Package 'scRNAtools'

Title: Single Cell RNA Sequencing Data Analysis Tools
Description: We integrated the common analysis methods utilized in single cell RNA sequencing data, which included cluster method, principal components analysis (PCA), the filter of differentially expressed genes, pathway enrichment analysis and correlated analysis methods.
Authors: Qian Yang
Maintainer: Qian Yang <[email protected]>
License: GPL-2
Version: 1.0
Built: 2024-11-22 06:59:09 UTC
Source: CRAN

Help Index


Single Cell RNA Sequencing Data Analysis Tools

Description

We integrated the common analysis methods utilized in single cell RNA sequencing data, which included cluster method, PCA, the filter of differentially expressed genes, pathway enrichment analysis and correlated analysis methods.

Author(s)

Qian Yang Maintainer: Qian Yang <[email protected]>

Examples

####Here list three main function, cluster, PCA and t-SNE####
####cluster####
data(example1);##Example data in this package.
k<-6;##set K based on your own requirement.
scRNAtools_cluster(example1,k)
####PCA####
data(example1)
data(types)
pdf(file=file.path(tempdir(), "PCA_result-R.pdf"))##Save the figures of PCA results.
scRNAtools_pca(example1,types)
dev.off()
####t-SNE#####
data(exam)
scRNAtools_tsne(exam)

####Gene expression###
data(example)
types<-"1"
num<-0.8
scRNAtools_Geneexp(example,types,num)

correlation index

Description

The correlation index of the genes in the section of correlated analysis.


Users interested genes or differentially expressed genes

Description

Gene list with two columns. The first column is Entrez ID of genes and the second column is gene symbol


exam

Description

Example data in t-SNE method


exam1

Description

Example data in correlated analysis


example

Description

scRNA sequencing data in 50 cells and 1000 genes


example1

Description

scRNA sequencing data


Cluster section

Description

Do consistent clustering analysis use clusterProfiler method

Usage

scRNAtools_cluster(example1, k)

Arguments

example1

scRNA sequencing data with header.

k

The number of class. If you set k is 6, you will obtain 6 results of cluster.

Details

The results are presented in your occurrent path.

Author(s)

Qian Yang

References

Guangchuang Yu, Li-Gen Wang, Yanyan Han and Qing-Yu He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology 2012, 16(5):284-287.

Examples

##setwd("")###Set the path your data in.
data(example1)##Example data in this package.
k<-6##set K based on your own requirement.
scRNAtools_cluster(example1,k)

Correlation analysis

Description

Correlation analysis of interested gene set or differentially expressed gene set.

Usage

scRNAtools_cor_map(exam1, types_all, type, methods)

Arguments

exam1

scRNA sequencing data of several genes and cells.

types_all

Cell names of each type.

type

Cell type.

methods

correlation methods including "pearson", "kendall" and "spearman".

Details

Return the correlation index of each two genes.

Author(s)

Qian Yang

Examples

data(exam1)
data(types_all)
type<-"Malignant";
methods<-"pearson";##methods = c("pearson", "kendall", "spearman").
pdf(file=file.path(tempdir(), "correlation_color.pdf"))
scRNAtools_cor_map(exam1,types_all,type,methods)
dev.off()

Present correlation index in figure

Description

Correlation analysis with correlation index of interested gene set or differentially expressed gene set.

Usage

scRNAtools_cor_map_r(exam1, types_all, type, methods)

Arguments

exam1

scRNA sequencing data of several genes and cells.

types_all

Cell names of each type.

type

Cell type.

methods

correlation methods including "pearson", "kendall" and "spearman".

Details

Return the correlation index of each two genes.

Author(s)

Qian Yang

Examples

data(exam1)
data(types_all)
type<-"Malignant";
methods<-"pearson";##methods = c("pearson", "kendall", "spearman").
pdf(file=file.path(tempdir(), "correlation_num.pdf"))
scRNAtools_cor_map_r(exam1,types_all,type,methods)
dev.off()

Identification of differentially expressed genes

Description

Users can identify differentially expressed genes between two type of cells based on fold change value.

Usage

scRNAtools_DEGsA(example, types_all, type1, type2, num)

Arguments

example

scRNA sequencing data with header.

types_all

Cell types in the example data.

type1

Cell type one.

type2

Cell type two.

num

Threshold value of expressed genes in appointed cell types. For example, we set 0.8 in example section.

Details

The output data is the fold change value of differentially expressed genes.

Author(s)

Qian Yang

Examples

data(example)
data(types)
type1<-"No malignant"
type2<-"Malignant"
num<-0.8;###type1 Vs type2
pdf(file=file.path(tempdir(), "DEGs.pdf"))
scRNAtools_DEGsA(example,types_all,type1,type2,num)
dev.off()

Present the expression of two genes

Description

This function can present the expression of two gene in appointed cell type.

Usage

scRNAtools_Gene2exp_1(example, types_all, gene1, gene2, n, col_1, col_2, pch, lwd)

Arguments

example

scRNA sequencing data without header.

types_all

Cell names of each type.

gene1

Gene one you are interested in.

gene2

Gene two you are interested in.

n

Number of cell names in scRNA sequening data.

col_1

The color of line of gene one in the figure.

col_2

The color of line of gene two in the figure.

pch

The shape of nodes in figure.

lwd

The width of lines in figure.

