In this package, it is possible to select models based on information criteria such as BIC, AIC and ICL.
The selection is done on two parameters which are:
Let’s select a MRHLP model for the following multivariate time series Y:
selectedmrhlp <- selectMRHLP(X = x, Y = y, Kmin = 2, Kmax = 6, pmin = 0, pmax = 3)
## The MRHLP model selected via the "BIC" has K = 5 regimes
## and the order of the polynomial regression is p = 0.
## BIC = -3033.2004239708
## AIC = -2913.75756459259
The selected model has K = 5 regimes and the order of the polynomial regression is p = 0. According to the way Y has been generated, these parameters are what we expected.
Let’s summarize the selected model:
selectedmrhlp$summary()
## ----------------------
## Fitted MRHLP model
## ----------------------
##
## MRHLP model with K = 5 regimes
##
## log-likelihood nu AIC BIC ICL
## -2860.758 53 -2913.758 -3033.2 -3032.414
##
## Clustering table:
## 1 2 3 4 5
## 100 120 200 100 150
##
##
## ------------------
## Regime 1 (K = 1):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 0.1131005 0.9124035 -1.850509
##
## Covariance matrix:
##
## 1.19064699 0.12700417 0.05496662
## 0.12700417 0.90279499 -0.03272115
## 0.05496662 -0.03272115 0.89086804
## ------------------
## Regime 2 (K = 2):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 7.190579 5.049538 9.952361
##
## Covariance matrix:
##
## 1.0723960 -0.18151782 0.12179798
## -0.1815178 1.05340358 0.01211349
## 0.1217980 0.01211349 0.76527294
## ------------------
## Regime 3 (K = 3):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 3.951224 5.941976 7.950232
##
## Covariance matrix:
##
## 1.02880640 -0.05856588 -0.02543545
## -0.05856588 1.19527262 0.02309638
## -0.02543545 0.02309638 1.01201958
## ------------------
## Regime 4 (K = 4):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 -0.9461282 -1.901665 0.0135667
##
## Covariance matrix:
##
## 0.88092255 -0.02771294 -0.03959332
## -0.02771294 1.14567525 -0.10726848
## -0.03959332 -0.10726848 0.89325063
## ------------------
## Regime 5 (K = 5):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 3.549319 1.888239 4.981038
##
## Covariance matrix:
##
## 1.1333159 0.25852405 0.03091090
## 0.2585241 1.21453178 0.05663565
## 0.0309109 0.05663565 0.84026581