fit model mod2a <- sirt::rasch.mml2( resp ) summary(mod2a) #************************************************** #*** Model 3: Sequential Model (SM): Different Loadings #*** Model 3a: SM in sirt mod3a <- sirt::rasch.mml2( resp, est.a=iteminfo$itemindex ) summary(mod3a) #************************************************** #*** Model 4: Generalized partial credit model (GPCM) #*** Model 4a: GPCM in TAM mod4a <- TAM::tam.mml.2pl( dat, irtmodel="GPCM") summary(mod4a) #************************************************** #*** Model 5: Graded response model (GRM) #*** Model 5a: GRM in mirt mod5a <- mirt::mirt( dat, 1, itemtype=rep("graded",I), verbose=TRUE) print(mod5a) # model comparison logLik(mod1a);logLik(mod1b);mod1c@logLik # PCM logLik(mod2a) # SM (Rasch) logLik(mod3a) # SM (GPCM) logLik(mod4a) # GPCM mod5a@logLik # GRM ## End(Not run)
This function estimates the Rasch model with a minimum chi square estimation method (cited in Fischer, 2007, p. 544) which is a pairwise conditional likelihood estimation approach.
rasch.pairwise(dat, weights=NULL, conv=1e-04, maxiter=3000, progress=TRUE, b.init=NULL, zerosum=FALSE, power=1, direct_optim=TRUE) ## S3 method for class 'rasch.pairwise' summary(object, digits=3, file=NULL, ...)
rasch.pairwise(dat, weights=NULL, conv=1e-04, maxiter=3000, progress=TRUE, b.init=NULL, zerosum=FALSE, power=1, direct_optim=TRUE) ## S3 method for class 'rasch.pairwise' summary(object, digits=3, file=NULL, ...)
dat |
An |
weights |
Optional vector of sampling weights |
conv |
Convergence criterion |
maxiter |
Maximum number of iterations |
progress |
Display iteration progress? |
b.init |
An optional vector of length |
zerosum |
Optional logical indicating whether item difficulties should be centered in each iteration. The default is that no centering is conducted. |
power |
Power used for computing pairwise response probabilities like in row averaging approach |
direct_optim |
Logical indicating whether least squares criterion
funcion should be minimized with |
object |
Object of class |
digits |
Number of digits after decimal for rounding |
file |
Optional file name for summary output |
... |
Further arguments to be passed |
An object of class rasch.pairwise
with following entries
b |
Item difficulties |
eps |
Exponentiated item difficulties, i.e. |
iter |
Number of iterations |
conv |
Convergence criterion |
dat |
Original data frame |
freq.ij |
Frequency table of all item pairs |
item |
Summary table of item parameters |
Fischer, G. H. (2007). Rasch models. In C. R. Rao and S. Sinharay (Eds.), Handbook of Statistics, Vol. 26 (pp. 515-585). Amsterdam: Elsevier.
See summary.rasch.pairwise
for a summary.
A slightly different implementation of this conditional pairwise method
is implemented in rasch.pairwise.itemcluster
.
Pairwise marginal likelihood estimation (also labeled as pseudolikelihood
estimation) can be conducted with rasch.pml3
.
############################################################################# # EXAMPLE 1: Reading data set | pairwise estimation Rasch model ############################################################################# data(data.read) dat <- data.read #*** Model 1: no constraint on item difficulties mod1 <- sirt::rasch.pairwise(dat) summary(mod1) #*** Model 2: sum constraint on item difficulties mod2 <- sirt::rasch.pairwise(dat, zerosum=TRUE) summary(mod2) ## Not run: #** obtain standard errors by bootstrap mod2$item$b # extract item difficulties # Bootstrap of item difficulties boot_pw <- function(data, indices ){ dd <- data[ indices, ] # bootstrap of indices mod <- sirt::rasch.pairwise( dat=dd, zerosum=TRUE, progress=FALSE) return(mod$item$b) } set.seed(986) library(boot) bmod2 <- boot::boot(data=dat, statistic=boot_pw, R=999 ) print(bmod2) summary(bmod2) # quantiles for bootstrap sample (and confidence interval) apply(bmod2$t, 2, stats::quantile, probs=c(.025, .5, .975) ) ## End(Not run)
############################################################################# # EXAMPLE 1: Reading data set | pairwise estimation Rasch model ############################################################################# data(data.read) dat <- data.read #*** Model 1: no constraint on item difficulties mod1 <- sirt::rasch.pairwise(dat) summary(mod1) #*** Model 2: sum constraint on item difficulties mod2 <- sirt::rasch.pairwise(dat, zerosum=TRUE) summary(mod2) ## Not run: #** obtain standard errors by bootstrap mod2$item$b # extract item difficulties # Bootstrap of item difficulties boot_pw <- function(data, indices ){ dd <- data[ indices, ] # bootstrap of indices mod <- sirt::rasch.pairwise( dat=dd, zerosum=TRUE, progress=FALSE) return(mod$item$b) } set.seed(986) library(boot) bmod2 <- boot::boot(data=dat, statistic=boot_pw, R=999 ) print(bmod2) summary(bmod2) # quantiles for bootstrap sample (and confidence interval) apply(bmod2$t, 2, stats::quantile, probs=c(.025, .5, .975) ) ## End(Not run)
This function uses pairwise conditional likelihood estimation for estimating item parameters in the Rasch model.
rasch.pairwise.itemcluster(dat, itemcluster=NULL, b.fixed=NULL, weights=NULL, conv=1e-05, maxiter=3000, progress=TRUE, b.init=NULL, zerosum=FALSE)
rasch.pairwise.itemcluster(dat, itemcluster=NULL, b.fixed=NULL, weights=NULL, conv=1e-05, maxiter=3000, progress=TRUE, b.init=NULL, zerosum=FALSE)
dat |
An |
itemcluster |
Optional integer vector of itemcluster (see Examples). Different integers correspond to different item clusters. No item cluster is set as default. |
b.fixed |
Matrix for fixing item parameters. The first columns contains the item (number or name), the second column the parameter to be fixed. |
weights |
Optional Vector of sampling weights |
conv |
Convergence criterion in maximal absolute parameter change |
maxiter |
Maximal number of iterations |
progress |
A logical which displays progress. Default is |
b.init |
Vector of initial item difficulty estimates. Default is |
zerosum |
Optional logical indicating whether item difficulties should be centered in each iteration. The default is that no centering is conducted. |
This is an adaptation of the algorithm of van der Linden and Eggen (1986). Only item pairs
of different item clusters are taken into account for item difficulty estimation.
Therefore, the problem of locally dependent items within each itemcluster is (almost)
eliminated (see Examples below) because contributions of local dependencies
do not appear in the pairwise likelihood terms. In detail, the estimation rests
on observed frequency tables of items and
and therefore on conditional
probabilities
If for some item pair a higher positive (or negative) correlation
is expected (i.e. deviation from local dependence), then this pair is
removed from estimation. Clearly, there is a loss in precision but item
parameters can be less biased.
Object of class rasch.pairwise
with elements
b |
Vector of item difficulties |
item |
Data frame of item parameters ( |
No standard errors are provided by this function. Use resampling methods for conducting statistical inference.
Formulas for asymptotic standard errors of this pairwise estimation method are described in Zwinderman (1995).
van der Linden, W. J., & Eggen, T. J. H. M. (1986). An empirical Bayes approach to item banking. Research Report 86-6, University of Twente.
Zwinderman, A. H. (1995). Pairwise parameter estimation in Rasch models. Applied Psychological Measurement, 19, 369-375.
rasch.pairwise
, summary.rasch.pairwise
,
Pairwise marginal likelihood estimation (also labeled as pseudolikelihood
estimation) can be conducted with rasch.pml3
.
Other estimation methods are implemented in rasch.copula2
or
rasch.mml2
.
For simulation of locally dependent data see sim.rasch.dep
.
############################################################################# # EXAMPLE 1: Example with locally dependent items # 12 Items: Cluster 1 -> Items 1,...,4 # Cluster 2 -> Items 6,...,9 # Cluster 3 -> Items 10,11,12 ############################################################################# set.seed(7896) I <- 12 # number of items n <- 5000 # number of persons b <- seq(-2,2, len=I) # item difficulties bsamp <- b <- sample(b) # sample item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ 1:4 ] <- 1 itemcluster[ 6:9 ] <- 2 itemcluster[ 10:12 ] <- 3 # residual correlations rho <- c( .55, .25, .45 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # estimation with pairwise Rasch model mod3 <- sirt::rasch.pairwise( dat ) summary(mod3) # use item cluster in rasch pairwise estimation mod <- sirt::rasch.pairwise.itemcluster( dat=dat, itemcluster=itemcluster ) summary(mod) ## Not run: # Rasch MML estimation mod4 <- sirt::rasch.mml2( dat ) summary(mod4) # Rasch Copula estimation mod5 <- sirt::rasch.copula2( dat, itemcluster=itemcluster ) summary(mod5) # compare different item parameter estimates M1 <- cbind( "true.b"=bsamp, "b.rasch"=mod4$item$b, "b.rasch.copula"=mod5$item$thresh, "b.rasch.pairwise"=mod3$b, "b.rasch.pairwise.cluster"=mod$b ) # center item difficulties M1 <- scale( M1, scale=FALSE ) round( M1, 3 ) round( apply( M1, 2, stats::sd ), 3 ) # Below the output of the example is presented. # The rasch.pairwise.itemcluster is pretty close to the estimate in the Rasch copula model. ## > round( M1, 3 ) ## true.b b.rasch b.rasch.copula b.rasch.pairwise b.rasch.pairwise.cluster ## I1 0.545 0.561 0.526 0.628 0.524 ## I2 -0.182 -0.168 -0.174 -0.121 -0.156 ## I3 -0.909 -0.957 -0.867 -0.971 -0.899 ## I4 -1.636 -1.726 -1.625 -1.765 -1.611 ## I5 1.636 1.751 1.648 1.694 1.649 ## I6 0.909 0.892 0.836 0.898 0.827 ## I7 -2.000 -2.134 -2.020 -2.051 -2.000 ## I8 -1.273 -1.355 -1.252 -1.303 -1.271 ## I9 -0.545 -0.637 -0.589 -0.581 -0.598 ## I10 1.273 1.378 1.252 1.308 1.276 ## I11 0.182 0.241 0.226 0.109 0.232 ## I12 2.000 2.155 2.039 2.154 2.026 ## > round( apply( M1, 2, sd ), 3 ) ## true.b b.rasch b.rasch.copula ## 1.311 1.398 1.310 ## b.rasch.pairwise b.rasch.pairwise.cluster ## 1.373 1.310 # set item parameters of first item to 0 and of second item to -0.7 b.fixed <- cbind( c(1,2), c(0,-.7) ) mod5 <- sirt::rasch.pairwise.itemcluster( dat=dat, b.fixed=b.fixed, itemcluster=itemcluster ) # difference between estimations 'mod' and 'mod5' dfr <- cbind( mod5$item$b, mod$item$b ) plot( mod5$item$b, mod$item$b, pch=16) apply( dfr, 1, diff) ## End(Not run)
############################################################################# # EXAMPLE 1: Example with locally dependent items # 12 Items: Cluster 1 -> Items 1,...,4 # Cluster 2 -> Items 6,...,9 # Cluster 3 -> Items 10,11,12 ############################################################################# set.seed(7896) I <- 12 # number of items n <- 5000 # number of persons b <- seq(-2,2, len=I) # item difficulties bsamp <- b <- sample(b) # sample item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ 1:4 ] <- 1 itemcluster[ 6:9 ] <- 2 itemcluster[ 10:12 ] <- 3 # residual correlations rho <- c( .55, .25, .45 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # estimation with pairwise Rasch model mod3 <- sirt::rasch.pairwise( dat ) summary(mod3) # use item cluster in rasch pairwise estimation mod <- sirt::rasch.pairwise.itemcluster( dat=dat, itemcluster=itemcluster ) summary(mod) ## Not run: # Rasch MML estimation mod4 <- sirt::rasch.mml2( dat ) summary(mod4) # Rasch Copula estimation mod5 <- sirt::rasch.copula2( dat, itemcluster=itemcluster ) summary(mod5) # compare different item parameter estimates M1 <- cbind( "true.b"=bsamp, "b.rasch"=mod4$item$b, "b.rasch.copula"=mod5$item$thresh, "b.rasch.pairwise"=mod3$b, "b.rasch.pairwise.cluster"=mod$b ) # center item difficulties M1 <- scale( M1, scale=FALSE ) round( M1, 3 ) round( apply( M1, 2, stats::sd ), 3 ) # Below the output of the example is presented. # The rasch.pairwise.itemcluster is pretty close to the estimate in the Rasch copula model. ## > round( M1, 3 ) ## true.b b.rasch b.rasch.copula b.rasch.pairwise b.rasch.pairwise.cluster ## I1 0.545 0.561 0.526 0.628 0.524 ## I2 -0.182 -0.168 -0.174 -0.121 -0.156 ## I3 -0.909 -0.957 -0.867 -0.971 -0.899 ## I4 -1.636 -1.726 -1.625 -1.765 -1.611 ## I5 1.636 1.751 1.648 1.694 1.649 ## I6 0.909 0.892 0.836 0.898 0.827 ## I7 -2.000 -2.134 -2.020 -2.051 -2.000 ## I8 -1.273 -1.355 -1.252 -1.303 -1.271 ## I9 -0.545 -0.637 -0.589 -0.581 -0.598 ## I10 1.273 1.378 1.252 1.308 1.276 ## I11 0.182 0.241 0.226 0.109 0.232 ## I12 2.000 2.155 2.039 2.154 2.026 ## > round( apply( M1, 2, sd ), 3 ) ## true.b b.rasch b.rasch.copula ## 1.311 1.398 1.310 ## b.rasch.pairwise b.rasch.pairwise.cluster ## 1.373 1.310 # set item parameters of first item to 0 and of second item to -0.7 b.fixed <- cbind( c(1,2), c(0,-.7) ) mod5 <- sirt::rasch.pairwise.itemcluster( dat=dat, b.fixed=b.fixed, itemcluster=itemcluster ) # difference between estimations 'mod' and 'mod5' dfr <- cbind( mod5$item$b, mod$item$b ) plot( mod5$item$b, mod$item$b, pch=16) apply( dfr, 1, diff) ## End(Not run)
This function estimates unidimensional 1PL and 2PL models with
the probit link using pairwise marginal maximum likelihood
estimation (PMML; Renard, Molenberghs & Geys, 2004).
Item pairs within an itemcluster can be excluded from the
pairwise likelihood (argument itemcluster
).
The other alternative is to model a residual
error structure with itemclusters (argument error.corr
).
rasch.pml3(dat, est.b=seq(1, ncol(dat)), est.a=rep(0,ncol(dat)), est.sigma=TRUE, itemcluster=NULL, weight=rep(1, nrow(dat)), numdiff.parm=0.001, b.init=NULL, a.init=NULL, sigma.init=NULL, error.corr=0*diag( 1, ncol(dat) ), err.constraintM=NULL, err.constraintV=NULL, glob.conv=10^(-6), conv1=10^(-4), pmliter=300, progress=TRUE, use.maxincrement=TRUE ) ## S3 method for class 'rasch.pml' summary(object,...)
rasch.pml3(dat, est.b=seq(1, ncol(dat)), est.a=rep(0,ncol(dat)), est.sigma=TRUE, itemcluster=NULL, weight=rep(1, nrow(dat)), numdiff.parm=0.001, b.init=NULL, a.init=NULL, sigma.init=NULL, error.corr=0*diag( 1, ncol(dat) ), err.constraintM=NULL, err.constraintV=NULL, glob.conv=10^(-6), conv1=10^(-4), pmliter=300, progress=TRUE, use.maxincrement=TRUE ) ## S3 method for class 'rasch.pml' summary(object,...)
dat |
An |
est.b |
Vector of integers of length |
est.a |
Vector of integers of length |
est.sigma |
Should sigma (the trait standard deviation) be estimated?
The default is |
itemcluster |
Optional vector of length |
weight |
Optional vector of person weights |
numdiff.parm |
Step parameter for numerical differentiation |
b.init |
Initial or fixed item difficulty |
a.init |
Initial or fixed item slopes |
sigma.init |
Initial or fixed trait standard deviation |
error.corr |
An optional |
err.constraintM |
An optional |
err.constraintV |
An optional |
glob.conv |
Global convergence criterion |
conv1 |
Convergence criterion for model parameters |
pmliter |
Maximum number of iterations |
progress |
Display progress? |
use.maxincrement |
Optional logical whether increments in
slope parameters should be controlled in size in iterations.
The default is |
object |
Object of class |
... |
Further arguments to be passed |
The probit item response model can be estimated with this function:
where denotes the normal distribution function. This model can
also be expressed as a latent variable model which assumes
a latent response tendency
which is equal to
1 if
and otherwise zero. If
is
standard normally distributed, then
An arbitrary pattern of residual correlations between
and
for item pairs
and
can be imposed using the
error.corr
argument.
Linear constraints on residual correlations
(in a vectorized form) can be
specified using the arguments
err.constraintM
(matrix )
and
err.constraintV
(vector ). The estimation
is described in Neuhaus (1996).
For the pseudo likelihood information criterion (PLIC) see Stanford and Raftery (2002).
A list with following entries:
item |
Data frame with estimated item parameters |
iter |
Number of iterations |
deviance |
Pseudolikelihood multiplied by minus 2 |
b |
Estimated item difficulties |
sigma |
Estimated standard deviation |
dat |
Original dataset |
ic |
Data frame with information criteria (sample size,
number of estimated parameters, pseudolikelihood
information criterion |
link |
Used link function (only probit is permitted) |
itempairs |
Estimated statistics of item pairs |
error.corr |
Estimated error correlation matrix |
eps.corr |
Vectorized error correlation matrix |
omega.rel |
Reliability of the sum score according to Green and Yang (2009). If some item pairs are excluded in the estimation, the residual correlation for these item pairs is assumed to be zero. |
... |
This function needs the combinat library.
Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 74, 155-167.
Neuhaus, W. (1996). Optimal estimation under linear constraints. Astin Bulletin, 26, 233-245.
Renard, D., Molenberghs, G., & Geys, H. (2004). A pairwise likelihood approach to estimation in multilevel probit models. Computational Statistics & Data Analysis, 44, 649-667.
Stanford, D. C., & Raftery, A. E. (2002). Approximate Bayes factors for image segmentation: The pseudolikelihood information criterion (PLIC). IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1517-1520.
Get a summary of rasch.pml3
with summary.rasch.pml
.
For simulation of locally dependent items see sim.rasch.dep
.
For pairwise conditional likelihood estimation see rasch.pairwise
or rasch.pairwise.itemcluster
.
For an assessment of global model fit see modelfit.sirt
.
############################################################################# # EXAMPLE 1: Reading data set ############################################################################# data(data.read) dat <- data.read #****** # Model 1: Rasch model with PML estimation mod1 <- sirt::rasch.pml3( dat ) summary(mod1) #****** # Model 2: Excluding item pairs with local dependence # from bivariate composite likelihood itemcluster <- rep( 1:3, each=4) mod2 <- sirt::rasch.pml3( dat, itemcluster=itemcluster ) summary(mod2) ## Not run: #***** # Model 3: Modelling error correlations: # joint residual correlations for each itemcluster error.corr <- diag(1,ncol(dat)) for ( ii in 1:3){ ind.ii <- which( itemcluster==ii ) error.corr[ ind.ii, ind.ii ] <- ii } # estimate the model with error correlations mod3 <- sirt::rasch.pml3( dat, error.corr=error.corr ) summary(mod3) #**** # Model 4: model separate residual correlations I <- ncol(error.corr) error.corr1 <- matrix( 1:(I*I), ncol=I ) error.corr <- error.corr1 * ( error.corr > 0 ) # estimate the model with error correlations mod4 <- sirt::rasch.pml3( dat, error.corr=error.corr ) summary(mod4) #**** # Model 5: assume equal item difficulties: # b_1=b_7 and b_2=b_12 # fix item difficulty of the 6th item to .1 est.b <- 1:I est.b[7] <- 1; est.b[12] <- 2 ; est.b[6] <- 0 b.init <- rep( 0, I ) ; b.init[6] <- .1 mod5 <- sirt::rasch.pml3( dat, est.b=est.b, b.init=b.init) summary(mod5) #**** # Model 6: estimate three item slope groups est.a <- rep(1:3, each=4 ) mod6 <- sirt::rasch.pml3( dat, est.a=est.a, est.sigma=0) summary(mod6) ############################################################################# # EXAMPLE 2: PISA reading ############################################################################# data(data.pisaRead) dat <- data.pisaRead$data # select items dat <- dat[, substring(colnames(dat),1,1)=="R" ] #****** # Model 1: Rasch model with PML estimation mod1 <- sirt::rasch.pml3( as.matrix(dat) ) ## Trait SD (Logit Link) : 1.419 #****** # Model 2: Model correlations within testlets error.corr <- diag(1,ncol(dat)) testlets <- paste( data.pisaRead$item$testlet ) itemcluster <- match( testlets, unique(testlets ) ) for ( ii in 1:(length(unique(testlets))) ){ ind.ii <- which( itemcluster==ii ) error.corr[ ind.ii, ind.ii ] <- ii } # estimate the model with error correlations mod2 <- sirt::rasch.pml3( dat, error.corr=error.corr ) ## Trait SD (Logit Link) : 1.384 #**** # Model 3: model separate residual correlations I <- ncol(error.corr) error.corr1 <- matrix( 1:(I*I), ncol=I ) error.corr <- error.corr1 * ( error.corr > 0 ) # estimate the model with error correlations mod3 <- sirt::rasch.pml3( dat, error.corr=error.corr ) ## Trait SD (Logit Link) : 1.384 ############################################################################# # EXAMPLE 3: 10 locally independent items ############################################################################# #********** # simulate some data set.seed(554) N <- 500 # persons I <- 10 # items theta <- stats::rnorm(N,sd=1.3 ) # trait SD of 1.3 b <- seq(-2, 2, length=I) # item difficulties # simulate data from the Rasch model dat <- sirt::sim.raschtype( theta=theta, b=b ) # estimation with rasch.pml and probit link mod1 <- sirt::rasch.pml3( dat ) summary(mod1) # estimation with rasch.mml2 function mod2 <- sirt::rasch.mml2( dat ) # estimate item parameters for groups with five item parameters each est.b <- rep( 1:(I/2), each=2 ) mod3 <- sirt::rasch.pml3( dat, est.b=est.b ) summary(mod3) # compare parameter estimates summary(mod1) summary(mod2) summary(mod3) ############################################################################# # EXAMPLE 4: 11 items and 2 item clusters with 2 and 3 items ############################################################################# set.seed(5698) I <- 11 # number of items n <- 5000 # number of persons b <- seq(-2,2, len=I) # item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[c(3,5)] <- 1 itemcluster[c(2,4,9)] <- 2 # residual correlations rho <- c( .7, .5 ) # simulate data (under the logit link) dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") #*** # Model 1: estimation using the Rasch model (with probit link) mod1 <- sirt::rasch.pml3( dat ) #*** # Model 2: estimation when pairs of locally dependent items are eliminated mod2 <- sirt::rasch.pml3( dat, itemcluster=itemcluster) #*** # Model 3: Positive correlations within testlets est.corrs <- diag( 1, I ) est.corrs[ c(3,5), c(3,5) ] <- 2 est.corrs[ c(2,4,9), c(2,4,9) ] <- 3 mod3 <- sirt::rasch.pml3( dat, error.corr=est.corrs ) #*** # Model 4: Negative correlations between testlets est.corrs <- diag( 1, I ) est.corrs[ c(3,5), c(2,4,9) ] <- 2 est.corrs[ c(2,4,9), c(3,5) ] <- 2 mod4 <- sirt::rasch.pml3( dat, error.corr=est.corrs ) #*** # Model 5: sum constraint of zero within and between testlets est.corrs <- matrix( 1:(I*I), I, I ) cluster2 <- c(2,4,9) est.corrs[ setdiff( 1:I, c(cluster2)), ] <- 0 est.corrs[, setdiff( 1:I, c(cluster2)) ] <- 0 # define an error constraint matrix itempairs0 <- mod4$itempairs IP <- nrow(itempairs0) err.constraint <- matrix( 0, IP, 1 ) err.constraint[ ( itempairs0$item1 %in% cluster2 ) & ( itempairs0$item2 %in% cluster2 ), 1 ] <- 1 # set sum of error covariances to 1.2 err.constraintV <- matrix(3*.4,1,1) mod5 <- sirt::rasch.pml3( dat, error.corr=est.corrs, err.constraintM=err.constraint, err.constraintV=err.constraintV) #**** # Model 6: Constraint on sum of all correlations est.corrs <- matrix( 1:(I*I), I, I ) # define an error constraint matrix itempairs0 <- mod4$itempairs IP <- nrow(itempairs0) # define two side conditions err.constraint <- matrix( 0, IP, 2 ) err.constraintV <- matrix( 0, 2, 1) # sum of all correlations is zero err.constraint[, 1 ] <- 1 err.constraintV[1,1] <- 0 # sum of items cluster c(1,2,3) is 0 cluster2 <- c(1,2,3) err.constraint[ ( itempairs0$item1 %in% cluster2 ) & ( itempairs0$item2 %in% cluster2 ), 2 ] <- 1 err.constraintV[2,1] <- 0 mod6 <- sirt::rasch.pml3( dat, error.corr=est.corrs, err.constraintM=err.constraint, err.constraintV=err.constraintV) summary(mod6) ############################################################################# # EXAMPLE 5: 10 Items: Cluster 1 -> Items 1,2 # Cluster 2 -> Items 3,4,5; Cluster 3 -> Items 7,8,9 ############################################################################# set.seed(7650) I <- 10 # number of items n <- 5000 # number of persons b <- seq(-2,2, len=I) # item difficulties bsamp <- b <- sample(b) # sample item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # define itemcluster itemcluster <- rep(0,I) itemcluster[ 1:2 ] <- 1 itemcluster[ 3:5 ] <- 2 itemcluster[ 7:9 ] <- 3 # define residual correlations rho <- c( .55, .35, .45) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") #*** # Model 1: residual correlation (equal within item clusters) # define a matrix of integers for estimating error correlations error.corr <- diag(1,ncol(dat)) for ( ii in 1:3){ ind.ii <- which( itemcluster==ii ) error.corr[ ind.ii, ind.ii ] <- ii } # estimate the model mod1 <- sirt::rasch.pml3( dat, error.corr=error.corr ) #*** # Model 2: residual correlation (different within item clusters) # define again a matrix of integers for estimating error correlations error.corr <- diag(1,ncol(dat)) for ( ii in 1:3){ ind.ii <- which( itemcluster==ii ) error.corr[ ind.ii, ind.ii ] <- ii } I <- ncol(error.corr) error.corr1 <- matrix( 1:(I*I), ncol=I ) error.corr <- error.corr1 * ( error.corr > 0 ) # estimate the model mod2 <- sirt::rasch.pml3( dat, error.corr=error.corr ) #*** # Model 3: eliminate item pairs within itemclusters for PML estimation mod3 <- sirt::rasch.pml3( dat, itemcluster=itemcluster ) #*** # Model 4: Rasch model ignoring dependency mod4 <- sirt::rasch.pml3( dat ) # compare different models summary(mod1) summary(mod2) summary(mod3) summary(mod4) ## End(Not run)
############################################################################# # EXAMPLE 1: Reading data set ############################################################################# data(data.read) dat <- data.read #****** # Model 1: Rasch model with PML estimation mod1 <- sirt::rasch.pml3( dat ) summary(mod1) #****** # Model 2: Excluding item pairs with local dependence # from bivariate composite likelihood itemcluster <- rep( 1:3, each=4) mod2 <- sirt::rasch.pml3( dat, itemcluster=itemcluster ) summary(mod2) ## Not run: #***** # Model 3: Modelling error correlations: # joint residual correlations for each itemcluster error.corr <- diag(1,ncol(dat)) for ( ii in 1:3){ ind.ii <- which( itemcluster==ii ) error.corr[ ind.ii, ind.ii ] <- ii } # estimate the model with error correlations mod3 <- sirt::rasch.pml3( dat, error.corr=error.corr ) summary(mod3) #**** # Model 4: model separate residual correlations I <- ncol(error.corr) error.corr1 <- matrix( 1:(I*I), ncol=I ) error.corr <- error.corr1 * ( error.corr > 0 ) # estimate the model with error correlations mod4 <- sirt::rasch.pml3( dat, error.corr=error.corr ) summary(mod4) #**** # Model 5: assume equal item difficulties: # b_1=b_7 and b_2=b_12 # fix item difficulty of the 6th item to .1 est.b <- 1:I est.b[7] <- 1; est.b[12] <- 2 ; est.b[6] <- 0 b.init <- rep( 0, I ) ; b.init[6] <- .1 mod5 <- sirt::rasch.pml3( dat, est.b=est.b, b.init=b.init) summary(mod5) #**** # Model 6: estimate three item slope groups est.a <- rep(1:3, each=4 ) mod6 <- sirt::rasch.pml3( dat, est.a=est.a, est.sigma=0) summary(mod6) ############################################################################# # EXAMPLE 2: PISA reading ############################################################################# data(data.pisaRead) dat <- data.pisaRead$data # select items dat <- dat[, substring(colnames(dat),1,1)=="R" ] #****** # Model 1: Rasch model with PML estimation mod1 <- sirt::rasch.pml3( as.matrix(dat) ) ## Trait SD (Logit Link) : 1.419 #****** # Model 2: Model correlations within testlets error.corr <- diag(1,ncol(dat)) testlets <- paste( data.pisaRead$item$testlet ) itemcluster <- match( testlets, unique(testlets ) ) for ( ii in 1:(length(unique(testlets))) ){ ind.ii <- which( itemcluster==ii ) error.corr[ ind.ii, ind.ii ] <- ii } # estimate the model with error correlations mod2 <- sirt::rasch.pml3( dat, error.corr=error.corr ) ## Trait SD (Logit Link) : 1.384 #**** # Model 3: model separate residual correlations I <- ncol(error.corr) error.corr1 <- matrix( 1:(I*I), ncol=I ) error.corr <- error.corr1 * ( error.corr > 0 ) # estimate the model with error correlations mod3 <- sirt::rasch.pml3( dat, error.corr=error.corr ) ## Trait SD (Logit Link) : 1.384 ############################################################################# # EXAMPLE 3: 10 locally independent items ############################################################################# #********** # simulate some data set.seed(554) N <- 500 # persons I <- 10 # items theta <- stats::rnorm(N,sd=1.3 ) # trait SD of 1.3 b <- seq(-2, 2, length=I) # item difficulties # simulate data from the Rasch model dat <- sirt::sim.raschtype( theta=theta, b=b ) # estimation with rasch.pml and probit link mod1 <- sirt::rasch.pml3( dat ) summary(mod1) # estimation with rasch.mml2 function mod2 <- sirt::rasch.mml2( dat ) # estimate item parameters for groups with five item parameters each est.b <- rep( 1:(I/2), each=2 ) mod3 <- sirt::rasch.pml3( dat, est.b=est.b ) summary(mod3) # compare parameter estimates summary(mod1) summary(mod2) summary(mod3) ############################################################################# # EXAMPLE 4: 11 items and 2 item clusters with 2 and 3 items ############################################################################# set.seed(5698) I <- 11 # number of items n <- 5000 # number of persons b <- seq(-2,2, len=I) # item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[c(3,5)] <- 1 itemcluster[c(2,4,9)] <- 2 # residual correlations rho <- c( .7, .5 ) # simulate data (under the logit link) dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") #*** # Model 1: estimation using the Rasch model (with probit link) mod1 <- sirt::rasch.pml3( dat ) #*** # Model 2: estimation when pairs of locally dependent items are eliminated mod2 <- sirt::rasch.pml3( dat, itemcluster=itemcluster) #*** # Model 3: Positive correlations within testlets est.corrs <- diag( 1, I ) est.corrs[ c(3,5), c(3,5) ] <- 2 est.corrs[ c(2,4,9), c(2,4,9) ] <- 3 mod3 <- sirt::rasch.pml3( dat, error.corr=est.corrs ) #*** # Model 4: Negative correlations between testlets est.corrs <- diag( 1, I ) est.corrs[ c(3,5), c(2,4,9) ] <- 2 est.corrs[ c(2,4,9), c(3,5) ] <- 2 mod4 <- sirt::rasch.pml3( dat, error.corr=est.corrs ) #*** # Model 5: sum constraint of zero within and between testlets est.corrs <- matrix( 1:(I*I), I, I ) cluster2 <- c(2,4,9) est.corrs[ setdiff( 1:I, c(cluster2)), ] <- 0 est.corrs[, setdiff( 1:I, c(cluster2)) ] <- 0 # define an error constraint matrix itempairs0 <- mod4$itempairs IP <- nrow(itempairs0) err.constraint <- matrix( 0, IP, 1 ) err.constraint[ ( itempairs0$item1 %in% cluster2 ) & ( itempairs0$item2 %in% cluster2 ), 1 ] <- 1 # set sum of error covariances to 1.2 err.constraintV <- matrix(3*.4,1,1) mod5 <- sirt::rasch.pml3( dat, error.corr=est.corrs, err.constraintM=err.constraint, err.constraintV=err.constraintV) #**** # Model 6: Constraint on sum of all correlations est.corrs <- matrix( 1:(I*I), I, I ) # define an error constraint matrix itempairs0 <- mod4$itempairs IP <- nrow(itempairs0) # define two side conditions err.constraint <- matrix( 0, IP, 2 ) err.constraintV <- matrix( 0, 2, 1) # sum of all correlations is zero err.constraint[, 1 ] <- 1 err.constraintV[1,1] <- 0 # sum of items cluster c(1,2,3) is 0 cluster2 <- c(1,2,3) err.constraint[ ( itempairs0$item1 %in% cluster2 ) & ( itempairs0$item2 %in% cluster2 ), 2 ] <- 1 err.constraintV[2,1] <- 0 mod6 <- sirt::rasch.pml3( dat, error.corr=est.corrs, err.constraintM=err.constraint, err.constraintV=err.constraintV) summary(mod6) ############################################################################# # EXAMPLE 5: 10 Items: Cluster 1 -> Items 1,2 # Cluster 2 -> Items 3,4,5; Cluster 3 -> Items 7,8,9 ############################################################################# set.seed(7650) I <- 10 # number of items n <- 5000 # number of persons b <- seq(-2,2, len=I) # item difficulties bsamp <- b <- sample(b) # sample item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # define itemcluster itemcluster <- rep(0,I) itemcluster[ 1:2 ] <- 1 itemcluster[ 3:5 ] <- 2 itemcluster[ 7:9 ] <- 3 # define residual correlations rho <- c( .55, .35, .45) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") #*** # Model 1: residual correlation (equal within item clusters) # define a matrix of integers for estimating error correlations error.corr <- diag(1,ncol(dat)) for ( ii in 1:3){ ind.ii <- which( itemcluster==ii ) error.corr[ ind.ii, ind.ii ] <- ii } # estimate the model mod1 <- sirt::rasch.pml3( dat, error.corr=error.corr ) #*** # Model 2: residual correlation (different within item clusters) # define again a matrix of integers for estimating error correlations error.corr <- diag(1,ncol(dat)) for ( ii in 1:3){ ind.ii <- which( itemcluster==ii ) error.corr[ ind.ii, ind.ii ] <- ii } I <- ncol(error.corr) error.corr1 <- matrix( 1:(I*I), ncol=I ) error.corr <- error.corr1 * ( error.corr > 0 ) # estimate the model mod2 <- sirt::rasch.pml3( dat, error.corr=error.corr ) #*** # Model 3: eliminate item pairs within itemclusters for PML estimation mod3 <- sirt::rasch.pml3( dat, itemcluster=itemcluster ) #*** # Model 4: Rasch model ignoring dependency mod4 <- sirt::rasch.pml3( dat ) # compare different models summary(mod1) summary(mod2) summary(mod3) summary(mod4) ## End(Not run)
This function estimates the Rasch model using the PROX algorithm (cited in Wright & Stone, 1999).
