--- title: "A-quick-tour-of-PWR" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{A-quick-tour-of-PWR} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} library(knitr) knitr::opts_chunk$set( fig.align = "center", fig.height = 5.5, fig.width = 6, warning = FALSE, collapse = TRUE, dev.args = list(pointsize = 10), out.width = "90%", par = TRUE ) knit_hooks$set(par = function(before, options, envir) { if (before && options$fig.show != "none") par(family = "sans", mar = c(4.1,4.1,1.1,1.1), mgp = c(3,1,0), tcl = -0.5) }) ``` ```{r, message = FALSE, echo = FALSE} library(samurais) ``` # Introduction **PWR**: Piecewise Regression (PWR) for time series (or structured longitudinal data) modeling and optimal segmentation by using dynamic programming. It was written in R Markdown, using the [knitr](https://cran.r-project.org/package=knitr) package for production. See `help(package="samurais")` for further details and references provided by `citation("samurais")`. # Load data ```{r} data("univtoydataset") ``` # Set up PWR model parameters ```{r} K <- 5 # Number of segments p <- 3 # Polynomial degree ``` # Estimation ```{r} pwr <- fitPWRFisher(univtoydataset$x, univtoydataset$y, K, p) ``` # Summary ```{r} pwr$summary() ``` # Plots ## Regressors ```{r} pwr$plot(what = "regressors") ``` ## Segmentation ```{r} pwr$plot(what = "segmentation") ```