--- title: "A-quick-tour-of-MRHLP" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{A-quick-tour-of-MRHLP} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} library(knitr) knitr::opts_chunk$set( fig.align = "center", fig.height = 5.5, fig.width = 6, warning = FALSE, collapse = TRUE, dev.args = list(pointsize = 10), out.width = "90%", par = TRUE ) knit_hooks$set(par = function(before, options, envir) { if (before && options$fig.show != "none") par(family = "sans", mar = c(4.1,4.1,1.1,1.1), mgp = c(3,1,0), tcl = -0.5) }) ``` ```{r, message = FALSE, echo = FALSE} library(samurais) ``` # Introduction **MRHLP**: Flexible and user-friendly probabilistic joint segmentation of multivariate time series (or multivariate structured longitudinal data) with smooth and/or abrupt regime changes by a mixture model-based multiple regression approach with a hidden logistic process, fitted by the EM algorithm. It was written in R Markdown, using the [knitr](https://cran.r-project.org/package=knitr) package for production. See `help(package="samurais")` for further details and references provided by `citation("samurais")`. # Load simulated data ```{r} data("multivtoydataset") ``` ## Set up MRHLP model parameters ```{r} K <- 5 # Number of regimes (mixture components) p <- 3 # Dimension of beta (order of the polynomial regressors) q <- 1 # Dimension of w (order of the logistic regression: to be set to 1 for segmentation) variance_type <- "heteroskedastic" # "heteroskedastic" or "homoskedastic" model ``` ## Set up EM parameters ```{r} n_tries <- 1 max_iter <- 1500 threshold <- 1e-6 verbose <- TRUE verbose_IRLS <- FALSE ``` ## Estimation ```{r} mrhlp <- emMRHLP(multivtoydataset$x, multivtoydataset[,c("y1", "y2", "y3")], K, p, q, variance_type, n_tries, max_iter, threshold, verbose, verbose_IRLS) ``` ## Summary ```{r} mrhlp$summary() ``` # Plots ## Fitted regressors ```{r} mrhlp$plot(what = "regressors") ``` ## Estimated signal ```{r} mrhlp$plot(what = "estimatedsignal") ``` ## Log-likelihood ```{r} mrhlp$plot(what = "loglikelihood") ```