rasch.prox(dat, dat.resp=1 - is.na(dat), freq=rep(1,nrow(dat)), conv=0.001, maxiter=30, progress=FALSE)
rasch.prox(dat, dat.resp=1 - is.na(dat), freq=rep(1,nrow(dat)), conv=0.001, maxiter=30, progress=FALSE)
dat |
An |
dat.resp |
An |
freq |
A vector of frequencies (or weights) of all rows in data frame |
conv |
Convergence criterion for item parameters |
maxiter |
Maximum number of iterations |
progress |
Display progress? |
A list with following entries
b |
Estimated item difficulties |
theta |
Estimated person abilities |
iter |
Number of iterations |
sigma.i |
Item standard deviations |
sigma.n |
Person standard deviations |
Wright, B., & Stone, W. (1999). Measurement Essentials. Wilmington: Wide Range.
############################################################################# # EXAMPLE 1: PROX data.read ############################################################################# data(data.read) mod <- sirt::rasch.prox( data.read ) mod$b # item difficulties
############################################################################# # EXAMPLE 1: PROX data.read ############################################################################# data(data.read) mod <- sirt::rasch.prox( data.read ) mod$b # item difficulties
This function estimates the Rasch model by the estimation method of variational approximation (Rijmen & Vomlel, 2008).
rasch.va(dat, globconv=0.001, maxiter=1000)
rasch.va(dat, globconv=0.001, maxiter=1000)
dat |
Data frame with dichotomous item responses |
globconv |
Convergence criterion for item parameters |
maxiter |
Maximal number of iterations |
A list with following entries:
sig |
Standard deviation of the trait |
item |
Data frame with item parameters |
xsi.ij |
Data frame with variational parameters |
mu.i |
Vector with individual means |
sigma2.i |
Vector with individual variances |
Rijmen, F., & Vomlel, J. (2008). Assessing the performance of variational methods for mixed logistic regression models. Journal of Statistical Computation and Simulation, 78, 765-779.
############################################################################# # EXAMPLE 1: Rasch model ############################################################################# set.seed(8706) N <- 5000 I <- 20 dat <- sirt::sim.raschtype( stats::rnorm(N,sd=1.3), b=seq(-2,2,len=I) ) # estimation via variational approximation mod1 <- sirt::rasch.va(dat) # estimation via marginal maximum likelihood mod2 <- sirt::rasch.mml2(dat) # estmation via joint maximum likelihood mod3 <- sirt::rasch.jml(dat) # compare sigma round( c( mod1$sig, mod2$sd.trait ), 3 ) ## [1] 1.222 1.314 # compare b round( cbind( mod1$item$b, mod2$item$b, mod3$item$itemdiff), 3 ) ## [,1] [,2] [,3] ## [1,] -1.898 -1.967 -2.090 ## [2,] -1.776 -1.841 -1.954 ## [3,] -1.561 -1.618 -1.715 ## [4,] -1.326 -1.375 -1.455 ## [5,] -1.121 -1.163 -1.228
############################################################################# # EXAMPLE 1: Rasch model ############################################################################# set.seed(8706) N <- 5000 I <- 20 dat <- sirt::sim.raschtype( stats::rnorm(N,sd=1.3), b=seq(-2,2,len=I) ) # estimation via variational approximation mod1 <- sirt::rasch.va(dat) # estimation via marginal maximum likelihood mod2 <- sirt::rasch.mml2(dat) # estmation via joint maximum likelihood mod3 <- sirt::rasch.jml(dat) # compare sigma round( c( mod1$sig, mod2$sd.trait ), 3 ) ## [1] 1.222 1.314 # compare b round( cbind( mod1$item$b, mod2$item$b, mod3$item$itemdiff), 3 ) ## [,1] [,2] [,3] ## [1,] -1.898 -1.967 -2.090 ## [2,] -1.776 -1.841 -1.954 ## [3,] -1.561 -1.618 -1.715 ## [4,] -1.326 -1.375 -1.455 ## [5,] -1.121 -1.163 -1.228
This function estimates a model based reliability using confirmatory factor analysis (Green & Yang, 2009).
reliability.nonlinearSEM(facloadings, thresh, resid.cov=NULL, cor.factors=NULL)
reliability.nonlinearSEM(facloadings, thresh, resid.cov=NULL, cor.factors=NULL)
facloadings |
Matrix of factor loadings |
thresh |
Vector of thresholds |
resid.cov |
Matrix of residual covariances |
cor.factors |
Optional matrix of covariances (correlations) between factors. The default is a diagonal matrix with variances of 1. |
A list. The reliability is the list element omega.rel
This function needs the mvtnorm package.
Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 74, 155-167.
This function is used in greenyang.reliability
.
############################################################################# # EXAMPLE 1: Reading data set ############################################################################# data(data.read) dat <- data.read I <- ncol(dat) # define item clusters itemcluster <- rep( 1:3, each=4) error.corr <- diag(1,ncol(dat)) for ( ii in 1:3){ ind.ii <- which( itemcluster==ii ) error.corr[ ind.ii, ind.ii ] <- ii } # estimate the model with error correlations mod1 <- sirt::rasch.pml3( dat, error.corr=error.corr) summary(mod1) # extract item parameters thresh <- - matrix( mod1$item$a * mod1$item$b, I, 1 ) A <- matrix( mod1$item$a * mod1$item$sigma, I, 1 ) # extract estimated correlation matrix corM <- mod1$eps.corrM # compute standardized factor loadings facA <- 1 / sqrt( A^2 + 1 ) resvar <- 1 - facA^2 covM <- outer( sqrt(resvar[,1]), sqrt(resvar[,1] ) ) * corM facloadings <- A *facA # estimate reliability rel1 <- sirt::reliability.nonlinearSEM( facloadings=facloadings, thresh=thresh, resid.cov=covM) rel1$omega.rel
############################################################################# # EXAMPLE 1: Reading data set ############################################################################# data(data.read) dat <- data.read I <- ncol(dat) # define item clusters itemcluster <- rep( 1:3, each=4) error.corr <- diag(1,ncol(dat)) for ( ii in 1:3){ ind.ii <- which( itemcluster==ii ) error.corr[ ind.ii, ind.ii ] <- ii } # estimate the model with error correlations mod1 <- sirt::rasch.pml3( dat, error.corr=error.corr) summary(mod1) # extract item parameters thresh <- - matrix( mod1$item$a * mod1$item$b, I, 1 ) A <- matrix( mod1$item$a * mod1$item$sigma, I, 1 ) # extract estimated correlation matrix corM <- mod1$eps.corrM # compute standardized factor loadings facA <- 1 / sqrt( A^2 + 1 ) resvar <- 1 - facA^2 covM <- outer( sqrt(resvar[,1]), sqrt(resvar[,1] ) ) * corM facloadings <- A *facA # estimate reliability rel1 <- sirt::reliability.nonlinearSEM( facloadings=facloadings, thresh=thresh, resid.cov=covM) rel1$omega.rel
Creates group-wise item response dataset.
resp_groupwise(resp, group, items_group)
resp_groupwise(resp, group, items_group)
resp |
Dataset with item responses |
group |
Vector of group identifiers |
items_group |
List containing vectors of groups for each item which should be made group-specific |
Dataset
## Not run: ############################################################################# # EXAMPLE 1: Toy dataset ############################################################################# library(CDM) library(TAM) data(data.ex11, package="TAM") dat <- data.ex11 dat[ dat==9 ] <- 0 resp <- dat[,-1] # group labels booklets <- sort( unique(paste(dat$booklet))) #- fit initial model mod0 <- TAM::tam.mml( resp, group=dat$booklet) summary(mod0) # fit statistics fmod <- IRT.RMSD(mod) stat <- abs(fmod$MD[,-1]) stat[ is.na( fmod$RMSD[,2:4] ) ] <- NA thresh <- .01 round(stat,3) # define list define groups for group-specific items items_group <- apply( stat, 1, FUN=function(ll){ v1 <- booklets[ which( ll > thresh ) ] v1[ ! is.na(v1) ] } ) #- create extended response dataset dat2 <- sirt::resp_groupwise(resp=resp, group=paste(dat$booklet), items_group=items_group) colSums( ! is.na(dat2) ) #- fit model for extended response dataset mod2 <- TAM::tam.mml( dat2, group=dat$booklet) summary(mod2) ## End(Not run)
## Not run: ############################################################################# # EXAMPLE 1: Toy dataset ############################################################################# library(CDM) library(TAM) data(data.ex11, package="TAM") dat <- data.ex11 dat[ dat==9 ] <- 0 resp <- dat[,-1] # group labels booklets <- sort( unique(paste(dat$booklet))) #- fit initial model mod0 <- TAM::tam.mml( resp, group=dat$booklet) summary(mod0) # fit statistics fmod <- IRT.RMSD(mod) stat <- abs(fmod$MD[,-1]) stat[ is.na( fmod$RMSD[,2:4] ) ] <- NA thresh <- .01 round(stat,3) # define list define groups for group-specific items items_group <- apply( stat, 1, FUN=function(ll){ v1 <- booklets[ which( ll > thresh ) ] v1[ ! is.na(v1) ] } ) #- create extended response dataset dat2 <- sirt::resp_groupwise(resp=resp, group=paste(dat$booklet), items_group=items_group) colSums( ! is.na(dat2) ) #- fit model for extended response dataset mod2 <- TAM::tam.mml( dat2, group=dat$booklet) summary(mod2) ## End(Not run)
Random draws and density of inverse gamma distribution parameterized
in prior sample size n0
and prior variance var0
(see Gelman et al., 2014).
rinvgamma2(n, n0, var0) dinvgamma2(x, n0, var0)
rinvgamma2(n, n0, var0) dinvgamma2(x, n0, var0)
n |
Number of draws for inverse gamma distribution |
n0 |
Prior sample size |
var0 |
Prior variance |
x |
Vector with numeric values for density evaluation |
A vector containing random draws or density values
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (Vol. 3). Boca Raton, FL, USA: Chapman & Hall/CRC.
MCMCpack::rinvgamma
,
stats::rgamma
,
MCMCpack::dinvgamma
,
stats::dgamma
############################################################################# # EXAMPLE 1: Inverse gamma distribution ############################################################################# # prior sample size of 100 and prior variance of 1.5 n0 <- 100 var0 <- 1.5 # 100 random draws y1 <- sirt::rinvgamma2( n=100, n0, var0 ) summary(y1) graphics::hist(y1) # density y at grid x x <- seq( 0, 2, len=100 ) y <- sirt::dinvgamma2( x, n0, var0 ) graphics::plot( x, y, type="l")
############################################################################# # EXAMPLE 1: Inverse gamma distribution ############################################################################# # prior sample size of 100 and prior variance of 1.5 n0 <- 100 var0 <- 1.5 # 100 random draws y1 <- sirt::rinvgamma2( n=100, n0, var0 ) summary(y1) graphics::hist(y1) # density y at grid x x <- seq( 0, 2, len=100 ) y <- sirt::dinvgamma2( x, n0, var0 ) graphics::plot( x, y, type="l")
This function estimates the unidimensional rater facets model (Lincare, 1994) and an extension to slopes (see Details; Robitzsch & Steinfeld, 2018). The estimation is conducted by an EM algorithm employing marginal maximum likelihood.
rm.facets(dat, pid=NULL, rater=NULL, Qmatrix=NULL, theta.k=seq(-9, 9, len=30), est.b.rater=TRUE, est.a.item=FALSE, est.a.rater=FALSE, rater_item_int=FALSE, est.mean=FALSE, tau.item.fixed=NULL, a.item.fixed=NULL, b.rater.fixed=NULL, a.rater.fixed=NULL, b.rater.center=2, a.rater.center=2, a.item.center=2, a_lower=.05, a_upper=10, reference_rater=NULL, max.b.increment=1, numdiff.parm=0.00001, maxdevchange=0.1, globconv=0.001, maxiter=1000, msteps=4, mstepconv=0.001, PEM=FALSE, PEM_itermax=maxiter) ## S3 method for class 'rm.facets' summary(object, file=NULL, ...) ## S3 method for class 'rm.facets' anova(object,...) ## S3 method for class 'rm.facets' logLik(object,...) ## S3 method for class 'rm.facets' IRT.irfprob(object,...) ## S3 method for class 'rm.facets' IRT.factor.scores(object, type="EAP", ...) ## S3 method for class 'rm.facets' IRT.likelihood(object,...) ## S3 method for class 'rm.facets' IRT.posterior(object,...) ## S3 method for class 'rm.facets' IRT.modelfit(object,...) ## S3 method for class 'IRT.modelfit.rm.facets' summary(object, ...) ## function for processing data rm_proc_data( dat, pid, rater, rater_item_int=FALSE, reference_rater=NULL )
rm.facets(dat, pid=NULL, rater=NULL, Qmatrix=NULL, theta.k=seq(-9, 9, len=30), est.b.rater=TRUE, est.a.item=FALSE, est.a.rater=FALSE, rater_item_int=FALSE, est.mean=FALSE, tau.item.fixed=NULL, a.item.fixed=NULL, b.rater.fixed=NULL, a.rater.fixed=NULL, b.rater.center=2, a.rater.center=2, a.item.center=2, a_lower=.05, a_upper=10, reference_rater=NULL, max.b.increment=1, numdiff.parm=0.00001, maxdevchange=0.1, globconv=0.001, maxiter=1000, msteps=4, mstepconv=0.001, PEM=FALSE, PEM_itermax=maxiter) ## S3 method for class 'rm.facets' summary(object, file=NULL, ...) ## S3 method for class 'rm.facets' anova(object,...) ## S3 method for class 'rm.facets' logLik(object,...) ## S3 method for class 'rm.facets' IRT.irfprob(object,...) ## S3 method for class 'rm.facets' IRT.factor.scores(object, type="EAP", ...) ## S3 method for class 'rm.facets' IRT.likelihood(object,...) ## S3 method for class 'rm.facets' IRT.posterior(object,...) ## S3 method for class 'rm.facets' IRT.modelfit(object,...) ## S3 method for class 'IRT.modelfit.rm.facets' summary(object, ...) ## function for processing data rm_proc_data( dat, pid, rater, rater_item_int=FALSE, reference_rater=NULL )
dat |
Original data frame. Ratings on variables must be in rows, i.e. every row corresponds to a person-rater combination. |
pid |
Person identifier. |
rater |
Rater identifier |
Qmatrix |
An optional Q-matrix. If this matrix is not provided,
then by default the ordinary scoring of categories
(from 0 to the maximum score of |
theta.k |
A grid of theta values for the ability distribution. |
est.b.rater |
Should the rater severities |
est.a.item |
Should the item slopes |
est.a.rater |
Should the rater slopes |
rater_item_int |
Logical indicating whether rater-item-interactions should be modeled. |
est.mean |
Optional logical indicating whether the mean of the trait distribution should be estimated. |
tau.item.fixed |
Matrix with fixed |
a.item.fixed |
Vector with fixed item discriminations |
b.rater.fixed |
Vector with fixed rater intercept parameters |
a.rater.fixed |
Vector with fixed rater discrimination parameters |
b.rater.center |
Centering method for rater intercept parameters. The
value |
a.rater.center |
Centering method for rater discrimination parameters. The
value |
a.item.center |
Centering method for item discrimination parameters. The
value |
a_lower |
Lower bound for |
a_upper |
Upper bound for |
reference_rater |
Identifier for rater as a reference rater for which a fixed rater mean of 0 and a fixed rater slope of 1 is assumed. |
max.b.increment |
Maximum increment of item parameters during estimation |
numdiff.parm |
Numerical differentiation step width |
maxdevchange |
Maximum relative deviance change as a convergence criterion |
globconv |
Maximum parameter change |
maxiter |
Maximum number of iterations |
msteps |
Maximum number of iterations during an M step |
mstepconv |
Convergence criterion in an M step |
PEM |
Logical indicating whether the P-EM acceleration should be applied (Berlinet & Roland, 2012). |
PEM_itermax |
Number of iterations in which the P-EM method should be applied. |
object |
Object of class |
file |
Optional file name in which summary should be written. |
type |
Factor score estimation method. Factor score types
|
... |
Further arguments to be passed |
This function models ratings
for person
, rater
and item
and category
(see also Robitzsch & Steinfeld, 2018; Uto & Ueno, 2010; Wu, 2017)
By default, the scores in the matrix are
. Item slopes
and rater slopes
are standardized such that their product equals
one, i.e.
.
A list with following entries:
deviance |
Deviance |
ic |
Information criteria and number of parameters |
item |
Data frame with item parameters |
rater |
Data frame with rater parameters |
person |
Data frame with person parameters: EAP and corresponding standard errors |
EAP.rel |
EAP reliability |
mu |
Mean of the trait distribution |
sigma |
Standard deviation of the trait distribution |
theta.k |
Grid of theta values |
pi.k |
Fitted distribution at |
tau.item |
Item parameters |
se.tau.item |
Standard error of item parameters |
a.item |
Item slopes |
se.a.item |
Standard error of item slopes |
delta.item |
Delta item parameter. See
|
b.rater |
Rater severity parameter |
se.b.rater |
Standard error of rater severity parameter |
a.rater |
Rater slope parameter |
se.a.rater |
Standard error of rater slope parameter |
f.yi.qk |
Individual likelihood |
f.qk.yi |
Individual posterior distribution |
probs |
Item probabilities at grid |
n.ik |
Expected counts |
maxK |
Maximum number of categories |
procdata |
Processed data |
iter |
Number of iterations |
ipars.dat2 |
Item parameters for expanded dataset |
... |
Further values |
If the trait standard deviation sigma
strongly
differs from 1, then a user should investigate the sensitivity
of results using different theta integration points theta.k
.
Berlinet, A. F., & Roland, C. (2012). Acceleration of the EM algorithm: P-EM versus epsilon algorithm. Computational Statistics & Data Analysis, 56(12), 4122-4137.
Linacre, J. M. (1994). Many-Facet Rasch Measurement. Chicago: MESA Press.
Robitzsch, A., & Steinfeld, J. (2018). Item response models for human ratings: Overview, estimation methods, and implementation in R. Psychological Test and Assessment Modeling, 60(1), 101-139.
Uto, M., & Ueno, M. (2016). Item response theory for peer assessment. IEEE Transactions on Learning Technologies, 9(2), 157-170.
Wu, M. (2017). Some IRT-based analyses for interpreting rater effects. Psychological Test and Assessment Modeling, 59(4), 453-470.
See also the TAM package for the estimation of more complicated facet models.
See rm.sdt
for estimating a hierarchical rater model.
