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samplingVarEst-package

Sampling Variance Estimation package

Description

The package contains functions to calculate some point estimators and estimate their variance under
unequal probability sampling without replacement. Uni-stage and two-stage sampling designs are
considered. The package further contains some approximations for the joint-inclusion probabilities
(population and sample based formulae).

Emphasis has been put on the speed of routines as the package mostly uses C compiled code. Below
there is a list of available functions. These are grouped in purpose lists, aiming to clarify their usage.

The user should pick a suitable combination of a population parameter of interest, a choice of point
estimator, and a choice of variance estimator.

For these population parameters: The available point estimators are:
total: Est.Total.NHT

Est.Total.Hajek
mean: Est.Mean.NHT

Est.Mean.Hajek
empirical cumulative distribution function: Est.EmpDistFunc.NHT

Est.EmpDistFunc.Hajek
ratio: Est.Ratio
correlation coefficient: Est.Corr.NHT

Est.Corr.Hajek
regression coefficients: Est.RegCoI.Hajek

Est.RegCo.Hajek

For these point estimators: The available variance estimators for uni-stage samples are:
Est.Total.NHT: VE.HT.Total.NHT
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VE.SYG.Total.NHT
VE.Hajek.Total.NHT

Est.Total.Hajek: VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
VE.EB.HT.Total.Hajek
VE.EB.SYG.Total.Hajek

Est.Mean.NHT: VE.HT.Mean.NHT
VE.SYG.Mean.NHT
VE.Hajek.Mean.NHT

Est.Mean.Hajek: VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.HT.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.B.Mean.Hajek
VE.EB.HT.Mean.Hajek
VE.EB.SYG.Mean.Hajek

Est.Ratio: VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio

Est.Corr.NHT: VE.Jk.Tukey.Corr.NHT
Est.Corr.Hajek: VE.Jk.Tukey.Corr.Hajek

VE.Jk.CBS.HT.Corr.Hajek
VE.Jk.CBS.SYG.Corr.Hajek
VE.Jk.B.Corr.Hajek

Est.RegCoI.Hajek: VE.Jk.Tukey.RegCoI.Hajek
VE.Jk.CBS.HT.RegCoI.Hajek
VE.Jk.CBS.SYG.RegCoI.Hajek
VE.Jk.B.RegCoI.Hajek

Est.RegCo.Hajek: VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.B.RegCo.Hajek

For these point estimators: The available variance estimators for self-weighted two-stage samples are:
Est.Total.Hajek: VE.Jk.EB.SW2.Total.Hajek
Est.Mean.Hajek: VE.Jk.EB.SW2.Mean.Hajek
Est.Ratio: VE.Jk.EB.SW2.Ratio
Est.Corr.Hajek: VE.Jk.EB.SW2.Corr.Hajek
Est.RegCoI.Hajek: VE.Jk.EB.SW2.RegCoI.Hajek
Est.RegCo.Hajek: VE.Jk.EB.SW2.RegCo.Hajek
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For the inclusion probabilities: The available functions are:
1st order inclusion probabilities: Pk.PropNorm.U
2nd order (joint) inclusion probabilities: Pkl.Hajek.s

Pkl.Hajek.U

datasets
oaxaca

Details

To return to this description type:
help(samplingVarEst)
or type:
?samplingVarEst
To cite, use:
citation("samplingVarEst")

Est.Corr.Hajek Estimator of a correlation coefficient using the Hajek point estimator

Description

Estimates a population correlation coefficient of two variables using the Hajek (1971) point estima-
tor.

Usage

Est.Corr.Hajek(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.
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Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9) (imple-
mented by the current function), is:

ĈHajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)√∑

k∈s wk(yk − ˆ̄yHajek)2
√∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the correlation coefficient point estimator.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-
Verlag, Inc.

See Also

Est.Corr.NHT
VE.Jk.Tukey.Corr.Hajek
VE.Jk.CBS.HT.Corr.Hajek
VE.Jk.CBS.SYG.Corr.Hajek
VE.Jk.B.Corr.Hajek
VE.Jk.EB.SW2.Corr.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
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y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the correlation coefficient estimator for y1 and x
Est.Corr.Hajek(y1[s==1], x[s==1], pik.U[s==1])
#Computes the correlation coefficient estimator for y2 and x
Est.Corr.Hajek(y2[s==1], x[s==1], pik.U[s==1])

Est.Corr.NHT Estimator of a correlation coefficient using the Narain-Horvitz-
Thompson point estimator

Description

Estimates a population correlation coefficient of two variables using the Narain (1951); Horvitz-
Thompson (1952) point estimator.

Usage

Est.Corr.NHT(VecY.s, VecX.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part.

Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C (implemented by the current function) is given by:

Ĉ =

∑
k∈s wk(yk − ˆ̄yNHT )(xk − ˆ̄xNHT )√∑

k∈s wk(yk − ˆ̄yNHT )2
√∑

k∈s wk(xk − ˆ̄xNHT )2
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where ˆ̄yNHT is the Narain (1951); Horvitz-Thompson (1952) estimator for the population mean
ȳ = N−1

∑
k∈U yk,

ˆ̄yNHT =
1

N

∑
k∈s

wkyk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the correlation coefficient point estimator.

Author(s)

Emilio Lopez Escobar.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.

See Also

Est.Corr.Hajek
VE.Jk.Tukey.Corr.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the correlation coefficient estimator for y1 and x
Est.Corr.NHT(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the correlation coefficient estimator for y2 and x
Est.Corr.NHT(y2[s==1], x[s==1], pik.U[s==1], N)

Est.EmpDistFunc.Hajek The Hajek estimator for the empirical cumulative distribution function

Description

Computes the Hajek (1971) estimator for the empirical cumulative distribution function (ECDF).
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Usage

Est.EmpDistFunc.Hajek(VecY.s, VecPk.s, t)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

t value to be evaluated for the empirical cumulative distribution function. It must
be an integer or a double-precision scalar.

Details

For the population empirical cumulative distribution function (ECDF) of the variable y at the value
t:

Fn(t) =
#(k ∈ U : yk ≤ t)

N
=

1

N

∑
k∈U

I(yk ≤ t)

the approximately unbiased Hajek (1971) estimator of Fn(t) (implemented by the current function)
is given by:

F̂ nHajek(t) =

∑
k∈s wkI(yk ≤ t)∑

k∈s wk

where I(yk ≤ t) denotes the indicator function that takes the value 1 if yk ≤ t and the value 0
otherwise, and where wk = 1/πk and πk denotes the inclusion probability of the k-th element in
the sample s.

Value

The function returns a value for the empirical cumulative distribution function evaluated at t.

Author(s)

Emilio Lopez Escobar [aut, cre], Juan Francisco Munoz Rosas [ctb].

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

See Also

Est.EmpDistFunc.NHT
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Examples

data(oaxaca) #Loads Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the inclusion probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
Est.EmpDistFunc.Hajek(y1[s==1], pik.U[s==1], 950) #Hajek est. of ECDF for y1 at t=950

Est.EmpDistFunc.NHT The Narain-Horvitz-Thompson estimator for the empirical cumulative
distribution function

Description

Computes the Narain (1951); Horvitz-Thompson (1952) estimator for the empirical cumulative
distribution function (ECDF).

Usage

Est.EmpDistFunc.NHT(VecY.s, VecPk.s, N, t)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part.

t value to be evaluated for the empirical cumulative distribution function. It must
be an integer or a double-precision scalar.

Details

For the population empirical cumulative distribution function (ECDF) of the variable y at the value
t:

Fn(t) =
#(k ∈ U : yk ≤ t)

N
=

1

N

∑
k∈U

I(yk ≤ t)

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of Fn(t) (implemented by the
current function) is given by:

F̂ nNHT (t) =
1

N

∑
k∈s

I(yk ≤ t)

πk

where I(yk ≤ t) denotes the indicator function that takes the value 1 if yk ≤ t and the value 0
otherwise, and where πk denotes the inclusion probability of the k-th element in the sample s.
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Value

The function returns a value for the empirical cumulative distribution function evaluated at t.

Author(s)

Emilio Lopez Escobar [aut, cre], Juan Francisco Munoz Rosas [ctb].

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.

See Also

Est.EmpDistFunc.Hajek

Examples

data(oaxaca) #Loads Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the inclusion probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
Est.EmpDistFunc.NHT(y1[s==1], pik.U[s==1], N, 950) #NHT est. of ECDF for y1 at t=950

Est.Mean.Hajek The Hajek estimator for a mean

Description

Computes the Hajek (1971) estimator for a population mean.

Usage

Est.Mean.Hajek(VecY.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.
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Details

For the population mean of the variable y:

ȳ =
1

N

∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of ȳ (implemented by the current function) is
given by:

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the mean point estimator.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

See Also

Est.Mean.NHT
VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.HT.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.B.Mean.Hajek
VE.Jk.EB.SW2.Mean.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
Est.Mean.Hajek(y1[s==1], pik.U[s==1]) #Computes the Hajek est. for y1
Est.Mean.Hajek(y2[s==1], pik.U[s==1]) #Computes the Hajek est. for y2
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Est.Mean.NHT The Narain-Horvitz-Thompson estimator for a mean

Description

Computes the Narain (1951); Horvitz-Thompson (1952) estimator for a population mean.

Usage

Est.Mean.NHT(VecY.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part.

Details

For the population mean of the variable y:

ȳ =
1

N

∑
k∈U

yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of ȳ (implemented by the current
function) is given by:

ˆ̄yNHT =
1

N

∑
k∈s

yk
πk

where πk denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the mean point estimator.

Author(s)

Emilio Lopez Escobar.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.
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See Also

Est.Mean.Hajek
VE.HT.Mean.NHT
VE.SYG.Mean.NHT
VE.Hajek.Mean.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
Est.Mean.NHT(y1[s==1], pik.U[s==1], N) #The NHT estimator for y1
Est.Mean.NHT(y2[s==1], pik.U[s==1], N) #The NHT estimator for y2

Est.Ratio Estimator of a ratio

Description

Estimates a population ratio of two totals/means.

Usage

Est.Ratio(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecX.s. There must
not be missing values.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecY.s. There must not
be missing values. All values of VecX.s should be greater than zero. A warning
is displayed if this does not hold, and computations continue if mathematical
expressions allow this kind of values for the denominator variable.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.



Est.Ratio 15

Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R (implemented by the current function) is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the ratio point estimator.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.

See Also

VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
Est.Ratio(y1[s==1], x[s==1], pik.U[s==1]) #Ratio estimator for y1 and x
Est.Ratio(y2[s==1], x[s==1], pik.U[s==1]) #Ratio estimator for y2 and x
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Est.RegCo.Hajek Estimator of the regression coefficient using the Hajek point estimator

Description

Estimates the population regression coefficient using the Hajek (1971) point estimator.

Usage

Est.RegCo.Hajek(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population regression coefficient β, assuming that the population size N is unknown (see Sarn-
dal et al., 1992, Sec. 5.10), can be estimated by:

β̂Hajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek and ˆ̄xHajek are the Hajek (1971) point estimators of the population means ȳ =
N−1

∑
k∈U yk and x̄ = N−1

∑
k∈U xk, respectively,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

ˆ̄xHajek =

∑
k∈s wkxk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the regression coefficient point estimator.
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Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-
Verlag, Inc.

See Also

Est.RegCoI.Hajek
VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.B.RegCo.Hajek
VE.Jk.EB.SW2.RegCo.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the regression coefficient estimator for y1 and x
Est.RegCo.Hajek(y1[s==1], x[s==1], pik.U[s==1])
#Computes the regression coefficient estimator for y2 and x
Est.RegCo.Hajek(y2[s==1], x[s==1], pik.U[s==1])

Est.RegCoI.Hajek Estimator of the intercept regression coefficient using the Hajek point
estimator

Description

Estimates the population intercept regression coefficient using the Hajek (1971) point estimator.

Usage

Est.RegCoI.Hajek(VecY.s, VecX.s, VecPk.s)
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Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population intercept regression coefficient α, assuming that the population size N is unknown
(see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

α̂Hajek = ˆ̄yHajek −
∑

k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑
k∈s wk(xk − ˆ̄xHajek)2

ˆ̄xHajek

where ˆ̄yHajek and ˆ̄xHajek are the Hajek (1971) point estimators of the population means ȳ =
N−1

∑
k∈U yk and x̄ = N−1

∑
k∈U xk, respectively,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

ˆ̄xHajek =

∑
k∈s wkxk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the intercept regression coefficient point estimator.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-
Verlag, Inc.



Est.Total.Hajek 19

See Also

Est.RegCo.Hajek
VE.Jk.Tukey.RegCoI.Hajek
VE.Jk.CBS.HT.RegCoI.Hajek
VE.Jk.CBS.SYG.RegCoI.Hajek
VE.Jk.B.RegCoI.Hajek
VE.Jk.EB.SW2.RegCoI.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the intercept regression coefficient estimator for y1 and x
Est.RegCoI.Hajek(y1[s==1], x[s==1], pik.U[s==1])
#Computes the intercept regression coefficient estimator for y2 and x
Est.RegCoI.Hajek(y2[s==1], x[s==1], pik.U[s==1])

Est.Total.Hajek The Hajek estimator for a total

Description

Computes the Hajek (1971) estimator for a population total.

