Package: signnet (via r-universe)

March 7, 2025

Title Methods to Analyse Signed Networks Version 1.0.5 **Description** Methods for the analysis of signed networks. This includes several measures for structural balance as introduced by Cartwright and Harary (1956) <doi:10.1037/h0046049>, blockmodeling algorithms from Doreian (2008) <doi:10.1016/j.socnet.2008.03.005>, various centrality indices, and projections of signed two-mode networks introduced by Schoch (2020) <doi:10.1080/0022250X.2019.1711376>. License MIT + file LICENSE URL https://github.com/schochastics/signnet, https://schochastics.github.io/signnet/ BugReports https://github.com/schochastics/signnet/issues **Depends** R (>= 3.2.0) Imports igraph, Matrix, Rcpp Suggests covr, ggplot2, ggraph, knitr, ompr, ompr.roi, rmarkdown, ROI, ROI.plugin.glpk, testthat (>= 2.1.0) LinkingTo Rcpp, RcppArmadillo VignetteBuilder knitr **Encoding UTF-8** LazyData true RoxygenNote 7.3.2 **NeedsCompilation** yes **Author** David Schoch [aut, cre] (<https://orcid.org/0000-0003-2952-4812>) Maintainer David Schoch <david@schochastics.net> **Repository** CRAN **Date/Publication** 2025-02-05 20:40:02 UTC Config/pak/sysreqs libglpk-dev libxml2-dev

2 as_adj_complex

Contents

Index		29
In don		
	tribes	
	triad_census_signed	
	signed_triangles	
	signed_blockmodel_general	
	signed_blockmodel	
	sample_islands_signed	
	sample_gnp_signed	
	sample_bipartite_signed	
	pn_index	
	laplacian_matrix_signed	
	laplacian_matrix_complex	19
	is_signed	
	graph_from_edgelist_signed	
	graph_from_adjacency_matrix_signed	
	graph_circular_signed	
	ggsigned	
	ggblock	1:
	frustration_exact	
	eigen_centrality_signed	1
	degree_signed	1
	cowList	1
	count_signed_triangles	1
	count_complex_triangles	1
	complex_walks	9
	balance_score	
	avatar	
	as_unsigned_2mode	
	as_signed_proj	
	as_incidence_signed	
	as_incidence_complex	4
	as_complex_edges	4
	as_adj_signed	
	as_adj_complex	

Description

This function returns the adjacency matrix for a signed graph that contains ambivalent ties

Usage

```
as_adj_complex(g, attr)
```

as_adj_signed 3

Arguments

g igraph object

attr edge attribute name that encodes positive ("P"), negative ("N") and ambivalent

("A") ties.

Value

complex adjacency matrix

See Also

as_adj_signed

as_adj_signed

Convert a signed graph to a signed adjacency matrix

Description

This function returns the adjacency matrix for a signed graph

Usage

```
as_adj_signed(g, sparse = FALSE)
```

Arguments

g igraph object. Must have a "sign" edge attribute.

sparse Logical scalar, whether to return the result as a sparse matrix. The Matrix pack-

age is required for sparse matrices.

Value

signed adjacency matrix

See Also

as_adj_complex

as_complex_edges

Convert Signed Network to Complex

Description

Convert Signed Network to Complex

Usage

```
as_complex_edges(g, attr = "type")
```

Arguments

g igraph object. Must have a "sign" edge attribute.

attr new edge attribute name that encodes positive ("P"), negative ("N") and ambiva-

lent ("A") ties.

Value

igraph object

Author(s)

David Schoch

Examples

```
g <- sample_islands_signed(2, 10, 1, 10)
as_complex_edges(g)</pre>
```

Description

The complex incidence matrix of a signed graph containing ambivalent ties.

