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This document provides an overview of secr 5.0, an R package for spatially explicit capture–recapture analysis
(SECR). It includes some background on SECR, an outline of the package, and a more detailed description of
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how models are implemented. See secr-tutorial.pdf for an introductory tutorial. For details of how to use
secr see the help pages and vignettes.

NOTE: secr was extensively re-written between versions 3.2 and 4.0, but the interface remained unchanged.
For many datasets version 4 is significantly faster. Other changes are described in secr-version4.pdf.

Add-on packages extend the capability of secr and are documented separately. secrlinear enables the
estimation of linear density (e.g., animals per km) for populations in linear habitats such as stream networks
(secrlinear-vignette.pdf). ipsecr fits models by simulation and inverse prediction, rather than maximum
likelihood; this is a rigorous way to analyse data from single-catch traps (ipsecr-vignette.pdf). secrdesign
enables the assessment of alternative study designs by Monte Carlo simulation; scenarios may differ in detector
(trap) layout, sampling intensity, and other characteristics (secrdesign-vignette.pdf).

Spatial open-population capture–recapture models are implemented in the R package openCR (Efford and
Schofield 2020). Other open-population packages due to Ben Augustine and Richard Glennie are available on
GitHub (https://github.com/benaug/OpenPopSCR; https://github.com/r-glennie/openpopscr).

Introduction to SECR

Spatially explicit capture–recapture (SECR) is a set of methods for modelling animal capture–recapture data
collected with an array of ‘detectors’. The methods are used primarily to estimate population density, but
they also have advantages over non-spatial methods when the goal is to estimate population size (Efford and
Fewster 2013). SECR methods overcome edge effects that are problematic in conventional capture–recapture
estimation of animal populations (Otis et al. 1978). Detectors may be live-capture traps, with animals
uniquely tagged, sticky traps or snags that passively sample hair, from which individuals are distinguished
by their microsatellite DNA, or cameras that take photographs from which individuals are recognized by
their natural marks. The concept of a detector extends to areas (polygons) or transects that are searched for
animals or their sign.

The primary data for SECR are (i) the locations of the detectors, and (ii) detections of known individuals on
one or more sampling occasions (i.e. their detection histories). The generic terms ‘detector’ and ‘detections’
cover several possibilities (see ‘Detector types’ below); we use them interchangeably with the more specific
and familiar terms ‘traps’ and ‘captures’. Table 1 gives a concrete example of trapping data (the structure
differs for detectors that are not traps).

Table 1. Some spatially explicit detection data. Each entry (e.g., A9) records the detector at which a known
animal (ID) was observed at each sample time (occasion). ‘.’ indicates no detection. Each detector has known
x-y coordinates. Formats for data input are described in secr-datainput.pdf.

Occasion

ID 1 2 3 4 5

----- ----- ----- ----- ----- -----

1 A9 . . . .

2 A12 A12 . . .

3 . . C6 B5 .

4 . . G3 . F3

etc.

In SECR, a spatial model of the population and a spatial model of the detection process are fitted to the
spatial detection histories. The resulting estimates of population density are unbiased by edge effects and
incomplete detection (other sources of bias may remain). Inverse prediction (IP SECR) and maximum
likelihood (ML SECR) are alternative methods for fitting the spatial detection model (Efford 2004, Borchers
and Efford 2008). Of these, ML SECR is the more flexible, with a caveat for data from single-catch traps.
Data augmentation and Markov chain Monte Carlo (MCMC) methods have also been used for SECR (Royle
and Young 2008, Royle et al. 2009, Singh et al. 2010, Royle and Gardner 2011, Royle et al. 2014), but this
approach is much slower than ML SECR; it is not considered here.
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State and observation models

Like other statistical methods for estimating animal abundance (Borchers et al. 2002), SECR combines a
state model and an observation model. The state model describes the distribution of animal home ranges in
the landscape, and the observation model (a spatial detection model) relates the probability of detecting an
individual at a particular detector to the distance of the detector from a central point in each animal’s home
range. The distances are not observed directly (usually we don’t know the range centres), so conventional
distance sampling methods do not apply.

Distribution of home-range centres

The distribution of range centres in the population (Borchers and Efford 2008) will usually be treated as a
homogeneous Poisson point process (Fig. 1a). Density (= intensity) is the sole parameter of a homogeneous
Poisson process. An inhomogeneous Poisson distribution may also be fitted; this provides a means to evaluate
the effects of habitat variables on density.

