Some geese isotope data is included with this package. Find where it is with:
Load into R with:
library(readxl)
path <- system.file("extdata", "geese_data.xls", package = "simmr")
geese_data <- lapply(excel_sheets(path), read_excel, path = path)
If you want to see what the original Excel sheet looks like you can
run system(paste('open',path))
.
We can now separate out the data into parts
targets <- geese_data[[1]]
sources <- geese_data[[2]]
TEFs <- geese_data[[3]]
concdep <- geese_data[[4]]
Note that if you don’t have TEFs or concentration dependence you can set these all to the value 0 or just leave them blank in the step below.
simmr
simmr
and check convergencegeese_simmr_out <- simmr_mcmc(geese_simmr)
summary(geese_simmr_out,
type = "diagnostics",
group = 1
)
Check that the model fitted well:
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 40
## Unobserved stochastic nodes: 46
## Total graph size: 198
##
## Initializing model
Look at the influence of the prior:
Look at the histogram of the dietary proportions:
## Most popular orderings are as follows:
## Probability
## Day 428 > Day 124 > Day 398 > Day 1 0.2142
## Day 428 > Day 398 > Day 124 > Day 1 0.1908
## Day 428 > Day 124 > Day 1 > Day 398 0.1581
## Day 428 > Day 398 > Day 1 > Day 124 0.0956
## Day 428 > Day 1 > Day 124 > Day 398 0.0861
## Day 428 > Day 1 > Day 398 > Day 124 0.0669
## Day 398 > Day 428 > Day 124 > Day 1 0.0422
## Day 124 > Day 428 > Day 398 > Day 1 0.0350
## Day 124 > Day 428 > Day 1 > Day 398 0.0242
## Day 398 > Day 428 > Day 1 > Day 124 0.0222
## Day 124 > Day 398 > Day 428 > Day 1 0.0139
## Day 398 > Day 124 > Day 428 > Day 1 0.0122
## Day 1 > Day 428 > Day 124 > Day 398 0.0106
## Day 1 > Day 428 > Day 398 > Day 124 0.0081
## Day 1 > Day 124 > Day 428 > Day 398 0.0050
## Day 1 > Day 398 > Day 428 > Day 124 0.0031
## Day 124 > Day 1 > Day 428 > Day 398 0.0028
## Day 398 > Day 1 > Day 428 > Day 124 0.0025
## Day 398 > Day 1 > Day 124 > Day 428 0.0019
## Day 398 > Day 124 > Day 1 > Day 428 0.0019
## Day 124 > Day 398 > Day 1 > Day 428 0.0011
## Day 1 > Day 398 > Day 124 > Day 428 0.0008
## Day 124 > Day 1 > Day 398 > Day 428 0.0006
## Day 1 > Day 124 > Day 398 > Day 428 0.0003
For the many more options available to run and analyse output, see
the main vignette via vignette('simmr')