Usage

```
as_incidence_complex(g, attr)
```

Arguments

g igraph object.

attr edge attribute name that encodes positive ("P"), negative ("N") and ambivalent

("A") ties.

as_incidence_signed 5

Details

This function is slightly different than as_incidence_matrix since it is defined for bipartite graphs. The incidence matrix here is defined as a $S \in C^{n,m}$, where n is the number of vertices and m the number of edges. Edges (i,j) are oriented such that i<j and entries are defined as

$$S_{i(i,j)}=\sqrt{A_{ij}}$$

$$S_{j(i,j)}=-\sqrt{A_{ji}}if(i,j)is an ambival ent tie$$

$$S_{j(i,j)}=-A_{ji}\sqrt{A_{ji}}else$$

Value

a complex matrix

Author(s)

David Schoch

See Also

laplacian_matrix_complex,as_adj_complex

as_incidence_signed

Convert a signed two-mode network to a signed matrix

Description

This function returns the incidence matrix for a signed two-mode network.

Usage

```
as_incidence_signed(g, sparse = FALSE)
```

Arguments

g igraph object (bipartite). Must have a "sign" edge attribute.

sparse Logical scalar, whether to return the result as a sparse matrix. The Matrix pack-

age is required for sparse matrices.

Value

signed incidence matrix

6 as_signed_proj

as_signed_proj

convert unsigned projection to signed

Description

convert unsigned projection to signed

Usage

```
as_signed_proj(g)
```

Arguments

g

igraph object

Value

igraph object

Author(s)

David Schoch

See Also

```
as_unsigned_2mode
```

```
library(igraph)

# create a simple signed two mode network
el <- matrix(c(1, "a", 1, "b", 1, "c", 2, "a", 2, "b"), ncol = 2, byrow = TRUE)
g <- graph_from_edgelist(el, directed = FALSE)
E(g)$sign <- c(1, 1, -1, 1, -1)
V(g)$type <- c(FALSE, TRUE, TRUE, TRUE, FALSE)

# convert to unsigned two-mode network and project
1 <- as_unsigned_2mode(g, primary = TRUE)
p <- bipartite_projection(l, which = "true")

# turn the unsigned projection back to a signed network
as_signed_proj(p)</pre>
```

as_unsigned_2mode 7

as_unsigned_2mode

convert signed two-mode network to unsigned

Description

convert signed two-mode network to unsigned

Usage

```
as_unsigned_2mode(g, primary = TRUE)
```

Arguments

g igraph object. Two-mode network, must have a "sign" edge attribute.

primary logical. Which mode to transform

Value

igraph object

Author(s)

David Schoch

See Also

```
as_signed_proj
```

```
library(igraph)

# create a simple signed two mode network
el <- matrix(c(1, "a", 1, "b", 1, "c", 2, "a", 2, "b"), ncol = 2, byrow = TRUE)
g <- graph_from_edgelist(el, directed = FALSE)
E(g)$sign <- c(1, 1, -1, 1, -1)
V(g)$type <- c(FALSE, TRUE, TRUE, TRUE, FALSE)

# convert to unsigned two-mode network and project
l <- as_unsigned_2mode(g, primary = TRUE)
p <- bipartite_projection(l, which = "true")

# turn the unsigned projection back to a signed network
as_signed_proj(p)</pre>
```

8 balance_score

avatar

Signed networks from Avatar: The Last Airbender

Description

Allies/Enemy relations from Avatar: The Last Airbender

Usage

avatar

Format

igraph object

Source

scraped from Avatar Wiki (https://avatar.fandom.com/wiki/Category:Characters)

balance_score

balancedness of signed network

Description

Implements several indices to assess the balancedness of a network.

Usage

```
balance_score(g, method = "triangles")
```

Arguments

g igraph object with a sign edge attribute.

method string indicating the method to be used. See details for options

Details

The method parameter can be one of

triangles Fraction of balanced triangles. Maximal (=1) if all triangles are balanced.

walk $\sum exp(\lambda_i)/\sum exp(\mu_i)$ where λ_i are the eigenvalues of the signed adjacency matrix and μ_i of the unsigned adjacency matrix. Maximal (=1) if all walks are balanced.

frustration The frustration index assumes that the network can be partitioned into two groups, where intra group edges are positive and inter group edges are negative. The index is defined as the sum of intra group negative and inter group positive edges. Note that the problem is NP complete and only an upper bound is returned (based on simulated annealing). Exact methods can be found in the work of Aref. The index is normalized such that it is maximal (=1) if the network is balanced.

complex_walks 9

Value

numeric balancedness score between 0 and 1

Author(s)

David Schoch

References

Estrada, E. (2019). Rethinking structural balance in signed social networks. *Discrete Applied Mathematics*.