############################################################################# # EXAMPLE 1: Partial Credit Model and Generalized partial credit model # 5 items and 1 rater ############################################################################# data(data.ratings1) dat <- data.ratings1 # select rater db01 dat <- dat[ paste(dat$rater)=="db01", ] #**** Model 1: Partial Credit Model mod1 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], pid=dat$idstud ) #**** Model 2: Generalized Partial Credit Model mod2 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], pid=dat$idstud, est.a.item=TRUE) summary(mod1) summary(mod2) ## Not run: ############################################################################# # EXAMPLE 2: Facets Model: 5 items, 7 raters ############################################################################# data(data.ratings1) dat <- data.ratings1 #**** Model 1: Partial Credit Model: no rater effects mod1 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.b.rater=FALSE ) #**** Model 2: Partial Credit Model: intercept rater effects mod2 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud) # extract individual likelihood lmod1 <- IRT.likelihood(mod1) str(lmod1) # likelihood value logLik(mod1) # extract item response functions pmod1 <- IRT.irfprob(mod1) str(pmod1) # model comparison anova(mod1,mod2) # absolute and relative model fit smod1 <- IRT.modelfit(mod1) summary(smod1) smod2 <- IRT.modelfit(mod2) summary(smod2) IRT.compareModels( smod1, smod2 ) # extract factor scores (EAP is the default) IRT.factor.scores(mod2) # extract WLEs IRT.factor.scores(mod2, type="WLE") #**** Model 2a: compare results with TAM package # Results should be similar to Model 2 library(TAM) mod2a <- TAM::tam.mml.mfr( resp=dat[, paste0( "k",1:5) ], facets=dat[, "rater", drop=FALSE], pid=dat$pid, formulaA=~ item*step + rater ) #**** Model 2b: Partial Credit Model: some fixed parameters # fix rater parameters for raters 1, 4 and 5 b.rater.fixed <- rep(NA,7) b.rater.fixed[ c(1,4,5) ] <- c(1,-.8,0) # fixed parameters # fix item parameters of first and second item tau.item.fixed <- round( mod2$tau.item, 1 ) # use parameters from mod2 tau.item.fixed[ 3:5, ] <- NA # free item parameters of items 3, 4 and 5 mod2b <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, b.rater.fixed=b.rater.fixed, tau.item.fixed=tau.item.fixed, est.mean=TRUE, pid=dat$idstud) summary(mod2b) #**** Model 3: estimated rater slopes mod3 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, est.a.rater=TRUE) #**** Model 4: estimated item slopes mod4 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.a.item=TRUE) #**** Model 5: estimated rater and item slopes mod5 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.a.rater=TRUE, est.a.item=TRUE) summary(mod1) summary(mod2) summary(mod2a) summary(mod3) summary(mod4) summary(mod5) #**** Model 5a: Some fixed parameters in Model 5 # fix rater b parameters for raters 1, 4 and 5 b.rater.fixed <- rep(NA,7) b.rater.fixed[ c(1,4,5) ] <- c(1,-.8,0) # fix rater a parameters for first four raters a.rater.fixed <- rep(NA,7) a.rater.fixed[ c(1,2,3,4) ] <- c(1.1,0.9,.85,1) # fix item b parameters of first item tau.item.fixed <- matrix( NA, nrow=5, ncol=3 ) tau.item.fixed[ 1, ] <- c(-2,-1.5, 1 ) # fix item a parameters a.item.fixed <- rep(NA,5) a.item.fixed[ 1:4 ] <- 1 # estimate model mod5a <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.a.rater=TRUE, est.a.item=TRUE, tau.item.fixed=tau.item.fixed, b.rater.fixed=b.rater.fixed, a.rater.fixed=a.rater.fixed, a.item.fixed=a.item.fixed, est.mean=TRUE) summary(mod5a) #**** Model 6: Estimate rater model with reference rater 'db03' mod6 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, est.a.item=TRUE, est.a.rater=TRUE, pid=dat$idstud, reference_rater="db03" ) summary(mod6) #**** Model 7: Modelling rater-item-interactions mod7 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, est.a.item=FALSE, est.a.rater=TRUE, pid=dat$idstud, reference_rater="db03", rater_item_int=TRUE) summary(mod7) ## End(Not run)
############################################################################# # EXAMPLE 1: Partial Credit Model and Generalized partial credit model # 5 items and 1 rater ############################################################################# data(data.ratings1) dat <- data.ratings1 # select rater db01 dat <- dat[ paste(dat$rater)=="db01", ] #**** Model 1: Partial Credit Model mod1 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], pid=dat$idstud ) #**** Model 2: Generalized Partial Credit Model mod2 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], pid=dat$idstud, est.a.item=TRUE) summary(mod1) summary(mod2) ## Not run: ############################################################################# # EXAMPLE 2: Facets Model: 5 items, 7 raters ############################################################################# data(data.ratings1) dat <- data.ratings1 #**** Model 1: Partial Credit Model: no rater effects mod1 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.b.rater=FALSE ) #**** Model 2: Partial Credit Model: intercept rater effects mod2 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud) # extract individual likelihood lmod1 <- IRT.likelihood(mod1) str(lmod1) # likelihood value logLik(mod1) # extract item response functions pmod1 <- IRT.irfprob(mod1) str(pmod1) # model comparison anova(mod1,mod2) # absolute and relative model fit smod1 <- IRT.modelfit(mod1) summary(smod1) smod2 <- IRT.modelfit(mod2) summary(smod2) IRT.compareModels( smod1, smod2 ) # extract factor scores (EAP is the default) IRT.factor.scores(mod2) # extract WLEs IRT.factor.scores(mod2, type="WLE") #**** Model 2a: compare results with TAM package # Results should be similar to Model 2 library(TAM) mod2a <- TAM::tam.mml.mfr( resp=dat[, paste0( "k",1:5) ], facets=dat[, "rater", drop=FALSE], pid=dat$pid, formulaA=~ item*step + rater ) #**** Model 2b: Partial Credit Model: some fixed parameters # fix rater parameters for raters 1, 4 and 5 b.rater.fixed <- rep(NA,7) b.rater.fixed[ c(1,4,5) ] <- c(1,-.8,0) # fixed parameters # fix item parameters of first and second item tau.item.fixed <- round( mod2$tau.item, 1 ) # use parameters from mod2 tau.item.fixed[ 3:5, ] <- NA # free item parameters of items 3, 4 and 5 mod2b <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, b.rater.fixed=b.rater.fixed, tau.item.fixed=tau.item.fixed, est.mean=TRUE, pid=dat$idstud) summary(mod2b) #**** Model 3: estimated rater slopes mod3 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, est.a.rater=TRUE) #**** Model 4: estimated item slopes mod4 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.a.item=TRUE) #**** Model 5: estimated rater and item slopes mod5 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.a.rater=TRUE, est.a.item=TRUE) summary(mod1) summary(mod2) summary(mod2a) summary(mod3) summary(mod4) summary(mod5) #**** Model 5a: Some fixed parameters in Model 5 # fix rater b parameters for raters 1, 4 and 5 b.rater.fixed <- rep(NA,7) b.rater.fixed[ c(1,4,5) ] <- c(1,-.8,0) # fix rater a parameters for first four raters a.rater.fixed <- rep(NA,7) a.rater.fixed[ c(1,2,3,4) ] <- c(1.1,0.9,.85,1) # fix item b parameters of first item tau.item.fixed <- matrix( NA, nrow=5, ncol=3 ) tau.item.fixed[ 1, ] <- c(-2,-1.5, 1 ) # fix item a parameters a.item.fixed <- rep(NA,5) a.item.fixed[ 1:4 ] <- 1 # estimate model mod5a <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.a.rater=TRUE, est.a.item=TRUE, tau.item.fixed=tau.item.fixed, b.rater.fixed=b.rater.fixed, a.rater.fixed=a.rater.fixed, a.item.fixed=a.item.fixed, est.mean=TRUE) summary(mod5a) #**** Model 6: Estimate rater model with reference rater 'db03' mod6 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, est.a.item=TRUE, est.a.rater=TRUE, pid=dat$idstud, reference_rater="db03" ) summary(mod6) #**** Model 7: Modelling rater-item-interactions mod7 <- sirt::rm.facets( dat[, paste0( "k",1:5) ], rater=dat$rater, est.a.item=FALSE, est.a.rater=TRUE, pid=dat$idstud, reference_rater="db03", rater_item_int=TRUE) summary(mod7) ## End(Not run)
This function estimates a version of the hierarchical rater model (HRM) based on signal detection theory (HRM-SDT; DeCarlo, 2005; DeCarlo, Kim & Johnson, 2011; Robitzsch & Steinfeld, 2018). The model is estimated by means of an EM algorithm adapted from multilevel latent class analysis (Vermunt, 2008).
rm.sdt(dat, pid, rater, Qmatrix=NULL, theta.k=seq(-9, 9, len=30), est.a.item=FALSE, est.c.rater="n", est.d.rater="n", est.mean=FALSE, est.sigma=TRUE, skillspace="normal", tau.item.fixed=NULL, a.item.fixed=NULL, d.min=0.5, d.max=100, d.start=3, c.start=NULL, tau.start=NULL, sd.start=1, d.prior=c(3,100), c.prior=c(3,100), tau.prior=c(0,1000), a.prior=c(1,100), link_item="GPCM", max.increment=1, numdiff.parm=0.00001, maxdevchange=0.1, globconv=.001, maxiter=1000, msteps=4, mstepconv=0.001, optimizer="nlminb" ) ## S3 method for class 'rm.sdt' summary(object, file=NULL, ...) ## S3 method for class 'rm.sdt' plot(x, ask=TRUE, ...) ## S3 method for class 'rm.sdt' anova(object,...) ## S3 method for class 'rm.sdt' logLik(object,...) ## S3 method for class 'rm.sdt' IRT.factor.scores(object, type="EAP", ...) ## S3 method for class 'rm.sdt' IRT.irfprob(object,...) ## S3 method for class 'rm.sdt' IRT.likelihood(object,...) ## S3 method for class 'rm.sdt' IRT.posterior(object,...) ## S3 method for class 'rm.sdt' IRT.modelfit(object,...) ## S3 method for class 'IRT.modelfit.rm.sdt' summary(object,...)
rm.sdt(dat, pid, rater, Qmatrix=NULL, theta.k=seq(-9, 9, len=30), est.a.item=FALSE, est.c.rater="n", est.d.rater="n", est.mean=FALSE, est.sigma=TRUE, skillspace="normal", tau.item.fixed=NULL, a.item.fixed=NULL, d.min=0.5, d.max=100, d.start=3, c.start=NULL, tau.start=NULL, sd.start=1, d.prior=c(3,100), c.prior=c(3,100), tau.prior=c(0,1000), a.prior=c(1,100), link_item="GPCM", max.increment=1, numdiff.parm=0.00001, maxdevchange=0.1, globconv=.001, maxiter=1000, msteps=4, mstepconv=0.001, optimizer="nlminb" ) ## S3 method for class 'rm.sdt' summary(object, file=NULL, ...) ## S3 method for class 'rm.sdt' plot(x, ask=TRUE, ...) ## S3 method for class 'rm.sdt' anova(object,...) ## S3 method for class 'rm.sdt' logLik(object,...) ## S3 method for class 'rm.sdt' IRT.factor.scores(object, type="EAP", ...) ## S3 method for class 'rm.sdt' IRT.irfprob(object,...) ## S3 method for class 'rm.sdt' IRT.likelihood(object,...) ## S3 method for class 'rm.sdt' IRT.posterior(object,...) ## S3 method for class 'rm.sdt' IRT.modelfit(object,...) ## S3 method for class 'IRT.modelfit.rm.sdt' summary(object,...)
dat |
Original data frame. Ratings on variables must be in rows, i.e. every row corresponds to a person-rater combination. |
pid |
Person identifier. |
rater |
Rater identifier. |
Qmatrix |
An optional Q-matrix. If this matrix is not provided,
then by default the ordinary scoring of categories
(from 0 to the maximum score of |
theta.k |
A grid of theta values for the ability distribution. |
est.a.item |
Should item parameters |
est.c.rater |
Type of estimation for item-rater parameters |
est.d.rater |
Type of estimation of |
est.mean |
Optional logical indicating whether the mean of the trait distribution should be estimated. |
est.sigma |
Optional logical indicating whether the standard deviation of the trait distribution should be estimated. |
skillspace |
Specified |
tau.item.fixed |
Optional matrix with three columns specifying
fixed |
a.item.fixed |
Optional matrix with two columns specifying fixed
|
d.min |
Minimal |
d.max |
Maximal |
d.start |
Starting value(s) of |
c.start |
Starting values of |
tau.start |
Starting values of |
sd.start |
Starting value for trait standard deviation |
d.prior |
Normal prior |
c.prior |
Normal prior for |
tau.prior |
Normal prior for |
a.prior |
Normal prior for |
link_item |
Type of item response function for latent responses.
Can be |
max.increment |
Maximum increment of item parameters during estimation |
numdiff.parm |
Numerical differentiation step width |
maxdevchange |
Maximum relative deviance change as a convergence criterion |
globconv |
Maximum parameter change |
maxiter |
Maximum number of iterations |
msteps |
Maximum number of iterations during an M step |
mstepconv |
Convergence criterion in an M step |
optimizer |
Choice of optimization function in M-step for
item parameters. Options are |
object |
Object of class |
file |
Optional file name in which summary should be written. |
x |
Object of class |
ask |
Optional logical indicating whether a new plot should be asked for. |
type |
Factor score estimation method. Up to now,
only |
... |
Further arguments to be passed |
The specification of the model follows DeCarlo et al. (2011).
The second level models the ideal rating (latent response)
of person
on item
. The option
link_item='GPCM'
follows the
generalized partial credit model
. The option link_item='GRM'
employs the
graded response model
At the first level, the ratings for
person
on item
and rater
are modeled as a signal detection model
where is the logistic distribution function
and the categories are
.
Note that the item response model can be equivalently written
as
The thresholds can be further restricted to
(
est.c.rater='e'
),
(
est.c.rater='i'
) or
(
est.c.rater='r'
). The same
holds for rater precision parameters .
A list with following entries:
deviance |
Deviance |
ic |
Information criteria and number of parameters |
item |
Data frame with item parameters. The columns
|
rater |
Data frame with rater parameters.
Transformed |
person |
Data frame with person parameters: EAP and corresponding standard errors |
EAP.rel |
EAP reliability |
EAP.rel |
EAP reliability |
mu |
Mean of the trait distribution |
sigma |
Standard deviation of the trait distribution |
tau.item |
Item parameters |
se.tau.item |
Standard error of item parameters |
a.item |
Item slopes |
se.a.item |
Standard error of item slopes |
c.rater |
Rater parameters |
se.c.rater |
Standard error of rater severity parameter |
d.rater |
Rater slope parameter |
se.d.rater |
Standard error of rater slope parameter |
f.yi.qk |
Individual likelihood |
f.qk.yi |
Individual posterior distribution |
probs |
Item probabilities at grid |
prob.item |
Probabilities |
n.ik |
Expected counts |
pi.k |
Estimated trait distribution |
maxK |
Maximum number of categories |
procdata |
Processed data |
iter |
Number of iterations |
... |
Further values |
DeCarlo, L. T. (2005). A model of rater behavior in essay grading based on signal detection theory. Journal of Educational Measurement, 42, 53-76.
DeCarlo, L. T. (2010). Studies of a latent-class signal-detection model for constructed response scoring II: Incomplete and hierarchical designs. ETS Research Report ETS RR-10-08. Princeton NJ: ETS.
DeCarlo, T., Kim, Y., & Johnson, M. S. (2011). A hierarchical rater model for constructed responses, with a signal detection rater model. Journal of Educational Measurement, 48, 333-356.
Robitzsch, A., & Steinfeld, J. (2018). Item response models for human ratings: Overview, estimation methods, and implementation in R. Psychological Test and Assessment Modeling, 60(1), 101-139.
Vermunt, J. K. (2008). Latent class and finite mixture models for multilevel data sets. Statistical Methods in Medical Research, 17, 33-51.
The facets rater model can be estimated with rm.facets
.
############################################################################# # EXAMPLE 1: Hierarchical rater model (HRM-SDT) data.ratings1 ############################################################################# data(data.ratings1) dat <- data.ratings1 ## Not run: # Model 1: Partial Credit Model: no rater effects mod1 <- sirt::rm.sdt( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.c.rater="n", d.start=100, est.d.rater="n" ) summary(mod1) # Model 2: Generalized Partial Credit Model: no rater effects mod2 <- sirt::rm.sdt( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.c.rater="n", est.d.rater="n", est.a.item=TRUE, d.start=100) summary(mod2) # Model 3: Equal effects in SDT mod3 <- sirt::rm.sdt( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.c.rater="e", est.d.rater="e") summary(mod3) # Model 4: Rater effects in SDT mod4 <- sirt::rm.sdt( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.c.rater="r", est.d.rater="r") summary(mod4) ############################################################################# # EXAMPLE 2: HRM-SDT data.ratings3 ############################################################################# data(data.ratings3) dat <- data.ratings3 dat <- dat[ dat$rater < 814, ] psych::describe(dat) # Model 1: item- and rater-specific effects mod1 <- sirt::rm.sdt( dat[, paste0( "crit",c(2:4)) ], rater=dat$rater, pid=dat$idstud, est.c.rater="a", est.d.rater="a" ) summary(mod1) plot(mod1) # Model 2: Differing number of categories per variable mod2 <- sirt::rm.sdt( dat[, paste0( "crit",c(2:4,6)) ], rater=dat$rater, pid=dat$idstud, est.c.rater="a", est.d.rater="a") summary(mod2) plot(mod2) ############################################################################# # EXAMPLE 3: Hierarchical rater model with discrete skill spaces ############################################################################# data(data.ratings3) dat <- data.ratings3 dat <- dat[ dat$rater < 814, ] psych::describe(dat) # Model 1: Discrete theta skill space with values of 0,1,2 and 3 mod1 <- sirt::rm.sdt( dat[, paste0( "crit",c(2:4)) ], theta.k=0:3, rater=dat$rater, pid=dat$idstud, est.c.rater="a", est.d.rater="a", skillspace="discrete" ) summary(mod1) plot(mod1) # Model 2: Modelling of one item by using a discrete skill space and # fixed item parameters # fixed tau and a parameters tau.item.fixed <- cbind( 1, 1:3, 100*cumsum( c( 0.5, 1.5, 2.5)) ) a.item.fixed <- cbind( 1, 100 ) # fit HRM-SDT mod2 <- sirt::rm.sdt( dat[, "crit2", drop=FALSE], theta.k=0:3, rater=dat$rater, tau.item.fixed=tau.item.fixed,a.item.fixed=a.item.fixed, pid=dat$idstud, est.c.rater="a", est.d.rater="a", skillspace="discrete" ) summary(mod2) plot(mod2) ## End(Not run)
############################################################################# # EXAMPLE 1: Hierarchical rater model (HRM-SDT) data.ratings1 ############################################################################# data(data.ratings1) dat <- data.ratings1 ## Not run: # Model 1: Partial Credit Model: no rater effects mod1 <- sirt::rm.sdt( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.c.rater="n", d.start=100, est.d.rater="n" ) summary(mod1) # Model 2: Generalized Partial Credit Model: no rater effects mod2 <- sirt::rm.sdt( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.c.rater="n", est.d.rater="n", est.a.item=TRUE, d.start=100) summary(mod2) # Model 3: Equal effects in SDT mod3 <- sirt::rm.sdt( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.c.rater="e", est.d.rater="e") summary(mod3) # Model 4: Rater effects in SDT mod4 <- sirt::rm.sdt( dat[, paste0( "k",1:5) ], rater=dat$rater, pid=dat$idstud, est.c.rater="r", est.d.rater="r") summary(mod4) ############################################################################# # EXAMPLE 2: HRM-SDT data.ratings3 ############################################################################# data(data.ratings3) dat <- data.ratings3 dat <- dat[ dat$rater < 814, ] psych::describe(dat) # Model 1: item- and rater-specific effects mod1 <- sirt::rm.sdt( dat[, paste0( "crit",c(2:4)) ], rater=dat$rater, pid=dat$idstud, est.c.rater="a", est.d.rater="a" ) summary(mod1) plot(mod1) # Model 2: Differing number of categories per variable mod2 <- sirt::rm.sdt( dat[, paste0( "crit",c(2:4,6)) ], rater=dat$rater, pid=dat$idstud, est.c.rater="a", est.d.rater="a") summary(mod2) plot(mod2) ############################################################################# # EXAMPLE 3: Hierarchical rater model with discrete skill spaces ############################################################################# data(data.ratings3) dat <- data.ratings3 dat <- dat[ dat$rater < 814, ] psych::describe(dat) # Model 1: Discrete theta skill space with values of 0,1,2 and 3 mod1 <- sirt::rm.sdt( dat[, paste0( "crit",c(2:4)) ], theta.k=0:3, rater=dat$rater, pid=dat$idstud, est.c.rater="a", est.d.rater="a", skillspace="discrete" ) summary(mod1) plot(mod1) # Model 2: Modelling of one item by using a discrete skill space and # fixed item parameters # fixed tau and a parameters tau.item.fixed <- cbind( 1, 1:3, 100*cumsum( c( 0.5, 1.5, 2.5)) ) a.item.fixed <- cbind( 1, 100 ) # fit HRM-SDT mod2 <- sirt::rm.sdt( dat[, "crit2", drop=FALSE], theta.k=0:3, rater=dat$rater, tau.item.fixed=tau.item.fixed,a.item.fixed=a.item.fixed, pid=dat$idstud, est.c.rater="a", est.d.rater="a", skillspace="discrete" ) summary(mod2) plot(mod2) ## End(Not run)
Simulates a dataset from a multivariate or univariate normal distribution that exactly fulfils the specified mean vector and the covariance matrix.
# multivariate normal distribution rmvn(N, mu, Sigma, exact=TRUE) # univariate normal distribution ruvn(N, mean=0, sd=1, exact=TRUE)
# multivariate normal distribution rmvn(N, mu, Sigma, exact=TRUE) # univariate normal distribution ruvn(N, mean=0, sd=1, exact=TRUE)
N |
Sample size |
mu |
Mean vector |
Sigma |
Covariance matrix |
exact |
Logical indicating whether |
mean |
Numeric value for mean |
sd |
Numeric value for standard deviation |
A dataframe or a vector
mvtnorm::rmvnorm
, mgcv::rmvn
############################################################################# # EXAMPLE 1: Simulate multivariate normal data ############################################################################# # define covariance matrix and mean vector rho <- .8 Sigma <- matrix(rho,3,3) diag(Sigma) <- 1 mu <- c(0,.5,1) #* simulate data set.seed(87) dat <- sirt::rmvn(N=200, mu=mu, Sigma=Sigma) #* check means and covariances stats::cov.wt(dat, method="ML") ## Not run: ############################################################################# # EXAMPLE 2: Simulate univariate normal data ############################################################################# #* simulate data x <- sirt::ruvn(N=20, mean=.5, sd=1.2, exact=TRUE) # check results stats::var(x) sirt:::sirt_var(x) ## End(Not run)
############################################################################# # EXAMPLE 1: Simulate multivariate normal data ############################################################################# # define covariance matrix and mean vector rho <- .8 Sigma <- matrix(rho,3,3) diag(Sigma) <- 1 mu <- c(0,.5,1) #* simulate data set.seed(87) dat <- sirt::rmvn(N=200, mu=mu, Sigma=Sigma) #* check means and covariances stats::cov.wt(dat, method="ML") ## Not run: ############################################################################# # EXAMPLE 2: Simulate univariate normal data ############################################################################# #* simulate data x <- sirt::ruvn(N=20, mean=.5, sd=1.2, exact=TRUE) # check results stats::var(x) sirt:::sirt_var(x) ## End(Not run)
Scales a vector of means and standard deviations containing group values.
scale_group_means(M, SD, probs=NULL, M_target=0, SD_target=1) ## predict method predict_scale_group_means(object, M, SD)
scale_group_means(M, SD, probs=NULL, M_target=0, SD_target=1) ## predict method predict_scale_group_means(object, M, SD)
M |
Vector of means |
SD |
Vector of standard deviations |
probs |
Optional vector containing probabilities |
M_target |
Target value for mean |
SD_target |
Target value for standard deviation |
object |
Fitted object from |
List with entries
M1 |
total mean |
SD1 |
total standard deviation |
M_z |
standardized means |
SD_z |
standardized standard deviations |
M_trafo |
transformed means |
SD_trafo |
transformed standard deviations |
############################################################################# # EXAMPLE 1: Toy example ############################################################################# M <- c(-.03, .18, -.23, -.15, .29) SD <- c(.97, 1.13, .77, 1.05, 1.17) sirt::scale_group_means(M=M, SD=SD)
############################################################################# # EXAMPLE 1: Toy example ############################################################################# M <- c(-.03, .18, -.23, -.15, .29) SD <- c(.97, 1.13, .77, 1.05, 1.17) sirt::scale_group_means(M=M, SD=SD)
This function is a simplified implementation of statistical implicative
analysis (Gras & Kuntz, 2008) which aims at deriving implications
. This means that solving item
implies
solving item
.
sia.sirt(dat, significance=0.85)
sia.sirt(dat, significance=0.85)
dat |
Data frame with dichotomous item responses |
significance |
Minimum implicative probability for inclusion of an arrow in the graph. The probability can be interpreted as a kind of significance level, i.e. higher probabilities indicate more probable implications. |
The test statistic for selection an implicative relation follows Gras and Kuntz (2008). Transitive arrows (implications) are removed from the graph. If some implications are symmetric, then only the more probable implication will be retained.
A list with following entries
adj.matrix |
Adjacency matrix of the graph. Transitive and symmetric implications (arrows) have been removed. |
adj.pot |
Adjacency matrix including all powers, i.e. all direct and
indirect paths from item |
adj.matrix.trans |
Adjacency matrix including transitive arrows. |
desc |
List with descriptive statistics of the graph. |
desc.item |
Descriptive statistics for each item. |
impl.int |
Implication intensity (probability) as the basis for deciding the significance of an arrow |
impl.t |
Corresponding |
impl.significance |
Corresponding |
conf.loev |
Confidence according to Loevinger (see Gras & Kuntz, 2008).
This values are just conditional probabilities |
graph.matr |
Matrix containing all arrows. Can be used for example for the Rgraphviz package. |
graph.edges |
Vector containing all edges of the graph, e.g. for the Rgraphviz package. |
igraph.matr |
Matrix containing all arrows for the igraph package. |
igraph.obj |
An object of the graph for the igraph package. |
For an implementation of statistical implicative analysis in the C.H.I.C. (Classification Hierarchique, Implicative et Cohesitive) software.
See https://ardm.eu/partenaires/logiciel-danalyse-de-donnees-c-h-i-c/.
Gras, R., & Kuntz, P. (2008). An overview of the statistical implicative analysis (SIA) development. In R. Gras, E. Suzuki, F. Guillet, & F. Spagnolo (Eds.). Statistical Implicative Analysis (pp. 11-40). Springer, Berlin Heidelberg.
See also the IsingFit package for calculating a graph for dichotomous item responses using the Ising model.
############################################################################# # EXAMPLE 1: SIA for data.read ############################################################################# data(data.read) dat <- data.read res <- sirt::sia.sirt(dat, significance=.85 ) #*** plot results with igraph package library(igraph) plot( res$igraph.obj ) #, vertex.shape="rectangle", vertex.size=30 ) ## Not run: #*** plot results with qgraph package miceadds::library_install(qgraph) qgraph::qgraph( res$adj.matrix ) #*** plot results with Rgraphviz package # Rgraphviz can only be obtained from Bioconductor # If it should be downloaded, select TRUE for the following lines if (FALSE){ source("http://bioconductor.org/biocLite.R") biocLite("Rgraphviz") } # define graph grmatrix <- res$graph.matr res.graph <- new("graphNEL", nodes=res$graph.edges, edgemode="directed") # add edges RR <- nrow(grmatrix) for (rr in 1:RR){ res.graph <- Rgraphviz::addEdge(grmatrix[rr,1], grmatrix[rr,2], res.graph, 1) } # define cex sizes and shapes V <- length(res$graph.edges) size2 <- rep(16,V) shape2 <- rep("rectangle", V ) names(shape2) <- names(size2) <- res$graph.edges # plot graph Rgraphviz::plot( res.graph, nodeAttrs=list("fontsize"=size2, "shape"=shape2) ) ## End(Not run)
############################################################################# # EXAMPLE 1: SIA for data.read ############################################################################# data(data.read) dat <- data.read res <- sirt::sia.sirt(dat, significance=.85 ) #*** plot results with igraph package library(igraph) plot( res$igraph.obj ) #, vertex.shape="rectangle", vertex.size=30 ) ## Not run: #*** plot results with qgraph package miceadds::library_install(qgraph) qgraph::qgraph( res$adj.matrix ) #*** plot results with Rgraphviz package # Rgraphviz can only be obtained from Bioconductor # If it should be downloaded, select TRUE for the following lines if (FALSE){ source("http://bioconductor.org/biocLite.R") biocLite("Rgraphviz") } # define graph grmatrix <- res$graph.matr res.graph <- new("graphNEL", nodes=res$graph.edges, edgemode="directed") # add edges RR <- nrow(grmatrix) for (rr in 1:RR){ res.graph <- Rgraphviz::addEdge(grmatrix[rr,1], grmatrix[rr,2], res.graph, 1) } # define cex sizes and shapes V <- length(res$graph.edges) size2 <- rep(16,V) shape2 <- rep("rectangle", V ) names(shape2) <- names(size2) <- res$graph.edges # plot graph Rgraphviz::plot( res.graph, nodeAttrs=list("fontsize"=size2, "shape"=shape2) ) ## End(Not run)
This function simulates dichotomous item response data according to Ramsay's quotient model (Ramsay, 1989).
sim.qm.ramsay(theta, b, K)
sim.qm.ramsay(theta, b, K)
theta |
Vector of of length |
b |
Vector of length |
K |
Vector of length |
Ramsay's quotient model (Ramsay, 1989) is defined by the equation
An data frame with dichotomous item responses.
Ramsay, J. O. (1989). A comparison of three simple test theory models. Psychometrika, 54, 487-499.
van der Maas, H. J. L., Molenaar, D., Maris, G., Kievit, R. A., & Borsboom, D. (2011). Cognitive psychology meets psychometric theory: On the relation between process models for decision making and latent variable models for individual differences. Psychological Review, 318, 339-356.
See rasch.mml2
for estimating Ramsay's quotient model.
See sim.raschtype
for simulating response data from
the generalized logistic item response model.