Detection functions

A detection model describes the decline in detection probability with distance (d) from the home-range
centre (Fig. 1b). The probability g(d) is for the ‘ideal’ case of just one animal and one detector; the actual
probability may differ (see discussion of ‘traps’ under Detector Types).
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Fig. 1. (a) Hypothetical Poisson distribution of range centres near an array of detectors. Each dot represents
one individual. SECR estimates the density of this distribution. (b) Alternative detection functions. The

halfnormal is defined by g(d) = g0 exp
(
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2

2σ2

)

and the exponential by g(d) = g0 exp
(

−
d

σ

)

. See ?detectfn for
more.

Detector types

The properties of detectors are an important part of the SECR observation model (Table 2). Inside secr,
data are tagged with a detector type to ensure they are printed, plotted and analysed appropriately.

Some common detectors (camera ‘traps’ and hair snags for DNA) do not capture animals, but merely record
that an animal has visited a site. These ‘proximity’ detectors can be considered to act independently of each
other. With proximity detectors, each animal × occasion ‘cell’ of a detection history potentially contains
several positive records. In the simplest case each cell contains a binary vector coding presence or absence at
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each detector (for such binary proximity detectors each observation has a Bernoulli distribution). A ‘count’
detector is a generalised proximity detector in which the data are vectors of counts, one per detector. Models
for ‘count’ data will specify a distribution for the counts via the ‘binomN’ argument of secr.fit (binomN =
0 indicates Poisson; binomN > 1 indicates binomial with size = binomN; binomN = 1 indicates binomial
with size given by the ‘usage’ attribute for the detector and occasion).

Detectors that are true traps do not act independently because capture of an animal in one trap prevents
it being caught in another trap until it is released. Traps expose animals to competing risks of capture.
The per-trap probability of capture may be adjusted for the competing risk from other traps by using an
additive hazard model (Borchers and Efford 2008). However, if the detectors are traps that catch only one
animal at a time then there is a further level of competition – between animals for traps. Multi-catch and
single-catch traps therefore represent distinct detector types. No general adjustment has been found for the
per-trap probability of capture in the single-catch case (it’s an open research question), and there is strictly
no known maximum likelihood estimator. Estimates of average density using the multi-catch likelihood for
single-catch data appear only slightly biased (Efford, Borchers and Byrom 2009), and this substitution is
made automatically in secr, with a warning. However, the substitution is imperfect when density varies
(Distiller and Borchers 2015). Simulation and inverse prediction in ipsecr is an alternative and more robust
method for single-catch data.

Polygon and transect detectors are for binary or count detection data (e.g., number of detections per animal
per polygon per occasion) supplemented with the x-y coordinates of each detection. When a study uses
multiple search areas or multiple transects, detections may be either independent or dependent (e.g., maximum
one per animal per polygon per occasion) as with traps. The dependent or ‘exclusive’ type is indicated by
the suffix ‘X’; in this case the counts are necessarily binary. Using the ‘polygonX’ or ‘transectX’ detector
type ensures that a competing-risk model is fitted.

Acoustic ‘signal strength’ detectors produce a binary detection vector supplemented by measurements of
signal strength, as from an array of microphones.

There is limited support in secr for the analysis of locational data from telemetry (‘telemetry’ detector type).
Telemetry data are used to augment capture–recapture data (see addTelemetry and secr-telemetry.pdf).

Table 2. Detector types in secr

Detector Description

single traps that catch one animal at a time
multi traps that may catch more than one animal at a time
proximity records presence at a point without restricting movement
count proximity detector allowing >1 detection per animal per time
capped proximity detector with maximum one animal at a time
polygon counts from searching one or more areas
transect counts from searching one or more transects
polygonX binary data from mutually exclusive areas
transectX binary data from mutually exclusive transects
signal detections and signal strengths at multiple microphones
telemetry locations from radiotelemetry

Origins and outline of the package secr

The program DENSITY (Efford et al. 2004, Efford 2012) provides a graphical interface to SECR methods
that was used by many biologists. However, DENSITY has significant drawbacks: it requires the Windows
operating system, its algorithms are not always transparent or well-documented, it fits only homogeneous
Poisson models, and it omits recent advances in SECR.
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The R package secr was written to address these weaknesses and allow for further development. It implements
almost all the methods described by Borchers and Efford (2008), Efford et al. (2009), Efford (2011), Efford
and Fewster (2013), Efford et al. (2013) and Efford and Mowat (2014). secr 5.0 uses external C++ code via
package Rcpp for computationally intensive operations (Eddelbuettel and Francois 2011); Multi-threading
on multiple CPUs with RcppParallel (Allaire et al. 2021) gives major speed gains. The most important
functions of secr are listed in Appendix 1.