Usage

Est.Total.Hajek(VecY.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part.
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Details

For the population total of the variable y:

t =
∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of t (implemented by the current function) is
given by:

t̂Hajek = N

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the total point estimator.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

See Also

Est.Total.NHT
VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable y1
y2 <- oaxaca$HOMES10 #Defines the variable y2
Est.Total.Hajek(y1[s==1], pik.U[s==1], N) #The Hajek estimator for y1
Est.Total.Hajek(y2[s==1], pik.U[s==1], N) #The Hajek estimator for y2
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Est.Total.NHT The Narain-Horvitz-Thompson estimator for a total

Description

Computes the Narain (1951); Horvitz-Thompson (1952) estimator for a population total.

Usage

Est.Total.NHT(VecY.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

Details

For the population total of the variable y:

t =
∑
k∈U

yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of t (implemented by the current
function) is given by:

t̂NHT =
∑
k∈s

yk
πk

where πk denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the total point estimator.

Author(s)

Emilio Lopez Escobar.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.
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See Also

Est.Total.Hajek
VE.HT.Total.NHT
VE.SYG.Total.NHT
VE.Hajek.Total.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
Est.Total.NHT(y1[s==1], pik.U[s==1]) #Computes the NHT estimator for y1
Est.Total.NHT(y2[s==1], pik.U[s==1]) #Computes the NHT estimator for y2

oaxaca Municipalities of the state of Oaxaca in Mexico

Description

Dataset with information about the free and sovereign state of Oaxaca, which is located in the south-
ern part of Mexico. The dataset contains information on population, surface, indigenous language,
agriculture, and income from years ranging from 2000 to 2010. The information was originally
collected and processed by Mexico’s National Institute of Statistics and Geography (INEGI by its
name in Spanish, ‘Instituto Nacional de Estadistica y Geografia’, http://www.inegi.org.mx/).

Usage

data(oaxaca)

Format

A data frame with 570 observations on the following 41 variables:

IDREGION region INEGI code.

LBREGION region name (without accents and Spanish language characters).

IDDISTRI district INEGI code.

LBDISTRI district name (without accents and Spanish language characters).

IDMUNICI municipality INEGI code.

LBMUNICI municipality name (without accents and Spanish language characters).

SURFAC05 surface in squared kilometres 2005.

POP00 population 2000.

POP10 population 2010.

HOMES00 number of homes 2000.
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HOMES10 number of homes 2010.

POPMAL00 male population 2000.

POPMAL10 male population 2010.

POPFEM00 female population 2000.

POPFEM10 female population 2010.

INLANG00 5 or more years old population which speaks indigenous language 2000.

INLANG10 5 or more years old population which speaks indigenous language 2010.

INCOME00 gross income in thousands of Mexican pesos 2000.

INCOME01 gross income in thousands of Mexican pesos 2001.

INCOME02 gross income in thousands of Mexican pesos 2002.

INCOME03 gross income in thousands of Mexican pesos 2003.

PTREES00 planted trees 2000.

PTREES01 planted trees 2001.

PTREES02 planted trees 2002.

PTREES03 planted trees 2003.

MARRIA07 marriages 2007.

MARRIA08 marriages 2008.

MARRIA09 marriages 2009.

HARVBE07 harvested bean surface in hectares 2007.

HARVBE08 harvested bean surface in hectares 2008.

HARVBE09 harvested bean surface in hectares 2009.

VALUBE07 value of bean production in thousands of Mexican pesos 2007.

VALUBE08 value of bean production in thousands of Mexican pesos 2008.

VALUBE09 value of bean production in thousands of Mexican pesos 2009.

VOLUBE07 volume of bean production in tons 2007.

VOLUBE08 volume of bean production in tons 2008.

VOLUBE09 volume of bean production in tons 2009.

sHOMES00 a sample (column vector of ones and zeros; 1 = selected, 0 = otherwise) of 373 mu-
nicipalities drawn using the Hajek (1964) maximum-entropy sampling design with inclusion
probabilities proportional to the variable HOMES00.

sSURFAC a sample (column vector of ones and zeros; 1 = selected, 0 = otherwise) of 373 mu-
nicipalities drawn using the Hajek (1964) maximum-entropy sampling design with inclusion
probabilities proportional to the variable SURFAC05.

SIZEDIST the size of the district, i.e., the number of municipalities in each district.

sSW_10_3 a sample (column vector of ones and zeros; 1 = selected, 0 = otherwise) of 30 mu-
nicipalities drawn using a self-weighted two-stage sampling design. The first stage draws 10
districts using the Hajek (1964) maximum-entropy sampling design with clusters’ inclusion
probabilities proportional to the size of the clusters (variable SIZEDIST). The second stage
draws 3 municipalities within the selected districts at the first stage, using equal-probability
without-replacement sampling.
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Source

Mexico’s National Institute of Statistics and Geography (INEGI), ‘Instituto Nacional de Estadistica
y Geografia’ http://www.inegi.org.mx/

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
mean(oaxaca$INCOME00, na.rm= TRUE) #Computes INCOME00 mean (note it has NA's)
median(oaxaca$INCOME00, na.rm= TRUE) #Computes INCOME00 median (note it has NA's)

Pk.PropNorm.U Inclusion probabilities proportional to a specified variable.

Description

Creates and normalises the 1st order inclusion probabilities proportional to a specified variable. In
the current context, normalisation means that the inclusion probabilities are less than or equal to 1.
Ideally, they should sum up to n, the sample size.

Usage

Pk.PropNorm.U(n, VecMOS.U)

Arguments

n the sample size. It must be an integer or a double-precision scalar with zero-
valued fractional part.

VecMOS.U vector of the variable called measure of size (MOS) to which the first-order
inclusion probabilities are to be proportional; its length is equal to the population
size. Values in VecMOS.U should be greater than zero (a warning message
appears if this does not hold). There must not be missing values.

Details

Although the normalisation procedure is well-known in the survey sampling literature, we follow
the procedure described in Chao (1982, p. 654). Hence, we obtain a unique set of inclusion proba-
bilities that are proportional to the MOS variable.

Value

The function returns a vector of length n with the inclusion probabilities.

Author(s)

Emilio Lopez Escobar.
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References

Chao, M. T. (1982) A general purpose unequal probability sampling plan. Biometrika 69, 653–656.

See Also

Pkl.Hajek.s
Pkl.Hajek.U

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Creates the normalised 1st order incl. probs. proportional
#to the variable oaxaca$HOMES00 and with sample size 373

pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
sum(pik.U) #Shows the sum is equal to the sample size 373
any(pik.U>1) #Shows there isn't any probability greater than 1
any(pik.U<0) #Shows there isn't any probability less than 0

Pkl.Hajek.s The Hajek approximation for the 2nd order (joint) inclusion probabil-
ities (sample based)

Description

Computes the Hajek (1964) approximation for the 2nd order (joint) inclusion probabilities utilising
only sample-based quantities.

Usage

Pkl.Hajek.s(VecPk.s)

Arguments

VecPk.s vector of the first-order inclusion probabilities; its length is equal to the sample
size. Values in VecPk.s must be greater than zero and less than or equal to one.
There must not be missing values.

Details

Let πk denote the inclusion probability of the k-th element in the sample s, and let πkl denote the
joint-inclusion probabilities of the k-th and l-th elements in the sample s. If the joint-inclusion
probabilities πkl are not available, the Hajek (1964) approximation can be used. Note that this
approximation is designed for large-entropy sampling designs, large samples, and large populations,
i.e. care should be taken with highly-stratified samples, e.g. Berger (2005).

The sample-based version of the Hajek (1964) approximation for the joint-inclusion probabilities
πkl (implemented by the current function) is:

πkl
.
= πkπl{1− d̂−1(1− πk)(1− πl)}
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where d̂ =
∑

k∈s(1− πk).

The approximation was originally developed for d → ∞, under the maximum-entropy sampling
design (see Hajek 1981, Theorem 3.3, Ch. 3 and 6), the Rejective Sampling design. It requires
that the utilised sampling design is of large entropy. An overview can be found in Berger and Tille
(2009). An account of different sampling designs, πkl approximations, and approximate variances
under large-entropy designs can be found in Tille (2006), Brewer and Donadio (2003), and Haziza,
Mecatti, and Rao (2008). Recently, Berger (2011) gave sufficient conditions under which Hajek’s
results still hold for large-entropy sampling designs that are not the maximum-entropy one.

Value

The function returns a (n by n) square matrix with the estimated joint inclusion probabilities, where
n is the sample size.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Berger, Y. G. (2011) Asymptotic consistency under large entropy sampling designs with unequal
probabilities. Pakistan Journal of Statististics, 27, 407–426.

Berger, Y. G. and Tille, Y. (2009) Sampling with unequal probabilities. In Sample Surveys: Design,
Methods and Applications (eds. D. Pfeffermann and C. R. Rao), 39–54. Elsevier, Amsterdam.

Brewer, K. R. W. and Donadio, M. E. (2003) The large entropy variance of the Horvitz-Thompson
estimator. Survey Methodology 29, 189–196.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

Hajek, J. (1981) Sampling From a Finite Population. Dekker, New York.

Haziza, D., Mecatti, F. and Rao, J. N. K. (2008) Evaluation of some approximate variance estimators
under the Rao-Sampford unequal probability sampling design. Metron, LXVI, 91–108.

Tille, Y. (2006) Sampling Algorithms. Springer, New York.

See Also

Pkl.Hajek.U
Pk.PropNorm.U

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
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#First 5 rows/cols of (sample-based) 2nd order incl. probs. matrix
pikl.s[1:5,1:5]

Pkl.Hajek.U The Hajek approximation for the 2nd order (joint) inclusion probabil-
ities (population based)

Description

Computes the Hajek (1964) approximation for the 2nd order (joint) inclusion probabilities utilising
population-based quantities.

Usage

Pkl.Hajek.U(VecPk.U)

Arguments

VecPk.U vector of the first-order inclusion probabilities; its length is equal to the popula-
tion size. Values in VecPk.U must be greater than zero and less than or equal to
one. There must not be missing values.

Details

Let πk denote the inclusion probability of the k-th element in the sample s, and let πkl denote the
joint-inclusion probabilities of the k-th and l-th elements in the sample s. If the joint-inclusion
probabilities πkl are not available, the Hajek (1964) approximation can be used. Note that this
approximation is designed for large-entropy sampling designs, large samples, and large populations,
i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

The population-based version of the Hajek (1964) approximation for the joint-inclusion probabili-
ties πkl (implemented by the current function) is:

πkl
.
= πkπl{1− d−1(1− πk)(1− πl)}

where d =
∑

k∈U πk(1− πk).

The approximation was originally developed for d → ∞, under the maximum-entropy sampling
design (see Hajek 1981, Theorem 3.3, Ch. 3 and 6), the Rejective Sampling design. It requires
that the utilised sampling design is of large entropy. An overview can be found in Berger and Tille
(2009). An account of different sampling designs, πkl approximations, and approximate variances
under large-entropy designs can be found in Tille (2006), Brewer and Donadio (2003), and Haziza,
Mecatti, and Rao (2008). Recently, Berger (2011) gave sufficient conditions under which Hajek’s
results still hold for large-entropy sampling designs that are not the maximum-entropy one.

Value

The function returns a (N by N ) square matrix with the estimated joint inclusion probabilities,
where N is the population size.
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Author(s)

Emilio Lopez Escobar.
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See Also

Pkl.Hajek.s
Pk.PropNorm.U

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
#(This approximation is only suitable for large-entropy sampling designs)
pikl.U <- Pkl.Hajek.U(pik.U) #Approximates 2nd order incl. probs. from U
#First 5 rows/cols of (population-based) 2nd order incl. probs. matrix
pikl.U[1:5,1:5]

VE.EB.HT.Mean.Hajek The Escobar-Berger unequal probability replicate variance estimator
for the Hajek (1971) estimator of a mean (Horvitz-Thompson form)

Description

Computes the Escobar-Berger (2013) unequal probability replicate variance estimator for the Hajek
estimator of a mean. It uses the Horvitz-Thompson (1952) variance form.
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Usage

VE.EB.HT.Mean.Hajek(VecY.s, VecPk.s, MatPkl.s,
VecAlpha.s = rep.int(1, length(VecPk.s)))

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

VecAlpha.s vector of the αk values; its length is equal to n, the sample size. Values in
VecAlpha.s can be different for each unit, and must be greater or equal to zero.
Escobar-Berger (2013) showed that this replicate variance estimator is valid for
αk ≥ 0. In particular, they suggest using αk = 1 for all units in the sample
(the default for VecAlpha.s if omitted in the function call). Using αk > 1
approximates the Demnati-Rao (2004) linearisation variance estimators. There
must not be missing values.