Samin Aref, Mark C Wilson (2018). Measuring partial balance in signed networks. *Journal of Complex Networks*, 6(4): 566–595, https://doi.org/10.1093/comnet/cnx044

Examples

```
library(igraph)
g <- graph.full(4)
E(g)$sign <- c(-1, 1, 1, -1, -1, 1)
balance_score(g, method = "triangles")
balance_score(g, method = "walk")</pre>
```

complex_walks

Count Walks in complex signed network

Description

Count Walks in complex signed network

Usage

```
complex_walks(g, attr, k)
```

Arguments

g igraph object.

attr edge attribute that encodes positive ("P"), negative ("N") and ambivalent ("A")

ties.

k integer. length of walks

Value

igraph object

Author(s)

David Schoch

Examples

```
g <- sample_islands_signed(2, 10, 1, 10)
g <- as_complex_edges(g, attr = "type")
complex_walks(g, attr = "type", k = 3)</pre>
```

```
count_complex_triangles
```

count complex triangles

Description

Counts the number of all possible signed triangles (+++),(++-), (+-) and (—)

Usage

```
count_complex_triangles(g, attr)
```

Arguments

g igraph object.

attr edge attribute name that encodes positive ("P"), negative ("N") and ambivalent

("A") ties.

Value

counts for all complex triangle types

Author(s)

David Schoch

See Also

```
signed_triangles
```

```
library(igraph)
g <- make_full_graph(4)
E(g)$type <- c("P", "N", "A", "A", "P", "N")
count_complex_triangles(g, attr = "type")</pre>
```

count_signed_triangles 11

Description

Counts the number of all possible signed triangles (+++),(++-), (+-) and (--)

Usage

```
count_signed_triangles(g)
```

Arguments

g

igraph object with a sign edge attribute.

Value

counts for all 4 signed triangle types

Author(s)

David Schoch

See Also

```
signed_triangles
```

Examples

```
library(igraph)
g <- make_full_graph(4)
E(g)$sign <- c(-1, 1, 1, -1, -1, 1)
count_signed_triangles(g)</pre>
```

cowList

Signed networks from Correlates of War

Description

51 signed networks of inter state relations

Usage

cowList

degree_signed

Format

List of igraph objects

Source

http://mrvar.fdv.uni-lj.si/pajek/SVG/CoW/default.htm

References

Doreian, P. and Mrvar, A. (2015). "Structural Balance and Signed International Relations". *Journal of Social Structure*, 16(2)

degree_signed

Signed Degree

Description

several options to calculate the signed degree of vertices

Usage

```
degree_signed(
    g,
    mode = c("all", "in", "out"),
    type = c("pos", "neg", "ratio", "net")
)
```

Arguments

g igraph object with a sign edge attribute.

mode character string, "out" for out-degree, "in" for in-degree or "all" for undirected

networks.

type character string, "pos" or "neg" for counting positive or negative neighbors only,

"ratio" for pos/(pos+neg), or "net" for pos-neg.

Value

centrality scores as numeric vector.

Author(s)

David Schoch

```
eigen_centrality_signed
```

Signed Eigenvector centrality

Description

returns the eigenvector associated with the dominant eigenvalue from the adjacency matrix.

Usage

```
eigen_centrality_signed(g, scale = TRUE)
```

Arguments

g igraph object with a sign edge attribute.

scale Logical scalar, whether to scale the result to have a maximum score of one. If

no scaling is used then the result vector is the same as returned by eigen().

Details

Note that, with negative values, the adjacency matrix may not have a dominant eigenvalue. This means it is not clear which eigenvector should be used. In addition it is possible for the adjacency matrix to have repeated eigenvalues and hence multiple linearly independent eigenvectors. In this case certain centralities can be arbitrarily assigned. The function returns an error if this is the case.

Value

centrality scores as numeric vector.

Author(s)

David Schoch

References

Bonacich, P. and Lloyd, P. (2004). "Calculating Status with Negative Relations." *Social Networks* 26 (4): 331–38.