############################################################################# # EXAMPLE 1: Estimate Ramsay Quotient Model with rasch.mml2 ############################################################################# set.seed(657) # simulate data according to the Ramsay model N <- 1000 # persons I <- 11 # items theta <- exp( stats::rnorm( N ) ) # person ability b <- exp( seq(-2,2,len=I)) # item difficulty K <- rep( 3, I ) # K parameter (=> guessing) # apply simulation function dat <- sirt::sim.qm.ramsay( theta, b, K ) #*** # analysis mmliter <- 50 # maximum number of iterations I <- ncol(dat) fixed.K <- rep( 3, I ) # Ramsay QM with fixed K parameter (K=3 in fixed.K specification) mod1 <- sirt::rasch.mml2( dat, mmliter=mmliter, irtmodel="ramsay.qm", fixed.K=fixed.K ) summary(mod1) # Ramsay QM with joint estimated K parameters mod2 <- sirt::rasch.mml2( dat, mmliter=mmliter, irtmodel="ramsay.qm", est.K=rep(1,I) ) summary(mod2) ## Not run: # Ramsay QM with itemwise estimated K parameters mod3 <- sirt::rasch.mml2( dat, mmliter=mmliter, irtmodel="ramsay.qm", est.K=1:I ) summary(mod3) # Rasch model mod4 <- sirt::rasch.mml2( dat ) summary(mod4) # generalized logistic model mod5 <- sirt::rasch.mml2( dat, est.alpha=TRUE, mmliter=mmliter) summary(mod5) # 2PL model mod6 <- sirt::rasch.mml2( dat, est.a=rep(1,I) ) summary(mod6) # Difficulty + Guessing (b+c) Model mod7 <- sirt::rasch.mml2( dat, est.c=rep(1,I) ) summary(mod7) # estimate separate guessing (c) parameters mod8 <- sirt::rasch.mml2( dat, est.c=1:I ) summary(mod8) #*** estimate Model 1 with user defined function in mirt package # create user defined function for Ramsay's quotient model name <- 'ramsayqm' par <- c("K"=3, "b"=1 ) est <- c(TRUE, TRUE) P.ramsay <- function(par,Theta){ eps <- .01 K <- par[1] b <- par[2] num <- exp( exp( Theta[,1] ) / b ) denom <- K + num P1 <- num / denom P1 <- eps + ( 1 - 2*eps ) * P1 cbind(1-P1, P1) } # create item response function ramsayqm <- mirt::createItem(name, par=par, est=est, P=P.ramsay) # define parameters to be estimated mod1m.pars <- mirt::mirt(dat, 1, rep( "ramsayqm",I), customItems=list("ramsayqm"=ramsayqm), pars="values") mod1m.pars[ mod1m.pars$name=="K", "est" ] <- FALSE # define Theta design matrix Theta <- matrix( seq(-3,3,len=10), ncol=1) # estimate model mod1m <- mirt::mirt(dat, 1, rep( "ramsayqm",I), customItems=list("ramsayqm"=ramsayqm), pars=mod1m.pars, verbose=TRUE, technical=list( customTheta=Theta, NCYCLES=50) ) print(mod1m) summary(mod1m) cmod1m <- sirt::mirt.wrapper.coef( mod1m )$coef # compare simulated and estimated values dfr <- cbind( b, cmod1m$b, exp(mod1$item$b ) ) colnames(dfr) <- c("simulated", "mirt", "sirt_rasch.mml2") round( dfr, 2 ) ## simulated mirt sirt_rasch.mml2 ## [1,] 0.14 0.11 0.11 ## [2,] 0.20 0.17 0.18 ## [3,] 0.30 0.27 0.29 ## [4,] 0.45 0.42 0.43 ## [5,] 0.67 0.65 0.67 ## [6,] 1.00 1.00 1.01 ## [7,] 1.49 1.53 1.54 ## [8,] 2.23 2.21 2.21 ## [9,] 3.32 3.00 2.98 ##[10,] 4.95 5.22 5.09 ##[11,] 7.39 5.62 5.51 ## End(Not run)
############################################################################# # EXAMPLE 1: Estimate Ramsay Quotient Model with rasch.mml2 ############################################################################# set.seed(657) # simulate data according to the Ramsay model N <- 1000 # persons I <- 11 # items theta <- exp( stats::rnorm( N ) ) # person ability b <- exp( seq(-2,2,len=I)) # item difficulty K <- rep( 3, I ) # K parameter (=> guessing) # apply simulation function dat <- sirt::sim.qm.ramsay( theta, b, K ) #*** # analysis mmliter <- 50 # maximum number of iterations I <- ncol(dat) fixed.K <- rep( 3, I ) # Ramsay QM with fixed K parameter (K=3 in fixed.K specification) mod1 <- sirt::rasch.mml2( dat, mmliter=mmliter, irtmodel="ramsay.qm", fixed.K=fixed.K ) summary(mod1) # Ramsay QM with joint estimated K parameters mod2 <- sirt::rasch.mml2( dat, mmliter=mmliter, irtmodel="ramsay.qm", est.K=rep(1,I) ) summary(mod2) ## Not run: # Ramsay QM with itemwise estimated K parameters mod3 <- sirt::rasch.mml2( dat, mmliter=mmliter, irtmodel="ramsay.qm", est.K=1:I ) summary(mod3) # Rasch model mod4 <- sirt::rasch.mml2( dat ) summary(mod4) # generalized logistic model mod5 <- sirt::rasch.mml2( dat, est.alpha=TRUE, mmliter=mmliter) summary(mod5) # 2PL model mod6 <- sirt::rasch.mml2( dat, est.a=rep(1,I) ) summary(mod6) # Difficulty + Guessing (b+c) Model mod7 <- sirt::rasch.mml2( dat, est.c=rep(1,I) ) summary(mod7) # estimate separate guessing (c) parameters mod8 <- sirt::rasch.mml2( dat, est.c=1:I ) summary(mod8) #*** estimate Model 1 with user defined function in mirt package # create user defined function for Ramsay's quotient model name <- 'ramsayqm' par <- c("K"=3, "b"=1 ) est <- c(TRUE, TRUE) P.ramsay <- function(par,Theta){ eps <- .01 K <- par[1] b <- par[2] num <- exp( exp( Theta[,1] ) / b ) denom <- K + num P1 <- num / denom P1 <- eps + ( 1 - 2*eps ) * P1 cbind(1-P1, P1) } # create item response function ramsayqm <- mirt::createItem(name, par=par, est=est, P=P.ramsay) # define parameters to be estimated mod1m.pars <- mirt::mirt(dat, 1, rep( "ramsayqm",I), customItems=list("ramsayqm"=ramsayqm), pars="values") mod1m.pars[ mod1m.pars$name=="K", "est" ] <- FALSE # define Theta design matrix Theta <- matrix( seq(-3,3,len=10), ncol=1) # estimate model mod1m <- mirt::mirt(dat, 1, rep( "ramsayqm",I), customItems=list("ramsayqm"=ramsayqm), pars=mod1m.pars, verbose=TRUE, technical=list( customTheta=Theta, NCYCLES=50) ) print(mod1m) summary(mod1m) cmod1m <- sirt::mirt.wrapper.coef( mod1m )$coef # compare simulated and estimated values dfr <- cbind( b, cmod1m$b, exp(mod1$item$b ) ) colnames(dfr) <- c("simulated", "mirt", "sirt_rasch.mml2") round( dfr, 2 ) ## simulated mirt sirt_rasch.mml2 ## [1,] 0.14 0.11 0.11 ## [2,] 0.20 0.17 0.18 ## [3,] 0.30 0.27 0.29 ## [4,] 0.45 0.42 0.43 ## [5,] 0.67 0.65 0.67 ## [6,] 1.00 1.00 1.01 ## [7,] 1.49 1.53 1.54 ## [8,] 2.23 2.21 2.21 ## [9,] 3.32 3.00 2.98 ##[10,] 4.95 5.22 5.09 ##[11,] 7.39 5.62 5.51 ## End(Not run)
This function simulates dichotomous item responses where for some itemclusters residual correlations can be defined.
sim.rasch.dep(theta, b, itemcluster, rho)
sim.rasch.dep(theta, b, itemcluster, rho)
theta |
Vector of person abilities of length |
b |
Vector of item difficulties of length |
itemcluster |
Vector of integers (including 0) of length |
rho |
Vector of residual correlations. The length of vector must be equal to the number of itemclusters. |
An data frame of dichotomous item responses.
The specification of the simulation models follows a marginal interpretation
of the latent trait. Local dependencies are only interpreted as nuisance
and not of substantive interest. If local dependencies should be substantively
interpreted, a testlet model seems preferable
(see mcmc.3pno.testlet
).
To simulate the generalized logistic item response model see
sim.raschtype
. Ramsay's quotient model can be simulated
using sim.qm.ramsay
.
Marginal item reponse models for locally dependent item responses can be
estimated with rasch.copula2
, rasch.pairwise
or
rasch.pairwise.itemcluster
.
############################################################################# # EXAMPLE 1: 11 Items: 2 itemclusters with 2 resp. 3 dependent items # and 6 independent items ############################################################################# set.seed(7654) I <- 11 # number of items n <- 1500 # number of persons b <- seq(-2,2, len=I) # item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ c(3,5)] <- 1 itemcluster[c(2,4,9)] <- 2 # residual correlations rho <- c( .7, .5 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # estimate Rasch copula model mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster ) summary(mod1) # compare result with Rasch model estimation in rasch.copula # delta must be set to zero mod2 <- sirt::rasch.copula2( dat, itemcluster=itemcluster, delta=c(0,0), est.delta=c(0,0) ) summary(mod2) # estimate Rasch model with rasch.mml2 function mod3 <- sirt::rasch.mml2( dat ) summary(mod3) ## Not run: ############################################################################# # EXAMPLE 2: 12 Items: Cluster 1 -> Items 1,...,4; # Cluster 2 -> Items 6,...,9; Cluster 3 -> Items 10,11,12 ############################################################################# set.seed(7896) I <- 12 # number of items n <- 450 # number of persons b <- seq(-2,2, len=I) # item difficulties b <- sample(b) # sample item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ 1:4 ] <- 1 itemcluster[ 6:9 ] <- 2 itemcluster[ 10:12 ] <- 3 # residual correlations rho <- c( .55, .25, .45 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # estimate Rasch copula model mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster, numdiff.parm=.001 ) summary(mod1) # Rasch model estimation mod2 <- sirt::rasch.copula2( dat, itemcluster=itemcluster, delta=rep(0,3), est.delta=rep(0,3) ) summary(mod2) # estimation with pairwise Rasch model mod3 <- sirt::rasch.pairwise( dat ) summary(mod3) ## End(Not run)
############################################################################# # EXAMPLE 1: 11 Items: 2 itemclusters with 2 resp. 3 dependent items # and 6 independent items ############################################################################# set.seed(7654) I <- 11 # number of items n <- 1500 # number of persons b <- seq(-2,2, len=I) # item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ c(3,5)] <- 1 itemcluster[c(2,4,9)] <- 2 # residual correlations rho <- c( .7, .5 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # estimate Rasch copula model mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster ) summary(mod1) # compare result with Rasch model estimation in rasch.copula # delta must be set to zero mod2 <- sirt::rasch.copula2( dat, itemcluster=itemcluster, delta=c(0,0), est.delta=c(0,0) ) summary(mod2) # estimate Rasch model with rasch.mml2 function mod3 <- sirt::rasch.mml2( dat ) summary(mod3) ## Not run: ############################################################################# # EXAMPLE 2: 12 Items: Cluster 1 -> Items 1,...,4; # Cluster 2 -> Items 6,...,9; Cluster 3 -> Items 10,11,12 ############################################################################# set.seed(7896) I <- 12 # number of items n <- 450 # number of persons b <- seq(-2,2, len=I) # item difficulties b <- sample(b) # sample item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ 1:4 ] <- 1 itemcluster[ 6:9 ] <- 2 itemcluster[ 10:12 ] <- 3 # residual correlations rho <- c( .55, .25, .45 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # estimate Rasch copula model mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster, numdiff.parm=.001 ) summary(mod1) # Rasch model estimation mod2 <- sirt::rasch.copula2( dat, itemcluster=itemcluster, delta=rep(0,3), est.delta=rep(0,3) ) summary(mod2) # estimation with pairwise Rasch model mod3 <- sirt::rasch.pairwise( dat ) summary(mod3) ## End(Not run)
This function simulates dichotomous item responses from a
generalized logistic item response model (Stukel, 1988).
The four-parameter logistic item response model
(Loken & Rulison, 2010) is a special case. See rasch.mml2
for more details.
sim.raschtype(theta, b, alpha1=0, alpha2=0, fixed.a=NULL, fixed.c=NULL, fixed.d=NULL)
sim.raschtype(theta, b, alpha1=0, alpha2=0, fixed.a=NULL, fixed.c=NULL, fixed.d=NULL)
theta |
Unidimensional ability vector |
b |
Vector of item difficulties |
alpha1 |
Parameter |
alpha2 |
Parameter |
fixed.a |
Vector of item slopes |
fixed.c |
Vector of lower item asymptotes |
fixed.d |
Vector of lower item asymptotes |
The class of generalized logistic link functions contain the most important link functions using the specifications (Stukel, 1988):
logistic link function: and
probit link function: and
loglog link function: and
cloglog link function: and
See pgenlogis
for exact transformation formulas of
the mentioned link functions.
Data frame with simulated item responses
Loken, E., & Rulison, K. L. (2010). Estimation of a four-parameter item response theory model. British Journal of Mathematical and Statistical Psychology, 63, 509-525.
Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Association, 83, 426-431.
############################################################################# ## EXAMPLE 1: Simulation of data from a Rasch model (alpha_1=alpha_2=0) ############################################################################# set.seed(9765) N <- 500 # number of persons I <- 11 # number of items b <- seq( -2, 2, length=I ) dat <- sirt::sim.raschtype( stats::rnorm( N ), b ) colnames(dat) <- paste0( "I", 1:I )
############################################################################# ## EXAMPLE 1: Simulation of data from a Rasch model (alpha_1=alpha_2=0) ############################################################################# set.seed(9765) N <- 500 # number of persons I <- 11 # number of items b <- seq( -2, 2, length=I ) dat <- sirt::sim.raschtype( stats::rnorm( N ), b ) colnames(dat) <- paste0( "I", 1:I )
This function computes the first eigenvalues and eigenvectors of a
symmetric positive definite matrices. The eigenvalues are computed
by the Rayleigh quotient method (Lange, 2010, p. 120).
sirt_eigenvalues( X, D, maxit=200, conv=10^(-6) )
sirt_eigenvalues( X, D, maxit=200, conv=10^(-6) )
X |
Symmetric matrix |
D |
Number of eigenvalues to be estimated |
maxit |
Maximum number of iterations |
conv |
Convergence criterion |
A list with following entries:
d |
Vector of eigenvalues |
u |
Matrix with eigenvectors in columns |
Lange, K. (2010). Numerical Analysis for Statisticians. New York: Springer.
Sigma <- diag(1,3) Sigma[ lower.tri(Sigma) ] <- Sigma[ upper.tri(Sigma) ] <- c(.4,.6,.8 ) sirt::sirt_eigenvalues(X=Sigma, D=2 ) # compare with svd function svd(Sigma)
Sigma <- diag(1,3) Sigma[ lower.tri(Sigma) ] <- Sigma[ upper.tri(Sigma) ] <- c(.4,.6,.8 ) sirt::sirt_eigenvalues(X=Sigma, D=2 ) # compare with svd function svd(Sigma)
These functions have been removed or replaced in the sirt package.
rasch.conquest(...) rasch.pml2(...) testlet.yen.q3(...) yen.q3(...)
rasch.conquest(...) rasch.pml2(...) testlet.yen.q3(...) yen.q3(...)
... |
Arguments to be passed. |
The rasch.conquest
function has been replaced by
R2conquest
.
The rasch.pml2
function has been superseded by
rasch.pml3
.
The testlet.yen.q3
function has been replaced by
Q3.testlet
.
The yen.q3
function has been replaced by
Q3
.
Utility functions in sirt.
# bounds entries in a vector bounds_parameters( pars, lower=NULL, upper=NULL) # improper density function which always returns a value of 1 dimproper(x) # generalized inverse of a symmetric function ginverse_sym(A, eps=1E-8) # hard thresholding function hard_thresholding(x, lambda) # soft thresholding function soft_thresholding(x, lambda) # power function x^a, like in Cpp pow(x, a) # trace of a matrix tracemat(A) #** matrix functions sirt_matrix2(x, nrow) # matrix() function with byrow=TRUE sirt_colMeans(x, na.rm=TRUE) sirt_colSDs(x, na.rm=TRUE) sirt_colMins(x, na.rm=TRUE) sirt_colMaxs(x, na.rm=TRUE) sirt_colMedians(x, na.rm=TRUE) #* normalize vector to have sum of one sirt_sum_norm(x, na.rm=TRUE) #* discrete normal distribution sirt_dnorm_discrete(x, mean=0, sd=1, ...) # plyr::rbind.fill implementation in sirt sirt_rbind_fill(x, y) # Fisher-z transformation, see psych::fisherz sirt_fisherz(rho) # inverse Fisher-z transformation, see psych::fisherz2r sirt_antifisherz(z) # smooth approximation of the absolute value function sirt_abs_smooth(x, deriv=0, eps=1e-4) # permutations with replacement sirt_permutations(r,v) #-> is equivalent to gtools::permutations(n=length(v), r=D, v=v, repeats.allowed=TRUE) # attach all elements in a list in a specified environment sirt_attach_list_elements(x, envir) # switch between stats::optim and stats::nlminb sirt_optimizer(optimizer, par, fn, grad=NULL, method="L-BFGS-B", hessian=TRUE, control=list(), ...) # print objects in a summary sirt_summary_print_objects(obji, from=NULL, to=NULL, digits=3, rownames_null=TRUE, grep_string=NULL) # print package version and R session sirt_summary_print_package_rsession(pack) # print package version sirt_summary_print_package(pack) # print R session sirt_summary_print_rsession() # print call sirt_summary_print_call(CALL) # print a data frame x with fixed numbers of digits after the decimal print_digits(x, digits=NULL) # discrete inverse function sirt_rcpp_discrete_inverse(x0, y0, y) # move variables in a data frame move_variables_df(x, after_var, move_vars)
# bounds entries in a vector bounds_parameters( pars, lower=NULL, upper=NULL) # improper density function which always returns a value of 1 dimproper(x) # generalized inverse of a symmetric function ginverse_sym(A, eps=1E-8) # hard thresholding function hard_thresholding(x, lambda) # soft thresholding function soft_thresholding(x, lambda) # power function x^a, like in Cpp pow(x, a) # trace of a matrix tracemat(A) #** matrix functions sirt_matrix2(x, nrow) # matrix() function with byrow=TRUE sirt_colMeans(x, na.rm=TRUE) sirt_colSDs(x, na.rm=TRUE) sirt_colMins(x, na.rm=TRUE) sirt_colMaxs(x, na.rm=TRUE) sirt_colMedians(x, na.rm=TRUE) #* normalize vector to have sum of one sirt_sum_norm(x, na.rm=TRUE) #* discrete normal distribution sirt_dnorm_discrete(x, mean=0, sd=1, ...) # plyr::rbind.fill implementation in sirt sirt_rbind_fill(x, y) # Fisher-z transformation, see psych::fisherz sirt_fisherz(rho) # inverse Fisher-z transformation, see psych::fisherz2r sirt_antifisherz(z) # smooth approximation of the absolute value function sirt_abs_smooth(x, deriv=0, eps=1e-4) # permutations with replacement sirt_permutations(r,v) #-> is equivalent to gtools::permutations(n=length(v), r=D, v=v, repeats.allowed=TRUE) # attach all elements in a list in a specified environment sirt_attach_list_elements(x, envir) # switch between stats::optim and stats::nlminb sirt_optimizer(optimizer, par, fn, grad=NULL, method="L-BFGS-B", hessian=TRUE, control=list(), ...) # print objects in a summary sirt_summary_print_objects(obji, from=NULL, to=NULL, digits=3, rownames_null=TRUE, grep_string=NULL) # print package version and R session sirt_summary_print_package_rsession(pack) # print package version sirt_summary_print_package(pack) # print R session sirt_summary_print_rsession() # print call sirt_summary_print_call(CALL) # print a data frame x with fixed numbers of digits after the decimal print_digits(x, digits=NULL) # discrete inverse function sirt_rcpp_discrete_inverse(x0, y0, y) # move variables in a data frame move_variables_df(x, after_var, move_vars)
pars |
Numeric vector |
lower |
Numeric vector |
upper |
Numeric vector |
x |
Numeric vector or a matrix or a list |
eps |
Numerical. Shrinkage parameter of eigenvalue in |
a |
Numeric vector |
lambda |
Numeric value |
A |
Matrix |
nrow |
Integer |
na.rm |
Logical |
mean |
Numeric |
sd |
Numeric |
y |
Matrix |
rho |
Numeric |
deriv |
Integer indicating the order of derivative |
z |
Numeric |
r |
Integer |
v |
Vector |
envir |
Environment |
optimizer |
Can be one of the following optimizers: |
par |
Initial parameter |
fn |
Function |
grad |
Gradient function |
method |
Optimization method |
hessian |
Logical |
control |
Control list for R optimizers |
... |
Further arguments to be passed |
obji |
Data frame |
from |
Integer |
to |
Integer |
digits |
Integer |
rownames_null |
Logical |
grep_string |
String |
pack |
Package name |
CALL |
Call statement |
x0 |
Vector |
y0 |
Vector |
after_var |
String indicating variable name after which variable specified
variables in |
move_vars |
Variables which should be moved after |
############################################################################# ## EXAMPLE 1: Trace of a matrix ############################################################################# set.seed(86) A <- matrix( stats::runif(4), 2,2 ) tracemat(A) sum(diag(A)) #=sirt::tracemat(A) ############################################################################# ## EXAMPLE 2: Power function ############################################################################# x <- 2.3 a <- 1.7 pow(x=x,a=a) x^a #=sirt::pow(x,a) ############################################################################# ## EXAMPLE 3: Soft and hard thresholding function (e.g. in LASSO estimation) ############################################################################# x <- seq(-2, 2, length=100) y <- sirt::soft_thresholding( x, lambda=.5) graphics::plot( x, y, type="l") z <- sirt::hard_thresholding( x, lambda=.5) graphics::lines( x, z, lty=2, col=2) ############################################################################# ## EXAMPLE 4: Bounds on parameters ############################################################################# pars <- c(.721, .346) bounds_parameters( pars=pars, lower=c(-Inf, .5), upper=c(Inf,1) ) ############################################################################# ## EXAMPLE 5: Smooth approximation of absolute value function ############################################################################# x <- seq(-1,1,len=100) graphics::plot(x, abs(x), lwd=2, col=1, lty=1, type="l", ylim=c(-1,1) ) # smooth approximation tt <- 2 graphics::lines(x, sirt::sirt_abs_smooth(x), lty=tt, col=tt, lwd=2) # first derivative tt <- 3 graphics::lines(x, sirt::sirt_abs_smooth(x, deriv=1), lty=tt, col=tt, lwd=2) # second derivative tt <- 4 graphics::lines(x, sirt::sirt_abs_smooth(x, deriv=2), lty=tt, col=tt, lwd=2) # analytic computation of first and second derivative stats::deriv( ~ sqrt(x^2 + eps), namevec="x", hessian=TRUE ) ## Not run: ############################################################################# ## EXAMPLE 6: Permutations with replacement ############################################################################# D <- 4 v <- 0:1 sirt::sirt_permutations(r=D, v=v) gtools::permutations(n=length(v), r=D, v=v, repeats.allowed=TRUE) ## End(Not run)
############################################################################# ## EXAMPLE 1: Trace of a matrix ############################################################################# set.seed(86) A <- matrix( stats::runif(4), 2,2 ) tracemat(A) sum(diag(A)) #=sirt::tracemat(A) ############################################################################# ## EXAMPLE 2: Power function ############################################################################# x <- 2.3 a <- 1.7 pow(x=x,a=a) x^a #=sirt::pow(x,a) ############################################################################# ## EXAMPLE 3: Soft and hard thresholding function (e.g. in LASSO estimation) ############################################################################# x <- seq(-2, 2, length=100) y <- sirt::soft_thresholding( x, lambda=.5) graphics::plot( x, y, type="l") z <- sirt::hard_thresholding( x, lambda=.5) graphics::lines( x, z, lty=2, col=2) ############################################################################# ## EXAMPLE 4: Bounds on parameters ############################################################################# pars <- c(.721, .346) bounds_parameters( pars=pars, lower=c(-Inf, .5), upper=c(Inf,1) ) ############################################################################# ## EXAMPLE 5: Smooth approximation of absolute value function ############################################################################# x <- seq(-1,1,len=100) graphics::plot(x, abs(x), lwd=2, col=1, lty=1, type="l", ylim=c(-1,1) ) # smooth approximation tt <- 2 graphics::lines(x, sirt::sirt_abs_smooth(x), lty=tt, col=tt, lwd=2) # first derivative tt <- 3 graphics::lines(x, sirt::sirt_abs_smooth(x, deriv=1), lty=tt, col=tt, lwd=2) # second derivative tt <- 4 graphics::lines(x, sirt::sirt_abs_smooth(x, deriv=2), lty=tt, col=tt, lwd=2) # analytic computation of first and second derivative stats::deriv( ~ sqrt(x^2 + eps), namevec="x", hessian=TRUE ) ## Not run: ############################################################################# ## EXAMPLE 6: Permutations with replacement ############################################################################# D <- 4 v <- 0:1 sirt::sirt_permutations(r=D, v=v) gtools::permutations(n=length(v), r=D, v=v, repeats.allowed=TRUE) ## End(Not run)
This function estimates the noncompensatory and compensatory multidimensional item response model (Bolt & Lall, 2003; Reckase, 2009) as well as the partially compensatory item response model (Spray et al., 1990) for dichotomous data.
smirt(dat, Qmatrix, irtmodel="noncomp", est.b=NULL, est.a=NULL, est.c=NULL, est.d=NULL, est.mu.i=NULL, b.init=NULL, a.init=NULL, c.init=NULL, d.init=NULL, mu.i.init=NULL, Sigma.init=NULL, b.lower=-Inf, b.upper=Inf, a.lower=-Inf, a.upper=Inf, c.lower=-Inf, c.upper=Inf, d.lower=-Inf, d.upper=Inf, theta.k=seq(-6,6,len=20), theta.kDES=NULL, qmcnodes=0, mu.fixed=NULL, variance.fixed=NULL, est.corr=FALSE, max.increment=1, increment.factor=1, numdiff.parm=0.0001, maxdevchange=0.1, globconv=0.001, maxiter=1000, msteps=4, mstepconv=0.001) ## S3 method for class 'smirt' summary(object,...) ## S3 method for class 'smirt' anova(object,...) ## S3 method for class 'smirt' logLik(object,...) ## S3 method for class 'smirt' IRT.irfprob(object,...) ## S3 method for class 'smirt' IRT.likelihood(object,...) ## S3 method for class 'smirt' IRT.posterior(object,...) ## S3 method for class 'smirt' IRT.modelfit(object,...) ## S3 method for class 'IRT.modelfit.smirt' summary(object,...)
smirt(dat, Qmatrix, irtmodel="noncomp", est.b=NULL, est.a=NULL, est.c=NULL, est.d=NULL, est.mu.i=NULL, b.init=NULL, a.init=NULL, c.init=NULL, d.init=NULL, mu.i.init=NULL, Sigma.init=NULL, b.lower=-Inf, b.upper=Inf, a.lower=-Inf, a.upper=Inf, c.lower=-Inf, c.upper=Inf, d.lower=-Inf, d.upper=Inf, theta.k=seq(-6,6,len=20), theta.kDES=NULL, qmcnodes=0, mu.fixed=NULL, variance.fixed=NULL, est.corr=FALSE, max.increment=1, increment.factor=1, numdiff.parm=0.0001, maxdevchange=0.1, globconv=0.001, maxiter=1000, msteps=4, mstepconv=0.001) ## S3 method for class 'smirt' summary(object,...) ## S3 method for class 'smirt' anova(object,...) ## S3 method for class 'smirt' logLik(object,...) ## S3 method for class 'smirt' IRT.irfprob(object,...) ## S3 method for class 'smirt' IRT.likelihood(object,...) ## S3 method for class 'smirt' IRT.posterior(object,...) ## S3 method for class 'smirt' IRT.modelfit(object,...) ## S3 method for class 'IRT.modelfit.smirt' summary(object,...)
dat |
Data frame with dichotomous item responses |
Qmatrix |
The Q-matrix which specifies the loadings to be estimated |
irtmodel |
The item response model. Options are the noncompensatory model ( |
est.b |
An integer matrix (if |
est.a |
An integer matrix for |
est.c |
An integer vector for |
est.d |
An integer vector for |
est.mu.i |
An integer vector for |
b.init |
Initial |
a.init |
Initial |
c.init |
Initial |
d.init |
Initial |
mu.i.init |
Initial |
Sigma.init |
Initial covariance matrix |
b.lower |
Lower bound for |
b.upper |
Upper bound for |
a.lower |
Lower bound for |
a.upper |
Upper bound for |
c.lower |
Lower bound for |
c.upper |
Upper bound for |
d.lower |
Lower bound for |
d.upper |
Upper bound for |
theta.k |
Vector of discretized trait distribution. This vector is expanded in all
dimensions by using the |
theta.kDES |
An optional design matrix. This matrix will differ from the ordinary theta grid in case of nonlinear item response models. |
qmcnodes |
Number of integration nodes for quasi Monte Carlo integration (see Pan &
Thompson, 2007; Gonzales et al., 2006). Integration points are obtained by using
the function |
mu.fixed |
Matrix with fixed entries in the mean vector. By default, all means are set to zero. |
variance.fixed |
Matrix (with rows and three columns) with fixed entries in the covariance matrix
(see Examples). The entry |
est.corr |
Should only a correlation matrix instead of a covariance matrix be estimated? |
max.increment |
Maximum increment |
increment.factor |
A value (larger than one) which defines the extent of the decrease of the maximum
increment of item parameters in every iteration. The maximum increment in iteration
|
numdiff.parm |
Numerical differentiation parameter |
maxdevchange |
Convergence criterion for change in relative deviance |
globconv |
Global convergence criterion for parameter change |
maxiter |
Maximum number of iterations |
msteps |
Number of iterations within a M step |
mstepconv |
Convergence criterion within a M step |
object |
Object of class |
... |
Further arguments to be passed |
The noncompensatory item response model (irtmodel="noncomp"
;
e.g. Bolt & Lall, 2003) is defined as
where ,
,
denote items, persons and dimensions
respectively.