Details

For the population mean of the variable y:

ȳ =
1

N

∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of ȳ is given by:

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of ˆ̄yHajek can be estimated by the Escobar-Berger (2013) unequal probability replicate
variance estimator (implemented by the current function):

V̂ (ˆ̄yHajek) =
∑
k∈s

∑
l∈s

πkl − πkπl

πkl
ν̆kν̆l

where
ν̆k = wαk

k

(
ˆ̄yHajek − ˆ̄y∗Hajek,k

)
for some αk ≥ 0 (suggested to be 1, see below comments) and with

ˆ̄y∗Hajek,k =

∑
l∈s wlyl − w1−αk

k yk∑
l∈s wl − w1−αk

k
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Regarding the value of αk, Escobar-Berger (2013) show that V̂ (ˆ̄yHajek) is valid for αk ≥ 0 but
conclude that αk > 0 should be used as αk = 0 corresponds to a naive biased and unstable
jackknife. They recommend αk = 1 or αk > 1. If αk = 1, V̂ (ˆ̄yHajek) reduces to the Escobar-
Berger (2011) jackknife. Using αk > 1 approximates the empirical influence function, i.e. the
Gateaux (1919) derivative, or Demnati-Rao (2004) linearisation variance estimators. The larger the
αk, the closer the approximation. Further, Escobar-Berger (2013) give an intuitive explanation of
the replication method from a jackknife and bootstrap perspective.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey
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Escobar, E. L. and Berger, Y. G. (2011) Jackknife variance estimation for functions of Horvitz-
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Escobar, E. L. and Berger, Y. G. (2013) A new replicate variance estimator for unequal probability
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Mathematique de France, 47, 70–96.
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Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

See Also

VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.B.Mean.Hajek
VE.Jk.EB.SW2.Mean.Hajek
VE.EB.SYG.Mean.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable y1
y2 <- oaxaca$POPMAL10 #Defines the variable y2
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Alpha.s <- rep(2, times=373) #Defines the vector with Alpha values
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek mean point estimator using y1
VE.EB.HT.Mean.Hajek(y1[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the Hajek mean point estimator using y2
VE.EB.HT.Mean.Hajek(y2[s==1], pik.U[s==1], pikl.s, Alpha.s)

VE.EB.HT.Ratio The Escobar-Berger unequal probability replicate variance estimator
for the estimator of a ratio (Horvitz-Thompson form)

Description

Computes the Escobar-Berger (2013) unequal probability replicate variance estimator for the esti-
mator of a ratio of two totals/means. It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.EB.HT.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s,
VecAlpha.s = rep.int(1, length(VecPk.s)))

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecX.s. There must
not be missing values.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecY.s. There must not
be missing values. All values of VecX.s should be greater than zero. A warning
is displayed if this does not hold, and computations continue if mathematical
expressions allow this kind of values for the denominator variable.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

VecAlpha.s vector of the αk values; its length is equal to n, the sample size. Values in
VecAlpha.s can be different for each unit, and must be greater or equal to zero.
Escobar-Berger (2013) showed that this replicate variance estimator is valid for
αk ≥ 0. In particular, they suggest using αk = 1 for all units in the sample
(the default for VecAlpha.s if omitted in the function call). Using αk > 1
approximates the Demnati-Rao (2004) linearisation variance estimators. There
must not be missing values.
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Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of R̂ can be estimated by the Escobar-Berger (2013) unequal probability replicate variance
estimator (implemented by the current function):

V̂ (R̂) =
∑
k∈s

∑
l∈s

πkl − πkπl

πkl
ν̆kν̆l

where
ν̆k = wαk

k

(
R̂− R̂∗

k

)
for some αk ≥ 0 (suggested to be 1, see below comments) and with

R̂∗
k =

(∑
l∈s wlyl − w1−αk

k yk
)
/
(∑

l∈s wl − w1−αk

k

)(∑
l∈s wlxl − w1−αk

k xk

)
/
(∑

l∈s wl − w1−αk

k

) =

∑
l∈s wlyl − w1−αk

k yk∑
l∈s wlxl − w1−αk

k xk

Regarding the value of αk, Escobar-Berger (2013) show that V̂ (R̂) is valid for αk ≥ 0 but conclude
that αk > 0 should be used as αk = 0 corresponds to a naive biased and unstable jackknife.
They recommend αk = 1 or αk > 1. If αk = 1, V̂ (R̂) reduces to the Escobar-Berger (2011)
jackknife. Using αk > 1 approximates the empirical influence function, i.e. the Gateaux (1919)
derivative, or Demnati-Rao (2004) linearisation variance estimators. The larger the αk, the closer
the approximation. Further, Escobar-Berger (2013) give an intuitive explanation of the replication
method from a jackknife and bootstrap perspective.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey
Methodology, 30, 17–26.

Escobar, E. L. and Berger, Y. G. (2011) Jackknife variance estimation for functions of Horvitz-
Thompson estimators under unequal probability sampling without replacement. In Proceeding of
the 58th World Statistics Congress. Dublin, Ireland: International Statistical Institute.
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Escobar, E. L. and Berger, Y. G. (2013) A new replicate variance estimator for unequal probability
sampling without replacement. Canadian Journal of Statistics 41, 3, 508–524.

Gateaux, R. (1919) Fonctions d’une infinite de variables indeependantes. Bulletin de la Societe
Mathematique de France, 47, 70–96.
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a finite universe. Journal of the American Statistical Association, 47, 663–685.

See Also

VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.SYG.Ratio

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
Alpha.s <- rep(2, times=373) #Defines the vector with Alpha values
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.EB.HT.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s) #Using default VecAlpha.s
#Computes the var. est. of the ratio point estimator using y2
VE.EB.HT.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s, Alpha.s)

VE.EB.HT.Total.Hajek The Escobar-Berger unequal probability replicate variance estimator
for the Hajek (1971) estimator of a total (Horvitz-Thompson form)

Description

Computes the Escobar-Berger (2013) unequal probability replicate variance estimator for the Hajek
estimator of a total. It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.EB.HT.Total.Hajek(VecY.s, VecPk.s, MatPkl.s, N,
VecAlpha.s = rep.int(1, length(VecPk.s)))
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Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part.

VecAlpha.s vector of the αk values; its length is equal to n, the sample size. Values in
VecAlpha.s can be different for each unit, and must be greater or equal to zero.
Escobar-Berger (2013) showed that this replicate variance estimator is valid for
αk ≥ 0. In particular, they suggest using αk = 1 for all units in the sample
(the default for VecAlpha.s if omitted in the function call). Using αk > 1
approximates the Demnati-Rao (2004) linearisation variance estimators. There
must not be missing values.

Details

For the population total of the variable y:

t =
∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of t is given by:

t̂Hajek = N

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of t̂Hajek can be estimated by the Escobar-Berger (2013) unequal probability replicate
variance estimator (implemented by the current function):

V̂ (t̂Hajek) =
∑
k∈s

∑
l∈s

πkl − πkπl

πkl
ν̆kν̆l

where
ν̆k = wαk

k

(
t̂Hajek − t̂∗Hajek,k

)
for some αk ≥ 0 (suggested to be 1, see below comments) and with

t̂∗Hajek,k = N

∑
l∈s wlyl − w1−αk

k yk∑
l∈s wl − w1−αk

k

Regarding the value of αk, Escobar-Berger (2013) show that V̂ (t̂Hajek) is valid for αk ≥ 0 but
conclude that αk > 0 should be used as αk = 0 corresponds to a naive biased and unstable
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jackknife. They recommend αk = 1 or αk > 1. If αk = 1, V̂ (t̂Hajek) reduces to the Escobar-
Berger (2011) jackknife. Using αk > 1 approximates the empirical influence function, i.e. the
Gateaux (1919) derivative, or Demnati-Rao (2004) linearisation variance estimators. The larger the
αk, the closer the approximation. Further, Escobar-Berger (2013) give an intuitive explanation of
the replication method from a jackknife and bootstrap perspective.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References
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the 58th World Statistics Congress. Dublin, Ireland: International Statistical Institute.
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Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

See Also

VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek
VE.EB.SYG.Total.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
Alpha.s <- rep(2, times=373) #Defines the vector with Alpha values
#This approximation is only suitable for large-entropy sampling designs
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pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek total point estimator using y1
VE.EB.HT.Total.Hajek(y1[s==1], pik.U[s==1], pikl.s, N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.EB.HT.Total.Hajek(y2[s==1], pik.U[s==1], pikl.s, N, Alpha.s)

VE.EB.SYG.Mean.Hajek The Escobar-Berger unequal probability replicate variance estimator
for the Hajek (1971) estimator of a mean (Sen-Yates-Grundy form)

Description

Computes the Escobar-Berger (2013) unequal probability replicate variance estimator for the Hajek
estimator of a mean. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.EB.SYG.Mean.Hajek(VecY.s, VecPk.s, MatPkl.s,
VecAlpha.s = rep.int(1, length(VecPk.s)))

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

VecAlpha.s vector of the αk values; its length is equal to n, the sample size. Values in
VecAlpha.s can be different for each unit, and must be greater or equal to zero.
Escobar-Berger (2013) showed that this replicate variance estimator is valid for
αk ≥ 0. In particular, they suggest using αk = 1 for all units in the sample
(the default for VecAlpha.s if omitted in the function call). Using αk > 1
approximates the Demnati-Rao (2004) linearisation variance estimators. There
must not be missing values.

Details

For the population mean of the variable y:

ȳ =
1

N

∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of ȳ is given by:

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk
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where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of ˆ̄yHajek can be estimated by the Escobar-Berger (2013) unequal probability replicate
variance estimator (implemented by the current function):

V̂ (ˆ̄yHajek) =
−1

2

∑
k∈s

∑
l∈s

πkl − πkπl

πkl
(ν̆k − ν̆l)

2

where
ν̆k = wαk

k

(
ˆ̄yHajek − ˆ̄y∗Hajek,k

)
for some αk ≥ 0 (suggested to be 1, see below comments) and with

ˆ̄y∗Hajek,k =

∑
l∈s wlyl − w1−αk

k yk∑
l∈s wl − w1−αk

k

Regarding the value of αk, Escobar-Berger (2013) show that V̂ (ˆ̄yHajek) is valid for αk ≥ 0 but
conclude that αk > 0 should be used as αk = 0 corresponds to a naive biased and unstable
jackknife. They recommend αk = 1 or αk > 1. If αk = 1, V̂ (ˆ̄yHajek) reduces to the Escobar-
Berger (2011) jackknife. Using αk > 1 approximates the empirical influence function, i.e. the
Gateaux (1919) derivative, or Demnati-Rao (2004) linearisation variance estimators. The larger the
αk, the closer the approximation. Further, Escobar-Berger (2013) give an intuitive explanation of
the replication method from a jackknife and bootstrap perspective.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey
Methodology, 30, 17–26.

Escobar, E. L. and Berger, Y. G. (2011) Jackknife variance estimation for functions of Horvitz-
Thompson estimators under unequal probability sampling without replacement. In Proceeding of
the 58th World Statistics Congress. Dublin, Ireland: International Statistical Institute.

Escobar, E. L. and Berger, Y. G. (2013) A new replicate variance estimator for unequal probability
sampling without replacement. Canadian Journal of Statistics 41, 3, 508–524.

Gateaux, R. (1919) Fonctions d’une infinite de variables indeependantes. Bulletin de la Societe
Mathematique de France, 47, 70–96.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.
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Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal
of the Indian Society of Agricultural Statistics, 5, 119–127.

Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability
proportional to size. Journal of the Royal Statistical Society B, 15, 253–261.

See Also

VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.HT.Mean.Hajek
VE.Jk.B.Mean.Hajek
VE.Jk.EB.SW2.Mean.Hajek
VE.EB.HT.Mean.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
Alpha.s <- rep(2, times=373) #Defines the vector with Alpha values
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek mean point estimator using y1
VE.EB.SYG.Mean.Hajek(y1[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the Hajek mean point estimator using y2
VE.EB.SYG.Mean.Hajek(y2[s==1], pik.U[s==1], pikl.s, Alpha.s)

VE.EB.SYG.Ratio The Escobar-Berger unequal probability replicate variance estimator
for the estimator of a ratio (Sen-Yates-Grundy form)

Description

Computes the Escobar-Berger (2013) unequal probability replicate variance estimator for the esti-
mator of a ratio of two totals/means. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.EB.SYG.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s,
VecAlpha.s = rep.int(1, length(VecPk.s)))

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecX.s. There must
not be missing values.
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VecX.s vector of the denominator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecY.s. There must not
be missing values. All values of VecX.s should be greater than zero. A warning
is displayed if this does not hold, and computations continue if mathematical
expressions allow this kind of values for the denominator variable.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

VecAlpha.s vector of the αk values; its length is equal to n, the sample size. Values in
VecAlpha.s can be different for each unit, and must be greater or equal to zero.
Escobar-Berger (2013) showed that this replicate variance estimator is valid for
αk ≥ 0. In particular, they suggest using αk = 1 for all units in the sample
(the default for VecAlpha.s if omitted in the function call). Using αk > 1
approximates the Demnati-Rao (2004) linearisation variance estimators. There
must not be missing values.

Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of R̂ can be estimated by the Escobar-Berger (2013) unequal probability replicate variance
estimator (implemented by the current function):

V̂ (R̂) =
−1

2

∑
k∈s

∑
l∈s

πkl − πkπl

πkl
(ν̆k − ν̆l)

2

where
ν̆k = wαk

k

(
R̂− R̂∗

k

)
for some αk ≥ 0 (suggested to be 1, see below comments) and with

R̂∗
k =

(∑
l∈s wlyl − w1−αk

k yk
)
/
(∑

l∈s wl − w1−αk

k

)(∑
l∈s wlxl − w1−αk

k xk

)
/
(∑

l∈s wl − w1−αk

k

) =

∑
l∈s wlyl − w1−αk

k yk∑
l∈s wlxl − w1−αk

k xk

Regarding the value of αk, Escobar-Berger (2013) show that V̂ (R̂) is valid for αk ≥ 0 but conclude
that αk > 0 should be used as αk = 0 corresponds to a naive biased and unstable jackknife.
They recommend αk = 1 or αk > 1. If αk = 1, V̂ (R̂) reduces to the Escobar-Berger (2011)
jackknife. Using αk > 1 approximates the empirical influence function, i.e. the Gateaux (1919)
derivative, or Demnati-Rao (2004) linearisation variance estimators. The larger the αk, the closer
the approximation. Further, Escobar-Berger (2013) give an intuitive explanation of the replication
method from a jackknife and bootstrap perspective.
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Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey
Methodology, 30, 17–26.

Escobar, E. L. and Berger, Y. G. (2011) Jackknife variance estimation for functions of Horvitz-
Thompson estimators under unequal probability sampling without replacement. In Proceeding of
the 58th World Statistics Congress. Dublin, Ireland: International Statistical Institute.

Escobar, E. L. and Berger, Y. G. (2013) A new replicate variance estimator for unequal probability
sampling without replacement. Canadian Journal of Statistics 41, 3, 508–524.

Gateaux, R. (1919) Fonctions d’une infinite de variables indeependantes. Bulletin de la Societe
Mathematique de France, 47, 70–96.

Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal
of the Indian Society of Agricultural Statistics, 5, 119–127.

Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability
proportional to size. Journal of the Royal Statistical Society B, 15, 253–261.

See Also

VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
Alpha.s <- rep(2, times=373) #Defines the vector with Alpha values
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.EB.SYG.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s) #Using default VecAlpha.s
#Computes the var. est. of the ratio point estimator using y2
VE.EB.SYG.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s, Alpha.s)
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VE.EB.SYG.Total.Hajek The Escobar-Berger unequal probability replicate variance estimator
for the Hajek (1971) estimator of a total (Sen-Yates-Grundy form)

Description

Computes the Escobar-Berger (2013) unequal probability replicate variance estimator for the Hajek
estimator of a total. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.EB.SYG.Total.Hajek(VecY.s, VecPk.s, MatPkl.s, N,
VecAlpha.s = rep.int(1, length(VecPk.s)))

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part.

VecAlpha.s vector of the αk values; its length is equal to n, the sample size. Values in
VecAlpha.s can be different for each unit, and must be greater or equal to zero.
Escobar-Berger (2013) showed that this replicate variance estimator is valid for
αk ≥ 0. In particular, they suggest using αk = 1 for all units in the sample
(the default for VecAlpha.s if omitted in the function call). Using αk > 1
approximates the Demnati-Rao (2004) linearisation variance estimators. There
must not be missing values.

Details

For the population total of the variable y:

t =
∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of t is given by:

t̂Hajek = N

∑
k∈s wkyk∑
k∈s wk
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where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of t̂Hajek can be estimated by the Escobar-Berger (2013) unequal probability replicate
variance estimator (implemented by the current function):

V̂ (t̂Hajek) =
−1

2

∑
k∈s

∑
l∈s

πkl − πkπl

πkl
(ν̆k − ν̆l)

2

where
ν̆k = wαk

k

(
t̂Hajek − t̂∗Hajek,k

)
for some αk ≥ 0 (suggested to be 1, see below comments) and with

t̂∗Hajek,k = N

∑
l∈s wlyl − w1−αk

k yk∑
l∈s wl − w1−αk

k

Regarding the value of αk, Escobar-Berger (2013) show that V̂ (t̂Hajek) is valid for αk ≥ 0 but
conclude that αk > 0 should be used as αk = 0 corresponds to a naive biased and unstable
jackknife. They recommend αk = 1 or αk > 1. If αk = 1, V̂ (t̂Hajek) reduces to the Escobar-
Berger (2011) jackknife. Using αk > 1 approximates the empirical influence function, i.e. the
Gateaux (1919) derivative, or Demnati-Rao (2004) linearisation variance estimators. The larger the
αk, the closer the approximation. Further, Escobar-Berger (2013) give an intuitive explanation of
the replication method from a jackknife and bootstrap perspective.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey
Methodology, 30, 17–26.

Escobar, E. L. and Berger, Y. G. (2011) Jackknife variance estimation for functions of Horvitz-
Thompson estimators under unequal probability sampling without replacement. In Proceeding of
the 58th World Statistics Congress. Dublin, Ireland: International Statistical Institute.

Escobar, E. L. and Berger, Y. G. (2013) A new replicate variance estimator for unequal probability
sampling without replacement. Canadian Journal of Statistics 41, 3, 508–524.

Gateaux, R. (1919) Fonctions d’une infinite de variables indeependantes. Bulletin de la Societe
Mathematique de France, 47, 70–96.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.
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Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal
of the Indian Society of Agricultural Statistics, 5, 119–127.

Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability
proportional to size. Journal of the Royal Statistical Society B, 15, 253–261.

See Also

VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek
VE.EB.SYG.Total.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
Alpha.s <- rep(2, times=373) #Defines the vector with Alpha values
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek total point estimator using y1
VE.EB.SYG.Total.Hajek(y1[s==1], pik.U[s==1], pikl.s, N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.EB.SYG.Total.Hajek(y2[s==1], pik.U[s==1], pikl.s, N, Alpha.s)

VE.Hajek.Mean.NHT The Hajek variance estimator for the Narain-Horvitz-Thompson point
estimator for a mean

Description

Computes the Hajek (1964) variance estimator for the Narain (1951); Horvitz-Thompson (1952)
point estimator for a population mean.

Usage

VE.Hajek.Mean.NHT(VecY.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.
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N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part.

Details

For the population mean of the variable y:

ȳ =
1

N

∑
k∈U

yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of ȳ is given by:

ˆ̄yNHT =
1

N

∑
k∈s

yk
πk

where πk denotes the inclusion probability of the k-th element in the sample s. For large-entropy
sampling designs, the variance of ˆ̄yNHT is approximated by the Hajek (1964) variance:

V (ˆ̄yNHT ) =
1

N(N − 1)

[∑
k∈U

y2k
πk

(1− πk)− dG2

]

with d =
∑

k∈U πk(1− πk) and G = d−1
∑

k∈U (1− πk)yk.

The variance V (t̂NHT ) can be estimated by the variance estimator (implemented by the current
function):

V̂ (ˆ̄yNHT ) =
n

N2(n− 1)

[∑
k∈s

(
yk
πk

)2

(1− πk)− d̂Ĝ2

]
where d̂ =

∑
k∈s(1− πk) and Ĝ = d̂−1

∑
k∈s(1− π)yk/πk.

Note that the Hajek (1964) variance approximation is designed for large-entropy sampling designs,
large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g.
Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.
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See Also

VE.HT.Mean.NHT
VE.SYG.Mean.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
#Computes the (approximate) var. est. of the NHT point est. for y1
VE.Hajek.Mean.NHT(y1[s==1], pik.U[s==1], N)
#Computes the (approximate) var. est. of the NHT point est. for y2
VE.Hajek.Mean.NHT(y2[s==1], pik.U[s==1], N)

VE.Hajek.Total.NHT The Hajek variance estimator for the Narain-Horvitz-Thompson point
estimator for a total

Description

Computes the Hajek (1964) variance estimator for the Narain (1951); Horvitz-Thompson (1952)
point estimator for a population total.

Usage

VE.Hajek.Total.NHT(VecY.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

Details

For the population total of the variable y:

t =
∑
k∈U

yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of t is given by:

t̂NHT =
∑
k∈s

yk
πk
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where πk denotes the inclusion probability of the k-th element in the sample s. For large-entropy
sampling designs, the variance of t̂NHT is approximated by the Hajek (1964) variance:

V (t̂NHT ) =
N

N − 1

[∑
k∈U

y2k
πk

(1− πk)− dG2

]

with d =
∑

k∈U πk(1− πk) and G = d−1
∑

k∈U (1− πk)yk.

The variance V (t̂NHT ) can be estimated by the variance estimator (implemented by the current
function):

V̂ (t̂NHT ) =
n

n− 1

[∑
k∈s

(
yk
πk

)2

(1− πk)− d̂Ĝ2

]

where d̂ =
∑

k∈s(1− πk) and Ĝ = d̂−1
∑

k∈s(1− π)yk/πk.

Note that the Hajek (1964) variance approximation is designed for large-entropy sampling designs,
large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g.
Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.

See Also

VE.HT.Total.NHT
VE.SYG.Total.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$SURFAC05) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sSURFAC #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
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#Computes the (approximate) var. est. of the NHT point est. from y1
VE.Hajek.Total.NHT(y1[s==1], pik.U[s==1])
#Computes the (approximate) var. est. of the NHT point est. from y2
VE.Hajek.Total.NHT(y2[s==1], pik.U[s==1])

VE.HT.Mean.NHT The Horvitz-Thompson variance estimator for the Narain-Horvitz-
Thompson point estimator for a mean

Description

Computes the Horvitz-Thompson (1952) variance estimator for the Narain (1951); Horvitz-Thompson
(1952) point estimator for a population mean.

Usage

VE.HT.Mean.NHT(VecY.s, VecPk.s, MatPkl.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part.

Details

For the population mean of the variable y:

ȳ =
1

N

∑
k∈U

yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of ȳ is given by:

ˆ̄yNHT =
1

N

∑
k∈s

yk
πk

where πk denotes the inclusion probability of the k-th element in the sample s. Let πkl denotes the
joint-inclusion probabilities of the k-th and l-th elements in the sample s. The variance of ˆ̄yNHT is
given by:

V (ˆ̄yNHT ) =
1

N2

∑
k∈U

∑
l∈U

(πkl − πkπl)
yk
πk

yl
πl
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which can therefore be estimated by the Horvitz-Thompson variance estimator (implemented by the
current function):

V̂ (ˆ̄yNHT ) =
1

N2

∑
k∈s

∑
l∈s

πkl − πkπl

πkl

yk
πk

yl
πl

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.

See Also

VE.SYG.Mean.NHT
VE.Hajek.Mean.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$SURFAC05) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sSURFAC #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the variance estimation of the NHT point estimator for y1
VE.HT.Mean.NHT(y1[s==1], pik.U[s==1], pikl.s, N)
#Computes the variance estimation of the NHT point estimator for y2
VE.HT.Mean.NHT(y2[s==1], pik.U[s==1], pikl.s, N)

VE.HT.Total.NHT The Horvitz-Thompson variance estimator for the Narain-Horvitz-
Thompson point estimator for a total

Description

Computes the Horvitz-Thompson (1952) variance estimator for the Narain (1951); Horvitz-Thompson
(1952) point estimator for a population total.
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Usage

VE.HT.Total.NHT(VecY.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

Details

For the population total of the variable y:

t =
∑
k∈U

yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of t is given by:

t̂NHT =
∑
k∈s

yk
πk

where πk denotes the inclusion probability of the k-th element in the sample s. Let πkl denotes the
joint-inclusion probabilities of the k-th and l-th elements in the sample s. The variance of t̂NHT is
given by:

V (t̂NHT ) =
∑
k∈U

∑
l∈U

(πkl − πkπl)
yk
πk

yl
πl

which can therefore be estimated by the Horvitz-Thompson variance estimator (implemented by the
current function):

V̂ (t̂NHT ) =
∑
k∈s

∑
l∈s

πkl − πkπl

πkl

yk
πk

yl
πl

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.
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See Also

VE.SYG.Total.NHT
VE.Hajek.Total.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the NHT point estimator for y1
VE.HT.Total.NHT(y1[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the NHT point estimator for y2
VE.HT.Total.NHT(y2[s==1], pik.U[s==1], pikl.s)

VE.Jk.B.Corr.Hajek The Berger (2007) unequal probability jackknife variance estimator
for the estimator of a correlation coefficient using the Hajek point es-
timator

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the estimator of a
correlation coefficient of two variables using the Hajek (1971) point estimator.