Everett, M. and Borgatti, S.P. (2014). "Networks Containing Negative Ties." *Social Networks* 38: 111–20.

```
library(igraph)
data("tribes")
eigen_centrality_signed(tribes)
```

14 frustration_exact

 ${\tt frustration_exact}$

Exact frustration index of a signed network

Description

Computes the exact frustration index of a signed network using linear programming

Usage

```
frustration_exact(g, ...)
```

Arguments

g signed network

. . . additional parameters for the ompr solver

Details

The frustration index indicates the minimum number of edges whose removal results in a balance network. The function needs the following packages to be installed: ompr, ompr.roi,ROI, and ROI.plugin.glpk. The function Implements the AND model in Aref et al., 2020

Value

list containing the frustration index and the bipartition of nodes

Author(s)

David Schoch

References

Aref, Samin, Andrew J. Mason, and Mark C. Wilson. "Computing the line index of balance using linear programming optimisation." Optimization problems in graph theory. Springer, Cham, 2018. 65-84.

Aref, Samin, Andrew J. Mason, and Mark C. Wilson. "A modeling and computational study of the frustration index in signed networks." Networks 75.1 (2020): 95-110.

ggblock 15

ggblock

Plot Blockmodel matrix

Description

Plot Blockmodel matrix

Usage

```
ggblock(
   g,
   blocks = NULL,
   cols = NULL,
   show_blocks = FALSE,
   show_labels = FALSE
)
```

Arguments

g igraph object with a sign edge attribute.

blocks vector of block membership as obtained, e.g. from signed_blockmodel

cols colors used for negative and positive ties

show_blocks logical. Should block borders be displayed? (Default: FALSE)

show_labels logical. Should node labels be displayed? (Default: FALSE)

Value

ggplot2 object

Author(s)

David Schoch

```
## Not run:
library(igraph)
data("tribes")
clu <- signed_blockmodel(tribes, k = 3, alpha = 0.5, annealing = TRUE)
ggblock(tribes, clu$membership, show_blocks = TRUE, show_labels = TRUE)
## End(Not run)</pre>
```

ggsigned	Plot a signed or complex network	

Description

Plot a signed or complex network

Usage

```
ggsigned(g, type = "signed", attr = NULL, edge_cols = NULL, weights = FALSE)
```

Arguments

g	igraph object. Must have a "sign" edge attribute or an attribute containing "P", "N", "A" $$
type	character string. either "signed" or "complex"
attr	character string. edge attribute that containing "P", "N", "A" if type="complex"
edge_cols	colors used for negative and positive (and ambivalent) ties
weights	logical. If TRUE, weights are computed based on sign. Defaults to FALSE

Details

This is a very rudimentary visualization of a signed network. If you are fluent in 'ggraph', you can probably cook up something more sophisticated. The function is thus mostly meant to give a quick overview of the network.

Value

ggplot2 object

Author(s)

David Schoch

```
graph_circular_signed circular signed graph
```

Description

circular graph with positive and negative edges.

Usage

```
graph\_circular\_signed(n, r = 1, pos = 0.1, neg = 0.1)
```

Arguments

n number of nodes

r radius

pos distance fraction between positive edges neg distance fraction between negative edges

Value

igraph graph

Author(s)

David Schoch

Examples

```
library(igraph)
graph_circular_signed(n = 50)
```

graph_from_adjacency_matrix_signed

Create signed graphs from adjacency matrices

Description

Create signed graphs from adjacency matrices

Usage

```
graph_from_adjacency_matrix_signed(A, mode = "undirected", ...)
```

Arguments

A square adjacency matrix of a signed graph

mode Character scalar, specifies how to interpret the supplied matrix. Possible values

are: directed, undirected

... additional parameters for from_adjacency()

Value

a signed network as igraph object

```
A <- matrix(c(0, 1, -1, 1, 0, 1, -1, 1, 0), 3, 3) graph_from_adjacency_matrix_signed(A)
```

is_signed

```
graph_from_edgelist_signed
```

Create a signed graph from an edgelist matrix

Description

Create a signed graph from an edgelist matrix

Usage

```
graph_from_edgelist_signed(el, signs, directed = FALSE)
```

Arguments

el The edgelist, a two column matrix, character or numeric.
signs vector indicating the sign of edges. Entries must be 1 or -1.
directed whether to create a directed graph.