How secr works

secr defines a set of R classes1 and methods for data from detector arrays and models fitted to those data.

Table 3. Essential classes in secr.

Class Data

traps locations of detectors; detector type (‘proximity’, ‘multi’, etc.)
capthist spatial detection histories, including a ‘traps’ object
mask raster map of habitat near the detectors
secr fitted SECR model

To perform an SECR analysis you explicitly or implicitly construct each of these objects in turn. Fig. 2
indicates the relationships among the classes.

1Technically, these are S3 classes. A ‘class’ in R specifies a particular type of data object and the functions (methods) by
which it is manipulated (computed, printed, plotted etc). See the R documentation for further explanation.
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Fig. 2. Essentials of the secr package.

• Each object class (shaded box) comes with methods to display and manipulate the data it contains
(e.g. print, summary, plot, rbind, subset)2.

• The function read.capthist forms a ‘traps’ object from the detector layout data and saves it as an
attribute, along with capture data read from another file, in a ‘capthist’ object.

• By default, a habitat mask is generated automatically by secr.fit using a specified buffer around the
detectors (traps). The function make.mask gives greater control over this step.

• Any of the objects input to secr.fit (traps, capthist, mask) may include a dataframe of covariates
saved as an attribute. Covariate names may be used in model formulae; the covariates method is
used to extract or replace covariates. Use addCovariates for covariates from spatial data sources (e.g.,
shapefile or ‘sf’ object)

• Fitted secr models may be manipulated with the methods shown on the right and others listed in
Appendix 2.

Input

Data input is covered in the separate document secr-datainput.pdf. One option is to use text files in the
formats used by DENSITY; these accommodate most types of data. Two files are required, one of detector
(trap) locations and one of the detections (captures) themselves; the function read.capthist reads both files
and constructs a capthist object. It is also possible to construct the capthist object in two stages, first making
a traps object (with read.traps) and a captures dataframe, and then combining these with make.capthist.
This more general route may be needed for unusual datasets.

Output

The output from the function secr.fit is an object of class secr. This is an R list with many components.
Assigning the output to a named object saves both the fit and the data for further manipulation. Typing
the name at the R prompt invokes print.secr which formats the key results. These include the dataframe
of estimates from the predict method for secr objects. Functions are provided for further computations
on secr objects (e.g., AIC model selection, model averaging, profile-likelihood confidence intervals, and
likelihood-ratio tests). Many of these are listed in Appendix 2.

One system of units is used throughout secr. Distances are in metres and areas are in hectares (ha). The
unit of density for 2-dimensional habitat is animals per hectare. 1 ha = 10000 m2 = 0.01 km2. To convert
density to animals per km2, multiply by 100. Density in linear habitats (see package secrlinear) is expressed
in animals per km.

2Text in this font refers to R objects that are documented in online help for the secr package, or in base R.
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Documentation

The primary documentation for secr is in the help pages that accompany the package. Help for a function is
obtained in the usual way by typing a question mark at the R prompt, followed by the function name. Note
the ‘Index’ link at the bottom of each help page – you will probably need to scroll down to find it. The index
may also be accessed with help(package = secr).

The consolidated help pages are in the file secr-manual.pdf. Searching this text is a powerful way to locate a
function for a particular task.

Other documentation, in the form of pdf vignettes built with knitr, will be added from time to time. The
‘User guides. . . ’ link in the package help index lists available files. The vignettes in Table 4 may be found on
the Density website.

Table 4. Vignettes for secr 5.0.

Vignette Topic

secr-overview.pdf introduction (this document)
secr-datainput.pdf data formats and input functions
secr-version4.pdf what’s new in secr 4.x
secr-tutorial.pdf tutorial using Burnham and Cushwa snowshoe hare data
secr-habitatmasks.pdf habitat masks, buffer width and related topics
secr-models.pdf general description of models in secr
secr-troubleshooting.pdf problems with secr.fit, including speed issues

secr-densitysurfaces.pdf modelling density surfaces
secr-finitemixtures.pdf mixture models for individual heterogeneity
secr-markresight.pdf mark–resight models
secr-multisession.pdf data from multiple independent sessions
secr-noneuclidean.pdf non-Euclidean distance models
secr-parameterisations.pdf alternative parameterisations of detection
secr-polygondetectors.pdf using polygon and transect detector types
secr-sound.pdf analysing data from microphone arrays
secr-spatialdata.pdf tips on external spatial data and functions
secr-telemetry.pdf analysing combined telemetry and capture–recapture data
secr-varyingeffort.pdf variable effort (usage) in SECR models