Usage

VE.Jk.B.Corr.Hajek(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.
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Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

ĈHajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)√∑

k∈s wk(yk − ˆ̄yHajek)2
√∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. The
variance of ĈHajek can be estimated by the Berger (2007) unequal probability jackknife variance
estimator (implemented by the current function):

V̂ (ĈHajek) =
∑
k∈s

n

n− 1
(1− πk)

(
εk − B̂

)2
where

B̂ =

∑
k∈s(1− πk)εk∑
k∈s(1− πk)

and

εk = (1− w̃k)
(
ĈHajek − ĈHajek(k)

)
with

w̃k =
wk∑
l∈s wl

and where ĈHajek(k) has the same functional form as ĈHajek but omitting the k-th element from
the sample s. Note that this variance estimator implicitly utilises the Hajek (1964) approximations
that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care
should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.
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See Also

VE.Jk.Tukey.Corr.Hajek
VE.Jk.CBS.HT.Corr.Hajek
VE.Jk.CBS.SYG.Corr.Hajek
VE.Jk.EB.SW2.Corr.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the var. est. of the corr. coeff. point estimator using y1
VE.Jk.B.Corr.Hajek(y1[s==1], x[s==1], pik.U[s==1])
#Computes the var. est. of the corr. coeff. point estimator using y2
VE.Jk.B.Corr.Hajek(y2[s==1], x[s==1], pik.U[s==1])

VE.Jk.B.Mean.Hajek The Berger (2007) unequal probability jackknife variance estimator
for the Hajek estimator of a mean

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the Hajek (1971)
estimator of a mean.

Usage

VE.Jk.B.Mean.Hajek(VecY.s, VecPk.s)
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Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

Details

For the population mean of the variable y:

ȳ =
1

N

∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of ȳ is given by:

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of ˆ̄yHajek can be estimated by the Berger (2007) unequal probability jackknife variance
estimator (implemented by the current function):

V̂ (ˆ̄yHajek) =
∑
k∈s

n

n− 1
(1− πk)

(
εk − B̂

)2
where

B̂ =

∑
k∈s(1− πk)εk∑
k∈s(1− πk)

and
εk = (1− w̃k)

(
ˆ̄yHajek − ˆ̄yHajek(k)

)
with

w̃k =
wk∑
l∈s wl

and

ˆ̄yHajek(k) =

∑
l∈s,l ̸=k wlyl∑
l∈s,l ̸=k wl

Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are de-
signed for large-entropy sampling designs, large samples, and large populations, i.e., care should be
taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.
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See Also

VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.HT.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.EB.SW2.Mean.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#Computes the var. est. of the Hajek mean point estimator using y1
VE.Jk.B.Mean.Hajek(y1[s==1], pik.U[s==1])
#Computes the var. est. of the Hajek mean point estimator using y2
VE.Jk.B.Mean.Hajek(y2[s==1], pik.U[s==1])

VE.Jk.B.Ratio The Berger (2007) unequal probability jackknife variance estimator
for the estimator of a ratio

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the estimator of a
ratio of two totals/means.

Usage

VE.Jk.B.Ratio(VecY.s, VecX.s, VecPk.s)
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Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecX.s. There must
not be missing values.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecY.s. There must not
be missing values. All values of VecX.s should be greater than zero. A warning
is displayed if this does not hold, and computations continue if mathematical
expressions allow this kind of values for the denominator variable.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.
The variance of R̂ can be estimated by the Berger (2007) unequal probability jackknife variance
estimator (implemented by the current function):

V̂ (R̂) =
∑
k∈s

n

n− 1
(1− πk)

(
εk − B̂

)2
where

B̂ =

∑
k∈s(1− πk)εk∑
k∈s(1− πk)

and
εk = (1− w̃k)

(
R̂− R̂(k)

)
with

w̃k =
wk∑
l∈s wl

and

R̂(k) =

∑
l∈s,l ̸=k wlyl/

∑
l∈s,l ̸=k wl∑

l∈s,l ̸=k wlxl/
∑

l∈s,l ̸=k wl
=

∑
l∈s,l ̸=k wlyl∑
l∈s,l ̸=k wlxl

Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are de-
signed for large-entropy sampling designs, large samples, and large populations, i.e., care should be
taken with highly-stratified samples, e.g. Berger (2005).
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Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Berger, Y. G. (2007) A jackknife variance estimator for unistage stratified samples with unequal
probabilities. Biometrika 94, 953–964.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

See Also

VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
#Computes the var. est. of the ratio point estimator using y1
VE.Jk.B.Ratio(y1[s==1], x[s==1], pik.U[s==1])
#Computes the var. est. of the ratio point estimator using y2
VE.Jk.B.Ratio(y2[s==1], x[s==1], pik.U[s==1])

VE.Jk.B.RegCo.Hajek The Berger (2007) unequal probability jackknife variance estimator
for the estimator of the regression coefficient using the Hajek point
estimator
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Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the estimator of
the regression coefficient using the Hajek (1971) point estimator.

Usage

VE.Jk.B.RegCo.Hajek(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population regression coefficient β, assuming that the population size N is unknown (see Sarn-
dal et al., 1992, Sec. 5.10), can be estimated by:

β̂Hajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek and ˆ̄xHajek are the Hajek (1971) point estimators of the population means ȳ =
N−1

∑
k∈U yk and x̄ = N−1

∑
k∈U xk, respectively,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

ˆ̄xHajek =

∑
k∈s wkxk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. The
variance of β̂Hajek can be estimated by the Berger (2007) unequal probability jackknife variance
estimator (implemented by the current function):

V̂ (β̂Hajek) =
∑
k∈s

n

n− 1
(1− πk)

(
εk − B̂

)2
where

B̂ =

∑
k∈s(1− πk)εk∑
k∈s(1− πk)
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and
εk = (1− w̃k)

(
β̂Hajek − β̂Hajek(k)

)
with

w̃k =
wk∑
l∈s wl

and where β̂Hajek(k) has the same functional form as β̂Hajek but omitting the k-th element from
the sample s. Note that this variance estimator implicitly utilises the Hajek (1964) approximations
that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care
should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.
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See Also

VE.Jk.B.RegCoI.Hajek
VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.EB.SW2.RegCo.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
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#Computes the var. est. of the regression coeff. point estimator using y1
VE.Jk.B.RegCo.Hajek(y1[s==1], x[s==1], pik.U[s==1])
#Computes the var. est. of the regression coeff. point estimator using y2
VE.Jk.B.RegCo.Hajek(y2[s==1], x[s==1], pik.U[s==1])

VE.Jk.B.RegCoI.Hajek The Berger (2007) unequal probability jackknife variance estimator
for the estimator of the intercept regression coefficient using the Hajek
point estimator

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the estimator of
the intercept regression coefficient using the Hajek (1971) point estimator.

Usage

VE.Jk.B.RegCoI.Hajek(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population intercept regression coefficient α, assuming that the population size N is unknown
(see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

α̂Hajek = ˆ̄yHajek −
∑

k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑
k∈s wk(xk − ˆ̄xHajek)2

ˆ̄xHajek

where ˆ̄yHajek and ˆ̄xHajek are the Hajek (1971) point estimators of the population means ȳ =
N−1

∑
k∈U yk and x̄ = N−1

∑
k∈U xk, respectively,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk
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ˆ̄xHajek =

∑
k∈s wkxk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. The
variance of α̂Hajek can be estimated by the Berger (2007) unequal probability jackknife variance
estimator (implemented by the current function):

V̂ (α̂Hajek) =
∑
k∈s

n

n− 1
(1− πk)

(
εk − B̂

)2
where

B̂ =

∑
k∈s(1− πk)εk∑
k∈s(1− πk)

and
εk = (1− w̃k)

(
α̂Hajek − α̂Hajek(k)

)
with

w̃k =
wk∑
l∈s wl

and where α̂Hajek(k) has the same functional form as α̂Hajek but omitting the k-th element from
the sample s. Note that this variance estimator implicitly utilises the Hajek (1964) approximations
that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care
should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.
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See Also

VE.Jk.B.RegCo.Hajek
VE.Jk.Tukey.RegCoI.Hajek
VE.Jk.CBS.HT.RegCoI.Hajek
VE.Jk.CBS.SYG.RegCoI.Hajek
VE.Jk.EB.SW2.RegCoI.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the var. est. of the intercept reg. coeff. point estimator using y1
VE.Jk.B.RegCoI.Hajek(y1[s==1], x[s==1], pik.U[s==1])
#Computes the var. est. of the intercept reg. coeff. point estimator using y2
VE.Jk.B.RegCoI.Hajek(y2[s==1], x[s==1], pik.U[s==1])

VE.Jk.B.Total.Hajek The Berger (2007) unequal probability jackknife variance estimator
for the Hajek estimator of a total

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the Hajek (1971)
estimator of a total.

Usage

VE.Jk.B.Total.Hajek(VecY.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part.
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Details

For the population total of the variable y:

t =
∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of t is given by:

t̂Hajek = N

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of t̂Hajek can be estimated by the Berger (2007) unequal probability jackknife variance
estimator (implemented by the current function):

V̂ (t̂Hajek) =
∑
k∈s

n

n− 1
(1− πk)

(
εk − B̂

)2
where

B̂ =

∑
k∈s(1− πk)εk∑
k∈s(1− πk)

and
εk = (1− w̃k)

(
t̂Hajek − t̂Hajek(k)

)
with

w̃k =
wk∑
l∈s wl

and

t̂Hajek(k) = N

∑
l∈s,l ̸=k wlyl∑
l∈s,l ̸=k wl

Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are de-
signed for large-entropy sampling designs, large samples, and large populations, i.e., care should be
taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References
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population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.
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See Also

VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#Computes the var. est. of the Hajek total point estimator using y1
VE.Jk.B.Total.Hajek(y1[s==1], pik.U[s==1], N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.Jk.B.Total.Hajek(y2[s==1], pik.U[s==1], N)

VE.Jk.CBS.HT.Corr.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of a correlation coefficient using the Hajek
point estimator (Horvitz-Thompson form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the estimator of a correlation coefficient of two variables using the Hajek (1971) point
estimator. It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.Jk.CBS.HT.Corr.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.
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VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

ĈHajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)√∑

k∈s wk(yk − ˆ̄yHajek)2
√∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.
The variance of ĈHajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (ĈHajek) =
∑
k∈s

∑
l∈s

πkl − πkπl

πkl
εkεl

where
εk = (1− w̃k)

(
ĈHajek − ĈHajek(k)

)
with

w̃k =
wk∑
l∈s wl

and where ĈHajek(k) has the same functional form as ĈHajek but omitting the k-th element from
the sample s.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.
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See Also

VE.Jk.Tukey.Corr.Hajek
VE.Jk.CBS.SYG.Corr.Hajek
VE.Jk.B.Corr.Hajek
VE.Jk.EB.SW2.Corr.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the corr. coeff. point estimator using y1
VE.Jk.CBS.HT.Corr.Hajek(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the corr. coeff. point estimator using y2
VE.Jk.CBS.HT.Corr.Hajek(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.HT.Mean.Hajek

The Campbell-Berger-Skinner unequal probability jackknife vari-
ance estimator for the Hajek (1971) estimator of a mean (Horvitz-
Thompson form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the Hajek estimator of a mean. It uses the Horvitz-Thompson (1952) variance form.
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Usage

VE.Jk.CBS.HT.Mean.Hajek(VecY.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

Details

For the population mean of the variable y:

ȳ =
1

N

∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of ȳ is given by:

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.
The variance of ˆ̄yHajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (ˆ̄yHajek) =
∑
k∈s

∑
l∈s

πkl − πkπl

πkl
εkεl

where
εk = (1− w̃k)

(
ˆ̄yHajek − ˆ̄yHajek(k)

)
with

w̃k =
wk∑
l∈s wl

and

ˆ̄yHajek(k) =

∑
l∈s,l ̸=k wlyl∑
l∈s,l ̸=k wl

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.
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See Also

VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.B.Mean.Hajek
VE.Jk.EB.SW2.Mean.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek mean point estimator using y1
VE.Jk.CBS.HT.Mean.Hajek(y1[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the Hajek mean point estimator using y2
VE.Jk.CBS.HT.Mean.Hajek(y2[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.HT.Ratio The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of a ratio (Horvitz-Thompson form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the estimator of a ratio of two totals/means. It uses the Horvitz-Thompson (1952) variance
form.