Value

a signed network as igraph object

Examples

```
el <- matrix(c("foo", "bar", "bar", "foobar"), ncol = 2, byrow = TRUE)
signs <- c(-1, 1)
graph_from_edgelist_signed(el, signs)</pre>
```

is_signed

Check if network is a signed network

Description

Check if network is a signed network

Usage

```
is_signed(g)
```

Arguments

g igraph object

Value

logical scalar

Examples

```
g <- sample_islands_signed(2, 5, 1, 5)
is_signed(g)</pre>
```

laplacian_matrix_complex

Complex Graph Laplacian

Description

The Laplacian of a signed graph containing ambivalent ties.

Usage

```
laplacian_matrix_complex(g, attr, norm = FALSE)
```

Arguments

g igraph object.

attr edge attribute name that encodes positive ("P"), negative ("N") and ambivalent

("A") ties.

norm Whether to calculate the normalized Laplacian. See definitions below.

Details

See laplacian_matrix of igraph for more details. In the complex case, D is a diagonal matrix containing the absolute values of row sums of the complex adjacency matrix.

Value

a complex matrix

Author(s)

David Schoch

See Also

laplacian_matrix_signed

laplacian_matrix_signed

Signed Graph Laplacian

Description

The Laplacian of a signed graph.

Usage

```
laplacian_matrix_signed(g, norm = FALSE, sparse = FALSE)
```

Arguments

g igraph object with a sign edge attribute.

norm Whether to calculate the normalized Laplacian. See definitions below.

sparse Logical scalar, whether to return the result as a sparse matrix. The Matrix pack-

age is required for sparse matrices.

Details

See laplacian_matrix of igraph for more details. In the signed case, D is a diagonal matrix containing the absolute values of row sums of the signed adjacency matrix.

Value

a numeric matrix

Author(s)

David Schoch

```
library(igraph)
g <- sample_islands_signed(3, 10, 5 / 10, 1)
laplacian_matrix_signed(g)
laplacian_matrix_signed(g, norm = TRUE)</pre>
```

pn_index 21

pn_index

PN Centrality Index

Description

centrality index for signed networks by Everett and Borgatti

Usage

```
pn_index(g, mode = c("all", "in", "out"))
```

Arguments

g igraph object with a sign edge attribute.

mode character string, "out" for out-pn, "in" for in-pn or "all" for undirected networks.

Value

centrality scores as numeric vector.

Author(s)

David Schoch

References

Everett, M. and Borgatti, S. (2014) Networks containing negative ties. Social Networks 38 111-120

```
A <- matrix(c(
    0, 1, 0, 1, 0, 0, 0, -1, -1, 0,
    1, 0, 1, -1, 1, -1, -1, 0, 0, 0,
    0, 1, 0, 1, -1, 0, 0, 0, -1, 0,
    1, -1, 1, 0, 1, -1, -1, 0, 0, 0,
    0, 1, -1, 1, 0, 1, 0, -1, 0, -1,
    0, -1, 0, -1, 1, 0, 1, 0, 1, -1,
    0, -1, 0, -1, 0, 1, 0, 1, -1, 1,
    -1, 0, 0, 0, -1, 0, 1, 0, 1, 0,
    -1, 0, -1, 0, 1, 1, 0, 1, 0,
    -1, 0, 0, 0, -1, -1, 1, 0, 1,
    0, 0, 0, 0, -1, -1, 1, 0, 1,
    0, 0, 0, 0, -1, -1, 1, 0, 1,
    0, 0, 0, 0, -1, -1, 1, 0, 1,
    0);
10, 10)
g <- graph_from_adjacency_matrix_signed(A, "undirected")
pn_index(g)</pre>
```

```
sample_bipartite_signed
```

Bipartite random signed graphs

Description

Bipartite random signed graphs

Usage

```
sample_bipartite_signed(
  n1,
  n2,
  p,
  p_neg,
  directed = FALSE,
  mode = c("out", "in", "all")
)
```

Arguments

n1	Integer scal	lar, the num	ber of botton	n vertices.
----	--------------	--------------	---------------	-------------

n2 Integer scalar, the number of top vertices.

p The probability for drawing an edge between two arbitrary vertices.

p_neg The probability of a drawn edge to be a negative tie

directed logical, whether the graph will be directed. defaults to FALSE.

mode Character scalar, specifies how to direct the edges in directed graphs. If it is

'out', then directed edges point from bottom vertices to top vertices. If it is 'in', edges point from top vertices to bottom vertices. 'out' and 'in' do not generate mutual edges. If this argument is 'all', then each edge direction is considered independently and mutual edges might be generated. This argument is ignored

for undirected graphs.

Value

A signed bipartite igraph graph.

```
sample_bipartite_signed(10, 10, 0.5, 0.5)
```

sample_gnp_signed 23

sample_gnp_signed	Generate random signed graphs according to the G(n,p) Erdos-Renyi model
-------------------	---

Description

Generate random signed graphs according to the G(n,p) Erdos-Renyi model

Usage

```
sample_gnp_signed(n, p, p_neg, directed = FALSE, loops = FALSE)
```

Arguments

n The number of vertices in the graph.

p The probability for drawing an edge between two arbitrary vertices.

p_neg The probability of a drawn edge to be a negative tie

directed logical, whether the graph will be directed. defaults to FALSE.

loops logical, whether to add loop edges, defaults to FALSE.

Value

a signed igraph graph object

References

Erdos, P. and Renyi, A., On random graphs, Publicationes Mathematicae 6, 290-297 (1959).

Examples

```
sample_gnp_signed(10, 0.4, 0.5)
```

sample_islands_signed A graph with random subgraphs connected by negative edges

Description

Create a number of Erdos-Renyi random graphs with identical parameters, and connect them with the specified number of negative ties.

Usage

```
sample_islands_signed(islands.n, islands.size, islands.pin, n.inter)
```

24 signed_blockmodel

Arguments

islands.n The number of islands in the graph.
islands.size The size of the islands in the graph.
islands.pin The probability of intra-island edges.

n. inter number of negative edges between two islands.

Value

```
a signed igraph graph
```

Author(s)

David Schoch

Examples

```
library(igraph)
sample_islands_signed(3, 10, 0.5, 1)
```

signed_blockmodel

Blockmodeling for signed networks

Description

Finds blocks of nodes with intra-positive and inter-negative edges

Usage

```
signed_blockmodel(g, k, alpha = 0.5, annealing = FALSE)
```

Arguments

g igraph object with a sign edge attribute.

k number of blocks

alpha see details

annealing logical. if TRUE, use simulated annealing (Default: FALSE)

Details

The function minimizes $P(C)=\alpha N+(1-\alpha)P$, where N is the total number of negative ties within plussets and P be the total number of positive ties between plus-sets. This function implements the structural balance model. That is, all diagonal blocks are positive and off-diagonal blocks negative. For the generalized version see signed_blockmodel_general.

Value

numeric vector of block assignments and the associated criterion value

Author(s)

David Schoch

References

Doreian, Patrick and Andrej Mrvar (2009). Partitioning signed social networks. *Social Networks* 31(1) 1-11

Examples

```
library(igraph)

g <- sample_islands_signed(10, 10, 1, 20)

clu <- signed_blockmodel(g, k = 10, alpha = 0.5)

table(clu$membership)

clu$criterion

# Using simulated annealing (less change of getting trapped in local optima)

data("tribes")

clu <- signed_blockmodel(tribes, k = 3, alpha = 0.5, annealing = TRUE)

table(clu$membership)

clu$criterion</pre>
```

signed_blockmodel_general

Generalized blockmodeling for signed networks

Description

Finds blocks of nodes with specified inter/intra group ties

Usage

```
signed_blockmodel_general(g, blockmat, alpha = 0.5)
```

Arguments

g igraph object with a sign edge attribute.

blockmat Integer Matrix. Specifies the inter/intra group patterns of ties

alpha see details

Details

The function minimizes $P(C)=\alpha N+(1-\alpha)P$, where N is the total number of negative ties within plussets and P be the total number of positive ties between plus-sets. This function implements the generalized model. For the structural balance version see signed_blockmodel.