Author(s)

Qian Yang

Examples

data(example)
data(types_all)
gene1<-"CHD1"
gene2<-"CD82"
col_1="red"
col_2="blue"
pch=19
lwd=1
n<-2
scRNAtools_Gene2exp_1(example,types_all,gene1,gene2,n,col_1,col_2,pch,lwd)

Present gene expression

Description

This function can present the expression of two gene in appointed cell type.

Usage

scRNAtools_Gene3exp_1(example,types_all,gene1,gene2,gene3,n,col_1,col_2,col_3,pch,lwd)

Arguments

example

scRNA sequencing data without header.

types_all

Cell names of each type.

gene1

Gene one you are interested in.

gene2

Gene two you are interested in.

gene3

Gene three you are interested in.

n

Number of cell names in scRNA sequening data.

col_1

The color of line of gene one in the figure.

col_2

The color of line of gene two in the figure.

col_3

The color of line of gene three in the figure.

pch

The shape of nodes in figure.

lwd

The width of lines in figure.

Author(s)

Qian Yang

Examples

data(example)
data(types_all)
gene1<-"CHD1"
gene2<-"CD82"
gene3<-"ASS1"
col_1="red"
col_2="blue"
col_3="green"
pch=19
lwd=2
n<-3
scRNAtools_Gene3exp_1(example,types_all,gene1,gene2,gene3,n,col_1,col_2,col_3,pch,lwd)

Expressed genes in scRNA sequencing data

Description

Extracted the genes expressed in cells. Users can set the threshold value.

Usage

scRNAtools_Geneexp(example, types, num)

Arguments

example

scRNA sequencing data without header.

types

Cell types in the example data.

num

Threshold value of expressed genes in appointed cell types. For example, we set 0.8 in example section.

Value

zset

Gene expression data required the threshold value.

Author(s)

Qian Yang

Examples

data(example)
types<-"1"
num<-0.8
scRNAtools_Geneexp(example,types,num)

Present gene expression

Description

This function can present the expression of one gene in appointed cell type.

Usage

scRNAtools_Geneexp_1(example, gene, types_all, n, col, pch, lwd)

Arguments

example

scRNA sequencing data without header.

gene

One gene you are interested in.

types_all

Cell names of each type.

n

Number of cell names in scRNA sequening data.

col

The color of line in the figure.

pch

The shape of nodes in figure.

lwd

The width of lines in figure.

Author(s)

Qian Yang

Examples

data(example)
data(types_all)
gene<-"CHD1";###Set the gene you are interested in.
n<-3;###Set the type of cells you are interested in.
col<-"red";###Set the color of line in the figure.
pch<-19;###Set the shape of nodes in figure.
lwd<-2;###Set the width of lines in figure.
scRNAtools_Geneexp_1(example,gene,types_all,n,col,pch,lwd)

Construction of interactive network in scRNA sequencing data

Description

Construction of interactive network based on scRNa sequencing data.

Usage

scRNAtools_inter_net(corr_re, p, r, size, color)

Arguments

corr_re

The results of correlation analysis, which including four columns, the first two columns are genes and the last two columns are correlation index and p-value,respectively.

p

The p-value of correlation index.

r

Correlation index

size

The size of nodes in the network.

color

The color of nodes in the network.

Author(s)

Qian Yang

Examples

data(corr_re)
p<-0.05
r<-0.9
size<-5 #nodes size
color<-"#00B2EE" ##Color of nodes.
pdf(file=file.path(tempdir(), "interact_net.pdf"))
scRNAtools_inter_net(corr_re,p,r,size,color)
dev.off()

PCA analysis

Description

PCA analysis for scRNA sequencing data

Usage

scRNAtools_pca(example1, types)

Arguments

example1

scRNA sequencing data with header.

types

Cell types in the example data.

Author(s)

Qian Yang

Examples

data(example1)
data(types)
pdf(file=file.path(tempdir(), "PCA_result-R.pdf"))##Save the figures of PCA results.
scRNAtools_pca(example1,types)
dev.off()

3D PCA analysis

Description

PCA analysis for scRNA sequencing data and present 3D figure.

Usage

scRNAtools_pca_3D(example1, types)

Arguments

example1

scRNA sequencing data with header.

types

Cell types in the example data.

Author(s)

Qian Yang

Examples

##3D PCA analysis
data(example1)
data(types)
scRNAtools_pca_3D(example1,types)##3D figure of PCA results.

Pathway enrichment analysis

Description

Pathway enrichment analysis using the interested gene set or differentially expressed gene set provided by users. This data contains two column (Enterz ID and gene sybmols)

Usage

scRNAtools_PEA(DEGs,number)

Arguments

DEGs

Interested gene set of differentially expressed gene set.

number

The number of random, for example, users can set 1000, 5000 or more.

Details

This function integrated method to do the pathway enrichment analysis, TPEA.

Value

The significant pathways are wrote in the occurrent path.

Author(s)

Qian Yang

References

Wei Jiang (2017). TPEA: A Novel Topology-Based Pathway Enrichment Analysis Approach.

Examples

data(DEGs)
number<-10
pdf(file=file.path(tempdir(), "enrichment analysis.pdf"))
scRNAtools_PEA(DEGs,number)
dev.off()

t-SNE analysis

Description

t-SNE analysis for scRNA sequencing data

Usage

scRNAtools_tsne(exam)

Arguments

exam

scRNA sequencing data with four genes. Users can reference the format and input their own data.

Author(s)

Qian Yang

References

L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9(Nov):2579-2605, 2008.

Examples

data(exam)
scRNAtools_tsne(exam)

types

Description

Cell types in the example data


types_all

Description

Cell names of each type