--- title: "Tools to calculate SII and its extensions" output: rmarkdown::html_vignette author: Tian-Yuan Huang vignette: > %\VignetteIndexEntry{Tools to calculate SII and its extensions} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` This vignette introduces how to use *siie* package to calculate SII and its extensions introduced in the paper "Superior identification index: Quantifying the capability of academic journals to recognize good research"(). First, we construct a data set manually, suspecting that there are 10,000 papers from 26 journals with their citation counts. ```{r} set.seed(19960822) nr_of_rows = 1e4 data.frame( Id = 1:1e4, Journal = sample(LETTERS,nr_of_rows,replace = TRUE), CiteCount = sample(1:100,nr_of_rows,replace = TRUE) ) -> journal_table ``` To get the SII (Superior Identification Index) and SIE (Superior Identification Efficiency) for the 26 journals (represented by letters), we can: ```{r} library(siie) library(tidyfst) journal_table %>% siie(group = "Journal",index = "CiteCount") ``` Note that the default superior cutoff (parameter **p**) is 10, indicating that top 10% papers are regarded as superior. If we want to use a different **p**, say 1, we can: ```{r,eval=FALSE} journal_table %>% siie(group = "Journal",index = "CiteCount",p = 1) ``` To get the PRP (Paper Rank Percentile) for the 26 journals, we can: ```{r} prp(journal_table,group = "Journal",index = "CiteCount") ``` Last, if we want to draw p-SIE curve for Journals A, B and C, we can: ```{r,out.width="70%",fig.align = "center",fig.height = 6, fig.width = 6} library(ggplot2) p_sie(journal_table,group = "Journal", index = "CiteCount",to_compare = c("A","B","C")) -> p_sie_df p_sie_df p_sie_df %>% ggplot(aes(p/100,sie,color = Journal)) + geom_point() + geom_line() + geom_abline(slope = 1,linetype = "dashed") + scale_x_continuous(labels = tidyfst::percent) + scale_y_continuous(labels = tidyfst::percent) + labs(x = "p",y = "SIE") + theme_bw() + theme(legend.position = c(0.8, 0.3), legend.background = element_rect(linewidth=0.5, color = "black",linetype="solid")) ```
Notice that we use the `tidyfst::percent` to change the scales of x and y.