26 signed_triangles

Value

numeric vector of block assignments and the associated criterion value

Author(s)

David Schoch

References

Doreian, Patrick and Andrej Mrvar (2009). Partitioning signed social networks. *Social Networks* 31(1) 1-11

Examples

```
library(igraph)
# create a signed network with three groups and different inter/intra group ties
g1 <- g2 <- g3 <- make_full_graph(5)

V(g1)$name <- as.character(1:5)
V(g2)$name <- as.character(6:10)
V(g3)$name <- as.character(11:15)

g <- Reduce("%u%", list(g1, g2, g3))
E(g)$sign <- 1
E(g)$sign[1:10] <- -1
g <- add_edges(g, c(rbind(1:5, 6:10)), attr = list(sign = -1))
g <- add_edges(g, c(rbind(1:5, 11:15)), attr = list(sign = -1))
g <- add_edges(g, c(rbind(11:15, 6:10)), attr = list(sign = 1))

# specify the link patterns between groups
blockmat <- matrix(c(1, -1, -1, -1, 1, 1, -1, 1, -1), 3, 3, byrow = TRUE)
signed_blockmodel_general(g, blockmat, 0.5)</pre>
```

signed_triangles

list signed triangles

Description

lists all possible signed triangles

Usage

```
signed_triangles(g)
```

Arguments

g

igraph object with a sign edge attribute.

triad_census_signed 27

Value

matrix of vertex ids and the number of positive ties per triangle

Author(s)

David Schoch

See Also

```
count_signed_triangles
```

Examples

```
library(igraph)
g <- make_full_graph(4)
E(g)$sign <- c(-1, 1, 1, -1, -1, 1)
signed_triangles(g)</pre>
```

triad_census_signed

signed triad census

Description

triad census for signed graphs

Usage

```
triad_census_signed(g)
```

Arguments

g

igraph object with a sign edge attribute.

Value

counts for all 139 signed directed triangle types

Author(s)

David Schoch

```
library(igraph)
g <- make_full_graph(4, directed = TRUE)
E(g)$sign <- rep(c(-1, 1, 1, -1, -1, 1), 2)
triad_census_signed(g)</pre>
```

28 tribes

tribes

Signed network of New Guinean highland tribes

Description

Signed social network of tribes of the Gahuku–Gama alliance structure of the Eastern Central Highlands of New Guinea, from Kenneth Read. The network contains sixteen tribes connected by friend-ship ("rova") and enmity ("hina").

Usage

tribes

Format

An igraph object

Source

http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/gama.dat

References

Read, K. E. (1954) Cultures of the central highlands, New Guinea. *Southwestern Journal of Anthropology*, 1–43.

Index

```
* datasets
                                                 sample_bipartite_signed, 22
    avatar, 8
                                                 sample_gnp_signed, 23
    cowList, 11
                                                 sample_islands_signed, 23
    tribes, 28
                                                 signed_blockmodel, 15, 24, 25
                                                 signed_blockmodel_general, 24, 25
as_adj_complex, 2, 3, 5
                                                 signed_triangles, 10, 11, 26
as_adj_signed, 3, 3
                                                 triad_census_signed, 27
as_complex_edges, 4
as_incidence_complex, 4
                                                 tribes, 28
as_incidence_matrix, 5
as_incidence_signed, 5
as_signed_proj, 6, 7
as_unsigned_2mode, 6, 7
avatar, 8
balance_score, 8
complex_walks, 9
\verb|count_complex_triangles|, 10
count_signed_triangles, 11, 27
cowList, 11
degree_signed, 12
eigen_centrality_signed, 13
frustration_exact, 14
ggblock, 15
ggsigned, 16
graph_circular_signed, 16
graph_from_adjacency_matrix_signed, 17
graph_from_edgelist_signed, 18
is_signed, 18
laplacian_matrix, 19, 20
laplacian_matrix_complex, 5, 19
laplacian_matrix_signed, 19, 20
pn_index, 21
```