The web page https://www.otago.ac.nz/density/ should be checked for news of bug fixes and new releases.
New versions will be posted on CRAN, but there may be a delay of a few days. Help may be sought on the
Density | secr forum at www.phidot.org; see also the FAQ there for DENSITY and secr. Another forum
intended for both software issues and wider discussion is secrgroup. For information on changes in each
version, type at the R prompt:

news (package = "secr")

Defining models with the ‘model’ argument of secr.fit

By default, the parameters of SECR models are assumed to be constant. We specify more interesting, and
often better-fitting, models with the ‘model’ argument of secr.fit. Here ‘models’ relates to variation in the
parameters that may be explained by known factors and covariates. The explanation in secr-models.pdf may
help. If you just want to know how to use models, read on.
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Models are defined symbolically in secr using R formula notation. A separate linear predictor is used for
each core parameter. Core parameters are ‘real’ parameters in the terminology of MARK, and secr uses that
term because it will be familiar to biologists.

Three real parameters are commonly modelled in secr 5.0; these are denoted ‘D’ (for density), ‘g0’ (or
‘lambda0’) and ‘sigma’. Only the last two real parameters, which jointly define the model for detection
probability as a function of location, can be estimated directly when the model is fitted by maximizing the
conditional likelihood (CL = TRUE in secr.fit). D is then a derived parameter that is computed from an
secr object with the function derived or one of its siblings (derivedCluster etc.).

Here is a simple example of the model argument in use:

secr.fit(captdata, model = g0~t)

The real parameter g0 is no longer constant, but takes a unique value on each sampling occasion (t).

Other ‘real’ parameters appear in particular contexts. ‘z’ is a shape parameter that is used only when the
detection function has three parameters (annular halfnormal, cumulative gamma, hazard-rate etc. – see
?detectfn). Some detection functions primarily model ‘exposure’ or the cumulative hazard of detection,
rather than the probability of detection; these use the real parameter ‘lambda0’ in place of ‘g0’ (see ?detectfn).
‘lambda0’ is also used with count detectors. A further ‘real’ parameter is the mixing proportion ‘pmix’, used
in finite mixture models and hybrid mixture models (see ?hcov).

Sometimes it is illuminating and efficient to parameterise the detection function using a function of the
primary ‘real’ parameters described above. This gives rise to the surrogate ‘real’ parameters a0 and sigmak;
see the vignette secr-parameterisations.pdf for details and references.

Detection parameters and density parameters are modelled separately, as we now describe.

Detection parameters

Effects on parameters of detection probability are specified via R formulae. The variable names used in
formulae are either names for standard effects (Table 5) or the names of user-supplied covariates. Effects ‘b’,
‘B’, ‘bk’, and ‘Bk’ refer to individuals whereas ‘k’ and ‘K’ refer only to sites. Groups (‘g’) are used only in
models fitted by maximizing the full likelihood; for conditional likelihood models use a factor covariate to
achieve the same effect. See also the later section on modelling sex differences.

Table 5. Automatically generated predictor variables used in detection models

Variable Description Notes

g group individual covariates listed in secr.fit argument ‘groups’
t time factor one level for each occasion
T time trend linear trend over occasions on link scale
b learned response step change after first detection
B transient response depends on detection at preceding occasion (Markovian response)
bk animal x site response site-specific step change
Bk animal x site response site-specific transient response
k site learned response site effectiveness changes once any animal caught
K site transient response site effectiveness depends on preceding occasion
session session factor one level for each session
Session session trend linear trend on link scale
h2 2-class mixture finite mixture model with 2 latent classes
ts marking vs sighting two levels (marking and sighting occasions)

Any name in a formula that is not a variable in Table 5 is assumed to refer to a user-supplied covariate.
secr.fit looks for user-supplied covariates in data frames embedded in the ‘capthist’ argument, or supplied
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in the ‘timecov’ and ‘sessioncov’ arguments, or named with the ‘timevaryingcov’ attribute of a traps object,
using the first match (Table 6).

Table 6. Types of user-provided covariate for in detection models. The names of columns in the respective
dataframes, and names of components in the ‘timevaryingcov’ attribute, may be used in model formulae

Covariate type Data source Notes

Individual covariates(capthist) conditional likelihood only
Time timecov argument
Detector covariates(traps(capthist))
Detector x Time covariates(traps(capthist)) see ?timevaryingcov
Session sessioncov argument

The formula for any detection parameter (e.g., g0, lambda0 or sigma) may be constant (∼ 1, the default) or
some combination of terms in standard R formula notation (see ?formula). For example, g0 ∼ b + T specifies
a model with a learned response and a linear time trend in g0; the effects are additive on the link scale. See
Table 7 for other examples.

