
Package: serial (via r-universe)
November 6, 2024

Type Package

Title The Serial Interface Package

Version 3.0

Author Martin Seilmayer

Maintainer Martin Seilmayer <m.seilmayer@hzdr.de>

Description Enables reading and writing binary and ASCII data to
RS232/RS422/RS485 or any other virtual serial interface of the
computer.

Depends R (>= 2.15.0)

License GPL-2

RoxygenNote 7.1.0

NeedsCompilation no

Repository CRAN

Date/Publication 2020-05-14 20:00:02 UTC

Contents
close.serialConnection . 2
flush.serialConnection . 2
isOpen . 3
isOpen.default . 3
isOpen.serialConnection . 4
listPorts . 4
nBytesInQueue . 5
open.serialConnection . 6
print.serialConnection . 6
read.serialConnection . 7
serial . 8
serialConnection . 9
summary.serialConnection . 11
write.serialConnection . 12

Index 13

1

2 flush.serialConnection

close.serialConnection

Function to close an serial interface.

Description

This function closes the corresponding connection.

Usage

S3 method for class 'serialConnection'
close(con, ...)

Arguments

con serial connection

... is ignored

See Also

serialConnection

flush.serialConnection

Flushes the connection.

Description

Some times (and depending on buffering mode) the connection buffer needs to be flushed manually.
This command empties the buffer by sending all remaining bytes.

Usage

S3 method for class 'serialConnection'
flush(con)

Arguments

con serial connection

Value

Nothing is returned

See Also

serial

isOpen 3

Examples

See the top package documentation

isOpen Generic function for isOpen

Description

Generic function for isOpen

Usage

isOpen(con, ...)

Arguments

con connection Object

... not used

isOpen.default Default function from base-package

Description

Default function from base-package

Usage

Default S3 method:
isOpen(con, rw = "")

Arguments

con connection object

rw defines the mode of operation

See Also

isOpen

4 listPorts

isOpen.serialConnection

Tests whether the connection is open or not

Description

Tests whether the connection is open or not

Usage

S3 method for class 'serialConnection'
isOpen(con, ...)

Arguments

con connection of the class serialConnection

... not used

Value

returns {F, T} for ’not open’ and ’is open’

listPorts Lists the serial interfaces.

Description

This function lists all installed serial interfaces in a computer. Thereby Windows, Linux and MacOs
behave different. Please ensure that you have the appropriate permissions to do a search in the
registry or in the corresponding linux folders.

Usage

listPorts()

Value

A character vector with the list of comports is returned.

Windows

In a Windows environment, this function tries to read out the registry keys located in:

"HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\SERIALCOMM"

This should be consistent with all installed hardware ports plus all virtual ports.

nBytesInQueue 5

Linux and MacOS

Here the situation is different, compared to Windows. All possible serial devices are located in
"/dev/tty[...]" as a file connection. Still, all virtual and closed dev’s can be found here. This is
confusing, because one will find more devices in this folder than physically (virtual) present. In ad-
dition to that, Ubuntu linux systems do list the plug and play devices of interest in "/sys/devices/pnp0/..."
again. That is the reason why, the function returns a subset of "/dev/tty[...]", which is also
present in the "../pnp0/.." folder.

On MacOs the installed interfaces are marked by "tty.<name>" or "cu.<name>", with a unique
name after the dot, which makes it easier to search for installed devices. Here a tty device is a
modem which waits for a DCD (Data Carrier Detect) signal to receive data. The device is blocked
as long such a signal is not detected. The corresponding cu device manages the out going commu-
nication for historical reasons. However a cu port is not blocked and should be used in favour on
MacOS.

Subsequently, the user must know which interface is present and which isn’t. AND the user must
have at least reading permissions in the corresponding folders. So in the end, this function is a best
guess of what is installed.

nBytesInQueue Reads out the number of characters / bytes pending in the input and
output buffer

Description

Reads out the number of characters / bytes pending in the input and output buffer

Usage

nBytesInQueue(con)

Arguments

con serial connection

Value

named vector with number of bytes

See Also

serial

Examples

See the top package documentation

6 print.serialConnection

open.serialConnection Function to initialize an serial interface.

Description

This function initializes the serial interface and opens it for later usage.

Usage

S3 method for class 'serialConnection'
open(con, ...)

Arguments

con serial connection

... is ignored

See Also

serialConnection

print.serialConnection

Print method for serialConnection

Description

Outputs major information of the serial connection.

Usage

S3 method for class 'serialConnection'
print(x, ...)

Arguments

x serialConnection Object

... not used

Value

nothing to return

read.serialConnection 7

read.serialConnection Reads from the serial interface.