Usage

VE.Jk.CBS.HT.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s)
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Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecX.s. There must
not be missing values.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecY.s. There must not
be missing values. All values of VecX.s should be greater than zero. A warning
is displayed if this does not hold, and computations continue if mathematical
expressions allow this kind of values for the denominator variable.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of R̂ can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability
jackknife variance estimator (implemented by the current function):

V̂ (R̂) =
∑
k∈s

∑
l∈s

πkl − πkπl

πkl
εkεl

where
εk = (1− w̃k)

(
R̂− R̂(k)

)
with

w̃k =
wk∑
l∈s wl

and

R̂(k) =

∑
l∈s,l ̸=k wlyl/

∑
l∈s,l ̸=k wl∑

l∈s,l ̸=k wlxl/
∑

l∈s,l ̸=k wl
=

∑
l∈s,l ̸=k wlyl∑
l∈s,l ̸=k wlxl

Value

The function returns a value for the estimated variance.
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See Also

VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.Jk.CBS.HT.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the ratio point estimator using y2
VE.Jk.CBS.HT.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.HT.RegCo.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of the regression coefficient using the Hajek
point estimator (Horvitz-Thompson form)
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Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the estimator of the regression coefficient using the Hajek (1971) point estimator. It uses
the Horvitz-Thompson (1952) variance form.

Usage

VE.Jk.CBS.HT.RegCo.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population regression coefficient β, assuming that the population size N is unknown (see Sarn-
dal et al., 1992, Sec. 5.10), can be estimated by:

β̂Hajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek and ˆ̄xHajek are the Hajek (1971) point estimators of the population means ȳ =
N−1

∑
k∈U yk and x̄ = N−1

∑
k∈U xk, respectively,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

ˆ̄xHajek =

∑
k∈s wkxk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.
The variance of β̂Hajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (β̂Hajek) =
∑
k∈s

∑
l∈s

πkl − πkπl

πkl
εkεl
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where
εk = (1− w̃k)

(
β̂Hajek − β̂Hajek(k)

)
with

w̃k =
wk∑
l∈s wl

and where β̂Hajek(k) has the same functional form as β̂Hajek but omitting the k-th element from
the sample s.

Value

The function returns a value for the estimated variance.

Author(s)
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See Also

VE.Jk.CBS.HT.RegCoI.Hajek
VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.B.RegCo.Hajek
VE.Jk.EB.SW2.RegCo.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s



72 VE.Jk.CBS.HT.RegCoI.Hajek

#Computes the var. est. of the regression coeff. point estimator using y1
VE.Jk.CBS.HT.RegCo.Hajek(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the regression coeff. point estimator using y2
VE.Jk.CBS.HT.RegCo.Hajek(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.HT.RegCoI.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of the intercept regression coefficient using
the Hajek point estimator (Horvitz-Thompson form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the estimator of the intercept regression coefficient using the Hajek (1971) point estimator.
It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.Jk.CBS.HT.RegCoI.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population intercept regression coefficient α, assuming that the population size N is unknown
(see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

α̂Hajek = ˆ̄yHajek −
∑

k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑
k∈s wk(xk − ˆ̄xHajek)2

ˆ̄xHajek
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where ˆ̄yHajek and ˆ̄xHajek are the Hajek (1971) point estimators of the population means ȳ =
N−1

∑
k∈U yk and x̄ = N−1

∑
k∈U xk, respectively,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

ˆ̄xHajek =

∑
k∈s wkxk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.
The variance of α̂Hajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (α̂Hajek) =
∑
k∈s

∑
l∈s

πkl − πkπl

πkl
εkεl

where
εk = (1− w̃k)

(
α̂Hajek − α̂Hajek(k)

)
with

w̃k =
wk∑
l∈s wl

and where α̂Hajek(k) has the same functional form as α̂Hajek but omitting the k-th element from
the sample s.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.
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See Also

VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.Tukey.RegCoI.Hajek
VE.Jk.CBS.SYG.RegCoI.Hajek
VE.Jk.B.RegCoI.Hajek
VE.Jk.EB.SW2.RegCoI.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the intercept reg. coeff. point estimator using y1
VE.Jk.CBS.HT.RegCoI.Hajek(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the intercept reg. coeff. point estimator using y2
VE.Jk.CBS.HT.RegCoI.Hajek(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.HT.Total.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the Hajek (1971) estimator of a total (Horvitz-Thompson
form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the Hajek estimator of a total. It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.Jk.CBS.HT.Total.Hajek(VecY.s, VecPk.s, MatPkl.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part.
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Details

For the population total of the variable y:

t =
∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of t is given by:

t̂Hajek = N

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.
The variance of t̂Hajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (t̂Hajek) =
∑
k∈s

∑
l∈s

πkl − πkπl

πkl
εkεl

where
εk = (1− w̃k)

(
t̂Hajek − t̂Hajek(k)

)
with

w̃k =
wk∑
l∈s wl

and

t̂Hajek(k) = N

∑
l∈s,l ̸=k wlyl∑
l∈s,l ̸=k wl

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.
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See Also

VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek total point estimator using y1
VE.Jk.CBS.HT.Total.Hajek(y1[s==1], pik.U[s==1], pikl.s, N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.Jk.CBS.HT.Total.Hajek(y2[s==1], pik.U[s==1], pikl.s, N)

VE.Jk.CBS.SYG.Corr.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of a correlation coefficient using the Hajek
point estimator (Sen-Yates-Grundy form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the estimator of a correlation coefficient of two variables using the Hajek (1971) point
estimator. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.Jk.CBS.SYG.Corr.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.
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MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

ĈHajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)√∑

k∈s wk(yk − ˆ̄yHajek)2
√∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.
The variance of ĈHajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (ĈHajek) =
−1

2

∑
k∈s

∑
l∈s

πkl − πkπl

πkl
(εk − εl)

2

where
εk = (1− w̃k)

(
ĈHajek − ĈHajek(k)

)
with

w̃k =
wk∑
l∈s wl

and where ĈHajek(k) has the same functional form as ĈHajek but omitting the k-th element from
the sample s. The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive
regularity conditions.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.
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See Also

VE.Jk.Tukey.Corr.Hajek
VE.Jk.CBS.HT.Corr.Hajek
VE.Jk.B.Corr.Hajek
VE.Jk.EB.SW2.Corr.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the corr. coeff. point estimator using y1
VE.Jk.CBS.SYG.Corr.Hajek(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the corr. coeff. point estimator using y2
VE.Jk.CBS.SYG.Corr.Hajek(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.SYG.Mean.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the Hajek (1971) estimator of a mean (Sen-Yates-Grundy
form)
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Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance es-
timator for the Hajek estimator of a mean. It uses the Sen (1953); Yates-Grundy(1953) variance
form.

Usage

VE.Jk.CBS.SYG.Mean.Hajek(VecY.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

Details

For the population mean of the variable y:

ȳ =
1

N

∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of ȳ is given by:

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.
The variance of ˆ̄yHajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (ˆ̄yHajek) =
−1

2

∑
k∈s

∑
l∈s

πkl − πkπl

πkl
(εk − εl)

2

where
εk = (1− w̃k)

(
ˆ̄yHajek − ˆ̄yHajek(k)

)
with

w̃k =
wk∑
l∈s wl

and

ˆ̄yHajek(k) =

∑
l∈s,l ̸=k wlyl∑
l∈s,l ̸=k wl

The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal probability
jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive regularity
conditions.
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Value

The function returns a value for the estimated variance.

Author(s)
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See Also

VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.HT.Mean.Hajek
VE.Jk.B.Mean.Hajek
VE.Jk.EB.SW2.Mean.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek mean point estimator using y1
VE.Jk.CBS.SYG.Mean.Hajek(y1[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the Hajek mean point estimator using y2
VE.Jk.CBS.SYG.Mean.Hajek(y2[s==1], pik.U[s==1], pikl.s)
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VE.Jk.CBS.SYG.Ratio The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of a ratio (Sen-Yates-Grundy form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the estimator of a ratio of two totals/means. It uses the Sen (1953); Yates-Grundy(1953)
variance form.

Usage

VE.Jk.CBS.SYG.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecX.s. There must
not be missing values.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecY.s. There must not
be missing values. All values of VecX.s should be greater than zero. A warning
is displayed if this does not hold, and computations continue if mathematical
expressions allow this kind of values for the denominator variable.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of R̂ can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability
jackknife variance estimator (implemented by the current function):

V̂ (R̂) =
−1

2

∑
k∈s

∑
l∈s

πkl − πkπl

πkl
(εk − εl)

2
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where
εk = (1− w̃k)

(
R̂− R̂(k)

)
with

w̃k =
wk∑
l∈s wl

and

R̂(k) =

∑
l∈s,l ̸=k wlyl/

∑
l∈s,l ̸=k wl∑

l∈s,l ̸=k wlxl/
∑

l∈s,l ̸=k wl
=

∑
l∈s,l ̸=k wlyl∑
l∈s,l ̸=k wlxl

The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal probability
jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive regularity
conditions.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.
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See Also

VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio
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Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used for
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.Jk.CBS.SYG.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the ratio point estimator using y2
VE.Jk.CBS.SYG.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.SYG.RegCo.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of the regression coefficient using the Hajek
point estimator (Sen-Yates-Grundy form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the estimator of the regression coefficient using the Hajek (1971) point estimator. It uses
the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.Jk.CBS.SYG.RegCo.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.
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Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population regression coefficient β, assuming that the population size N is unknown (see Sarn-
dal et al., 1992, Sec. 5.10), can be estimated by:

β̂Hajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek and ˆ̄xHajek are the Hajek (1971) point estimators of the population means ȳ =
N−1

∑
k∈U yk and x̄ = N−1

∑
k∈U xk, respectively,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

ˆ̄xHajek =

∑
k∈s wkxk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.
The variance of β̂Hajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (β̂Hajek) =
−1

2

∑
k∈s

∑
l∈s

πkl − πkπl

πkl
(εk − εl)

2

where

εk = (1− w̃k)
(
β̂Hajek − β̂Hajek(k)

)
with

w̃k =
wk∑
l∈s wl

and where β̂Hajek(k) has the same functional form as β̂Hajek but omitting the k-th element from
the sample s. The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive
regularity conditions.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.
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See Also

VE.Jk.CBS.SYG.RegCoI.Hajek
VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.B.RegCo.Hajek
VE.Jk.EB.SW2.RegCo.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the regression coeff. point estimator using y1
VE.Jk.CBS.SYG.RegCo.Hajek(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the regression coeff. point estimator using y2
VE.Jk.CBS.SYG.RegCo.Hajek(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.SYG.RegCoI.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of the intercept regression coefficient using
the Hajek point estimator (Sen-Yates-Grundy form)
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Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the estimator of the intercept regression coefficient using the Hajek (1971) point estimator.
It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.Jk.CBS.SYG.RegCoI.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population intercept regression coefficient α, assuming that the population size N is unknown
(see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

α̂Hajek = ˆ̄yHajek −
∑

k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑
k∈s wk(xk − ˆ̄xHajek)2

ˆ̄xHajek

where ˆ̄yHajek and ˆ̄xHajek are the Hajek (1971) point estimators of the population means ȳ =
N−1

∑
k∈U yk and x̄ = N−1

∑
k∈U xk, respectively,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

ˆ̄xHajek =

∑
k∈s wkxk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.
The variance of α̂Hajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (α̂Hajek) =
−1

2

∑
k∈s

∑
l∈s

πkl − πkπl

πkl
(εk − εl)

2
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where
εk = (1− w̃k)

(
α̂Hajek − α̂Hajek(k)

)
with

w̃k =
wk∑
l∈s wl

and where α̂Hajek(k) has the same functional form as α̂Hajek but omitting the k-th element from
the sample s. The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive
regularity conditions.

Value

The function returns a value for the estimated variance.
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Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the intercept reg. coeff. point estimator using y1
VE.Jk.CBS.SYG.RegCoI.Hajek(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the intercept reg. coeff. point estimator using y2
VE.Jk.CBS.SYG.RegCoI.Hajek(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.SYG.Total.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the Hajek (1971) estimator of a total (Sen-Yates-Grundy
form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance es-
timator for the Hajek estimator of a total. It uses the Sen (1953); Yates-Grundy(1953) variance
form.

Usage

VE.Jk.CBS.SYG.Total.Hajek(VecY.s, VecPk.s, MatPkl.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part.
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Details

For the population total of the variable y:

t =
∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of t is given by:

t̂Hajek = N

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.
The variance of t̂Hajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (t̂Hajek) =
−1

2

∑
k∈s

∑
l∈s

πkl − πkπl

πkl
(εk − εl)

2

where
εk = (1− w̃k)

(
t̂Hajek − t̂Hajek(k)

)
with

w̃k =
wk∑
l∈s wl

and

t̂Hajek(k) = N

∑
l∈s,l ̸=k wlyl∑
l∈s,l ̸=k wl

The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal probability
jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive regularity
conditions.

Value

The function returns a value for the estimated variance.

Author(s)
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See Also

VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek total point estimator using y1
VE.Jk.CBS.SYG.Total.Hajek(y1[s==1], pik.U[s==1], pikl.s, N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.Jk.CBS.SYG.Total.Hajek(y2[s==1], pik.U[s==1], pikl.s, N)

VE.Jk.EB.SW2.Corr.Hajek

The self-weighted two-stage sampling Escobar-Berger (2013) jack-
knife variance estimator for the estimator of a correlation coefficient
using the Hajek point estimator

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance esti-
mator for the estimator of a correlation coefficient of two variables using the Hajek (1971) point
estimator.