Table 7. Some examples of the ‘model’ argument in secr.fit

Formula Effect

g0 ∼ 1 g0 is constant across animals, occasions and detectors
g0 ∼ b learned response affects g0
list(g0 ∼ b, sigma ∼ b) learned response affects both g0 and sigma
g0 ∼ h2 2-class finite mixture for heterogeneity in g0
g0 ∼ b + T learned response in g0 combined with trend over occasions
sigma ∼ g detection scale sigma differs between groups
sigma ∼ g*T group-specific trend in sigma
D ∼ cover density varies with ‘cover’, a variable in covariates(mask)
list(D ∼ g, g0 ∼ g) both density and g0 differ between groups
D ∼ session session-specific density

For other effects, the design matrix for detection parameters may also be provided manually in the argument
dframe of secr.fit. This feature is untested.

Inhomogeneous density models

The SECR log likelihood is evaluated by summing values at points on a ‘habitat mask’ (the ‘mask’ argument
of secr.fit). Each point in a habitat mask represents a grid cell of potentially occupied habitat (their
combined area may be almost any shape). The full design matrix for density (D) has one row for each point
in the mask. As for the detection submodels, the design matrix has one column for the intercept (constant)
term and one for each predictor.

Predictors may be based on Cartesian coordinates (e.g. ‘x’ for an east-west trend), a continuous habitat
variable (e.g. vegetation cover) or a categorical (factor) habitat variable. Predictors must be known for all
points in the mask (non-habitat excluded). The variables ‘x’ and ‘y’ are the coordinates of the habitat mask
and are automatic, as are ‘x2’, ‘y2’, and ‘xy’. Other spatial covariates should be named columns in the
‘covariates’ attribute of the habitat mask.

Regression splines are particularly effective for modelling spatial trend. For these and general guidance on
fitting and displaying density surfaces, see the vignette secr-densitysurfaces.pdf.
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Model fitting and estimation

Models are fitted in secr.fit by numerically maximizing the likelihood. The likelihood involves integration
over the unknown locations of the animals’ range centres. This is achieved in practice by summation over
points in the habitat mask, which has some implications for the user. Computation may be slow, especially if
there are many points in the mask, and estimates may be sensitive to the particular choice of mask (either
explicitly in make.mask or implicitly via the ‘buffer’ argument).

The default maximization algorithm is Newton-Raphson in the function stats::nlm. By default, all reported
variances, covariances, standard errors and confidence limits are asymptotic and based on a numerical estimate
of the information matrix. The Newton-Raphson algorithm is fast, but it sometimes fails to compute the
information matrix correctly, causing some standard errors to be set to NA; see the ‘method’ argument of
secr.fit for alternatives. Use confint.secr for profile likelihood intervals and sim.secr for parametric
bootstrap intervals (both are slow).

Habitat masks

We have already introduced the idea of a habitat mask. The SECR likelihood is evaluated by summing
values at points on a mask; each point represents a grid cell of potentially occupied habitat. Masks may be
constructed by placing a buffer of arbitrary width around the detectors, possibly excluding known non-habitat.
How wide should the buffer be? The general answer is ‘Wide enough not to cause bias in estimated densities’.
This depends on the scale of movement of the animal, and on the chosen detection function. For specifics,
see the separate vignette on habitat masks secr-habitatmasks.pdf and the help for ‘mask’ and the various
mask-related functions (make.mask, mask.check, suggest.buffer, and esaPlot). Heavy-tailed detection
functions such as the hazard-rate and lognormal can be problematic because they require an unreasonably
large buffer for stable density estimates.

Miscellaneous topics

Modelling sex differences

There are many ways to model sex differences in secr. Here we sketch some possibilities, in order of usefulness
(your mileage may vary).

1. Fit a hybrid mixture model as described in the online help (?hcov). This accommodates occasional
missing values and estimates the sex ratio (pmix).

2. Use conditional likelihood (CL = TRUE) and include a categorical (factor) covariate in model formulae
(e.g., g0 ∼ sex). To get sex-specific densities then specify groups = "sex" in derived.

3. Use full likelihood (CL = FALSE) and separate data for the two sexes as different sessions (most easily,
by coding ‘female’ or ‘male’ in the first column of the capture file read with read.capthist). Then
include a group term ‘session’ in relevant model formulae (e.g., g0 ∼ session).

4. Use full likelihood (CL = FALSE), define groups = "sex" or similar, and include a group term ‘g’ in
relevant formulae (e.g., g0 ∼ g).