Description

This function reads from the serial interface as long as the buffer is not empty. The read takes place
per line in normal operation mode. Here end-of-line characters (\n;\r) are clipped according to the
settings (translation).

Usage

read.serialConnection(con,n = 0)

Arguments

con serial connection

n number of bytes to read. Only in binary mode. n=0 (default) reads the whole
buffer at once.

Details

In binary (hex-) mode the read takes place per byte. The result is a raw vector of hexadecimal
numbers. To get numeric values as.numeric function must be invoked. Mind: Values form 0x01
– 0x31 might be displayed as escaped characters like "\001" if they are interpreted as string. If the
end-of-file character specified by eof is received the reading stops. A close(con) – open(con)
sequence must be invoked to reopen the connection. If n>0 <n> bytes will be read. In case of less
than n bytes available the function returns the buffer without waiting for all n characters. If the
result is empty (zero length) then the empty string ” is returned in ASCII mode or NA in binary
mode.

Value

In normal mode the result is a string. In binary mode raw values will be returned

See Also

serial

Examples

See the top package documentation

8 serial

serial A serial communication interface for R.

Description

This R package provides the functionality of serial communication ports "COM" or "tty" to use the
RS232/RS422/RS485 capabilities of the corresponding hardware. Also virtual COM-ports via USB
do work, as long as they are mapped to COM[n] (win) or tty[n] (Linux) in the operating system.

open(con) opens a serial connection

close(con) closes the serial connection

flush(con) flushes the serial connection

nBytesInQueue(con) get the length of pending input an output queue

read.serialConnection(con) read from the interface as long as the buffer is not empty

write.serialConnection(con,dat) writes a data (character or binary) to the serial interface

isOpen(con) test a connection, whether it is open or not

listPorts() list all available ports on the system

Examples

for this example I used the 'null-modem' emulator 'com0com' for Windows
which is available on 'http://com0com.sourceforge.net/'
Here the pair of com-ports is 'CNCA0' <-> 'CNCB0'

Test the functionality:
======================
#
first: install the virtual null-modem connection like
com0com (win) or tty0tty (linux)
Hint: Some unix insist on port names like 'ttyS[n]'.
#
second: setup a terminal program (like HTerm or gtkterm) and listen to
com-port 'CNCB0' (or what ever you have installed)
or (for unix only) 'cat /dev/tnt1' will output tnt1 to console

Not run:

Now configure one of the com-ports with appropriate connection properties
con <- serialConnection(name = "testcon",port = "CNCA0"

,mode = "115200,n,8,1"
,newline = 1
,translation = "crlf"
)

let's open the serial interface

open(con)

serialConnection 9

write some stuff
write.serialConnection(con,"Hello World!")

read, in case something came in
read.serialConnection(con)

show summary
summary(con)

close the connection
close(con)

Reading and writing binary (hexadecimal) data
remember: Everything is a string, so you might need data conversation

con <- serialConnection(name = "testcon",port = "CNCA0"
,mode = "115200,n,8,1"
,translation = "binary" # switches to binary data
)

let's open the serial interface

open(con)

write some stuff
write.serialConnection(con, rawToChar(as.raw(15))) # 0x0F
write.serialConnection(con, c(15,20)) # 0x0F, 0x14
write.serialConnection(con, c(0x6F,0x6C))

read, in case something came in
the output is always a character vector
a <- read.serialConnection(con)

convert the character vector to hexadecimal (raw) values
print(a)

close the connection
close(con)

End(Not run)

serialConnection Sets up the interface parameters.

Description

This is the constructor of the serial interface connection.

10 serialConnection

Usage

serialConnection(
name = "",
port = "com1",
mode = "115200,n,8,1",
buffering = "none",
newline = 0,
eof = "",
translation = "auto",
handshake = "none",
buffersize = 4096

)

Arguments

name optional name for the connection

port comport name; also virtual com’s are supported; maybe USB schould work too

mode communication mode ’<BAUD>, <PARITY>, <DATABITS>, <STOPBITS>’

BAUD sets the baud rate (bits per second)

PARITY n, o, e, m, s corresponds to ’none’, ’odd’, ’even’, ’mark’ and ’space’

DATABITS integer number of data bits. The value can range from 5 to 8

STOPBITS integer number of stop bits. This can be ’1’ or ’2’

buffering ’none’, best for RS232 serial interface. Connection buffer is flushed (send) when
ever a write operation takes place. ’line’, buffer is send after newline charac-
ter (\n or 0x0A) is recognized. ’full’ write operations will be bufferd until a
flush(con) is invoked.

newline <BOOL>, whether a transmission ends with a newline or not.

TRUE or 1 send newline-char according to <translation> befor transmitting

FALSE or 0 no newline

eof <CHAR>, termination char of the datastream (end-of-file). It only makes sense if
<translation> is ’binary’ and the stream is a file. Must be in the range of 0x01
– 0x7f. When the conection is closed eof is send as the last and final character.

translation Determines the end-of-line (eol) character and mode of operation. This could
be ’lf’, ’cr’, ’crlf’, ’binary’, ’auto’ (default). A transmission is complete if eol
symbol is received in non binary mode.

handshake determines the type of handshaking the communication

’none’ no handshake is done

’rtscts’ hardware handshake is enabled

’xonxoff’ software handshake via extra characters is enabled

buffersize defines the system buffersize. The default value is 4096 bytes (4kB).

summary.serialConnection 11

Details

Linux and Windows behave a little bit different, when utilizing serial com ports. Still, by providing
the name (like ’COM1’, ’ttyS1’ or ’cu.<name>’) and the appropriate settings, the serial interface
can be used. Even virtual com ports, like the FTDI usb uart chips will work, as long they map to a
standard serial interface in the system.

Since the serial package relies on R’s built in Tcl/Tk engine the configuration of the serial port
takes place in the Tcl framework. This becomes important when different buffer sizes are set. For
Windows the Tcl "-sysbuffer" parameter is invoked, whereas on unix-like systems "-buffersize"
does the job.

Value

An object of the class ’serialConnection’ is returned

Binary Data

Handling binary data is possible by setting transaltion = 'binary'. Pay attention that input and
output vectors are characters with a number range of 0...0xFF which might require certain conver-
sations e. g. charToRaw() or rawToChar() functions. If eof-character is defined, this symbol
terminates the input data stream. Every byte in the buffer after that symbol is deleted/ignored. The
next transmission is valid again up to that symbol. If the connection is closed eof is send to ter-
minate the output data stream. Remind, the newline option works here too. It adds a line feed or
0x0A - byte to the end of each output respectively.

ASCII Data

In non binary mode, ASCII-communication is assumed. This means, that each string, which is send
or received, carries valid 8bit ASCII characters (0x01 – 0xFF). Some of these characters appear
as escaped sequences, if they are not printable. A string is terminated by the end-of-line character
(e. g. \n). The transmission ends and so becomes valid if the symbol is detected according to
the translation setting. Sending terminated strings invokes the substitution of the end-of-line
character according to the translation setting.

summary.serialConnection

Serial Connection Summary

Description

Displays summarized informations and status of the serial connection.

Usage

S3 method for class 'serialConnection'
summary(object, ...)

12 write.serialConnection

Arguments

object object of type serialConnection

... not used

Value

Table of connection properties

write.serialConnection

Wirtes data to serial interface.

Description

Writes to a serial connection in ascii or binary mode.

Usage

write.serialConnection(con,dat)

Arguments

con serial Connection
dat data string to write on the serial interface. This must be a string '...' in case

of ascii communication. In case of binary communication also numeric vectors
are allowed. See examle section in serial.

Details

In normal operation mode (non-binary ascii mode) write.serialConnection respects the transla-
tion and adds the end-of-line characters (\n;\r) according to the settings. Any input is converted to
character, i.e. c(1,2,3) becomes '123' and so on.

In binary mode no end-of-line characters are added. The input argument must be of type raw or
string. If dat is numeric (vector) it is converted to raw.

Value

The status of success ’DONE’ or ’Nothing to do’ is returned.

See Also

serial

Examples

See the top package documentation

Not run: write.serialConnection(con, 'Hello World!')

Index

∗ RS232
serial, 8

∗ RS422
serial, 8

∗ RS485
serial, 8

∗ USB
serial, 8

∗ serial communication
serial, 8

close.serialConnection, 2

flush.serialConnection, 2

isOpen, 3, 3
isOpen.default, 3
isOpen.serialConnection, 4

listPorts, 4

nBytesInQueue, 5

open.serialConnection, 6

print.serialConnection, 6

read.serialConnection, 7

serial, 2, 5, 7, 8, 12
serialConnection, 2, 6, 9
summary.serialConnection, 11

write.serialConnection, 12

13

	close.serialConnection
	flush.serialConnection
	isOpen
	isOpen.default
	isOpen.serialConnection
	listPorts
	nBytesInQueue
	open.serialConnection
	print.serialConnection
	read.serialConnection
	serial
	serialConnection
	summary.serialConnection
	write.serialConnection
	Index