The compensatory item response model (irtmodel="comp"
) is defined by
Using a design matrix theta.kDES
the model can be made even more general
in a model which is linear in item parameters
with known functions of the trait vector
.
Fixed values of the functions
are specified in the
design matrix
theta.kDES
.
The partially compensatory item response model (irtmodel="partcomp"
)
is defined by
with item parameters indicating the degree of compensatory.
indicates a noncompensatory model while
indicates a (fully) compensatory model.
The models are estimated by an EM algorithm employing marginal maximum likelihood.
A list with following entries:
deviance |
Deviance |
ic |
Information criteria |
item |
Data frame with item parameters |
person |
Data frame with person parameters. It includes
the person mean of all item responses ( |
EAP.rel |
EAP reliability |
mean.trait |
Means of trait |
sd.trait |
Standard deviations of trait |
Sigma |
Trait covariance matrix |
cor.trait |
Trait correlation matrix |
b |
Matrix (vector) of |
se.b |
Matrix (vector) of standard errors |
a |
Matrix of |
se.a |
Matrix of standard errors of |
c |
Vector of |
se.c |
Vector of standard errors of |
d |
Vector of |
se.d |
Vector of standard errors of |
mu.i |
Vector of |
se.mu.i |
Vector of standard errors of |
f.yi.qk |
Individual likelihood |
f.qk.yi |
Individual posterior |
probs |
Probabilities of item response functions evaluated at |
n.ik |
Expected counts |
iter |
Number of iterations |
dat2 |
Processed data set |
dat2.resp |
Data set of response indicators |
I |
Number of items |
D |
Number of dimensions |
K |
Maximum item response score |
theta.k |
Used theta integration grid |
pi.k |
Distribution function evaluated at |
irtmodel |
Used IRT model |
Qmatrix |
Used Q-matrix |
Bolt, D. M., & Lall, V. F. (2003). Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo. Applied Psychological Measurement, 27, 395-414.
Gonzalez, J., Tuerlinckx, F., De Boeck, P., & Cools, R. (2006). Numerical integration in logistic-normal models. Computational Statistics & Data Analysis, 51, 1535-1548.
Pan, J., & Thompson, R. (2007). Quasi-Monte Carlo estimation in generalized linear mixed models. Computational Statistics & Data Analysis, 51, 5765-5775.
Reckase, M. (2009). Multidimensional item response theory. New York: Springer. doi:10.1007/978-0-387-89976-3
Spray, J. A., Davey, T. C., Reckase, M. D., Ackerman, T. A., & Carlson, J. E. (1990). Comparison of two logistic multidimensional item response theory models. ACT Research Report No. ACT-RR-ONR-90-8.
See the mirt::mirt
and
itemtype="partcomp"
for estimating noncompensatory item response models
using the mirt package. See also mirt::mixedmirt
.
Other multidimensional IRT models can also be estimated
with rasch.mml2
and rasch.mirtlc
.
See itemfit.sx2
(CDM) for item fit
statistics.
See also the mirt and TAM packages for estimation of compensatory multidimensional item response models.
############################################################################# ## EXAMPLE 1: Noncompensatory and compensatory IRT models ############################################################################# set.seed(997) # (1) simulate data from a two-dimensional noncompensatory # item response model # -> increase number of iterations in all models! N <- 1000 # number of persons I <- 10 # number of items theta0 <- rnorm( N, sd=1 ) theta1 <- theta0 + rnorm(N, sd=.7 ) theta2 <- theta0 + rnorm(N, sd=.7 ) Q <- matrix( 1, nrow=I,ncol=2 ) Q[ 1:(I/2), 2 ] <- 0 Q[ I,1] <- 0 b <- matrix( rnorm( I*2 ), I, 2 ) a <- matrix( 1, I, 2 ) # simulate data prob <- dat <- matrix(0, nrow=N, ncol=I ) for (ii in 1:I){ prob[,ii] <- ( stats::plogis( theta1 - b[ii,1] ) )^Q[ii,1] prob[,ii] <- prob[,ii] * ( stats::plogis( theta2 - b[ii,2] ) )^Q[ii,2] } dat[ prob > matrix( stats::runif( N*I),N,I) ] <- 1 colnames(dat) <- paste0("I",1:I) #*** # Model 1: Noncompensatory 1PL model mod1 <- sirt::smirt(dat, Qmatrix=Q, maxiter=10 ) # change number of iterations summary(mod1) ## Not run: #*** # Model 2: Noncompensatory 2PL model mod2 <- sirt::smirt(dat,Qmatrix=Q, est.a="2PL", maxiter=15 ) summary(mod2) # Model 2a: avoid convergence problems with increment.factor mod2a <- sirt::smirt(dat,Qmatrix=Q, est.a="2PL", maxiter=30, increment.factor=1.03) summary(mod2a) #*** # Model 3: some fixed c and d parameters different from zero or one c.init <- rep(0,I) c.init[ c(3,7)] <- .2 d.init <- rep(1,I) d.init[c(4,8)] <- .95 mod3 <- sirt::smirt( dat, Qmatrix=Q, c.init=c.init, d.init=d.init ) summary(mod3) #*** # Model 4: some estimated c and d parameters (in parameter groups) est.c <- c.init <- rep(0,I) c.estpars <- c(3,6,7) c.init[ c.estpars ] <- .2 est.c[c.estpars] <- 1 est.d <- rep(0,I) d.init <- rep(1,I) d.estpars <- c(6,9) d.init[ d.estpars ] <- .95 est.d[ d.estpars ] <- d.estpars # different d parameters mod4 <- sirt::smirt(dat,Qmatrix=Q, est.c=est.c, c.init=c.init, est.d=est.d, d.init=d.init ) summary(mod4) #*** # Model 5: Unidimensional 1PL model Qmatrix <- matrix( 1, nrow=I, ncol=1 ) mod5 <- sirt::smirt( dat, Qmatrix=Qmatrix ) summary(mod5) #*** # Model 6: Unidimensional 2PL model mod6 <- sirt::smirt( dat, Qmatrix=Qmatrix, est.a="2PL" ) summary(mod6) #*** # Model 7: Compensatory model with between item dimensionality # Note that the data is simulated under the noncompensatory condition # Therefore Model 7 should have a worse model fit than Model 1 Q1 <- Q Q1[ 6:10, 1] <- 0 mod7 <- sirt::smirt(dat,Qmatrix=Q1, irtmodel="comp", maxiter=30) summary(mod7) #*** # Model 8: Compensatory model with within item dimensionality # assuming zero correlation between dimensions variance.fixed <- as.matrix( cbind( 1,2,0) ) # set the covariance between the first and second dimension to zero mod8 <- sirt::smirt(dat,Qmatrix=Q, irtmodel="comp", variance.fixed=variance.fixed, maxiter=30) summary(mod8) #*** # Model 8b: 2PL model with starting values for a and b parameters b.init <- rep(0,10) # set all item difficulties initially to zero # b.init <- NULL a.init <- Q # initialize a.init with Q-matrix # provide starting values for slopes of first three items on Dimension 1 a.init[1:3,1] <- c( .55, .32, 1.3) mod8b <- sirt::smirt(dat,Qmatrix=Q, irtmodel="comp", variance.fixed=variance.fixed, b.init=b.init, a.init=a.init, maxiter=20, est.a="2PL" ) summary(mod8b) #*** # Model 9: Unidimensional model with quadratic item response functions # define theta theta.k <- seq( - 6, 6, len=15 ) theta.k <- as.matrix( theta.k, ncol=1 ) # define design matrix theta.kDES <- cbind( theta.k[,1], theta.k[,1]^2 ) # define Q-matrix Qmatrix <- matrix( 0, I, 2 ) Qmatrix[,1] <- 1 Qmatrix[ c(3,6,7), 2 ] <- 1 colnames(Qmatrix) <- c("F1", "F1sq" ) # estimate model mod9 <- sirt::smirt(dat,Qmatrix=Qmatrix, maxiter=50, irtmodel="comp", theta.k=theta.k, theta.kDES=theta.kDES, est.a="2PL" ) summary(mod9) #*** # Model 10: Two-dimensional item response model with latent interaction # between dimensions theta.k <- seq( - 6, 6, len=15 ) theta.k <- expand.grid( theta.k, theta.k ) # expand theta to 2 dimensions # define design matrix theta.kDES <- cbind( theta.k, theta.k[,1]*theta.k[,2] ) # define Q-matrix Qmatrix <- matrix( 0, I, 3 ) Qmatrix[,1] <- 1 Qmatrix[ 6:10, c(2,3) ] <- 1 colnames(Qmatrix) <- c("F1", "F2", "F1iF2" ) # estimate model mod10 <- sirt::smirt(dat,Qmatrix=Qmatrix,irtmodel="comp", theta.k=theta.k, theta.kDES=theta.kDES, est.a="2PL" ) summary(mod10) #**** # Model 11: Example Quasi Monte Carlo integration Qmatrix <- matrix( 1, I, 1 ) mod11 <- sirt::smirt( dat, irtmodel="comp", Qmatrix=Qmatrix, qmcnodes=1000 ) summary(mod11) ############################################################################# ## EXAMPLE 2: Dataset Reading data.read ## Multidimensional models for dichotomous data ############################################################################# data(data.read) dat <- data.read I <- ncol(dat) # number of items #*** # Model 1: 3-dimensional 2PL model # define Q-matrix Qmatrix <- matrix(0,nrow=I,ncol=3) Qmatrix[1:4,1] <- 1 Qmatrix[5:8,2] <- 1 Qmatrix[9:12,3] <- 1 # estimate model mod1 <- sirt::smirt( dat, Qmatrix=Qmatrix, irtmodel="comp", est.a="2PL", qmcnodes=1000, maxiter=20) summary(mod1) #*** # Model 2: 3-dimensional Rasch model mod2 <- sirt::smirt( dat, Qmatrix=Qmatrix, irtmodel="comp", qmcnodes=1000, maxiter=20) summary(mod2) #*** # Model 3: 3-dimensional 2PL model with uncorrelated dimensions # fix entries in variance matrix variance.fixed <- cbind( c(1,1,2), c(2,3,3), 0 ) # set the following covariances to zero: cov[1,2]=cov[1,3]=cov[2,3]=0 # estimate model mod3 <- sirt::smirt( dat, Qmatrix=Qmatrix, irtmodel="comp", est.a="2PL", variance.fixed=variance.fixed, qmcnodes=1000, maxiter=20) summary(mod3) #*** # Model 4: Bifactor model with one general factor (g) and # uncorrelated specific factors # define a new Q-matrix Qmatrix1 <- cbind( 1, Qmatrix ) # uncorrelated factors variance.fixed <- cbind( c(1,1,1,2,2,3), c(2,3,4,3,4,4), 0 ) # The first dimension refers to the general factors while the other # dimensions refer to the specific factors. # The specification means that: # Cov[1,2]=Cov[1,3]=Cov[1,4]=Cov[2,3]=Cov[2,4]=Cov[3,4]=0 # estimate model mod4 <- sirt::smirt( dat, Qmatrix=Qmatrix1, irtmodel="comp", est.a="2PL", variance.fixed=variance.fixed, qmcnodes=1000, maxiter=20) summary(mod4) ############################################################################# ## EXAMPLE 3: Partially compensatory model ############################################################################# #**** simulate data set.seed(7656) I <- 10 # number of items N <- 2000 # number of subjects Q <- matrix( 0, 3*I,2) # Q-matrix Q[1:I,1] <- 1 Q[1:I + I,2] <- 1 Q[1:I + 2*I,1:2] <- 1 b <- matrix( stats::runif( 3*I *2, -2, 2 ), nrow=3*I, 2 ) b <- b*Q b <- round( b, 2 ) mui <- rep(0,3*I) mui[ seq(2*I+1, 3*I) ] <- 0.65 # generate data dat <- matrix( NA, N, 3*I ) colnames(dat) <- paste0("It", 1:(3*I) ) # simulate item responses library(mvtnorm) theta <- mvtnorm::rmvnorm(N, mean=c(0,0), sigma=matrix( c( 1.2, .6,.6,1.6),2, 2 ) ) for (ii in 1:(3*I)){ # define probability tmp1 <- exp( theta[,1] * Q[ii,1] - b[ii,1] + theta[,2] * Q[ii,2] - b[ii,2] ) # non-compensatory model nco1 <- ( 1 + exp( theta[,1] * Q[ii,1] - b[ii,1] ) ) * ( 1 + exp( theta[,2] * Q[ii,2] - b[ii,2] ) ) co1 <- ( 1 + tmp1 ) p1 <- tmp1 / ( mui[ii] * nco1 + ( 1 - mui[ii] )*co1 ) dat[,ii] <- 1 * ( stats::runif(N) < p1 ) } #*** Model 1: Joint mu.i parameter for all items est.mu.i <- rep(0,3*I) est.mu.i[ seq(2*I+1,3*I)] <- 1 mod1 <- sirt::smirt( dat, Qmatrix=Q, irtmodel="partcomp", est.mu.i=est.mu.i) summary(mod1) #*** Model 2: Separate mu.i parameter for all items est.mu.i[ seq(2*I+1,3*I)] <- 1:I mod2 <- sirt::smirt( dat, Qmatrix=Q, irtmodel="partcomp", est.mu.i=est.mu.i) summary(mod2) ## End(Not run)
############################################################################# ## EXAMPLE 1: Noncompensatory and compensatory IRT models ############################################################################# set.seed(997) # (1) simulate data from a two-dimensional noncompensatory # item response model # -> increase number of iterations in all models! N <- 1000 # number of persons I <- 10 # number of items theta0 <- rnorm( N, sd=1 ) theta1 <- theta0 + rnorm(N, sd=.7 ) theta2 <- theta0 + rnorm(N, sd=.7 ) Q <- matrix( 1, nrow=I,ncol=2 ) Q[ 1:(I/2), 2 ] <- 0 Q[ I,1] <- 0 b <- matrix( rnorm( I*2 ), I, 2 ) a <- matrix( 1, I, 2 ) # simulate data prob <- dat <- matrix(0, nrow=N, ncol=I ) for (ii in 1:I){ prob[,ii] <- ( stats::plogis( theta1 - b[ii,1] ) )^Q[ii,1] prob[,ii] <- prob[,ii] * ( stats::plogis( theta2 - b[ii,2] ) )^Q[ii,2] } dat[ prob > matrix( stats::runif( N*I),N,I) ] <- 1 colnames(dat) <- paste0("I",1:I) #*** # Model 1: Noncompensatory 1PL model mod1 <- sirt::smirt(dat, Qmatrix=Q, maxiter=10 ) # change number of iterations summary(mod1) ## Not run: #*** # Model 2: Noncompensatory 2PL model mod2 <- sirt::smirt(dat,Qmatrix=Q, est.a="2PL", maxiter=15 ) summary(mod2) # Model 2a: avoid convergence problems with increment.factor mod2a <- sirt::smirt(dat,Qmatrix=Q, est.a="2PL", maxiter=30, increment.factor=1.03) summary(mod2a) #*** # Model 3: some fixed c and d parameters different from zero or one c.init <- rep(0,I) c.init[ c(3,7)] <- .2 d.init <- rep(1,I) d.init[c(4,8)] <- .95 mod3 <- sirt::smirt( dat, Qmatrix=Q, c.init=c.init, d.init=d.init ) summary(mod3) #*** # Model 4: some estimated c and d parameters (in parameter groups) est.c <- c.init <- rep(0,I) c.estpars <- c(3,6,7) c.init[ c.estpars ] <- .2 est.c[c.estpars] <- 1 est.d <- rep(0,I) d.init <- rep(1,I) d.estpars <- c(6,9) d.init[ d.estpars ] <- .95 est.d[ d.estpars ] <- d.estpars # different d parameters mod4 <- sirt::smirt(dat,Qmatrix=Q, est.c=est.c, c.init=c.init, est.d=est.d, d.init=d.init ) summary(mod4) #*** # Model 5: Unidimensional 1PL model Qmatrix <- matrix( 1, nrow=I, ncol=1 ) mod5 <- sirt::smirt( dat, Qmatrix=Qmatrix ) summary(mod5) #*** # Model 6: Unidimensional 2PL model mod6 <- sirt::smirt( dat, Qmatrix=Qmatrix, est.a="2PL" ) summary(mod6) #*** # Model 7: Compensatory model with between item dimensionality # Note that the data is simulated under the noncompensatory condition # Therefore Model 7 should have a worse model fit than Model 1 Q1 <- Q Q1[ 6:10, 1] <- 0 mod7 <- sirt::smirt(dat,Qmatrix=Q1, irtmodel="comp", maxiter=30) summary(mod7) #*** # Model 8: Compensatory model with within item dimensionality # assuming zero correlation between dimensions variance.fixed <- as.matrix( cbind( 1,2,0) ) # set the covariance between the first and second dimension to zero mod8 <- sirt::smirt(dat,Qmatrix=Q, irtmodel="comp", variance.fixed=variance.fixed, maxiter=30) summary(mod8) #*** # Model 8b: 2PL model with starting values for a and b parameters b.init <- rep(0,10) # set all item difficulties initially to zero # b.init <- NULL a.init <- Q # initialize a.init with Q-matrix # provide starting values for slopes of first three items on Dimension 1 a.init[1:3,1] <- c( .55, .32, 1.3) mod8b <- sirt::smirt(dat,Qmatrix=Q, irtmodel="comp", variance.fixed=variance.fixed, b.init=b.init, a.init=a.init, maxiter=20, est.a="2PL" ) summary(mod8b) #*** # Model 9: Unidimensional model with quadratic item response functions # define theta theta.k <- seq( - 6, 6, len=15 ) theta.k <- as.matrix( theta.k, ncol=1 ) # define design matrix theta.kDES <- cbind( theta.k[,1], theta.k[,1]^2 ) # define Q-matrix Qmatrix <- matrix( 0, I, 2 ) Qmatrix[,1] <- 1 Qmatrix[ c(3,6,7), 2 ] <- 1 colnames(Qmatrix) <- c("F1", "F1sq" ) # estimate model mod9 <- sirt::smirt(dat,Qmatrix=Qmatrix, maxiter=50, irtmodel="comp", theta.k=theta.k, theta.kDES=theta.kDES, est.a="2PL" ) summary(mod9) #*** # Model 10: Two-dimensional item response model with latent interaction # between dimensions theta.k <- seq( - 6, 6, len=15 ) theta.k <- expand.grid( theta.k, theta.k ) # expand theta to 2 dimensions # define design matrix theta.kDES <- cbind( theta.k, theta.k[,1]*theta.k[,2] ) # define Q-matrix Qmatrix <- matrix( 0, I, 3 ) Qmatrix[,1] <- 1 Qmatrix[ 6:10, c(2,3) ] <- 1 colnames(Qmatrix) <- c("F1", "F2", "F1iF2" ) # estimate model mod10 <- sirt::smirt(dat,Qmatrix=Qmatrix,irtmodel="comp", theta.k=theta.k, theta.kDES=theta.kDES, est.a="2PL" ) summary(mod10) #**** # Model 11: Example Quasi Monte Carlo integration Qmatrix <- matrix( 1, I, 1 ) mod11 <- sirt::smirt( dat, irtmodel="comp", Qmatrix=Qmatrix, qmcnodes=1000 ) summary(mod11) ############################################################################# ## EXAMPLE 2: Dataset Reading data.read ## Multidimensional models for dichotomous data ############################################################################# data(data.read) dat <- data.read I <- ncol(dat) # number of items #*** # Model 1: 3-dimensional 2PL model # define Q-matrix Qmatrix <- matrix(0,nrow=I,ncol=3) Qmatrix[1:4,1] <- 1 Qmatrix[5:8,2] <- 1 Qmatrix[9:12,3] <- 1 # estimate model mod1 <- sirt::smirt( dat, Qmatrix=Qmatrix, irtmodel="comp", est.a="2PL", qmcnodes=1000, maxiter=20) summary(mod1) #*** # Model 2: 3-dimensional Rasch model mod2 <- sirt::smirt( dat, Qmatrix=Qmatrix, irtmodel="comp", qmcnodes=1000, maxiter=20) summary(mod2) #*** # Model 3: 3-dimensional 2PL model with uncorrelated dimensions # fix entries in variance matrix variance.fixed <- cbind( c(1,1,2), c(2,3,3), 0 ) # set the following covariances to zero: cov[1,2]=cov[1,3]=cov[2,3]=0 # estimate model mod3 <- sirt::smirt( dat, Qmatrix=Qmatrix, irtmodel="comp", est.a="2PL", variance.fixed=variance.fixed, qmcnodes=1000, maxiter=20) summary(mod3) #*** # Model 4: Bifactor model with one general factor (g) and # uncorrelated specific factors # define a new Q-matrix Qmatrix1 <- cbind( 1, Qmatrix ) # uncorrelated factors variance.fixed <- cbind( c(1,1,1,2,2,3), c(2,3,4,3,4,4), 0 ) # The first dimension refers to the general factors while the other # dimensions refer to the specific factors. # The specification means that: # Cov[1,2]=Cov[1,3]=Cov[1,4]=Cov[2,3]=Cov[2,4]=Cov[3,4]=0 # estimate model mod4 <- sirt::smirt( dat, Qmatrix=Qmatrix1, irtmodel="comp", est.a="2PL", variance.fixed=variance.fixed, qmcnodes=1000, maxiter=20) summary(mod4) ############################################################################# ## EXAMPLE 3: Partially compensatory model ############################################################################# #**** simulate data set.seed(7656) I <- 10 # number of items N <- 2000 # number of subjects Q <- matrix( 0, 3*I,2) # Q-matrix Q[1:I,1] <- 1 Q[1:I + I,2] <- 1 Q[1:I + 2*I,1:2] <- 1 b <- matrix( stats::runif( 3*I *2, -2, 2 ), nrow=3*I, 2 ) b <- b*Q b <- round( b, 2 ) mui <- rep(0,3*I) mui[ seq(2*I+1, 3*I) ] <- 0.65 # generate data dat <- matrix( NA, N, 3*I ) colnames(dat) <- paste0("It", 1:(3*I) ) # simulate item responses library(mvtnorm) theta <- mvtnorm::rmvnorm(N, mean=c(0,0), sigma=matrix( c( 1.2, .6,.6,1.6),2, 2 ) ) for (ii in 1:(3*I)){ # define probability tmp1 <- exp( theta[,1] * Q[ii,1] - b[ii,1] + theta[,2] * Q[ii,2] - b[ii,2] ) # non-compensatory model nco1 <- ( 1 + exp( theta[,1] * Q[ii,1] - b[ii,1] ) ) * ( 1 + exp( theta[,2] * Q[ii,2] - b[ii,2] ) ) co1 <- ( 1 + tmp1 ) p1 <- tmp1 / ( mui[ii] * nco1 + ( 1 - mui[ii] )*co1 ) dat[,ii] <- 1 * ( stats::runif(N) < p1 ) } #*** Model 1: Joint mu.i parameter for all items est.mu.i <- rep(0,3*I) est.mu.i[ seq(2*I+1,3*I)] <- 1 mod1 <- sirt::smirt( dat, Qmatrix=Q, irtmodel="partcomp", est.mu.i=est.mu.i) summary(mod1) #*** Model 2: Separate mu.i parameter for all items est.mu.i[ seq(2*I+1,3*I)] <- 1:I mod2 <- sirt::smirt( dat, Qmatrix=Q, irtmodel="partcomp", est.mu.i=est.mu.i) summary(mod2) ## End(Not run)
This function computes the stratified Cronbach's Alpha for composite scales (Cronbach, Schoenemann & McKie, 1965; He, 2010; Meyer, 2010).
stratified.cronbach.alpha(data, itemstrata=NULL)
stratified.cronbach.alpha(data, itemstrata=NULL)
data |
An |
itemstrata |
A matrix with two columns defining the item stratification.
The first column contains the item names, the second column
the item stratification label (these can be integers).
The default |
Cronbach, L. J., Schoenemann, P., & McKie, D. (1965). Alpha coefficient for stratified-parallel tests. Educational and Psychological Measurement, 25, 291-312. doi:10.1177/001316446502500201
He, Q. (2010). Estimating the reliability of composite scores. Ofqual/10/4703. Coventry: The Office of Qualifications and Examinations Regulation.
Meyer, P. (2010). Reliability. Cambridge: Oxford University Press.
############################################################################# # EXAMPLE 1: data.read ############################################################################# data(data.read, package="sirt") dat <- data.read I <- ncol(dat) # apply function without defining item strata sirt::stratified.cronbach.alpha( data.read ) # define item strata itemstrata <- cbind( colnames(dat), substring( colnames(dat), 1,1 ) ) sirt::stratified.cronbach.alpha( dat, itemstrata=itemstrata ) ## scale I alpha mean.tot var.tot alpha.stratified ## 1 total 12 0.677 8.680 5.668 0.703 ## 2 A 4 0.545 2.616 1.381 NA ## 3 B 4 0.381 2.811 1.059 NA ## 4 C 4 0.640 3.253 1.107 NA ## Not run: #************************** # reliability analysis in psych package library(psych) # Cronbach's alpha and item discriminations psych::alpha(dat) # McDonald's omega psych::omega(dat, nfactors=1) # 1 factor ## Alpha: 0.69 ## Omega Total 0.69 ##=> Note that alpha in this function is the standardized Cronbach's ## alpha, i.e. alpha computed for standardized variables. psych::omega(dat, nfactors=2) # 2 factors ## Omega Total 0.72 psych::omega(dat, nfactors=3) # 3 factors ## Omega Total 0.74 ## End(Not run)
############################################################################# # EXAMPLE 1: data.read ############################################################################# data(data.read, package="sirt") dat <- data.read I <- ncol(dat) # apply function without defining item strata sirt::stratified.cronbach.alpha( data.read ) # define item strata itemstrata <- cbind( colnames(dat), substring( colnames(dat), 1,1 ) ) sirt::stratified.cronbach.alpha( dat, itemstrata=itemstrata ) ## scale I alpha mean.tot var.tot alpha.stratified ## 1 total 12 0.677 8.680 5.668 0.703 ## 2 A 4 0.545 2.616 1.381 NA ## 3 B 4 0.381 2.811 1.059 NA ## 4 C 4 0.640 3.253 1.107 NA ## Not run: #************************** # reliability analysis in psych package library(psych) # Cronbach's alpha and item discriminations psych::alpha(dat) # McDonald's omega psych::omega(dat, nfactors=1) # 1 factor ## Alpha: 0.69 ## Omega Total 0.69 ##=> Note that alpha in this function is the standardized Cronbach's ## alpha, i.e. alpha computed for standardized variables. psych::omega(dat, nfactors=2) # 2 factors ## Omega Total 0.72 psych::omega(dat, nfactors=3) # 3 factors ## Omega Total 0.74 ## End(Not run)
mcmc.sirt
S3 method to summarize objects of class mcmc.sirt
.
This object is generated by following functions: mcmc.2pno
,
mcmc.2pnoh
, mcmc.3pno.testlet
,
mcmc.2pno.ml
## S3 method for class 'mcmc.sirt' summary(object,digits=3, file=NULL, ...)
## S3 method for class 'mcmc.sirt' summary(object,digits=3, file=NULL, ...)
object |
Object of class |
digits |
Number of digits after decimal |
file |
Optional file name to which |
... |
Further arguments to be passed |
mcmc.2pno
, mcmc.2pnoh
,
mcmc.3pno.testlet
, mcmc.2pno.ml
TAM
Object into a mirt
Object
Converts a fitted TAM
object into a mirt
object.
As a by-product, lavaan
syntax is generated which can
be used with lavaan2mirt
for re-estimating
the model in the mirt package.
Up to now, only single group models are supported.
There must not exist background covariates (no latent regression
models!).
tam2mirt(tamobj)
tam2mirt(tamobj)
tamobj |
Object of class |
A list with following entries
mirt |
Object generated by |
mirt.model |
Generated |
mirt.syntax |
Generated |
mirt.pars |
Generated parameter specifications
in |
lavaan.model |
Used |
dat |
Used dataset. If necessary, only items used in the model are included in the dataset. |
lavaan.syntax.fixed |
Generated |
lavaan.syntax.freed |
Generated |
See mirt.wrapper
for convenience wrapper functions
for mirt
objects.
See lavaan2mirt
for converting lavaan
syntax to mirt
syntax.
## Not run: library(TAM) library(mirt) ############################################################################# # EXAMPLE 1: Estimations in TAM for data.read dataset ############################################################################# data(data.read) dat <- data.read #************************************** #*** Model 1: Rasch model #************************************** # estimation in TAM package mod <- TAM::tam.mml( dat ) summary(mod) # conversion to mirt res <- sirt::tam2mirt(mod) # generated lavaan syntax cat(res$lavaan.syntax.fixed) cat(res$lavaan.syntax.freed) # extract object of class mirt mres <- res$mirt # print and parameter values print(mres) mirt::mod2values(mres) # model fit mirt::M2(mres) # residual statistics mirt::residuals(mres, type="Q3") mirt::residuals(mres, type="LD") # item fit mirt::itemfit(mres) # person fit mirt::personfit(mres) # compute several types of factor scores (quite slow) f1 <- mirt::fscores(mres, method='WLE',response.pattern=dat[1:10,]) # method=MAP and EAP also possible # item plot mirt::itemplot(mres,"A3") # item A3 mirt::itemplot(mres,4) # fourth item # some more plots plot(mres,type="info") plot(mres,type="score") plot(mres,type="trace") # compare estimates with estimated Rasch model in mirt mres1 <- mirt::mirt(dat,1,"Rasch" ) print(mres1) mirt.wrapper.coef(mres1) #************************************** #*** Model 2: 2PL model #************************************** # estimation in TAM mod <- TAM::tam.mml.2pl( dat ) summary(mod) # conversion to mirt res <- sirt::tam2mirt(mod) mres <- res$mirt # lavaan syntax cat(res$lavaan.syntax.fixed) cat(res$lavaan.syntax.freed) # parameter estimates print(mres) mod2values(mres) mres@nest # number of estimated parameters # some plots plot(mres,type="info") plot(mres,type="score") plot(mres,type="trace") # model fit mirt::M2(mres) # residual statistics mirt::residuals(mres, type="Q3") mirt::residuals(mres, type="LD") # item fit mirt::itemfit(mres) #************************************** #*** Model 3: 3-dimensional Rasch model #************************************** # define Q-matrix Q <- matrix( 0, nrow=12, ncol=3 ) Q[ cbind(1:12, rep(1:3,each=4) ) ] <- 1 rownames(Q) <- colnames(dat) colnames(Q) <- c("A","B","C") # estimation in TAM mod <- TAM::tam.mml( resp=dat, Q=Q, control=list(snodes=1000,maxiter=30) ) summary(mod) # mirt conversion res <- sirt::tam2mirt(mod) mres <- res$mirt # mirt syntax cat(res$mirt.syntax) ## Dim01=1,2,3,4 ## Dim02=5,6,7,8 ## Dim03=9,10,11,12 ## COV=Dim01*Dim01,Dim02*Dim02,Dim03*Dim03,Dim01*Dim02,Dim01*Dim03,Dim02*Dim03 ## MEAN=Dim01,Dim02,Dim03 # lavaan syntax cat(res$lavaan.syntax.freed) ## Dim01=~ 1*A1+1*A2+1*A3+1*A4 ## Dim02=~ 1*B1+1*B2+1*B3+1*B4 ## Dim03=~ 1*C1+1*C2+1*C3+1*C4 ## A1 | t1_1*t1 ## A2 | t1_2*t1 ## A3 | t1_3*t1 ## A4 | t1_4*t1 ## B1 | t1_5*t1 ## B2 | t1_6*t1 ## B3 | t1_7*t1 ## B4 | t1_8*t1 ## C1 | t1_9*t1 ## C2 | t1_10*t1 ## C3 | t1_11*t1 ## C4 | t1_12*t1 ## Dim01 ~ 0*1 ## Dim02 ~ 0*1 ## Dim03 ~ 0*1 ## Dim01 ~~ Cov_11*Dim01 ## Dim02 ~~ Cov_22*Dim02 ## Dim03 ~~ Cov_33*Dim03 ## Dim01 ~~ Cov_12*Dim02 ## Dim01 ~~ Cov_13*Dim03 ## Dim02 ~~ Cov_23*Dim03 # model fit mirt::M2(mres) # residual statistics residuals(mres,type="LD") # item fit mirt::itemfit(mres) #************************************** #*** Model 4: 3-dimensional 2PL model #************************************** # estimation in TAM mod <- TAM::tam.mml.2pl( resp=dat, Q=Q, control=list(snodes=1000,maxiter=30) ) summary(mod) # mirt conversion res <- sirt::tam2mirt(mod) mres <- res$mirt # generated lavaan syntax cat(res$lavaan.syntax.fixed) cat(res$lavaan.syntax.freed) # write lavaan syntax on disk sink( "mod4_lav_freed.txt", split=TRUE ) cat(res$lavaan.syntax.freed) sink() # some statistics from mirt print(mres) summary(mres) mirt::M2(mres) mirt::residuals(mres) mirt::itemfit(mres) # estimate mirt model by using the generated lavaan syntax with freed parameters res2 <- sirt::lavaan2mirt( dat, res$lavaan.syntax.freed, technical=list(NCYCLES=3), verbose=TRUE) # use only few cycles for illustrational purposes mirt.wrapper.coef(res2$mirt) summary(res2$mirt) print(res2$mirt) ############################################################################# # EXAMPLE 4: mirt conversions for polytomous dataset data.big5 ############################################################################# data(data.big5) # select some items items <- c( grep( "O", colnames(data.big5), value=TRUE )[1:6], grep( "N", colnames(data.big5), value=TRUE )[1:4] ) # O3 O8 O13 O18 O23 O28 N1 N6 N11 N16 dat <- data.big5[, items ] library(psych) psych::describe(dat) library(TAM) #****************** #*** Model 1: Partial credit model in TAM mod1 <- TAM::tam.mml( dat[,1:6] ) summary(mod1) # convert to mirt object mmod1 <- sirt::tam2mirt( mod1 ) rmod1 <- mmod1$mirt # coefficients in mirt coef(rmod1) mirt.wrapper.coef(rmod1) # model fit mirt::M2(rmod1) # item fit mirt::itemfit(rmod1) # plots plot(rmod1,type="trace") plot(rmod1, type="trace", which.items=1:4 ) mirt::itemplot(rmod1,"O3") #****************** #*** Model 2: Generalized partial credit model in TAM mod2 <- TAM::tam.mml.2pl( dat[,1:6], irtmodel="GPCM" ) summary(mod2) # convert to mirt object mmod2 <- sirt::tam2mirt( mod2 ) rmod2 <- mmod2$mirt # coefficients in mirt mirt.wrapper.coef(rmod2) # model fit mirt::M2(rmod2) # item fit mirt::itemfit(rmod2) ## End(Not run)
## Not run: library(TAM) library(mirt) ############################################################################# # EXAMPLE 1: Estimations in TAM for data.read dataset ############################################################################# data(data.read) dat <- data.read #************************************** #*** Model 1: Rasch model #************************************** # estimation in TAM package mod <- TAM::tam.mml( dat ) summary(mod) # conversion to mirt res <- sirt::tam2mirt(mod) # generated lavaan syntax cat(res$lavaan.syntax.fixed) cat(res$lavaan.syntax.freed) # extract object of class mirt mres <- res$mirt # print and parameter values print(mres) mirt::mod2values(mres) # model fit mirt::M2(mres) # residual statistics mirt::residuals(mres, type="Q3") mirt::residuals(mres, type="LD") # item fit mirt::itemfit(mres) # person fit mirt::personfit(mres) # compute several types of factor scores (quite slow) f1 <- mirt::fscores(mres, method='WLE',response.pattern=dat[1:10,]) # method=MAP and EAP also possible # item plot mirt::itemplot(mres,"A3") # item A3 mirt::itemplot(mres,4) # fourth item # some more plots plot(mres,type="info") plot(mres,type="score") plot(mres,type="trace") # compare estimates with estimated Rasch model in mirt mres1 <- mirt::mirt(dat,1,"Rasch" ) print(mres1) mirt.wrapper.coef(mres1) #************************************** #*** Model 2: 2PL model #************************************** # estimation in TAM mod <- TAM::tam.mml.2pl( dat ) summary(mod) # conversion to mirt res <- sirt::tam2mirt(mod) mres <- res$mirt # lavaan syntax cat(res$lavaan.syntax.fixed) cat(res$lavaan.syntax.freed) # parameter estimates print(mres) mod2values(mres) mres@nest # number of estimated parameters # some plots plot(mres,type="info") plot(mres,type="score") plot(mres,type="trace") # model fit mirt::M2(mres) # residual statistics mirt::residuals(mres, type="Q3") mirt::residuals(mres, type="LD") # item fit mirt::itemfit(mres) #************************************** #*** Model 3: 3-dimensional Rasch model #************************************** # define Q-matrix Q <- matrix( 0, nrow=12, ncol=3 ) Q[ cbind(1:12, rep(1:3,each=4) ) ] <- 1 rownames(Q) <- colnames(dat) colnames(Q) <- c("A","B","C") # estimation in TAM mod <- TAM::tam.mml( resp=dat, Q=Q, control=list(snodes=1000,maxiter=30) ) summary(mod) # mirt conversion res <- sirt::tam2mirt(mod) mres <- res$mirt # mirt syntax cat(res$mirt.syntax) ## Dim01=1,2,3,4 ## Dim02=5,6,7,8 ## Dim03=9,10,11,12 ## COV=Dim01*Dim01,Dim02*Dim02,Dim03*Dim03,Dim01*Dim02,Dim01*Dim03,Dim02*Dim03 ## MEAN=Dim01,Dim02,Dim03 # lavaan syntax cat(res$lavaan.syntax.freed) ## Dim01=~ 1*A1+1*A2+1*A3+1*A4 ## Dim02=~ 1*B1+1*B2+1*B3+1*B4 ## Dim03=~ 1*C1+1*C2+1*C3+1*C4 ## A1 | t1_1*t1 ## A2 | t1_2*t1 ## A3 | t1_3*t1 ## A4 | t1_4*t1 ## B1 | t1_5*t1 ## B2 | t1_6*t1 ## B3 | t1_7*t1 ## B4 | t1_8*t1 ## C1 | t1_9*t1 ## C2 | t1_10*t1 ## C3 | t1_11*t1 ## C4 | t1_12*t1 ## Dim01 ~ 0*1 ## Dim02 ~ 0*1 ## Dim03 ~ 0*1 ## Dim01 ~~ Cov_11*Dim01 ## Dim02 ~~ Cov_22*Dim02 ## Dim03 ~~ Cov_33*Dim03 ## Dim01 ~~ Cov_12*Dim02 ## Dim01 ~~ Cov_13*Dim03 ## Dim02 ~~ Cov_23*Dim03 # model fit mirt::M2(mres) # residual statistics residuals(mres,type="LD") # item fit mirt::itemfit(mres) #************************************** #*** Model 4: 3-dimensional 2PL model #************************************** # estimation in TAM mod <- TAM::tam.mml.2pl( resp=dat, Q=Q, control=list(snodes=1000,maxiter=30) ) summary(mod) # mirt conversion res <- sirt::tam2mirt(mod) mres <- res$mirt # generated lavaan syntax cat(res$lavaan.syntax.fixed) cat(res$lavaan.syntax.freed) # write lavaan syntax on disk sink( "mod4_lav_freed.txt", split=TRUE ) cat(res$lavaan.syntax.freed) sink() # some statistics from mirt print(mres) summary(mres) mirt::M2(mres) mirt::residuals(mres) mirt::itemfit(mres) # estimate mirt model by using the generated lavaan syntax with freed parameters res2 <- sirt::lavaan2mirt( dat, res$lavaan.syntax.freed, technical=list(NCYCLES=3), verbose=TRUE) # use only few cycles for illustrational purposes mirt.wrapper.coef(res2$mirt) summary(res2$mirt) print(res2$mirt) ############################################################################# # EXAMPLE 4: mirt conversions for polytomous dataset data.big5 ############################################################################# data(data.big5) # select some items items <- c( grep( "O", colnames(data.big5), value=TRUE )[1:6], grep( "N", colnames(data.big5), value=TRUE )[1:4] ) # O3 O8 O13 O18 O23 O28 N1 N6 N11 N16 dat <- data.big5[, items ] library(psych) psych::describe(dat) library(TAM) #****************** #*** Model 1: Partial credit model in TAM mod1 <- TAM::tam.mml( dat[,1:6] ) summary(mod1) # convert to mirt object mmod1 <- sirt::tam2mirt( mod1 ) rmod1 <- mmod1$mirt # coefficients in mirt coef(rmod1) mirt.wrapper.coef(rmod1) # model fit mirt::M2(rmod1) # item fit mirt::itemfit(rmod1) # plots plot(rmod1,type="trace") plot(rmod1, type="trace", which.items=1:4 ) mirt::itemplot(rmod1,"O3") #****************** #*** Model 2: Generalized partial credit model in TAM mod2 <- TAM::tam.mml.2pl( dat[,1:6], irtmodel="GPCM" ) summary(mod2) # convert to mirt object mmod2 <- sirt::tam2mirt( mod2 ) rmod2 <- mmod2$mirt # coefficients in mirt mirt.wrapper.coef(rmod2) # model fit mirt::M2(rmod2) # item fit mirt::itemfit(rmod2) ## End(Not run)
This function computes marginal item parameters of a general factor if item parameters from a testlet (bifactor) model are provided as an input (see Details).
testlet.marginalized(tam.fa.obj=NULL,a1=NULL, d1=NULL, testlet=NULL, a.testlet=NULL, var.testlet=NULL)
testlet.marginalized(tam.fa.obj=NULL,a1=NULL, d1=NULL, testlet=NULL, a.testlet=NULL, var.testlet=NULL)
tam.fa.obj |
Optional object of class |
a1 |
Vector of item discriminations of general factor |
d1 |
Vector of item intercepts of general factor |
testlet |
Integer vector of testlet (bifactor) identifiers (must be integers
between 1 to |
a.testlet |
Vector of testlet (bifactor) item discriminations |
var.testlet |
Vector of testlet (bifactor) variances |
A testlet (bifactor) model is assumed to be estimated:
with . This multidimensional
item response model with locally independent items is
equivalent to a unidimensional IRT model with locally
dependent items (Ip, 2010). Marginal item parameters
and
are obtained according to the response
equation
Calculation details can be found in Ip (2010).
A data frame containing all input item parameters and
marginal item intercept (
d1_marg
) and
marginal item slope (
a1_marg
).
Ip, E. H. (2010). Empirically indistinguishable multidimensional IRT and locally dependent unidimensional item response models. British Journal of Mathematical and Statistical Psychology, 63, 395-416.
For estimating a testlet (bifactor) model see
TAM::tam.fa
.
############################################################################# # EXAMPLE 1: Small numeric example for Rasch testlet model ############################################################################# # Rasch testlet model with 9 items contained into 3 testlets # the third testlet has essentially no dependence and therefore # no testlet variance testlet <- rep( 1:3, each=3 ) a1 <- rep(1, 9 ) # item slopes first dimension d1 <- rep( c(-1.25,0,1.5), 3 ) # item intercepts a.testlet <- rep( 1, 9 ) # item slopes testlets var.testlet <- c( .8, .2, 0 ) # testlet variances # apply function res <- sirt::testlet.marginalized( a1=a1, d1=d1, testlet=testlet, a.testlet=a.testlet, var.testlet=var.testlet ) round( res, 2 ) ## item testlet a1 d1 a.testlet var.testlet a1_marg d1_marg ## 1 1 1 1 -1.25 1 0.8 0.89 -1.11 ## 2 2 1 1 0.00 1 0.8 0.89 0.00 ## 3 3 1 1 1.50 1 0.8 0.89 1.33 ## 4 4 2 1 -1.25 1 0.2 0.97 -1.21 ## 5 5 2 1 0.00 1 0.2 0.97 0.00 ## 6 6 2 1 1.50 1 0.2 0.97 1.45 ## 7 7 3 1 -1.25 1 0.0 1.00 -1.25 ## 8 8 3 1 0.00 1 0.0 1.00 0.00 ## 9 9 3 1 1.50 1 0.0 1.00 1.50 ## Not run: ############################################################################# # EXAMPLE 2: Dataset reading ############################################################################# library(TAM) data(data.read) resp <- data.read maxiter <- 100 # Model 1: Rasch testlet model with 3 testlets dims <- substring( colnames(resp),1,1 ) # define dimensions mod1 <- TAM::tam.fa( resp=resp, irtmodel="bifactor1", dims=dims, control=list(maxiter=maxiter) ) # marginal item parameters res1 <- sirt::testlet.marginalized( mod1 ) #*** # Model 2: estimate bifactor model but assume that items 3 and 5 do not load on # specific factors dims1 <- dims dims1[c(3,5)] <- NA mod2 <- TAM::tam.fa( resp=resp, irtmodel="bifactor2", dims=dims1, control=list(maxiter=maxiter) ) res2 <- sirt::testlet.marginalized( mod2 ) res2 ## End(Not run)
############################################################################# # EXAMPLE 1: Small numeric example for Rasch testlet model ############################################################################# # Rasch testlet model with 9 items contained into 3 testlets # the third testlet has essentially no dependence and therefore # no testlet variance testlet <- rep( 1:3, each=3 ) a1 <- rep(1, 9 ) # item slopes first dimension d1 <- rep( c(-1.25,0,1.5), 3 ) # item intercepts a.testlet <- rep( 1, 9 ) # item slopes testlets var.testlet <- c( .8, .2, 0 ) # testlet variances # apply function res <- sirt::testlet.marginalized( a1=a1, d1=d1, testlet=testlet, a.testlet=a.testlet, var.testlet=var.testlet ) round( res, 2 ) ## item testlet a1 d1 a.testlet var.testlet a1_marg d1_marg ## 1 1 1 1 -1.25 1 0.8 0.89 -1.11 ## 2 2 1 1 0.00 1 0.8 0.89 0.00 ## 3 3 1 1 1.50 1 0.8 0.89 1.33 ## 4 4 2 1 -1.25 1 0.2 0.97 -1.21 ## 5 5 2 1 0.00 1 0.2 0.97 0.00 ## 6 6 2 1 1.50 1 0.2 0.97 1.45 ## 7 7 3 1 -1.25 1 0.0 1.00 -1.25 ## 8 8 3 1 0.00 1 0.0 1.00 0.00 ## 9 9 3 1 1.50 1 0.0 1.00 1.50 ## Not run: ############################################################################# # EXAMPLE 2: Dataset reading ############################################################################# library(TAM) data(data.read) resp <- data.read maxiter <- 100 # Model 1: Rasch testlet model with 3 testlets dims <- substring( colnames(resp),1,1 ) # define dimensions mod1 <- TAM::tam.fa( resp=resp, irtmodel="bifactor1", dims=dims, control=list(maxiter=maxiter) ) # marginal item parameters res1 <- sirt::testlet.marginalized( mod1 ) #*** # Model 2: estimate bifactor model but assume that items 3 and 5 do not load on # specific factors dims1 <- dims dims1[c(3,5)] <- NA mod2 <- TAM::tam.fa( resp=resp, irtmodel="bifactor2", dims=dims1, control=list(maxiter=maxiter) ) res2 <- sirt::testlet.marginalized( mod2 ) res2 ## End(Not run)
This function estimates a tetrachoric correlation matrix according to
the maximum likelihood estimation of Olsson (Olsson, 1979; method="Ol"
),
the Tucker method (Method 2 of Froemel, 1971; method="Tu"
) and
Divgi (1979, method="Di"
).
In addition, an alternative non-iterative approximation of
Bonett and Price (2005; method="Bo"
) is provided.
tetrachoric2(dat, method="Ol", delta=0.007, maxit=1000000, cor.smooth=TRUE, progress=TRUE)
tetrachoric2(dat, method="Ol", delta=0.007, maxit=1000000, cor.smooth=TRUE, progress=TRUE)
dat |
A data frame of dichotomous response |
method |
Computation method for calculating the tetrachoric correlation.
The ML method is |
delta |
The step parameter. It is set by default to |
maxit |
Maximum number of iterations. |
cor.smooth |
Should smoothing of the tetrachoric correlation matrix
be performed to ensure positive definiteness? Choosing
|
progress |
Display progress? Default is |
A list with following entries
tau |
Item thresholds |
rho |
Tetrachoric correlation matrix |
Alexander Robitzsch
The code is adapted from an R script of Cengiz Zopluoglu. See http://sites.education.miami.edu/zopluoglu/software-programs/.
Bonett, D. G., & Price, R. M. (2005). Inferential methods for the tetrachoric correlation coefficient. Journal of Educational and Behavioral Statistics, 30(2), 213-225. doi:10.3102/10769986030002213
Divgi, D. R. (1979). Calculation of the tetrachoric correlation coefficient. Psychometrika, 44(2), 169-172. doi:10.1007/BF02293968
Froemel, E. C. (1971). A comparison of computer routines for the calculation of the tetrachoric correlation coefficient. Psychometrika, 36(2), 165-174. doi:10.1007/BF02291396
Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44(4), 443-460. doi:10.1007/BF02296207
See also the psych::tetrachoric
function in the psych package
and the function irtoys::tet
in the irtoys package.
See polychoric2
for estimating polychoric correlations.
############################################################################# # EXAMPLE 1: data.read ############################################################################# data(data.read) # tetrachoric correlation from psych package library(psych) t0 <- psych::tetrachoric( data.read )$rho # Olsson method (maximum likelihood estimation) t1 <- sirt::tetrachoric2( data.read )$rho # Divgi method t2 <- sirt::tetrachoric2( data.read, method="Di" )$rho # Tucker method t3 <- sirt::tetrachoric2( data.read, method="Tu" )$rho # Bonett method t4 <- sirt::tetrachoric2( data.read, method="Bo" )$rho # maximum absolute deviation ML method max( abs( t0 - t1 ) ) ## [1] 0.008224986 # mean absolute deviation Divgi method max( abs( t0 - t2 ) ) ## [1] 0.1766688 # mean absolute deviation Tucker method max( abs( t0 - t3 ) ) ## [1] 0.1766292 # mean absolute deviation Bonett method max( abs( t0 - t4 ) ) ## [1] 0.05695522
############################################################################# # EXAMPLE 1: data.read ############################################################################# data(data.read) # tetrachoric correlation from psych package library(psych) t0 <- psych::tetrachoric( data.read )$rho # Olsson method (maximum likelihood estimation) t1 <- sirt::tetrachoric2( data.read )$rho # Divgi method t2 <- sirt::tetrachoric2( data.read, method="Di" )$rho # Tucker method t3 <- sirt::tetrachoric2( data.read, method="Tu" )$rho # Bonett method t4 <- sirt::tetrachoric2( data.read, method="Bo" )$rho # maximum absolute deviation ML method max( abs( t0 - t1 ) ) ## [1] 0.008224986 # mean absolute deviation Divgi method max( abs( t0 - t2 ) ) ## [1] 0.1766688 # mean absolute deviation Tucker method max( abs( t0 - t3 ) ) ## [1] 0.1766292 # mean absolute deviation Bonett method max( abs( t0 - t4 ) ) ## [1] 0.05695522
into
True Scores
This function computes the true score
in a unidimensional item response model with
items. In addition, it also
transforms conditional standard errors if they are provided.
truescore.irt(A, B, c=NULL, d=NULL, theta=seq(-3, 3, len=21), error=NULL, pid=NULL, h=0.001)
truescore.irt(A, B, c=NULL, d=NULL, theta=seq(-3, 3, len=21), error=NULL, pid=NULL, h=0.001)
A |
Matrix or vector of item slopes. See Examples for polytomous responses. |
B |
Matrix or vector of item intercepts. Note that the entries in
|
c |
Optional vector of guessing parameters |
d |
Optional vector of slipping parameters |
theta |
Vector of trait values |
error |
Optional vector of standard errors of trait |
pid |
Optional vector of person identifiers |
h |
Numerical differentiation parameter |
In addition, the function
of the expected percent score is approximated by a logistic function
A data frame with following columns:
truescore |
True scores |
truescore.error |
Standard errors of true scores |
percscore |
Expected correct scores which is |
percscore.error |
Standard errors of expected correct scores |
lower |
The |
upper |
The |
a |
The |
b |
The |
############################################################################# # EXAMPLE 1: Dataset with mixed dichotomous and polytomous responses ############################################################################# data(data.mixed1) dat <- data.mixed1 #**** # Model 1: Partial credit model # estimate model with TAM package library(TAM) mod1 <- TAM::tam.mml( dat ) # estimate person parameter estimates wmod1 <- TAM::tam.wle( mod1 ) wmod1 <- wmod1[ order(wmod1$theta), ] # extract item parameters A <- mod1$B[,-1,1] B <- mod1$AXsi[,-1] # person parameters and standard errors theta <- wmod1$theta error <- wmod1$error # estimate true score transformation dfr <- sirt::truescore.irt( A=A, B=B, theta=theta, error=error ) # plot different person parameter estimates and standard errors par(mfrow=c(2,2)) plot( theta, dfr$truescore, pch=16, cex=.6, xlab=expression(theta), type="l", ylab=expression(paste( tau, "(",theta, ")" )), main="True Score Transformation" ) plot( theta, dfr$percscore, pch=16, cex=.6, xlab=expression(theta), type="l", ylab=expression(paste( pi, "(",theta, ")" )), main="Percent Score Transformation" ) points( theta, dfr$lower + (dfr$upper-dfr$lower)* stats::plogis(dfr$a*theta+dfr$b), col=2, lty=2) plot( theta, error, pch=16, cex=.6, xlab=expression(theta), type="l", ylab=expression(paste("SE(",theta, ")" )), main="Standard Error Theta" ) plot( dfr$truescore, dfr$truescore.error, pch=16, cex=.6, xlab=expression(tau), ylab=expression(paste("SE(",tau, ")" ) ), main="Standard Error True Score Tau", type="l") par(mfrow=c(1,1)) ## Not run: #**** # Model 2: Generalized partial credit model mod2 <- TAM::tam.mml.2pl( dat, irtmodel="GPCM") # estimate person parameter estimates wmod2 <- TAM::tam.wle( mod2 ) # extract item parameters A <- mod2$B[,-1,1] B <- mod2$AXsi[,-1] # person parameters and standard errors theta <- wmod2$theta error <- wmod2$error # estimate true score transformation dfr <- sirt::truescore.irt( A=A, B=B, theta=theta, error=error ) ############################################################################# # EXAMPLE 2: Dataset Reading data.read ############################################################################# data(data.read) #**** # Model 1: estimate difficulty + guessing model mod1 <- sirt::rasch.mml2( data.read, fixed.c=rep(.25,12) ) mod1$person <- mod1$person[ order( mod1$person$EAP), ] # person parameters and standard errors theta <- mod1$person$EAP error <- mod1$person$SE.EAP A <- rep(1,12) B <- - mod1$item$b c <- rep(.25,12) # estimate true score transformation dfr <- sirt::truescore.irt( A=A, B=B, theta=theta, error=error,c=c) plot( theta, dfr$percscore, pch=16, cex=.6, xlab=expression(theta), type="l", ylab=expression(paste( pi, "(",theta, ")" )), main="Percent Score Transformation" ) points( theta, dfr$lower + (dfr$upper-dfr$lower)* stats::plogis(dfr$a*theta+dfr$b), col=2, lty=2) #**** # Model 2: Rasch model mod2 <- sirt::rasch.mml2( data.read ) # person parameters and standard errors theta <- mod2$person$EAP error <- mod2$person$SE.EAP A <- rep(1,12) B <- - mod2$item$b # estimate true score transformation dfr <- sirt::truescore.irt( A=A, B=B, theta=theta, error=error ) ## End(Not run)
############################################################################# # EXAMPLE 1: Dataset with mixed dichotomous and polytomous responses ############################################################################# data(data.mixed1) dat <- data.mixed1 #**** # Model 1: Partial credit model # estimate model with TAM package library(TAM) mod1 <- TAM::tam.mml( dat ) # estimate person parameter estimates wmod1 <- TAM::tam.wle( mod1 ) wmod1 <- wmod1[ order(wmod1$theta), ] # extract item parameters A <- mod1$B[,-1,1] B <- mod1$AXsi[,-1] # person parameters and standard errors theta <- wmod1$theta error <- wmod1$error # estimate true score transformation dfr <- sirt::truescore.irt( A=A, B=B, theta=theta, error=error ) # plot different person parameter estimates and standard errors par(mfrow=c(2,2)) plot( theta, dfr$truescore, pch=16, cex=.6, xlab=expression(theta), type="l", ylab=expression(paste( tau, "(",theta, ")" )), main="True Score Transformation" ) plot( theta, dfr$percscore, pch=16, cex=.6, xlab=expression(theta), type="l", ylab=expression(paste( pi, "(",theta, ")" )), main="Percent Score Transformation" ) points( theta, dfr$lower + (dfr$upper-dfr$lower)* stats::plogis(dfr$a*theta+dfr$b), col=2, lty=2) plot( theta, error, pch=16, cex=.6, xlab=expression(theta), type="l", ylab=expression(paste("SE(",theta, ")" )), main="Standard Error Theta" ) plot( dfr$truescore, dfr$truescore.error, pch=16, cex=.6, xlab=expression(tau), ylab=expression(paste("SE(",tau, ")" ) ), main="Standard Error True Score Tau", type="l") par(mfrow=c(1,1)) ## Not run: #**** # Model 2: Generalized partial credit model mod2 <- TAM::tam.mml.2pl( dat, irtmodel="GPCM") # estimate person parameter estimates wmod2 <- TAM::tam.wle( mod2 ) # extract item parameters A <- mod2$B[,-1,1] B <- mod2$AXsi[,-1] # person parameters and standard errors theta <- wmod2$theta error <- wmod2$error # estimate true score transformation dfr <- sirt::truescore.irt( A=A, B=B, theta=theta, error=error ) ############################################################################# # EXAMPLE 2: Dataset Reading data.read ############################################################################# data(data.read) #**** # Model 1: estimate difficulty + guessing model mod1 <- sirt::rasch.mml2( data.read, fixed.c=rep(.25,12) ) mod1$person <- mod1$person[ order( mod1$person$EAP), ] # person parameters and standard errors theta <- mod1$person$EAP error <- mod1$person$SE.EAP A <- rep(1,12) B <- - mod1$item$b c <- rep(.25,12) # estimate true score transformation dfr <- sirt::truescore.irt( A=A, B=B, theta=theta, error=error,c=c) plot( theta, dfr$percscore, pch=16, cex=.6, xlab=expression(theta), type="l", ylab=expression(paste( pi, "(",theta, ")" )), main="Percent Score Transformation" ) points( theta, dfr$lower + (dfr$upper-dfr$lower)* stats::plogis(dfr$a*theta+dfr$b), col=2, lty=2) #**** # Model 2: Rasch model mod2 <- sirt::rasch.mml2( data.read ) # person parameters and standard errors theta <- mod2$person$EAP error <- mod2$person$SE.EAP A <- rep(1,12) B <- - mod2$item$b # estimate true score transformation dfr <- sirt::truescore.irt( A=A, B=B, theta=theta, error=error ) ## End(Not run)
This function tests whether item covariances given the sum
score are non-positive (CSN; see Junker 1993),
i.e. for items and
it holds that
Note that this function only works for dichotomous data.
unidim.test.csn(dat, RR=400, prop.perm=0.75, progress=TRUE)
unidim.test.csn(dat, RR=400, prop.perm=0.75, progress=TRUE)
dat |
Data frame with dichotomous item responses. All persons with (some) missing responses are removed. |
RR |
Number of permutations used for statistical testing |
prop.perm |
A positive value indicating the amount of permutation in an existing permuted data set |
progress |
An optional logical indicating whether computation progress should be displayed |
For each item pair and a each sum score group
a conditional covariance
is calculated. Then,
the test statistic for CSN is
where is the number of persons in score group
.