‘CL’ and ‘groups’ are arguments of secr.fit. Possibilities 1–4 should not be mixed for comparing AIC.
Sex differences in home-range size (and hence sigma) may be mitigated by compensatory variation in g0 or
lambda0 (Efford and Mowat 2014).

Varying effort

The probability of observing an individual at a particular detector may depend directly on a known quantity
such as how long the detector was exposed on a particular occasion. In the extreme, a detector may not have
been operated. The terms ‘effort’ and ‘usage’ are used here interchangeably for variation in the duration
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of exposure and similar known effects. Usage is an attribute of the detectors in a traps object (a traps x
occasions matrix); it may be entered with the detector coordinates in a trap layout file or added later (see
?usage). Models fitted to data including a usage attribute will adjust automatically for varying usage across
detectors and occasions. Usage may take any non-negative value. This simplifies the modelling of data
aggregated over varying numbers of occasions or nearby sites.

See the separate document secr-varyingeffort.pdf and Efford et al. (2013) for more.

Mark–resight

Mark–resight data include sampling occasions on which previously marked animals were recorded, but new
animals were not distinguished from each other. secr 5.0 provides a suite of spatial models for these data,
as documented in secr-markresight.pdf. Two general classes of spatial mark–resight model are included:
those in which the marking process is modelled (we call these spatial capture–mark–resight models), and
those in which the process is not modelled and pre-marked animals are assumed to follow some distribution
(e.g., uniform across a known area) (sighting-only or mark–resight models). Mark–resight models in secr
5.0 discard some spatial information in the unmarked sightings – information that is used in the models of
Chandler and Royle (2013) and Sollmann et al. (2013). This results in some (probably small) loss of precision,
and requires an adjustment for overdispersion to ensure confidence intervals have good coverage properties.
The vignette secr-markresight.pdf should be consulted.

Detector clusters

For surveying large areas it is efficient to use groups of detectors: within a group the detectors are close
enough that animals may be re-detected at multiple points, while groups of detectors may be distributed
across a region according to a probability design to sample possible spatial variation in density. secr allows
for detector groups with the ‘cluster’ data structure. This is an attribute of a traps object that records which
detectors belong to which cluster3.

Functions are provided to generate detector arrays with a clustered structure (trap.builder,
make.systematic), to extract or replace the cluster attribute (clusterID), to compute the geomet-
ric centres and numbers of detections per cluster (cluster.centres, cluster.counts), etc.

A lacework design (Efford in prep.) is an alternative to a clustered design that is suitable when the region is
intermediate size. Lacework designs may be constructed with make.lacework.

Data from a large, clustered design may often be analysed more quickly if the ‘capthist’ object is first collapsed
into one using the geometry of a single cluster (the object retains a memory of the number of individuals
from each original cluster in the attribute ‘n.mash’). Use the function mash for this. Functions derived,
derivedMash and the method predict.secr use ‘n.mash’ to adjust their output density, SE, and confidence
limits.

Parallel processing

On processors with multiple cores it is possible to speed up computation by using cores in parallel. In secr
5.0 this happens automatically in secr.fit and a few other functions using the multi-threading paradigm
of RcppParallel (Allaire et al. 2021). The number of threads may be set directly with the function
setNumThreads, or via the ‘ncores’ argument of several functions.

Earlier versions of secr relied on parallel processing with the parallel package (invoked when the argument
ncores was set greater than 1). The benefits of that form of parallel processing were variable (considerable
with simulations in sim.secr, but otherwise unimpressive).

The functions par.secr.fit, par.region.N and par.derived allowed models to be fitted or analysed in
parallel, one per core. The greater speed of secr.fit in secr 5.0 makes par.secr.fit redundant. All three

3Clusters are assumed to share the same geometry (number of detectors, within-cluster spacing etc.).
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functions now appear to run faster with ncores=1 than with ncores>1. They are deprecated and will be
removed later in 2024. list.secr.fit replaces par.secr.fit.

Regression splines

The standard models for ‘real’ parameters in secr are linear on the link scale, much like a generalised linear
model. Semi-parametric ‘regression spline’ smooths provide more flexibility. These are implemented in secr
using a method suggested by Borchers and Kidney (2014): Simon Wood’s R package mgcv is used to parse
s() and te() terms in model formulae and construct basis functions that are used like linear covariates within
secr. Any ‘real’ parameter may be modelled with regression splines (D, lambda0, sigma, noneuc etc.). For
details see the help page (?smooths) and the documentation for mgcv.

Non-Euclidean distances

‘Distance’ in SECR models usually, and by default, means the Euclidean distance d =
√

(x1 − x2)2 + (y1 − y2)2.
The observation model can be customised by replacing the Euclidean distance with one that ‘warps’ space in
some ecologically meaningful way. There are innumerable ways to do this. Royle et al. (2013) envisioned an
‘ecological distance’ that is a function of landscape covariates. Redefining distance is a way to model spatial
variation in the size of home ranges, and hence the spatial scale of movement σ; Efford et al. (2016) use this
to model inverse covariation between density and home range size. Distances measured along a linear habitat
network such as a river system are also non-Euclidean (see package secrlinear).

secr provides general tools for specifying and modelling non-Euclidean distance, via the secr.fit details com-
ponent ‘userdist’. This may be a user-specified function or a pre-computed matrix. See secr-noneuclidean.pdf
for a full explanation and examples.
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Appendix 1. Core functions of secr

These are the core functions of secr 5.0 – the ones that you are most likely to use. S3 methods are marked
with an asterisk.

Function Purpose

addCovariates add spatial covariates to traps or mask
AIC* model selection, model weights
covariates extract or replace covariates of traps, capthist or mask
derived* compute density from conditional likelihood models
make.mask construct habitat mask (= mesh)
plot* plot capthist, traps or mask
read.capthist input captures and trap layout from Density format, one call
predict* compute ‘real’ parameters for arbitrary levels of predictor variables
predictDsurface evaluate density surface at each point of a mask
region.N* compute expected and realised population size in specified region
secr.fit maximum likelihood fit; result is a fitted ‘secr’ object
summary* summarise capthist, traps or mask
traps extract or replace traps object in capthist
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Appendix 2. Classified index to secr functions

Here is an index of secr functions classified by use (some minor functions are omitted). S3 methods are
marked with an asterisk.

• Manipulate core objects
• Attributes of traps object
• Attributes of capthist object
• Data for each detection
• Operate on fitted model(s)
• Mask diagnostics
• Specialised graphics
• Convert or export data
• Miscellaneous

Function Purpose

Manipulate data objects
addCovariates add spatial covariates to ‘traps’ or ‘mask’
as.mask coerce ‘traps’ object to ‘mask’ for specialised plotting
deleteMaskPoints edit ‘mask’
discretize rasterize area-search capthist data
head* first rows of ‘capthist’, ‘traps’ or ‘mask’
join combine sessions of multi-session ‘capthist’ object
make.grid construct detector array
make.capthist form ‘capthist’ from ‘traps’ and detection data
make.mask construct habitat mask (mesh)
make.systematic construct clustered random systematic design
make.lacework construct lacework random systematic design
MS.capthist combine ‘capthist’ objects into one multi-session ‘capthist’
plot* plot ‘capthist’, ‘traps’ or ‘mask’
plotMaskEdge draw line around mask cells
randomHabitat generates habitat mask with random landscape
rbind* append ‘capthist’, ‘traps’, ‘popn’ or ‘mask’ objects
read.capthist input captures and trap layout from Density format, one call
read.traps input detector locations from text file
reduce* aggregate detectors or occasions; change detector type
sim.capthist simulate capture histories
sightingPlot bubble plot of sightings in capthist object
snip split transect(s) into equal sections
split* split a single-session capthist or mask by various criteria
subset* filter ‘capthist’, ‘traps’ or ‘mask’
summary* summarise ‘capthist’, ‘traps’ or ‘mask’
tail* last rows of ‘capthist’, ‘traps’ or ‘mask’
trap.builder construct various complex designs
verify* check ‘capthist’, ‘traps’ or ‘mask’ for internal consistency
Attributes of traps object
clusterID cluster identifier
clustertrap detector number within cluster
covariates* detector-level covariates
detector* detector type (‘multi’, ‘proximity’ etc.)
markocc vector distinguishing marking and sighting occasions
polyID* polygon or transect identifier
timevaryingcov name time-varying covariate(s)
usage* occasion- and detector-specific effort
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Function Purpose

