Currently, serosv
only has models under parametric
Bayesian framework
Proposed approach
Prevalence has a parametric form π(ai, α) where α is a parameter vector
One can constraint the parameter space of the prior distribution P(α) in order to achieve the desired monotonicity of the posterior distribution P(π1, π2, ..., πm|y, n)
Where:
Refer to Chapter 10.3.1
Proposed model
The model for prevalence is as followed
$$ \pi (a) = 1 - exp\{ \frac{\alpha_1}{\alpha_2}ae^{-\alpha_2 a} + \frac{1}{\alpha_2}(\frac{\alpha_1}{\alpha_2} - \alpha_3)(e^{-\alpha_2 a} - 1) -\alpha_3 a \} $$
For likelihood model, independent binomial distribution are assumed for the number of infected individuals at age ai
yi ∼ Bin(ni, πi), for i = 1, 2, 3, ...m
The constraint on the parameter space can be incorporated by assuming truncated normal distribution for the components of α, α = (α1, α2, α3) in πi = π(ai, α)
αj ∼ truncated 𝒩(μj, τj), j = 1, 2, 3
The joint posterior distribution for α can be derived by combining the likelihood and prior as followed
$$ P(\alpha|y) \propto \prod^m_{i=1} \text{Bin}(y_i|n_i, \pi(a_i, \alpha)) \prod^3_{i=1}-\frac{1}{\tau_j}\text{exp}(\frac{1}{2\tau^2_j} (\alpha_j - \mu_j)^2) $$
Where the flat hyperprior distribution is defined as followed:
μj ∼ 𝒩(0, 10000)
τj−2 ∼ Γ(100, 100)
The full conditional distribution of αi is thus $$ P(\alpha_i|\alpha_j,\alpha_k, k, j \neq i) \propto -\frac{1}{\tau_i}\text{exp}(\frac{1}{2\tau^2_i} (\alpha_i - \mu_i)^2) \prod^m_{i=1} \text{Bin}(y_i|n_i, \pi(a_i, \alpha)) $$
Fitting data
To fit Farrington model, use
hierarchical_bayesian_model()
and define
type = "far2"
or type = "far3"
where
type = "far2"
refers to Farrington model with 2
parameters (α3 = 0)
type = "far3"
refers to Farrington model with 3
parameters (α3 > 0)
df <- mumps_uk_1986_1987
model <- hierarchical_bayesian_model(age = df$age, pos = df$pos, tot = df$tot, type="far3")
#>
#> SAMPLING FOR MODEL 'fra_3' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 4e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.4 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 5000 [ 0%] (Warmup)
#> Chain 1: Iteration: 500 / 5000 [ 10%] (Warmup)
#> Chain 1: Iteration: 1000 / 5000 [ 20%] (Warmup)
#> Chain 1: Iteration: 1500 / 5000 [ 30%] (Warmup)
#> Chain 1: Iteration: 1501 / 5000 [ 30%] (Sampling)
#> Chain 1: Iteration: 2000 / 5000 [ 40%] (Sampling)
#> Chain 1: Iteration: 2500 / 5000 [ 50%] (Sampling)
#> Chain 1: Iteration: 3000 / 5000 [ 60%] (Sampling)
#> Chain 1: Iteration: 3500 / 5000 [ 70%] (Sampling)
#> Chain 1: Iteration: 4000 / 5000 [ 80%] (Sampling)
#> Chain 1: Iteration: 4500 / 5000 [ 90%] (Sampling)
#> Chain 1: Iteration: 5000 / 5000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 6.739 seconds (Warm-up)
#> Chain 1: 3.792 seconds (Sampling)
#> Chain 1: 10.531 seconds (Total)
#> Chain 1:
#> Warning: There were 871 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: The largest R-hat is 1.05, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
model$info
#> mean se_mean sd 2.5%
#> alpha1 1.396931e-01 8.463026e-04 6.041910e-03 1.277919e-01
#> alpha2 1.985614e-01 1.126946e-03 8.098993e-03 1.830444e-01
#> alpha3 8.465645e-03 3.819195e-04 6.183691e-03 4.160092e-04
#> tau_alpha1 2.709383e-01 5.219661e-02 4.810963e-01 7.351768e-06
#> tau_alpha2 5.749247e-01 4.099933e-01 1.545243e+00 4.451090e-06
#> tau_alpha3 1.660061e-01 6.276310e-02 4.367883e-01 4.039611e-06
#> mu_alpha1 3.308494e+00 1.696001e+00 3.129011e+01 -6.059877e+01
#> mu_alpha2 1.064375e+00 2.814756e+00 4.288312e+01 -1.092571e+02
#> mu_alpha3 2.521953e+00 1.794159e+00 3.830443e+01 -7.918874e+01
#> sigma_alpha1 5.584206e+01 1.056450e+01 2.350729e+02 7.138984e-01
#> sigma_alpha2 7.035767e+01 1.099709e+01 2.666187e+02 3.994285e-01
#> sigma_alpha3 1.260856e+02 5.903215e+01 1.962449e+03 8.035415e-01
#> lp__ -2.534862e+03 7.042354e-01 4.294862e+00 -2.543464e+03
#> 25% 50% 75% 97.5% n_eff
#> alpha1 1.352481e-01 1.397090e-01 1.443264e-01 1.506097e-01 50.96796
#> alpha2 1.928777e-01 1.982516e-01 2.041228e-01 2.147369e-01 51.64831
#> alpha3 3.130684e-03 7.980146e-03 1.202945e-02 2.284824e-02 262.15112
#> tau_alpha1 1.025602e-03 2.110170e-02 4.215330e-01 1.962128e+00 84.95313
#> tau_alpha2 4.377582e-04 1.342041e-02 2.342996e-01 6.267898e+00 14.20496
#> tau_alpha3 4.391953e-04 8.788893e-03 5.557513e-02 1.548758e+00 48.43210
#> mu_alpha1 -2.924724e+00 4.079600e-01 4.689481e+00 9.259387e+01 340.37848
#> mu_alpha2 -5.549039e+00 4.503123e-02 4.234916e+00 1.084755e+02 232.10867
#> mu_alpha3 -4.318451e+00 3.714941e-01 6.760525e+00 9.793322e+01 455.80174
#> sigma_alpha1 1.540225e+00 6.884007e+00 3.122560e+01 3.688112e+02 495.11582
#> sigma_alpha2 2.065925e+00 8.632222e+00 4.779504e+01 4.744050e+02 587.79456
#> sigma_alpha3 4.241894e+00 1.066677e+01 4.771694e+01 4.975570e+02 1105.14576
#> lp__ -2.537890e+03 -2.534636e+03 -2.531969e+03 -2.527364e+03 37.19312
#> Rhat
#> alpha1 1.0459334
#> alpha2 1.0380598
#> alpha3 1.0081062
#> tau_alpha1 1.0539045
#> tau_alpha2 1.0840459
#> tau_alpha3 1.0099767
#> mu_alpha1 0.9997791
#> mu_alpha2 1.0005006
#> mu_alpha3 1.0004760
#> sigma_alpha1 1.0002080
#> sigma_alpha2 0.9997154
#> sigma_alpha3 1.0004110
#> lp__ 1.0188335
plot(model)
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.
Proposed approach
The model for seroprevalence is as followed
$$ \pi(a) = \frac{\beta a^\alpha}{1 + \beta a^\alpha}, \text{ } \alpha, \beta > 0 $$
The likelihood is specified to be the same as Farrington model (yi ∼ Bin(ni, πi)) with
logit(π(a)) = α2 + α1log (a)
The prior model of α1 is specified as α1 ∼ truncated 𝒩(μ1, τ1) with flat hyperprior as in Farrington model
β is constrained to be positive by specifying α2 ∼ 𝒩(μ2, τ2)
The full conditional distribution of α1 is thus
$$ P(\alpha_1|\alpha_2) \propto -\frac{1}{\tau_1} \text{exp} (\frac{1}{2 \tau_1^2} (\alpha_1 - \mu_1)^2) \prod_{i=1}^m \text{Bin}(y_i|n_i,\pi(a_i, \alpha_1, \alpha_2) ) $$
And α2 can be derived in the same way
Fitting data
To fit Log-logistic model, use
hierarchical_bayesian_model()
and define
type = "log_logistic"
df <- rubella_uk_1986_1987
model <- hierarchical_bayesian_model(age = df$age, pos = df$pos, tot = df$tot, type="log_logistic")
#>
#> SAMPLING FOR MODEL 'log_logistic' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 1.1e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 5000 [ 0%] (Warmup)
#> Chain 1: Iteration: 500 / 5000 [ 10%] (Warmup)
#> Chain 1: Iteration: 1000 / 5000 [ 20%] (Warmup)
#> Chain 1: Iteration: 1500 / 5000 [ 30%] (Warmup)
#> Chain 1: Iteration: 1501 / 5000 [ 30%] (Sampling)
#> Chain 1: Iteration: 2000 / 5000 [ 40%] (Sampling)
#> Chain 1: Iteration: 2500 / 5000 [ 50%] (Sampling)
#> Chain 1: Iteration: 3000 / 5000 [ 60%] (Sampling)
#> Chain 1: Iteration: 3500 / 5000 [ 70%] (Sampling)
#> Chain 1: Iteration: 4000 / 5000 [ 80%] (Sampling)
#> Chain 1: Iteration: 4500 / 5000 [ 90%] (Sampling)
#> Chain 1: Iteration: 5000 / 5000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.754 seconds (Warm-up)
#> Chain 1: 1.878 seconds (Sampling)
#> Chain 1: 2.632 seconds (Total)
#> Chain 1:
#> Warning: There were 482 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
model$type
#> [1] "log_logistic"
plot(model)
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.