Usage

VE.Jk.EB.SW2.Corr.Hajek(VecY.s, VecX.s, VecPk.s, nII, VecPi.s,
VecCluLab.s, VecCluSize.s)
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Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the total sample size.
Its length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the total sample size.
Its length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the elements’ first-order inclusion probabilities; its length is equal to
n, the total sample size. Values in VecPk.s must be greater than zero and less
than or equal to one. There must not be missing values.

nII the second stage sample size, i.e., the fixed number of ultimate sampling units
selected within each cluster. Its size must be less than or equal to the minimum
cluster size in the sample.

VecPi.s vector of the clusters’ first-order inclusion probabilities; its length is equal to n,
the total sample size. Hence values are expected to be repeated in the utilised
sample dataset. Values in VecPi.s must be greater than zero and less than or
equal to one. There must not be missing values.

VecCluLab.s vector of the clusters’ labels for the elements; its length is equal to n, the total
sample size. The labels must be integer numbers.

VecCluSize.s vector of the clusters’ sizes; its length is equal to n, the total sample size. Hence
values are expected to be repeated in the utilised sample dataset. None of the
sizes must be smaller than nII.

Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

ĈHajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)√∑

k∈s wk(yk − ˆ̄yHajek)2
√∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. If s
is a self-weighted two-stage sample, the variance of ĈHajek can be estimated by the Escobar-Berger
(2013) jackknife variance estimator (implemented by the current function):

V̂ (ĈHajek) = vclu + vobs

vclu =
∑
i∈s

(1− π∗
Ii)ς

2
(Ii) −

1

d̂

(∑
i∈s

(1− πIi)ς(Ii)

)2
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vobs =
∑
k∈s

ϕkε
2
(k)

where d̂ =
∑

i∈s(1− πIi), ϕk = I{k ∈ si}π∗
Ii(Mi − nII)/(Mi − 1), π∗

Ii = πIinII(Mi −
1)/(nII − 1)Mi, with si denoting the sample elements from the i-th cluster, I{k ∈ si} is an
indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, πIi

is the inclusion probability of the i-th cluster in the sample s, Mi is the size of the i-th cluster, nII

is the sample size within each cluster, nI is the number of sampled clusters, and where

ς(Ii) =
nI − 1

nI
(ĈHajek − ĈHajek(Ii))

ε(k) =
n− 1

n
(ĈHajek − ĈHajek(k))

where ĈHajek(Ii) and ĈHajek(k) have the same functional form as ĈHajek but omitting the i-th
cluster and the k-th element, respectively, from the sample s. Note that this variance estimator
implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling
designs, large samples, and large populations, i.e., care should be taken with highly-stratified sam-
ples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.
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Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
s <- oaxaca$sSW_10_3 #Defines the sample to be used
SampData <- oaxaca[s==1, ] #Defines the sample dataset
nII <- 3 #Defines the 2nd stage fixed sample size
CluLab.s <- SampData$IDDISTRI #Defines the clusters' labels
CluSize.s <- SampData$SIZEDIST #Defines the clusters' sizes
piIi.s <- (10 * CluSize.s / 570) #Reconstructs clusters' 1st order incl. probs.
pik.s <- piIi.s * (nII/CluSize.s) #Reconstructs elements' 1st order incl. probs.
y1.s <- SampData$POP10 #Defines the variable y1
y2.s <- SampData$POPMAL10 #Defines the variable y2
x.s <- SampData$HOMES10 #Defines the variable x
#Computes the var. est. of the corr. coeff. point estimator using y1
VE.Jk.EB.SW2.Corr.Hajek(y1.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)
#Computes the var. est. of the corr. coeff. point estimator using y2
VE.Jk.EB.SW2.Corr.Hajek(y2.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)

VE.Jk.EB.SW2.Mean.Hajek

The self-weighted two-stage sampling Escobar-Berger (2013) jack-
knife variance estimator for the Hajek (1971) estimator of a mean

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estima-
tor for the Hajek estimator of a mean.

Usage

VE.Jk.EB.SW2.Mean.Hajek(VecY.s, VecPk.s, nII, VecPi.s,
VecCluLab.s, VecCluSize.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the total sample size.
Its length has to be the same as that of VecPk.s. There must not be missing
values.

VecPk.s vector of the elements’ first-order inclusion probabilities; its length is equal to
n, the total sample size. Values in VecPk.s must be greater than zero and less
than or equal to one. There must not be missing values.

nII the second stage sample size, i.e., the fixed number of ultimate sampling units
selected within each cluster. Its size must be less than or equal to the minimum
cluster size in the sample.

VecPi.s vector of the clusters’ first-order inclusion probabilities; its length is equal to n,
the total sample size. Hence values are expected to be repeated in the utilised
sample dataset. Values in VecPi.s must be greater than zero and less than or
equal to one. There must not be missing values.
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VecCluLab.s vector of the clusters’ labels for the elements; its length is equal to n, the total
sample size. The labels must be integer numbers.

VecCluSize.s vector of the clusters’ sizes; its length is equal to n, the total sample size. Hence
values are expected to be repeated in the utilised sample dataset. None of the
sizes must be smaller than nII.

Details

For the population mean of the variable y:

ȳ =
1

N

∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of ȳ is given by:

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. If s
is a self-weighted two-stage sample, the variance of ˆ̄yHajek can be estimated by the Escobar-Berger
(2013) jackknife variance estimator (implemented by the current function):

V̂ (ˆ̄yHajek) = vclu + vobs

vclu =
∑
i∈s

(1− π∗
Ii)ς

2
(Ii) −

1

d̂

(∑
i∈s

(1− πIi)ς(Ii)

)2

vobs =
∑
k∈s

ϕkε
2
(k)

where d̂ =
∑

i∈s(1− πIi), ϕk = I{k ∈ si}π∗
Ii(Mi − nII)/(Mi − 1), π∗

Ii = πIinII(Mi −
1)/(nII − 1)Mi, with si denoting the sample elements from the i-th cluster, I{k ∈ si} is an
indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, πIi

is the inclusion probability of the i-th cluster in the sample s, Mi is the size of the i-th cluster, nII

is the sample size within each cluster, nI is the number of sampled clusters, and where

ς(Ii) =
nI − 1

nI
(ˆ̄yHajek − ˆ̄yHajek(Ii))

ε(k) =
n− 1

n
(ˆ̄yHajek − ˆ̄yHajek(k))

where ˆ̄yHajek(Ii) and ˆ̄yHajek(k) have the same functional form as ˆ̄yHajek but omitting the i-th clus-
ter and the k-th element, respectively, from the sample s. Note that this variance estimator implicitly
utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large
samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger
(2005).

Value

The function returns a value for the estimated variance.
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See Also

VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.HT.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.B.Mean.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
s <- oaxaca$sSW_10_3 #Defines the sample to be used
SampData <- oaxaca[s==1, ] #Defines the sample dataset
nII <- 3 #Defines the 2nd stage fixed sample size
CluLab.s <- SampData$IDDISTRI #Defines the clusters' labels
CluSize.s <- SampData$SIZEDIST #Defines the clusters' sizes
piIi.s <- (10 * CluSize.s / 570) #Reconstructs clusters' 1st order incl. probs.
pik.s <- piIi.s * (nII/CluSize.s) #Reconstructs elements' 1st order incl. probs.
y1.s <- SampData$POP10 #Defines the variable of interest y1
y2.s <- SampData$POPMAL10 #Defines the variable of interest y2
#Computes the var. est. of the Hajek mean point estimator using y1
VE.Jk.EB.SW2.Mean.Hajek(y1.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)
#Computes the var. est. of the Hajek mean point estimator using y2
VE.Jk.EB.SW2.Mean.Hajek(y2.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)

VE.Jk.EB.SW2.Ratio The self-weighted two-stage sampling Escobar-Berger (2013) jack-
knife variance estimator for the estimator of a ratio

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estima-
tor for the estimator of a ratio of two totals/means.
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Usage

VE.Jk.EB.SW2.Ratio(VecY.s, VecX.s, VecPk.s, nII, VecPi.s,
VecCluLab.s, VecCluSize.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the total
sample size. Its length has to be the same as that of VecPk.s and VecX.s. There
must not be missing values.

VecX.s vector of the denominator variable of interest; its length is equal to n, the total
sample size. Its length has to be the same as that of VecPk.s and VecY.s.
There must not be missing values. All values of VecX.s should be greater than
zero. A warning is displayed if this does not hold, and computations continue if
mathematical expressions allow this kind of values for the denominator variable.

VecPk.s vector of the elements’ first-order inclusion probabilities; its length is equal to
n, the total sample size. Values in VecPk.s must be greater than zero and less
than or equal to one. There must not be missing values.

nII the second stage sample size, i.e., the fixed number of ultimate sampling units
selected within each cluster. Its size must be less than or equal to the minimum
cluster size in the sample.

VecPi.s vector of the clusters’ first-order inclusion probabilities; its length is equal to n,
the total sample size. Hence values are expected to be repeated in the utilised
sample dataset. Values in VecPi.s must be greater than zero and less than or
equal to one. There must not be missing values.

VecCluLab.s vector of the clusters’ labels for the elements; its length is equal to n, the total
sample size. The labels must be integer numbers.

VecCluSize.s vector of the clusters’ sizes; its length is equal to n, the total sample size. Hence
values are expected to be repeated in the utilised sample dataset. None of the
sizes must be smaller than nII.

Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. If
s is a self-weighted two-stage sample, the variance of R̂ can be estimated by the Escobar-Berger
(2013) jackknife variance estimator (implemented by the current function):

V̂ (R̂) = vclu + vobs
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vclu =
∑
i∈s

(1− π∗
Ii)ς

2
(Ii) −

1

d̂

(∑
i∈s

(1− πIi)ς(Ii)

)2

vobs =
∑
k∈s

ϕkε
2
(k)

where d̂ =
∑

i∈s(1− πIi), ϕk = I{k ∈ si}π∗
Ii(Mi − nII)/(Mi − 1), π∗

Ii = πIinII(Mi −
1)/(nII − 1)Mi, with si denoting the sample elements from the i-th cluster, I{k ∈ si} is an
indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, πIi

is the inclusion probability of the i-th cluster in the sample s, Mi is the size of the i-th cluster, nII

is the sample size within each cluster, nI is the number of sampled clusters, and where

ς(Ii) =
nI − 1

nI
(R̂− R̂(Ii))

ε(k) =
n− 1

n
(R̂− R̂(k))

where R̂(Ii) and R̂(k) have the same functional form as R̂ but omitting the i-th cluster and the k-th
element, respectively, from the sample s. Note that this variance estimator implicitly utilises the
Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples,
and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage
samples. Statistica Sinica, 23, 595–613.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

See Also

VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio
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Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
s <- oaxaca$sSW_10_3 #Defines the sample to be used
SampData <- oaxaca[s==1, ] #Defines the sample dataset
nII <- 3 #Defines the 2nd stage fixed sample size
CluLab.s <- SampData$IDDISTRI #Defines the clusters' labels
CluSize.s <- SampData$SIZEDIST #Defines the clusters' sizes
piIi.s <- (10 * CluSize.s / 570) #Reconstructs clusters' 1st order incl. probs.
pik.s <- piIi.s * (nII/CluSize.s) #Reconstructs elements' 1st order incl. probs.
y1.s <- SampData$POP10 #Defines the numerator variable y1
y2.s <- SampData$POPMAL10 #Defines the numerator variable y2
x.s <- SampData$HOMES10 #Defines the denominator variable x
#Computes the var. est. of the ratio point estimator using y1
VE.Jk.EB.SW2.Ratio(y1.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)
#Computes the var. est. of the ratio point estimator using y2
VE.Jk.EB.SW2.Ratio(y2.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)

VE.Jk.EB.SW2.RegCo.Hajek

The self-weighted two-stage sampling Escobar-Berger (2013) jack-
knife variance estimator for the estimator of the regression coefficient
using the Hajek point estimator

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estima-
tor for the estimator of the regression coefficient using the Hajek (1971) point estimator.

Usage

VE.Jk.EB.SW2.RegCo.Hajek(VecY.s, VecX.s, VecPk.s, nII, VecPi.s,
VecCluLab.s, VecCluSize.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the total sample size.
Its length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the total sample size.
Its length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the elements’ first-order inclusion probabilities; its length is equal to
n, the total sample size. Values in VecPk.s must be greater than zero and less
than or equal to one. There must not be missing values.

nII the second stage sample size, i.e. the fixed number of ultimate sampling units
that were selected within each cluster. Its size must be less than or equal to the
minimum cluster size in the sample.
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VecPi.s vector of the clusters’ first-order inclusion probabilities; its length is equal to n,
the total sample size. Hence values are expected to be repeated in the utilised
sample dataset. Values in VecPi.s must be greater than zero and less than or
equal to one. There must not be missing values.

VecCluLab.s vector of the clusters’ labels for the elements; its length is equal to n, the total
sample size. The labels must be integer numbers.

VecCluSize.s vector of the clusters’ sizes; its length is equal to n, the total sample size. Hence
values are expected to be repeated in the utilised sample dataset. None of the
sizes must be smaller than nII.

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population regression coefficient β, assuming that the population size N is unknown (see Sarn-
dal et al., 1992, Sec. 5.10), can be estimated by:

β̂Hajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek and ˆ̄xHajek are the Hajek (1971) point estimators of the population means ȳ =
N−1

∑
k∈U yk and x̄ = N−1

∑
k∈U xk, respectively,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

ˆ̄xHajek =

∑
k∈s wkxk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. If s
is a self-weighted two-stage sample, the variance of β̂Hajek can be estimated by the Escobar-Berger
(2013) jackknife variance estimator (implemented by the current function):

V̂ (β̂Hajek) = vclu + vobs

vclu =
∑
i∈s

(1− π∗
Ii)ς

2
(Ii) −

1

d̂

(∑
i∈s

(1− πIi)ς(Ii)

)2

vobs =
∑
k∈s

ϕkε
2
(k)

where d̂ =
∑

i∈s(1− πIi), ϕk = I{k ∈ si}π∗
Ii(Mi − nII)/(Mi − 1), π∗

Ii = πIinII(Mi −
1)/(nII − 1)Mi, with si denoting the sample elements from the i-th cluster, I{k ∈ si} is an
indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, πIi

is the inclusion probability of the i-th cluster in the sample s, Mi is the size of the i-th cluster, nII

is the sample size within each cluster, nI is the number of sampled clusters, and where

ς(Ii) =
nI − 1

nI
(β̂Hajek − β̂Hajek(Ii))
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ε(k) =
n− 1

n
(β̂Hajek − β̂Hajek(k))

where β̂Hajek(Ii) and β̂Hajek(k) have the same functional form as β̂Hajek but omitting the i-th clus-
ter and the k-th element, respectively, from the sample s. Note that this variance estimator implicitly
utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large
samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger
(2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage
samples. Statistica Sinica, 23, 595–613.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-
Verlag, Inc.

See Also

VE.Jk.EB.SW2.RegCoI.Hajek
VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.B.RegCo.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
s <- oaxaca$sSW_10_3 #Defines the sample to be used
SampData <- oaxaca[s==1, ] #Defines the sample dataset
nII <- 3 #Defines the 2nd stage fixed sample size
CluLab.s <- SampData$IDDISTRI #Defines the clusters' labels
CluSize.s <- SampData$SIZEDIST #Defines the clusters' sizes
piIi.s <- (10 * CluSize.s / 570) #Reconstructs clusters' 1st order incl. probs.
pik.s <- piIi.s * (nII/CluSize.s) #Reconstructs elements' 1st order incl. probs.
y1.s <- SampData$POP10 #Defines the variable y1
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y2.s <- SampData$POPMAL10 #Defines the variable y2
x.s <- SampData$HOMES10 #Defines the variable x
#Computes the var. est. of the regression coeff. point estimator using y1
VE.Jk.EB.SW2.RegCo.Hajek(y1.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)
#Computes the var. est. of the regression coeff. point estimator using y2
VE.Jk.EB.SW2.RegCo.Hajek(y2.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)

VE.Jk.EB.SW2.RegCoI.Hajek

The self-weighted two-stage sampling Escobar-Berger (2013) jack-
knife variance estimator for the estimator of the intercept regression
coefficient using the Hajek point estimator

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estima-
tor for the estimator of the intercept regression coefficient using the Hajek (1971) point estimator.

Usage

VE.Jk.EB.SW2.RegCoI.Hajek(VecY.s, VecX.s, VecPk.s, nII, VecPi.s,
VecCluLab.s, VecCluSize.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the total sample size.
Its length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the total sample size.
Its length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the elements’ first-order inclusion probabilities; its length is equal to
n, the total sample size. Values in VecPk.s must be greater than zero and less
than or equal to one. There must not be missing values.

nII the second stage sample size, i.e. the fixed number of ultimate sampling units
that were selected within each cluster. Its size must be less than or equal to the
minimum cluster size in the sample.

VecPi.s vector of the clusters’ first-order inclusion probabilities; its length is equal to n,
the total sample size. Hence values are expected to be repeated in the utilised
sample dataset. Values in VecPi.s must be greater than zero and less than or
equal to one. There must not be missing values.

VecCluLab.s vector of the clusters’ labels for the elements; its length is equal to n, the total
sample size. The labels must be integer numbers.

VecCluSize.s vector of the clusters’ sizes; its length is equal to n, the total sample size. Hence
values are expected to be repeated in the utilised sample dataset. None of the
sizes must be smaller than nII.
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Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population intercept regression coefficient α, assuming that the population size N is unknown
(see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

α̂Hajek = ˆ̄yHajek −
∑

k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑
k∈s wk(xk − ˆ̄xHajek)2

ˆ̄xHajek

where ˆ̄yHajek and ˆ̄xHajek are the Hajek (1971) point estimators of the population means ȳ =
N−1

∑
k∈U yk and x̄ = N−1

∑
k∈U xk, respectively,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

ˆ̄xHajek =

∑
k∈s wkxk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. If s
is a self-weighted two-stage sample, the variance of α̂Hajek can be estimated by the Escobar-Berger
(2013) jackknife variance estimator (implemented by the current function):

V̂ (α̂Hajek) = vclu + vobs

vclu =
∑
i∈s

(1− π∗
Ii)ς

2
(Ii) −

1

d̂

(∑
i∈s

(1− πIi)ς(Ii)

)2

vobs =
∑
k∈s

ϕkε
2
(k)

where d̂ =
∑

i∈s(1− πIi), ϕk = I{k ∈ si}π∗
Ii(Mi − nII)/(Mi − 1), π∗

Ii = πIinII(Mi −
1)/(nII − 1)Mi, with si denoting the sample elements from the i-th cluster, I{k ∈ si} is an
indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, πIi

is the inclusion probability of the i-th cluster in the sample s, Mi is the size of the i-th cluster, nII

is the sample size within each cluster, nI is the number of sampled clusters, and where

ς(Ii) =
nI − 1

nI
(α̂Hajek − α̂Hajek(Ii))

ε(k) =
n− 1

n
(α̂Hajek − α̂Hajek(k))

where α̂Hajek(Ii) and α̂Hajek(k) have the same functional form as α̂Hajek but omitting the i-th
cluster and the k-th element, respectively, from the sample s. Note that this variance estimator
implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling
designs, large samples, and large populations, i.e., care should be taken with highly-stratified sam-
ples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.
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Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.
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See Also

VE.Jk.EB.SW2.RegCo.Hajek
VE.Jk.Tukey.RegCoI.Hajek
VE.Jk.CBS.HT.RegCoI.Hajek
VE.Jk.CBS.SYG.RegCoI.Hajek
VE.Jk.B.RegCoI.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
s <- oaxaca$sSW_10_3 #Defines the sample to be used
SampData <- oaxaca[s==1, ] #Defines the sample dataset
nII <- 3 #Defines the 2nd stage fixed sample size
CluLab.s <- SampData$IDDISTRI #Defines the clusters' labels
CluSize.s <- SampData$SIZEDIST #Defines the clusters' sizes
piIi.s <- (10 * CluSize.s / 570) #Reconstructs clusters' 1st order incl. probs.
pik.s <- piIi.s * (nII/CluSize.s) #Reconstructs elements' 1st order incl. probs.
y1.s <- SampData$POP10 #Defines the variable y1
y2.s <- SampData$POPMAL10 #Defines the variable y2
x.s <- SampData$HOMES10 #Defines the variable x
#Computes the var. est. of the intercept reg. coeff. point estimator using y1
VE.Jk.EB.SW2.RegCoI.Hajek(y1.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)
#Computes the var. est. of the intercept reg. coeff. point estimator using y2
VE.Jk.EB.SW2.RegCoI.Hajek(y2.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)
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VE.Jk.EB.SW2.Total.Hajek

The self-weighted two-stage sampling Escobar-Berger (2013) jack-
knife variance estimator for the Hajek (1971) estimator of a total

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estima-
tor for the Hajek estimator of a total.

Usage

VE.Jk.EB.SW2.Total.Hajek(VecY.s, VecPk.s, nII, VecPi.s,
VecCluLab.s, VecCluSize.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the total sample size.
Its length has to be the same as that of VecPk.s. There must not be missing
values.

VecPk.s vector of the elements’ first-order inclusion probabilities; its length is equal to
n, the total sample size. Values in VecPk.s must be greater than zero and less
than or equal to one. There must not be missing values.

nII the second stage sample size, i.e. the fixed number of ultimate sampling units
that were selected within each cluster. Its size must be less than or equal to the
minimum cluster size in the sample.

VecPi.s vector of the clusters’ first-order inclusion probabilities; its length is equal to n,
the total sample size. Hence values are expected to be repeated in the utilised
sample dataset. Values in VecPi.s must be greater than zero and less than or
equal to one. There must not be missing values.

VecCluLab.s vector of the clusters’ labels for the elements; its length is equal to n, the total
sample size. The labels must be integer numbers.

VecCluSize.s vector of the clusters’ sizes; its length is equal to n, the total sample size. Hence
values are expected to be repeated in the utilised sample dataset. None of the
sizes must be smaller than nII.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part.

Details

For the population total of the variable y:

t =
∑
k∈U

yk
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the approximately unbiased Hajek (1971) estimator of t is given by:

t̂Hajek = N

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. If s
is a self-weighted two-stage sample, the variance of t̂Hajek can be estimated by the Escobar-Berger
(2013) jackknife variance estimator (implemented by the current function):

V̂ (t̂Hajek) = vclu + vobs

vclu =
∑
i∈s

(1− π∗
Ii)ς

2
(Ii) −

1

d̂

(∑
i∈s

(1− πIi)ς(Ii)

)2

vobs =
∑
k∈s

ϕkε
2
(k)

where d̂ =
∑

i∈s(1− πIi), ϕk = I{k ∈ si}π∗
Ii(Mi − nII)/(Mi − 1), π∗

Ii = πIinII(Mi −
1)/(nII − 1)Mi, with si denoting the sample elements from the i-th cluster, I{k ∈ si} is an
indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, πIi

is the inclusion probability of the i-th cluster in the sample s, Mi is the size of the i-th cluster, nII

is the sample size within each cluster, nI is the number of sampled clusters, and where

ς(Ii) =
nI − 1

nI
(t̂Hajek − t̂Hajek(Ii))

ε(k) =
n− 1

n
(t̂Hajek − t̂Hajek(k))

where t̂Hajek(Ii) and t̂Hajek(k) have the same functional form as t̂Hajek but omitting the i-th cluster
and the k-th element, respectively, from the sample s. Note that this variance estimator implicitly
utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large
samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger
(2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage
samples. Statistica Sinica, 23, 595–613.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.
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Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
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See Also

VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
s <- oaxaca$sSW_10_3 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
SampData <- oaxaca[s==1, ] #Defines the sample dataset
nII <- 3 #Defines the 2nd stage fixed sample size
CluLab.s <- SampData$IDDISTRI #Defines the clusters' labels
CluSize.s <- SampData$SIZEDIST #Defines the clusters' sizes
piIi.s <- (10 * CluSize.s / 570) #Reconstructs clusters' 1st order incl. probs.
pik.s <- piIi.s * (nII/CluSize.s) #Reconstructs elements' 1st order incl. probs.
y1.s <- SampData$POP10 #Defines the variable of interest y1
y2.s <- SampData$POPMAL10 #Defines the variable of interest y2
#Computes the var. est. of the Hajek total point estimator using y1
VE.Jk.EB.SW2.Total.Hajek(y1.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s, N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.Jk.EB.SW2.Total.Hajek(y2.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s, N)

VE.Jk.Tukey.Corr.Hajek

The Tukey (1958) jackknife variance estimator for the estimator of a
correlation coefficient using the Hajek point estimator

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of a
correlation coefficient of two variables using the Hajek (1971) point estimator.

Usage

VE.Jk.Tukey.Corr.Hajek(VecY.s, VecX.s, VecPk.s, N, FPC= TRUE)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.
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VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part. This information is utilised for the finite population cor-
rection only, see FPC below.

FPC logical value. If an ad hoc finite population correction FPC = 1 − n/N is to
be used. The default is TRUE.

Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

ĈHajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)√∑

k∈s wk(yk − ˆ̄yHajek)2
√∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. The
variance of ĈHajek can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance
estimator (implemented by the current function):

V̂ (ĈHajek) =
(
1− n

N

) n− 1

n

∑
k∈s

(
ĈHajek(k) − ĈHajek

)2
where ĈHajek(k) has the same functional form as ĈHajek but omitting the k-th element from the
sample s. