MRHLP: Flexible and user-friendly probabilistic joint segmentation of multivariate time series (or multivariate structured longitudinal data) with smooth and/or abrupt regime changes by a mixture model-based multiple regression approach with a hidden logistic process, fitted by the EM algorithm.
It was written in R Markdown, using the knitr package for production.
See help(package="samurais")
for further details and
references provided by citation("samurais")
.
mrhlp <- emMRHLP(multivtoydataset$x, multivtoydataset[,c("y1", "y2", "y3")],
K, p, q, variance_type, n_tries, max_iter, threshold, verbose,
verbose_IRLS)
## EM: Iteration : 1 || log-likelihood : -4975.54178073111
## EM: Iteration : 2 || log-likelihood : -3108.34368267019
## EM: Iteration : 3 || log-likelihood : -3083.17524307375
## EM: Iteration : 4 || log-likelihood : -3052.50226089162
## EM: Iteration : 5 || log-likelihood : -3020.60866899672
## EM: Iteration : 6 || log-likelihood : -2967.37662742306
## EM: Iteration : 7 || log-likelihood : -2948.61300517293
## EM: Iteration : 8 || log-likelihood : -2945.45995943558
## EM: Iteration : 9 || log-likelihood : -2937.99296968724
## EM: Iteration : 10 || log-likelihood : -2924.28973568246
## EM: Iteration : 11 || log-likelihood : -2901.25080458438
## EM: Iteration : 12 || log-likelihood : -2859.88249257022
## EM: Iteration : 13 || log-likelihood : -2858.05147236845
## EM: Iteration : 14 || log-likelihood : -2856.38015382933
## EM: Iteration : 15 || log-likelihood : -2854.68196743737
## EM: Iteration : 16 || log-likelihood : -2852.69581381481
## EM: Iteration : 17 || log-likelihood : -2849.93140705665
## EM: Iteration : 18 || log-likelihood : -2846.34467361507
## EM: Iteration : 19 || log-likelihood : -2843.82658707157
## EM: Iteration : 20 || log-likelihood : -2842.75921494243
## EM: Iteration : 21 || log-likelihood : -2842.23613093614
## EM: Iteration : 22 || log-likelihood : -2841.91343879009
## EM: Iteration : 23 || log-likelihood : -2841.66202746618
## EM: Iteration : 24 || log-likelihood : -2841.41784743305
## EM: Iteration : 25 || log-likelihood : -2841.1466892538
## EM: Iteration : 26 || log-likelihood : -2840.82033084757
## EM: Iteration : 27 || log-likelihood : -2840.39141036666
## EM: Iteration : 28 || log-likelihood : -2839.74532808446
## EM: Iteration : 29 || log-likelihood : -2838.62532246595
## EM: Iteration : 30 || log-likelihood : -2836.64319656469
## EM: Iteration : 31 || log-likelihood : -2833.87378893594
## EM: Iteration : 32 || log-likelihood : -2831.75584270117
## EM: Iteration : 33 || log-likelihood : -2831.16293540252
## EM: Iteration : 34 || log-likelihood : -2831.06467840063
## EM: Iteration : 35 || log-likelihood : -2831.06467489664
mrhlp$summary()
## ----------------------
## Fitted MRHLP model
## ----------------------
##
## MRHLP model with K = 5 regimes
##
## log-likelihood nu AIC BIC ICL
## -2831.065 98 -2929.065 -3149.921 -3149.146
##
## Clustering table:
## 1 2 3 4 5
## 100 120 200 100 150
##
##
## ------------------
## Regime 1 (K = 1):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 0.4466558 0.8104534 -2.36719
## X^1 -25.5100013 -20.5995360 32.75195
## X^2 413.8717640 498.0085618 -541.38904
## X^3 -1811.4612012 -2477.5546420 2523.64723
##
## Covariance matrix:
##
## 1.17712613 0.1114059 0.07303969
## 0.11140591 0.8394152 -0.02442220
## 0.07303969 -0.0244222 0.85240361
## ------------------
## Regime 2 (K = 2):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 21.30187 -4.108239 1.838238
## X^1 -199.86512 112.953325 112.257782
## X^2 905.60445 -449.623857 -493.914613
## X^3 -1316.42937 581.197948 694.872075
##
## Covariance matrix:
##
## 1.0409982 -0.180821350 0.137568024
## -0.1808214 1.042169409 0.009699162
## 0.1375680 0.009699162 0.754147599
## ------------------
## Regime 3 (K = 3):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 4.4721830 9.349642 6.349724
## X^1 0.7467282 -33.315977 17.837763
## X^2 -11.9302818 96.730621 -51.086769
## X^3 16.1571109 -85.951201 42.760070
##
## Covariance matrix:
##
## 1.02026230 -0.04094457 -0.02544812
## -0.04094457 1.15656511 0.02852275
## -0.02544812 0.02852275 0.99750511
## ------------------
## Regime 4 (K = 4):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 1267.288 -840.5119 -10.37768
## X^1 -5458.817 3613.7277 19.40202
## X^2 7813.123 -5184.1105 14.37102
## X^3 -3718.619 2475.7170 -29.55020
##
## Covariance matrix:
##
## 0.822157810 0.006792726 -0.03667011
## 0.006792726 1.093351046 -0.07477892
## -0.036670114 -0.074778924 0.85425249
## ------------------
## Regime 5 (K = 5):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 194.7894 12.88268 483.8383
## X^1 -658.4684 -45.73544 -1634.9481
## X^2 753.1086 61.92924 1858.1528
## X^3 -286.1078 -27.37495 -702.9064
##
## Covariance matrix:
##
## 1.1282728 0.25684915 0.02034990
## 0.2568491 1.21055927 0.04414336
## 0.0203499 0.04414336 0.77644297