# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "shrinkem" in publications use:' type: software license: GPL-3.0-or-later title: 'shrinkem: Approximate Bayesian Regularization for Parsimonious Estimates' version: 0.2.0 doi: 10.32614/CRAN.package.shrinkem abstract: Approximate Bayesian regularization using Gaussian approximations. The input is a vector of estimates and a Gaussian error covariance matrix of the key parameters. Bayesian shrinkage is then applied to obtain parsimonious solutions. The method is described on Karimova, van Erp, Leenders, and Mulder (2024) <DOI:10.31234/osf.io/2g8qm>. Gibbs samplers are used for model fitting. The shrinkage priors that are supported are Gaussian (ridge) priors, Laplace (lasso) priors (Park and Casella, 2008 <DOI:10.1198/016214508000000337>), and horseshoe priors (Carvalho, et al., 2010; <DOI:10.1093/biomet/asq017>). These priors include an option for grouped regularization of different subsets of parameters (Meier et al., 2008; <DOI:10.1111/j.1467-9868.2007.00627.x>). F priors are used for the penalty parameters lambda^2 (Mulder and Pericchi, 2018 <DOI:10.1214/17-BA1092>). This correspond to half-Cauchy priors on lambda (Carvalho, Polson, Scott, 2010 <DOI:10.1093/biomet/asq017>). authors: - family-names: Mulder given-names: Joris email: j.mulder3@tilburguniversity.edu - family-names: Karimova given-names: Diana email: dbkarimova@gmail.com repository: https://CRAN.R-project.org/package=shrinkem date-released: '2024-10-01' contact: - family-names: Mulder given-names: Joris email: j.mulder3@tilburguniversity.edu