"'Large values"' of
are not in agreement with the null
hypothesis of non-positivity of conditional covariances.
The distribution of the test statistic under the null
hypothesis is empirically obtained by column wise permutation
of items within all score groups. In the population, this procedure
corresponds to conditional covariances of zero. See de Gooijer and Yuan (2011)
for more details.
A list with following entries
stat |
Value of the statistic |
stat_perm |
Distribution of statistic under |
p |
The corresponding p value of the statistic |
H0_quantiles |
Quantiles of the statistic under permutation
(the null hypothesis |
De Gooijer, J. G., & Yuan, A. (2011). Some exact tests for manifest properties of latent trait models. Computational Statistics and Data Analysis, 55, 34-44.
Junker, B.W. (1993). Conditional association, essential independence, and monotone unidimensional item response models. Annals of Statistics, 21, 1359-1378.
############################################################################# # EXAMPLE 1: Dataset data.read ############################################################################# data(data.read) dat <- data.read set.seed(778) res <- sirt::unidim.test.csn( dat ) ## CSN Statistic=0.04737, p=0.02 ## Not run: ############################################################################# # EXAMPLE 2: CSN statistic for two-dimensional simulated data ############################################################################# set.seed(775) N <- 2000 I <- 30 # number of items rho <- .60 # correlation between 2 dimensions t0 <- stats::rnorm(N) t1 <- sqrt(rho)*t0 + sqrt(1-rho)*stats::rnorm(N) t2 <- sqrt(rho)*t0 + sqrt(1-rho)*stats::rnorm(N) dat1 <- sirt::sim.raschtype(t1, b=seq(-1.5,1.5,length=I/2) ) dat2 <- sirt::sim.raschtype(t2, b=seq(-1.5,1.5,length=I/2) ) dat <- as.matrix(cbind( dat1, dat2) ) res <- sirt::unidim.test.csn( dat ) ## CSN Statistic=0.06056, p=0.02 ## End(Not run)
############################################################################# # EXAMPLE 1: Dataset data.read ############################################################################# data(data.read) dat <- data.read set.seed(778) res <- sirt::unidim.test.csn( dat ) ## CSN Statistic=0.04737, p=0.02 ## Not run: ############################################################################# # EXAMPLE 2: CSN statistic for two-dimensional simulated data ############################################################################# set.seed(775) N <- 2000 I <- 30 # number of items rho <- .60 # correlation between 2 dimensions t0 <- stats::rnorm(N) t1 <- sqrt(rho)*t0 + sqrt(1-rho)*stats::rnorm(N) t2 <- sqrt(rho)*t0 + sqrt(1-rho)*stats::rnorm(N) dat1 <- sirt::sim.raschtype(t1, b=seq(-1.5,1.5,length=I/2) ) dat2 <- sirt::sim.raschtype(t2, b=seq(-1.5,1.5,length=I/2) ) dat <- as.matrix(cbind( dat1, dat2) ) res <- sirt::unidim.test.csn( dat ) ## CSN Statistic=0.06056, p=0.02 ## End(Not run)
This function computes weighted likelihood estimates for dichotomous responses based on the Rasch model (Warm, 1989).
wle.rasch(dat, dat.resp=NULL, b, itemweights=1 + 0 * b, theta=rep(0, nrow(dat)), conv=0.001, maxit=200, wle.adj=0, progress=FALSE)
wle.rasch(dat, dat.resp=NULL, b, itemweights=1 + 0 * b, theta=rep(0, nrow(dat)), conv=0.001, maxit=200, wle.adj=0, progress=FALSE)
dat |
An |
dat.resp |
Optional data frame with dichotomous response indicators |
b |
Vector of length |
itemweights |
Optional vector of fixed item discriminations |
theta |
Optional vector of initial person parameter estimates |
conv |
Convergence criterion |
maxit |
Maximal number of iterations |
wle.adj |
Constant for WLE adjustment |
progress |
Display progress? |
A list with following entries
theta |
Estimated weighted likelihood estimate |
dat.resp |
Data frame with dichotomous response indicators. A one indicates
an observed response, a zero a missing response. See also |
p.ia |
Matrix with expected item response, i.e.
the probabilities |
wle |
WLE reliability (Adams, 2005) |
Adams, R. J. (2005). Reliability as a measurement design effect. Studies in Educational Evaluation, 31, 162-172.
Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427-450.
For standard errors of weighted likelihood estimates estimated via jackknife
see wle.rasch.jackknife
.
For a joint estimation of item and person parameters see the joint maximum
likelihood estimation method in rasch.jml
.
############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data(data.read) # estimate the Rasch model mod <- sirt::rasch.mml2(data.read) mod$item # estmate WLEs mod.wle <- sirt::wle.rasch( dat=data.read, b=mod$item$b )
############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data(data.read) # estimate the Rasch model mod <- sirt::rasch.mml2(data.read) mod$item # estmate WLEs mod.wle <- sirt::wle.rasch( dat=data.read, b=mod$item$b )
This function calculates standard errors of WLEs (Warm, 1989) for stratified item designs and item designs with testlets for the Rasch model.
wle.rasch.jackknife(dat, b, itemweights=1 + 0 * b, pid=NULL, testlet=NULL, stratum=NULL, size.itempop=NULL)
wle.rasch.jackknife(dat, b, itemweights=1 + 0 * b, pid=NULL, testlet=NULL, stratum=NULL, size.itempop=NULL)
dat |
An |
b |
Vector of item difficulties |
itemweights |
Weights for items, i.e. fixed item discriminations |
pid |
Person identifier |
testlet |
A vector of length |
stratum |
Item stratum |
size.itempop |
Number of items in an item stratum of the finite item population. |
The idea of Jackknife in item response models can be found in Wainer and Wright (1980).
A list with following entries:
wle |
Data frame with some estimated statistics. The column
|
wle.rel |
WLE reliability (Adams, 2005) |
Adams, R. J. (2005). Reliability as a measurement design effect. Studies in Educational Evaluation, 31(2-3), 162-172. doi:10.1016/j.stueduc.2005.05.008
Gershunskaya, J., Jiang, J., & Lahiri, P. (2009). Resampling methods in surveys. In D. Pfeffermann and C.R. Rao (Eds.). Handbook of Statistics 29B; Sample Surveys: Inference and Analysis (pp. 121-151). Amsterdam: North Holland. doi:10.1016/S0169-7161(09)00228-4
Wainer, H., & Wright, B. D. (1980). Robust estimation of ability in the Rasch model. Psychometrika, 45(3), 373-391. doi:10.1007/BF02293910
Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54(3), 427-450. doi:10.1007/BF02294627
############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data(data.read) dat <- data.read # estimation of the Rasch model res <- sirt::rasch.mml2( dat, parm.conv=.001) # WLE estimation wle1 <- sirt::wle.rasch(dat, b=res$item$thresh ) # simple jackknife WLE estimation wle2 <- sirt::wle.rasch.jackknife(dat, b=res$item$thresh ) ## WLE Reliability=0.651 # SE(WLE) for testlets A, B and C wle3 <- sirt::wle.rasch.jackknife(dat, b=res$item$thresh, testlet=substring( colnames(dat),1,1) ) ## WLE Reliability=0.572 # SE(WLE) for item strata A,B, C wle4 <- sirt::wle.rasch.jackknife(dat, b=res$item$thresh, stratum=substring( colnames(dat),1,1) ) ## WLE Reliability=0.683 # SE (WLE) for finite item strata # A (10 items), B (7 items), C (4 items -> no sampling error) # in every stratum 4 items were sampled size.itempop <- c(10,7,4) names(size.itempop) <- c("A","B","C") wle5 <- sirt::wle.rasch.jackknife(dat, b=res$item$thresh, stratum=substring( colnames(dat),1,1), size.itempop=size.itempop ) ## Stratum A (Mean) Correction Factor 0.6 ## Stratum B (Mean) Correction Factor 0.42857 ## Stratum C (Mean) Correction Factor 0 ## WLE Reliability=0.876 # compare different estimated standard errors a2 <- stats::aggregate( wle2$wle$wle.jackse, list( wle2$wle$wle), mean ) colnames(a2) <- c("wle", "se.simple") a2$se.testlet <- stats::aggregate( wle3$wle$wle.jackse, list( wle3$wle$wle), mean )[,2] a2$se.strata <- stats::aggregate( wle4$wle$wle.jackse, list( wle4$wle$wle), mean )[,2] a2$se.finitepop.strata <- stats::aggregate( wle5$wle$wle.jackse, list( wle5$wle$wle), mean )[,2] round( a2, 3 ) ## > round( a2, 3 ) ## wle se.simple se.testlet se.strata se.finitepop.strata ## 1 -5.085 0.440 0.649 0.331 0.138 ## 2 -3.114 0.865 1.519 0.632 0.379 ## 3 -2.585 0.790 0.849 0.751 0.495 ## 4 -2.133 0.715 1.177 0.546 0.319 ## 5 -1.721 0.597 0.767 0.527 0.317 ## 6 -1.330 0.633 0.623 0.617 0.377 ## 7 -0.942 0.631 0.643 0.604 0.365 ## 8 -0.541 0.655 0.678 0.617 0.384 ## 9 -0.104 0.671 0.646 0.659 0.434 ## 10 0.406 0.771 0.706 0.751 0.461 ## 11 1.080 1.118 0.893 1.076 0.630 ## 12 2.332 0.400 0.631 0.272 0.195
############################################################################# # EXAMPLE 1: Dataset Reading ############################################################################# data(data.read) dat <- data.read # estimation of the Rasch model res <- sirt::rasch.mml2( dat, parm.conv=.001) # WLE estimation wle1 <- sirt::wle.rasch(dat, b=res$item$thresh ) # simple jackknife WLE estimation wle2 <- sirt::wle.rasch.jackknife(dat, b=res$item$thresh ) ## WLE Reliability=0.651 # SE(WLE) for testlets A, B and C wle3 <- sirt::wle.rasch.jackknife(dat, b=res$item$thresh, testlet=substring( colnames(dat),1,1) ) ## WLE Reliability=0.572 # SE(WLE) for item strata A,B, C wle4 <- sirt::wle.rasch.jackknife(dat, b=res$item$thresh, stratum=substring( colnames(dat),1,1) ) ## WLE Reliability=0.683 # SE (WLE) for finite item strata # A (10 items), B (7 items), C (4 items -> no sampling error) # in every stratum 4 items were sampled size.itempop <- c(10,7,4) names(size.itempop) <- c("A","B","C") wle5 <- sirt::wle.rasch.jackknife(dat, b=res$item$thresh, stratum=substring( colnames(dat),1,1), size.itempop=size.itempop ) ## Stratum A (Mean) Correction Factor 0.6 ## Stratum B (Mean) Correction Factor 0.42857 ## Stratum C (Mean) Correction Factor 0 ## WLE Reliability=0.876 # compare different estimated standard errors a2 <- stats::aggregate( wle2$wle$wle.jackse, list( wle2$wle$wle), mean ) colnames(a2) <- c("wle", "se.simple") a2$se.testlet <- stats::aggregate( wle3$wle$wle.jackse, list( wle3$wle$wle), mean )[,2] a2$se.strata <- stats::aggregate( wle4$wle$wle.jackse, list( wle4$wle$wle), mean )[,2] a2$se.finitepop.strata <- stats::aggregate( wle5$wle$wle.jackse, list( wle5$wle$wle), mean )[,2] round( a2, 3 ) ## > round( a2, 3 ) ## wle se.simple se.testlet se.strata se.finitepop.strata ## 1 -5.085 0.440 0.649 0.331 0.138 ## 2 -3.114 0.865 1.519 0.632 0.379 ## 3 -2.585 0.790 0.849 0.751 0.495 ## 4 -2.133 0.715 1.177 0.546 0.319 ## 5 -1.721 0.597 0.767 0.527 0.317 ## 6 -1.330 0.633 0.623 0.617 0.377 ## 7 -0.942 0.631 0.643 0.604 0.365 ## 8 -0.541 0.655 0.678 0.617 0.384 ## 9 -0.104 0.671 0.646 0.659 0.434 ## 10 0.406 0.771 0.706 0.751 0.461 ## 11 1.080 1.118 0.893 1.076 0.630 ## 12 2.332 0.400 0.631 0.272 0.195
Estimates a user defined item response model. Both, item response functions
and latent trait distributions can be specified by the user (see Details).
By default, the EM algorithm is used for estimation. The number of maximum
EM iterations can be defined with the argument maxit
. The xxirt
function also allows Newton-Raphson optimization by specifying values of maximum
number of iterations in maxit_nr
larger than zero. Typically, a small initial
number of EM iterations should be chosen to obtain reasonable starting values.
xxirt(dat, Theta=NULL, itemtype=NULL, customItems=NULL, partable=NULL, customTheta=NULL, group=NULL, weights=NULL, globconv=1e-06, conv=1e-04, maxit=1000, mstep_iter=4, mstep_reltol=1e-06, maxit_nr=0, optimizer_nr="nlminb", control_nr=list(trace=1), h=1E-4, use_grad=TRUE, verbose=TRUE, penalty_fun_item=NULL, np_fun_item=NULL, verbose_index=NULL, cv_kfold=0, cv_maxit=10) ## S3 method for class 'xxirt' summary(object, digits=3, file=NULL, ...) ## S3 method for class 'xxirt' print(x, ...) ## S3 method for class 'xxirt' anova(object,...) ## S3 method for class 'xxirt' coef(object,...) ## S3 method for class 'xxirt' logLik(object,...) ## S3 method for class 'xxirt' vcov(object,...) ## S3 method for class 'xxirt' confint(object, parm, level=.95, ... ) ## S3 method for class 'xxirt' IRT.expectedCounts(object,...) ## S3 method for class 'xxirt' IRT.factor.scores(object, type="EAP", ...) ## S3 method for class 'xxirt' IRT.irfprob(object,...) ## S3 method for class 'xxirt' IRT.likelihood(object,...) ## S3 method for class 'xxirt' IRT.posterior(object,...) ## S3 method for class 'xxirt' IRT.modelfit(object,...) ## S3 method for class 'IRT.modelfit.xxirt' summary(object,...) ## S3 method for class 'xxirt' IRT.se(object,...) # computes Hessian matrix xxirt_hessian(object, h=1e-4, use_shortcut=TRUE)
xxirt(dat, Theta=NULL, itemtype=NULL, customItems=NULL, partable=NULL, customTheta=NULL, group=NULL, weights=NULL, globconv=1e-06, conv=1e-04, maxit=1000, mstep_iter=4, mstep_reltol=1e-06, maxit_nr=0, optimizer_nr="nlminb", control_nr=list(trace=1), h=1E-4, use_grad=TRUE, verbose=TRUE, penalty_fun_item=NULL, np_fun_item=NULL, verbose_index=NULL, cv_kfold=0, cv_maxit=10) ## S3 method for class 'xxirt' summary(object, digits=3, file=NULL, ...) ## S3 method for class 'xxirt' print(x, ...) ## S3 method for class 'xxirt' anova(object,...) ## S3 method for class 'xxirt' coef(object,...) ## S3 method for class 'xxirt' logLik(object,...) ## S3 method for class 'xxirt' vcov(object,...) ## S3 method for class 'xxirt' confint(object, parm, level=.95, ... ) ## S3 method for class 'xxirt' IRT.expectedCounts(object,...) ## S3 method for class 'xxirt' IRT.factor.scores(object, type="EAP", ...) ## S3 method for class 'xxirt' IRT.irfprob(object,...) ## S3 method for class 'xxirt' IRT.likelihood(object,...) ## S3 method for class 'xxirt' IRT.posterior(object,...) ## S3 method for class 'xxirt' IRT.modelfit(object,...) ## S3 method for class 'IRT.modelfit.xxirt' summary(object,...) ## S3 method for class 'xxirt' IRT.se(object,...) # computes Hessian matrix xxirt_hessian(object, h=1e-4, use_shortcut=TRUE)
dat |
Data frame with item responses |
Theta |
Matrix with |
itemtype |
Vector of item types |
customItems |
List containing types of item response functions created by
|
partable |
Item parameter table which is initially created by
|
customTheta |
User defined |
group |
Optional vector of group indicators |
weights |
Optional vector of person weights |
globconv |
Convergence criterion for relative change in deviance |
conv |
Convergence criterion for absolute change in parameters |
maxit |
Maximum number of iterations in the EM algorithm |
mstep_iter |
Maximum number of iterations in M-step |
mstep_reltol |
Convergence criterion in M-step |
maxit_nr |
Number of Newton-Raphson iterations after EM algorithm |
optimizer_nr |
Type of optimizer for Newton-Raphson optimization.
Alternatives are |
control_nr |
Argument |
h |
Numerical differentiation parameter |
use_grad |
Logical indicating whether the gradient should be supplied
to |
verbose |
Logical indicating whether iteration progress should be displayed |
penalty_fun_item |
Optional penalty function used in regularized
estimation. Used as a function of |
np_fun_item |
Function that counts the number of item parameters in regularized
estimation. Used as a function of |
object |
Object of class |
digits |
Number of digits to be rounded |
file |
Optional file name to which |
parm |
Optional vector of parameters |
level |
Confidence level |
verbose_index |
Logical indicating whether item index should be printed in estimation output |
cv_kfold |
Number of k folds in cross validation. The default is 0 (no cross-validation) |
cv_maxit |
Maximum number of iterations for each cross-validation sample |
x |
Object of class |
type |
Type of person parameter estimate. Currently, only
|
use_shortcut |
Logical indicating whether a shortcut in the computation should be utilized |
... |
Further arguments to be passed |
Item response functions can be specified as functions of unknown parameters
such that
The item response model is estimated under the assumption of
local stochastic independence of items. Equality constraints of
item parameters
among items are allowed.
The probability distribution are specified as functions
of an unknown parameter vector
.
A penalty function for item parameters can be specified in
penalty_fun_item
. The penalty function should be differentiable and
a non-differentiable function (e.g., the absolute value function) should
be approximated by a differentiable function.
List with following entries
partable |
Item parameter table |
par_items |
Vector with estimated item parameters |
par_items_summary |
Data frame with item parameters |
par_items_bounds |
Data frame with summary on bounds of estimated item parameters |
par_Theta |
Vector with estimated parameters of theta distribution |
Theta |
Matrix with |
probs_items |
Item response functions |
probs_Theta |
Theta distribution |
deviance |
Deviance |
loglik |
Log likelihood value |
ic |
Information criteria |
item_list |
List with item functions |
customItems |
Used customized item response functions |
customTheta |
Used customized theta distribution |
cv_loglike |
Cross-validated log-likelihood value (if |
p.xi.aj |
Individual likelihood |
p.aj.xi |
Individual posterior |
ll_case |
Case-wise log-likelihood values |
n.ik |
Array of expected counts |
EAP |
EAP person parameter estimates |
dat |
Used dataset with item responses |
dat_resp |
Dataset with response indicators |
weights |
Vector of person weights |
G |
Number of groups |
group |
Integer vector of group indicators |
group_orig |
Vector of original group_identifiers |
ncat |
Number of categories per item |
converged |
Logical whether model has converged |
iter |
Number of iterations needed |
See the mirt::createItem
and
mirt::mirt
functions in the mirt
package for similar functionality.
## Not run: ############################################################################# ## EXAMPLE 1: Unidimensional item response functions ############################################################################# data(data.read) dat <- data.read #------ Definition of item response functions #*** IRF 2PL P_2PL <- function( par, Theta, ncat){ a <- par[1] b <- par[2] TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,1] <- 1 for (cc in 2:ncat){ P[,cc] <- exp( (cc-1) * a * Theta[,1] - b ) } P <- P / rowSums(P) return(P) } #*** IRF 1PL P_1PL <- function( par, Theta, ncat){ b <- par[1] TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,1] <- 1 for (cc in 2:ncat){ P[,cc] <- exp( (cc-1) * Theta[,1] - b ) } P <- P / rowSums(P) return(P) } #** created item classes of 1PL and 2PL models par <- c( "a"=1, "b"=0 ) # define some slightly informative prior of 2PL item_2PL <- sirt::xxirt_createDiscItem( name="2PL", par=par, est=c(TRUE,TRUE), P=P_2PL, prior=c(a="dlnorm"), prior_par1=c( a=0 ), prior_par2=c(a=5) ) item_1PL <- sirt::xxirt_createDiscItem( name="1PL", par=par[2], est=c(TRUE), P=P_1PL ) customItems <- list( item_1PL, item_2PL ) #---- definition theta distribution #** theta grid Theta <- matrix( seq(-6,6,length=21), ncol=1 ) #** theta distribution P_Theta1 <- function( par, Theta, G){ mu <- par[1] sigma <- max( par[2], .01 ) TP <- nrow(Theta) pi_Theta <- matrix( 0, nrow=TP, ncol=G) pi1 <- dnorm( Theta[,1], mean=mu, sd=sigma ) pi1 <- pi1 / sum(pi1) pi_Theta[,1] <- pi1 return(pi_Theta) } #** create distribution class par_Theta <- c( "mu"=0, "sigma"=1 ) customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE), P=P_Theta1 ) #**************************************************************************** #******* Model 1: Rasch model #-- create parameter table itemtype <- rep( "1PL", 12 ) partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems ) # estimate model mod1 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta) summary(mod1) # estimate Rasch model by providing starting values partable1 <- sirt::xxirt_modifyParTable( partable, parname="b", value=- stats::qlogis( colMeans(dat) ) ) # estimate model again mod1b <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable1, customItems=customItems, customTheta=customTheta ) summary(mod1b) # extract coefficients, covariance matrix and standard errors coef(mod1b) vcov(mod1b) IRT.se(mod1b) #** start with EM and finalize with Newton-Raphson algorithm mod1c <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta, maxit=20, maxit_nr=300) summary(mod1c) #**************************************************************************** #******* Model 2: 2PL Model with three groups of item discriminations #-- create parameter table itemtype <- rep( "2PL", 12 ) partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems) # modify parameter table: set constraints for item groups A, B and C partable1 <- sirt::xxirt_modifyParTable(partable, item=paste0("A",1:4), parname="a", parindex=111) partable1 <- sirt::xxirt_modifyParTable(partable1, item=paste0("B",1:4), parname="a", parindex=112) partable1 <- sirt::xxirt_modifyParTable(partable1, item=paste0("C",1:4), parname="a", parindex=113) # delete prior distributions partable1 <- sirt::xxirt_modifyParTable(partable1, parname="a", prior=NA) #-- fix sigma to 1 customTheta1 <- customTheta customTheta1$est <- c("mu"=FALSE,"sigma"=FALSE ) # estimate model mod2 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable1, customItems=customItems, customTheta=customTheta1 ) summary(mod2) #**************************************************************************** #******* Model 3: Cloglog link function #*** IRF cloglog P_1N <- function( par, Theta, ncat){ b <- par TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,2] <- 1 - exp( - exp( Theta - b ) ) P[,1] <- 1 - P[,2] return(P) } par <- c("b"=0) item_1N <- sirt::xxirt_createDiscItem( name="1N", par=par, est=c(TRUE), P=P_1N ) customItems <- list( item_1N ) itemtype <- rep( "1N", I ) partable <- sirt::xxirt_createParTable( dat[,items], itemtype=itemtype, customItems=customItems ) partable <- sirt::xxirt_modifyParTable( partable=partable, parname="b", value=- stats::qnorm( colMeans(dat[,items] )) ) #*** estimate model mod3 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta ) summary(mod3) IRT.compareModels(mod1,mod3) #**************************************************************************** #******* Model 4: Latent class model K <- 3 # number of classes Theta <- diag(K) #*** Theta distribution P_Theta1 <- function( par, Theta, G ){ logitprobs <- par[1:(K-1)] l1 <- exp( c( logitprobs, 0 ) ) probs <- matrix( l1/sum(l1), ncol=1) return(probs) } par_Theta <- stats::qlogis( rep( 1/K, K-1 ) ) names(par_Theta) <- paste0("pi",1:(K-1) ) customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=rep(TRUE,K-1), P=P_Theta1) #*** IRF latent class P_lc <- function( par, Theta, ncat){ b <- par TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,1] <- 1 for (cc in 2:ncat){ P[,cc] <- exp( Theta %*% b ) } P <- P / rowSums(P) return(P) } par <- seq( -1.5, 1.5, length=K ) names(par) <- paste0("b",1:K) item_lc <- sirt::xxirt_createDiscItem( name="LC", par=par, est=rep(TRUE,K), P=P_lc ) customItems <- list( item_lc ) # create parameter table itemtype <- rep( "LC", 12 ) partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems) partable #*** estimate model mod4 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta) summary(mod4) # class probabilities mod4$probs_Theta # item response functions imod4 <- IRT.irfprob( mod5 ) round( imod4[,2,], 3 ) #**************************************************************************** #******* Model 5: Ordered latent class model K <- 3 # number of classes Theta <- diag(K) Theta <- apply( Theta, 1, cumsum ) #*** Theta distribution P_Theta1 <- function( par, Theta, G ){ logitprobs <- par[1:(K-1)] l1 <- exp( c( logitprobs, 0 ) ) probs <- matrix( l1/sum(l1), ncol=1) return(probs) } par_Theta <- stats::qlogis( rep( 1/K, K-1 ) ) names(par_Theta) <- paste0("pi",1:(K-1) ) customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=rep(TRUE,K-1), P=P_Theta1 ) #*** IRF ordered latent class P_olc <- function( par, Theta, ncat){ b <- par TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,1] <- 1 for (cc in 2:ncat){ P[,cc] <- exp( Theta %*% b ) } P <- P / rowSums(P) return(P) } par <- c( -1, rep( .5,, length=K-1 ) ) names(par) <- paste0("b",1:K) item_olc <- sirt::xxirt_createDiscItem( name="OLC", par=par, est=rep(TRUE,K), P=P_olc, lower=c( -Inf, 0, 0 ) ) customItems <- list( item_olc ) itemtype <- rep( "OLC", 12 ) partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems) partable #*** estimate model mod5 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta ) summary(mod5) # estimated item response functions imod5 <- IRT.irfprob( mod5 ) round( imod5[,2,], 3 ) ############################################################################# ## EXAMPLE 2: Multiple group models with xxirt ############################################################################# data(data.math) dat <- data.math$data items <- grep( "M[A-Z]", colnames(dat), value=TRUE ) I <- length(items) Theta <- matrix( seq(-8,8,len=31), ncol=1 ) #**************************************************************************** #******* Model 1: Rasch model, single group #*** Theta distribution P_Theta1 <- function( par, Theta, G ){ mu <- par[1] sigma <- max( par[2], .01 ) p1 <- stats::dnorm( Theta[,1], mean=mu, sd=sigma) p1 <- p1 / sum(p1) probs <- matrix( p1, ncol=1) return(probs) } par_Theta <- c(0,1) names(par_Theta) <- c("mu","sigma") customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE), P=P_Theta1 ) customTheta #*** IRF 1PL logit P_1PL <- function( par, Theta, ncat){ b <- par TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,2] <- plogis( Theta - b ) P[,1] <- 1 - P[,2] return(P) } par <- c("b"=0) item_1PL <- sirt::xxirt_createDiscItem( name="1PL", par=par, est=c(TRUE), P=P_1PL) customItems <- list( item_1PL ) itemtype <- rep( "1PL", I ) partable <- sirt::xxirt_createParTable( dat[,items], itemtype=itemtype, customItems=customItems ) partable <- sirt::xxirt_modifyParTable( partable=partable, parname="b", value=- stats::qlogis( colMeans(dat[,items] )) ) #*** estimate model mod1 <- sirt::xxirt( dat=dat[,items], Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta ) summary(mod1) #**************************************************************************** #******* Model 2: Rasch model, multiple groups #*** Theta distribution P_Theta2 <- function( par, Theta, G ){ mu1 <- par[1] mu2 <- par[2] sigma1 <- max( par[3], .01 ) sigma2 <- max( par[4], .01 ) TP <- nrow(Theta) probs <- matrix( NA, nrow=TP, ncol=G) p1 <- stats::dnorm( Theta[,1], mean=mu1, sd=sigma1) probs[,1] <- p1 / sum(p1) p1 <- stats::dnorm( Theta[,1], mean=mu2, sd=sigma2) probs[,2] <- p1 / sum(p1) return(probs) } par_Theta <- c(0,0,1,1) names(par_Theta) <- c("mu1","mu2","sigma1","sigma2") customTheta2 <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE,TRUE,TRUE), P=P_Theta2 ) print(customTheta2) #*** estimate model mod2 <- sirt::xxirt( dat=dat[,items], group=dat$female, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta2, maxit=40) summary(mod2) IRT.compareModels(mod1, mod2) #*** compare results with TAM package library(TAM) mod2b <- TAM::tam.mml( resp=dat[,items], group=dat$female ) summary(mod2b) IRT.compareModels(mod1, mod2, mod2b) ############################################################################# ## EXAMPLE 3: Regularized 2PL model ############################################################################# data(data.read, package="sirt") dat <- data.read #------ Definition of item response functions #*** IRF 2PL P_2PL <- function( par, Theta, ncat){ a <- par[1] b <- par[2] TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,1] <- 1 for (cc in 2:ncat){ P[,cc] <- exp( (cc-1) * a * Theta[,1] - b ) } P <- P / rowSums(P) return(P) } #** created item classes of 1PL and 2PL models par <- c( "a"=1, "b"=0 ) # define some slightly informative prior of 2PL item_2PL <- sirt::xxirt_createDiscItem( name="2PL", par=par, est=c(TRUE,TRUE), P=P_2PL, prior=c(a="dlnorm"), prior_par1=c( a=0 ), prior_par2=c(a=5) ) customItems <- list( item_2PL ) #---- definition theta distribution #** theta grid Theta <- matrix( seq(-6,6,length=21), ncol=1 ) #** theta distribution P_Theta1 <- function( par, Theta, G){ mu <- par[1] sigma <- max( par[2], .01 ) TP <- nrow(Theta) pi_Theta <- matrix( 0, nrow=TP, ncol=G) pi1 <- dnorm( Theta[,1], mean=mu, sd=sigma ) pi1 <- pi1 / sum(pi1) pi_Theta[,1] <- pi1 return(pi_Theta) } #** create distribution class par_Theta <- c( "mu"=0, "sigma"=1 ) customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,FALSE), P=P_Theta1 ) #**************************************************************************** #******* Model 1: 2PL model itemtype <- rep( "2PL", 12 ) partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems ) mod1 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta) summary(mod1) #**************************************************************************** #******* Model 2: Regularized 2PL model with regularization on item loadings # define regularized estimation of item loadings parindex <- partable[ partable$parname=="a","parindex"] #** penalty is defined by -N*lambda*sum_i (a_i-1)^2 N <- nrow(dat) lambda <- .02 penalty_fun_item <- function(x) { val <- N*lambda*sum( ( x[parindex]-1)^2) return(val) } # estimate standard deviation customTheta1 <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE), P=P_Theta1 ) mod2 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta1, penalty_fun_item=penalty_fun_item) summary(mod2) ############################################################################# ## EXAMPLE 4: 2PL mixture model ############################################################################# #*** simulate data set.seed(123) N <- 4000 # number of persons I <- 15 # number of items prop <- .25 # mixture proportion for second class # discriminations and difficulties in first class a1 <- rep(1,I) b1 <- seq(-2,2,len=I) # distribution in second class mu2 <- 1 sigma2 <- 1.2 # compute parameters with constraint N(0,1) in second class # a*(sigma*theta+mu-b)=a*sigma*(theta-(b-mu)/sigma) #=> a2=a*sigma and b2=(b-mu)/sigma a2 <- a1 a2[c(2,4,6,8)] <- 0.2 # some items with different discriminations a2 <- a2*sigma2 b2 <- b1 b2[1:5] <- 1 # first 5 item with different difficulties b2 <- (b2-mu2)/sigma2 dat1 <- sirt::sim.raschtype(theta=stats::rnorm(N*(1-prop)), b=b1, fixed.a=a1) dat2 <- sirt::sim.raschtype(theta=stats::rnorm(N*prop), b=b2, fixed.a=a2) dat <- rbind(dat1, dat2) #**** model specification #*** define theta distribution TP <- 21 theta <- seq(-6,6,length=TP) # stack theta vectors below each others=> 2 latent classes Theta <- matrix( c(theta, theta ), ncol=1 ) # distribution of theta (i.e., N(0,1)) w_theta <- dnorm(theta) w_theta <- w_theta / sum(w_theta) P_Theta1 <- function( par, Theta, G){ p2_logis <- par[1] p2 <- stats::plogis( p2_logis ) p1 <- 1-p2 pi_Theta <- c( p1*w_theta, p2*w_theta) pi_Theta <- matrix(pi_Theta, ncol=1) return(pi_Theta) } par_Theta <- c( p2_logis=qlogis(.25)) customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(TRUE), P=P_Theta1) # IRF for 2-class mixture 2PL model par <- c(a1=1, a2=1, b1=0, b2=.5) P_2PLmix <- function( par, Theta, ncat) { a1 <- par[1] a2 <- par[2] b1 <- par[3] b2 <- par[4] P <- matrix( NA, nrow=2*TP, ncol=ncat) TP <- nrow(Theta)/2 P1 <- stats::plogis( a1*(Theta[1:TP,1]-b1) ) P2 <- stats::plogis( a2*(Theta[TP+1:(2*TP),1]-b2) ) P[,2] <- c(P1, P2) P[,1] <- 1-P[,2] return(P) } # define some slightly informative prior of 2PL item_2PLmix <- sirt::xxirt_createDiscItem( name="2PLmix", par=par, est=c(TRUE,TRUE,TRUE,TRUE), P=P_2PLmix ) customItems <- list( item_2PLmix ) #**************************************************************************** #******* Model 1: 2PL mixture model itemtype <- rep( "2PLmix", I ) partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems ) mod1 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta) summary(mod1) ## End(Not run)
## Not run: ############################################################################# ## EXAMPLE 1: Unidimensional item response functions ############################################################################# data(data.read) dat <- data.read #------ Definition of item response functions #*** IRF 2PL P_2PL <- function( par, Theta, ncat){ a <- par[1] b <- par[2] TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,1] <- 1 for (cc in 2:ncat){ P[,cc] <- exp( (cc-1) * a * Theta[,1] - b ) } P <- P / rowSums(P) return(P) } #*** IRF 1PL P_1PL <- function( par, Theta, ncat){ b <- par[1] TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,1] <- 1 for (cc in 2:ncat){ P[,cc] <- exp( (cc-1) * Theta[,1] - b ) } P <- P / rowSums(P) return(P) } #** created item classes of 1PL and 2PL models par <- c( "a"=1, "b"=0 ) # define some slightly informative prior of 2PL item_2PL <- sirt::xxirt_createDiscItem( name="2PL", par=par, est=c(TRUE,TRUE), P=P_2PL, prior=c(a="dlnorm"), prior_par1=c( a=0 ), prior_par2=c(a=5) ) item_1PL <- sirt::xxirt_createDiscItem( name="1PL", par=par[2], est=c(TRUE), P=P_1PL ) customItems <- list( item_1PL, item_2PL ) #---- definition theta distribution #** theta grid Theta <- matrix( seq(-6,6,length=21), ncol=1 ) #** theta distribution P_Theta1 <- function( par, Theta, G){ mu <- par[1] sigma <- max( par[2], .01 ) TP <- nrow(Theta) pi_Theta <- matrix( 0, nrow=TP, ncol=G) pi1 <- dnorm( Theta[,1], mean=mu, sd=sigma ) pi1 <- pi1 / sum(pi1) pi_Theta[,1] <- pi1 return(pi_Theta) } #** create distribution class par_Theta <- c( "mu"=0, "sigma"=1 ) customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE), P=P_Theta1 ) #**************************************************************************** #******* Model 1: Rasch model #-- create parameter table itemtype <- rep( "1PL", 12 ) partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems ) # estimate model mod1 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta) summary(mod1) # estimate Rasch model by providing starting values partable1 <- sirt::xxirt_modifyParTable( partable, parname="b", value=- stats::qlogis( colMeans(dat) ) ) # estimate model again mod1b <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable1, customItems=customItems, customTheta=customTheta ) summary(mod1b) # extract coefficients, covariance matrix and standard errors coef(mod1b) vcov(mod1b) IRT.se(mod1b) #** start with EM and finalize with Newton-Raphson algorithm mod1c <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta, maxit=20, maxit_nr=300) summary(mod1c) #**************************************************************************** #******* Model 2: 2PL Model with three groups of item discriminations #-- create parameter table itemtype <- rep( "2PL", 12 ) partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems) # modify parameter table: set constraints for item groups A, B and C partable1 <- sirt::xxirt_modifyParTable(partable, item=paste0("A",1:4), parname="a", parindex=111) partable1 <- sirt::xxirt_modifyParTable(partable1, item=paste0("B",1:4), parname="a", parindex=112) partable1 <- sirt::xxirt_modifyParTable(partable1, item=paste0("C",1:4), parname="a", parindex=113) # delete prior distributions partable1 <- sirt::xxirt_modifyParTable(partable1, parname="a", prior=NA) #-- fix sigma to 1 customTheta1 <- customTheta customTheta1$est <- c("mu"=FALSE,"sigma"=FALSE ) # estimate model mod2 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable1, customItems=customItems, customTheta=customTheta1 ) summary(mod2) #**************************************************************************** #******* Model 3: Cloglog link function #*** IRF cloglog P_1N <- function( par, Theta, ncat){ b <- par TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,2] <- 1 - exp( - exp( Theta - b ) ) P[,1] <- 1 - P[,2] return(P) } par <- c("b"=0) item_1N <- sirt::xxirt_createDiscItem( name="1N", par=par, est=c(TRUE), P=P_1N ) customItems <- list( item_1N ) itemtype <- rep( "1N", I ) partable <- sirt::xxirt_createParTable( dat[,items], itemtype=itemtype, customItems=customItems ) partable <- sirt::xxirt_modifyParTable( partable=partable, parname="b", value=- stats::qnorm( colMeans(dat[,items] )) ) #*** estimate model mod3 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta ) summary(mod3) IRT.compareModels(mod1,mod3) #**************************************************************************** #******* Model 4: Latent class model K <- 3 # number of classes Theta <- diag(K) #*** Theta distribution P_Theta1 <- function( par, Theta, G ){ logitprobs <- par[1:(K-1)] l1 <- exp( c( logitprobs, 0 ) ) probs <- matrix( l1/sum(l1), ncol=1) return(probs) } par_Theta <- stats::qlogis( rep( 1/K, K-1 ) ) names(par_Theta) <- paste0("pi",1:(K-1) ) customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=rep(TRUE,K-1), P=P_Theta1) #*** IRF latent class P_lc <- function( par, Theta, ncat){ b <- par TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,1] <- 1 for (cc in 2:ncat){ P[,cc] <- exp( Theta %*% b ) } P <- P / rowSums(P) return(P) } par <- seq( -1.5, 1.5, length=K ) names(par) <- paste0("b",1:K) item_lc <- sirt::xxirt_createDiscItem( name="LC", par=par, est=rep(TRUE,K), P=P_lc ) customItems <- list( item_lc ) # create parameter table itemtype <- rep( "LC", 12 ) partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems) partable #*** estimate model mod4 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta) summary(mod4) # class probabilities mod4$probs_Theta # item response functions imod4 <- IRT.irfprob( mod5 ) round( imod4[,2,], 3 ) #**************************************************************************** #******* Model 5: Ordered latent class model K <- 3 # number of classes Theta <- diag(K) Theta <- apply( Theta, 1, cumsum ) #*** Theta distribution P_Theta1 <- function( par, Theta, G ){ logitprobs <- par[1:(K-1)] l1 <- exp( c( logitprobs, 0 ) ) probs <- matrix( l1/sum(l1), ncol=1) return(probs) } par_Theta <- stats::qlogis( rep( 1/K, K-1 ) ) names(par_Theta) <- paste0("pi",1:(K-1) ) customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=rep(TRUE,K-1), P=P_Theta1 ) #*** IRF ordered latent class P_olc <- function( par, Theta, ncat){ b <- par TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,1] <- 1 for (cc in 2:ncat){ P[,cc] <- exp( Theta %*% b ) } P <- P / rowSums(P) return(P) } par <- c( -1, rep( .5,, length=K-1 ) ) names(par) <- paste0("b",1:K) item_olc <- sirt::xxirt_createDiscItem( name="OLC", par=par, est=rep(TRUE,K), P=P_olc, lower=c( -Inf, 0, 0 ) ) customItems <- list( item_olc ) itemtype <- rep( "OLC", 12 ) partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems) partable #*** estimate model mod5 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta ) summary(mod5) # estimated item response functions imod5 <- IRT.irfprob( mod5 ) round( imod5[,2,], 3 ) ############################################################################# ## EXAMPLE 2: Multiple group models with xxirt ############################################################################# data(data.math) dat <- data.math$data items <- grep( "M[A-Z]", colnames(dat), value=TRUE ) I <- length(items) Theta <- matrix( seq(-8,8,len=31), ncol=1 ) #**************************************************************************** #******* Model 1: Rasch model, single group #*** Theta distribution P_Theta1 <- function( par, Theta, G ){ mu <- par[1] sigma <- max( par[2], .01 ) p1 <- stats::dnorm( Theta[,1], mean=mu, sd=sigma) p1 <- p1 / sum(p1) probs <- matrix( p1, ncol=1) return(probs) } par_Theta <- c(0,1) names(par_Theta) <- c("mu","sigma") customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE), P=P_Theta1 ) customTheta #*** IRF 1PL logit P_1PL <- function( par, Theta, ncat){ b <- par TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,2] <- plogis( Theta - b ) P[,1] <- 1 - P[,2] return(P) } par <- c("b"=0) item_1PL <- sirt::xxirt_createDiscItem( name="1PL", par=par, est=c(TRUE), P=P_1PL) customItems <- list( item_1PL ) itemtype <- rep( "1PL", I ) partable <- sirt::xxirt_createParTable( dat[,items], itemtype=itemtype, customItems=customItems ) partable <- sirt::xxirt_modifyParTable( partable=partable, parname="b", value=- stats::qlogis( colMeans(dat[,items] )) ) #*** estimate model mod1 <- sirt::xxirt( dat=dat[,items], Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta ) summary(mod1) #**************************************************************************** #******* Model 2: Rasch model, multiple groups #*** Theta distribution P_Theta2 <- function( par, Theta, G ){ mu1 <- par[1] mu2 <- par[2] sigma1 <- max( par[3], .01 ) sigma2 <- max( par[4], .01 ) TP <- nrow(Theta) probs <- matrix( NA, nrow=TP, ncol=G) p1 <- stats::dnorm( Theta[,1], mean=mu1, sd=sigma1) probs[,1] <- p1 / sum(p1) p1 <- stats::dnorm( Theta[,1], mean=mu2, sd=sigma2) probs[,2] <- p1 / sum(p1) return(probs) } par_Theta <- c(0,0,1,1) names(par_Theta) <- c("mu1","mu2","sigma1","sigma2") customTheta2 <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE,TRUE,TRUE), P=P_Theta2 ) print(customTheta2) #*** estimate model mod2 <- sirt::xxirt( dat=dat[,items], group=dat$female, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta2, maxit=40) summary(mod2) IRT.compareModels(mod1, mod2) #*** compare results with TAM package library(TAM) mod2b <- TAM::tam.mml( resp=dat[,items], group=dat$female ) summary(mod2b) IRT.compareModels(mod1, mod2, mod2b) ############################################################################# ## EXAMPLE 3: Regularized 2PL model ############################################################################# data(data.read, package="sirt") dat <- data.read #------ Definition of item response functions #*** IRF 2PL P_2PL <- function( par, Theta, ncat){ a <- par[1] b <- par[2] TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,1] <- 1 for (cc in 2:ncat){ P[,cc] <- exp( (cc-1) * a * Theta[,1] - b ) } P <- P / rowSums(P) return(P) } #** created item classes of 1PL and 2PL models par <- c( "a"=1, "b"=0 ) # define some slightly informative prior of 2PL item_2PL <- sirt::xxirt_createDiscItem( name="2PL", par=par, est=c(TRUE,TRUE), P=P_2PL, prior=c(a="dlnorm"), prior_par1=c( a=0 ), prior_par2=c(a=5) ) customItems <- list( item_2PL ) #---- definition theta distribution #** theta grid Theta <- matrix( seq(-6,6,length=21), ncol=1 ) #** theta distribution P_Theta1 <- function( par, Theta, G){ mu <- par[1] sigma <- max( par[2], .01 ) TP <- nrow(Theta) pi_Theta <- matrix( 0, nrow=TP, ncol=G) pi1 <- dnorm( Theta[,1], mean=mu, sd=sigma ) pi1 <- pi1 / sum(pi1) pi_Theta[,1] <- pi1 return(pi_Theta) } #** create distribution class par_Theta <- c( "mu"=0, "sigma"=1 ) customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,FALSE), P=P_Theta1 ) #**************************************************************************** #******* Model 1: 2PL model itemtype <- rep( "2PL", 12 ) partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems ) mod1 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta) summary(mod1) #**************************************************************************** #******* Model 2: Regularized 2PL model with regularization on item loadings # define regularized estimation of item loadings parindex <- partable[ partable$parname=="a","parindex"] #** penalty is defined by -N*lambda*sum_i (a_i-1)^2 N <- nrow(dat) lambda <- .02 penalty_fun_item <- function(x) { val <- N*lambda*sum( ( x[parindex]-1)^2) return(val) } # estimate standard deviation customTheta1 <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE), P=P_Theta1 ) mod2 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta1, penalty_fun_item=penalty_fun_item) summary(mod2) ############################################################################# ## EXAMPLE 4: 2PL mixture model ############################################################################# #*** simulate data set.seed(123) N <- 4000 # number of persons I <- 15 # number of items prop <- .25 # mixture proportion for second class # discriminations and difficulties in first class a1 <- rep(1,I) b1 <- seq(-2,2,len=I) # distribution in second class mu2 <- 1 sigma2 <- 1.2 # compute parameters with constraint N(0,1) in second class # a*(sigma*theta+mu-b)=a*sigma*(theta-(b-mu)/sigma) #=> a2=a*sigma and b2=(b-mu)/sigma a2 <- a1 a2[c(2,4,6,8)] <- 0.2 # some items with different discriminations a2 <- a2*sigma2 b2 <- b1 b2[1:5] <- 1 # first 5 item with different difficulties b2 <- (b2-mu2)/sigma2 dat1 <- sirt::sim.raschtype(theta=stats::rnorm(N*(1-prop)), b=b1, fixed.a=a1) dat2 <- sirt::sim.raschtype(theta=stats::rnorm(N*prop), b=b2, fixed.a=a2) dat <- rbind(dat1, dat2) #**** model specification #*** define theta distribution TP <- 21 theta <- seq(-6,6,length=TP) # stack theta vectors below each others=> 2 latent classes Theta <- matrix( c(theta, theta ), ncol=1 ) # distribution of theta (i.e., N(0,1)) w_theta <- dnorm(theta) w_theta <- w_theta / sum(w_theta) P_Theta1 <- function( par, Theta, G){ p2_logis <- par[1] p2 <- stats::plogis( p2_logis ) p1 <- 1-p2 pi_Theta <- c( p1*w_theta, p2*w_theta) pi_Theta <- matrix(pi_Theta, ncol=1) return(pi_Theta) } par_Theta <- c( p2_logis=qlogis(.25)) customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(TRUE), P=P_Theta1) # IRF for 2-class mixture 2PL model par <- c(a1=1, a2=1, b1=0, b2=.5) P_2PLmix <- function( par, Theta, ncat) { a1 <- par[1] a2 <- par[2] b1 <- par[3] b2 <- par[4] P <- matrix( NA, nrow=2*TP, ncol=ncat) TP <- nrow(Theta)/2 P1 <- stats::plogis( a1*(Theta[1:TP,1]-b1) ) P2 <- stats::plogis( a2*(Theta[TP+1:(2*TP),1]-b2) ) P[,2] <- c(P1, P2) P[,1] <- 1-P[,2] return(P) } # define some slightly informative prior of 2PL item_2PLmix <- sirt::xxirt_createDiscItem( name="2PLmix", par=par, est=c(TRUE,TRUE,TRUE,TRUE), P=P_2PLmix ) customItems <- list( item_2PLmix ) #**************************************************************************** #******* Model 1: 2PL mixture model itemtype <- rep( "2PLmix", I ) partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems ) mod1 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems, customTheta=customTheta) summary(mod1) ## End(Not run)
Create item response functions and item parameter table
xxirt_createDiscItem( name, par, est, P, lower=-Inf, upper=Inf, prior=NULL, prior_par1=NULL, prior_par2=NULL) xxirt_createParTable(dat, itemtype, customItems=NULL) xxirt_modifyParTable( partable, parname, item=NULL, value=NULL, est=NULL, parlabel=NULL, parindex=NULL, lower=NULL, upper=NULL, prior=NULL, prior_par1=NULL, prior_par2=NULL )
xxirt_createDiscItem( name, par, est, P, lower=-Inf, upper=Inf, prior=NULL, prior_par1=NULL, prior_par2=NULL) xxirt_createParTable(dat, itemtype, customItems=NULL) xxirt_modifyParTable( partable, parname, item=NULL, value=NULL, est=NULL, parlabel=NULL, parindex=NULL, lower=NULL, upper=NULL, prior=NULL, prior_par1=NULL, prior_par2=NULL )
name |
Type of item response function |
par |
Named vector of starting values of item parameters |
est |
Logical vector indicating which parameters should be estimated |
P |
Item response function |
lower |
Lower bounds |
upper |
Upper bounds |
prior |
Prior distribution |
prior_par1 |
First parameter prior distribution |
prior_par2 |
Second parameter prior distribution |
dat |
Data frame with item responses |
itemtype |
Vector of item types |
customItems |
List with item objects created by |
partable |
Item parameter table |
parname |
Parameter name |
item |
Item |
value |
Value of item parameter |
parindex |
Parameter index |
parlabel |
Item parameter label |
See mirt::createItem
for similar
functionality.
############################################################################# ## EXAMPLE 1: Definition of item response functions ############################################################################# data(data.read) dat <- data.read #------ Definition of item response functions #*** IRF 2PL P_2PL <- function( par, Theta, ncat){ a <- par[1] b <- par[2] TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,1] <- 1 for (cc in 2:ncat){ P[,cc] <- exp( (cc-1) * a * Theta[,1] - b ) } P <- P / rowSums(P) return(P) } #*** IRF 1PL P_1PL <- function( par, Theta, ncat){ b <- par[1] TP <- nrow(Theta) par0 <- c(1,b) P <- P_2PL( par=par0, Theta=Theta, ncat=ncat) return(P) } #** created item classes of 1PL and 2PL models par <- c( "a"=1, "b"=0 ) # define some slightly informative prior of 2PL item_2PL <- sirt::xxirt_createDiscItem( name="2PL", par=par, est=c(TRUE,TRUE), P=P_2PL, prior=c( a="dlnorm"), prior_par1=c(a=0), prior_par2=c(a=5) ) item_1PL <- sirt::xxirt_createDiscItem( name="1PL", par=par[2], est=c(TRUE), P=P_1PL ) # list of item classes in customItems customItems <- list( item_1PL, item_2PL ) #-- create parameter table itemtype <- rep( "1PL", 12 ) partable <- sirt::xxirt_createParTable(dat, itemtype=itemtype, customItems=customItems) # privide starting values partable1 <- sirt::xxirt_modifyParTable( partable, parname="b", value=- stats::qlogis( colMeans(dat) ) ) # equality constraint of parameters and definition of lower bounds partable1 <- sirt::xxirt_modifyParTable( partable1, item=c("A1","A2"), parname="b", parindex=110, lower=-1, value=0) print(partable1)
############################################################################# ## EXAMPLE 1: Definition of item response functions ############################################################################# data(data.read) dat <- data.read #------ Definition of item response functions #*** IRF 2PL P_2PL <- function( par, Theta, ncat){ a <- par[1] b <- par[2] TP <- nrow(Theta) P <- matrix( NA, nrow=TP, ncol=ncat) P[,1] <- 1 for (cc in 2:ncat){ P[,cc] <- exp( (cc-1) * a * Theta[,1] - b ) } P <- P / rowSums(P) return(P) } #*** IRF 1PL P_1PL <- function( par, Theta, ncat){ b <- par[1] TP <- nrow(Theta) par0 <- c(1,b) P <- P_2PL( par=par0, Theta=Theta, ncat=ncat) return(P) } #** created item classes of 1PL and 2PL models par <- c( "a"=1, "b"=0 ) # define some slightly informative prior of 2PL item_2PL <- sirt::xxirt_createDiscItem( name="2PL", par=par, est=c(TRUE,TRUE), P=P_2PL, prior=c( a="dlnorm"), prior_par1=c(a=0), prior_par2=c(a=5) ) item_1PL <- sirt::xxirt_createDiscItem( name="1PL", par=par[2], est=c(TRUE), P=P_1PL ) # list of item classes in customItems customItems <- list( item_1PL, item_2PL ) #-- create parameter table itemtype <- rep( "1PL", 12 ) partable <- sirt::xxirt_createParTable(dat, itemtype=itemtype, customItems=customItems) # privide starting values partable1 <- sirt::xxirt_modifyParTable( partable, parname="b", value=- stats::qlogis( colMeans(dat) ) ) # equality constraint of parameters and definition of lower bounds partable1 <- sirt::xxirt_modifyParTable( partable1, item=c("A1","A2"), parname="b", parindex=110, lower=-1, value=0) print(partable1)
Creates a user defined theta distribution.
xxirt_createThetaDistribution(par, est, P, prior=NULL, prior_par1=NULL, prior_par2=NULL, lower=NULL, upper=NULL)
xxirt_createThetaDistribution(par, est, P, prior=NULL, prior_par1=NULL, prior_par2=NULL, lower=NULL, upper=NULL)
par |
Parameter vector with starting values |
est |
Vector of logicals indicating which parameters should be estimated |
P |
Distribution function for |
prior |
Prior distribution |
prior_par1 |
First parameter of prior distribution |
prior_par2 |
Second parameter of prior distribution |
lower |
Lower bounds for parameters |
upper |
Upper bounds for parameters |
############################################################################# ## EXAMPLE 1: Definition of theta distribution ############################################################################# #** theta grid Theta <- matrix( seq(-10,10,length=31), ncol=1 ) #** theta distribution P_Theta1 <- function( par, Theta, G){ mu <- par[1] sigma <- max( par[2], .01 ) TP <- nrow(Theta) pi_Theta <- matrix( 0, nrow=TP, ncol=G) pi1 <- stats::dnorm( Theta[,1], mean=mu, sd=sigma ) pi1 <- pi1 / sum(pi1) pi_Theta[,1] <- pi1 return(pi_Theta) } #** create distribution class par_Theta <- c( "mu"=0, "sigma"=1 ) customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE), P=P_Theta1 )
############################################################################# ## EXAMPLE 1: Definition of theta distribution ############################################################################# #** theta grid Theta <- matrix( seq(-10,10,length=31), ncol=1 ) #** theta distribution P_Theta1 <- function( par, Theta, G){ mu <- par[1] sigma <- max( par[2], .01 ) TP <- nrow(Theta) pi_Theta <- matrix( 0, nrow=TP, ncol=G) pi1 <- stats::dnorm( Theta[,1], mean=mu, sd=sigma ) pi1 <- pi1 / sum(pi1) pi_Theta[,1] <- pi1 return(pi_Theta) } #** create distribution class par_Theta <- c( "mu"=0, "sigma"=1 ) customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE), P=P_Theta1 )