Attributes of capthist object
addSightings add sighting data to a ‘proximity’, ‘count’ or ‘polygon’ object
addTelemetry add telemetry data to a ‘proximity’ or ‘count’ object
covariates* individual-level covariates, including grouping factors
session* session identifier(s)
signalmatrix sound x microphone table
telemetryxy coordinates of telemetry fixes
Tm counts of marked animals that were not identified
traps* embedded traps object(s)
Tu counts of unmarked animals
Data for each detection
alive TRUE/FALSE
animalID individual ID
clusterID cluster identifier
clustertrap detector number within cluster
noise noise (signal detectors)
occasion occasion
signal signal strength (signal detectors)
signalframe whole signal | noise dataframe (rows = detections)
trap detector
xy detection coordinates (polygon and transect detectors)
Fit SECR model(s)
list.secr.fit fit several models and return secrlist object
secr.fit maximum likelihood fit; result is a fitted secr object
Operate on fitted model(s)
adjustVarD apply c-hat to density SE and confidence intervals
AIC* model selection, model weights
chat.nk overdispersion of activity centres
coef* ‘beta’ parameters
collate tabulate estimates from several models
confint* profile likelihood confidence intervals
CVa, CVa0 CV of individual detection from fitted mixture model
derived* density from conditional likelihood models
deviance* model deviance
df.residual* degrees of freedom for deviance
derivednj variance from replicated sampling units
derivedCluster variance from replicated sampling units
derivedExternal variance from replicated sampling units
ellipse.secr confidence ellipses for estimated parameters
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Function Purpose

esa'* | effective sampling

area by individual | |fxi*
| probability density of

home-range centre |

|LLsurface* | compute

likelihood surface and plot

contours | |logLik* |

log-likelihood of fitted

model | |LR.test|
likelihood-ratio test of

two models | |MCgof* |

Monte Carlo goodness-of-fit

after Choo et al. 2024 |

|modelAverage* | combine

estimates using AIC or AICc

weights | |plot* | plot

detection functions with

confidence bands | |predict*
| 'real' parameters for

arbitrary levels of

predictor variables |

|predictDsurface* | evaluate

density surface at each

point of a mask |

|region.N* | expected

and realised population

size in specified region |

|RSE| extract precision

(relative SE) of 'real'

parameter estimates |

|score.test| model selection

with score statistic using

observed information |

|secr.test| Monte Carlo

goodness-of-fit tests |

|simulate* | generate

realisations of fitted

model | |sim.secr|
parametric bootstrap |

|vcov* |

variance-covariance matrix

of 'beta' or 'real'

parameters | | <a

name="mask"></a> **Mask

diagnostics** | | |esaPlot|
cumulative plot esa or

$\hat D$ vs buffer width |

|mask.check| likelihood or

estimates vs. buffer width

and spacing |[6pt]

|suggest.buffer| find buffer

width to keep bias within

bounds | | <a

name="graphics"></a>

**Specialised graphics** |

| |bufferContour| concave

and convex boundary strips

| |fxTotal| summed pdfs of

home-range centre pdfs (use

frequency distribution of detectors per animal
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Appendix 3. Datasets

See each help page for details e.g., ?deermouse. Code for model fitting is in Appendix 2 of secr-version4.pdf.

‘blackbear’

Ursus americanus Tennessee Great Smoky Mountains 2003 DNA hair snag data of J. Laufenberg, F. van
Manen and J. Clark; an earlier version was described by Settlage et al. (2008) Journal of Wildlife Management

72.

deermouse

Peromyscus maniculatus Live-trapping data of V. H. Reid published as a CAPTURE example by Otis et
al. (1978) Wildlife Monographs 62

hornedlizard

Repeated searches of a quadrat in Arizona for flat-tailed horned lizards Phrynosoma mcallii (Royle & Young
Ecology 89, 2281–2289)

housemouse

Mus musculus live-trapping data of H. N. Coulombe published as a CAPTURE example by Otis et al. (1978)
Wildlife Monographs 62

ovenbird

Multi-year mist-netting study of ovenbirds Seiurus aurocapilla at a site in Maryland, USA.

ovensong

Acoustic detections of ovenbirds (Dawson & Efford Journal of Applied Ecology 46, 1201–1209)

OVpossum

Brushtail possum Trichosurus vulpecula live trapping in the Orongorongo Valley, Wellington, New Zealand
1996–1997 (Efford and Cowan In: The Biology of Australian Possums and Gliders Goldingay and Jackson
eds. Pp. 471–483).

possum

Brushtail possum Trichosurus vulpecula live trapping at Waitarere, North Island, New Zealand April 2002
(Efford et al. 2005 Wildlife Society Bulletin 33, 731–738)

secrdemo

Simulated data ‘captdata’, and some fitted models

skink

Multi-session lizard (Oligosoma infrapunctatum and O. lineoocellatum) pitfall trapping data from Lake
Station, Upper Buller Valley, South Island, New Zealand (M. G. Efford, B. W. Thomas and N. J. Spencer
unpublished).

stoatDNA

Stoat Mustela erminea hair tube DNA data from Matakitaki Valley, South Island, New Zealand (Efford,
Borchers and Byrom 2009).
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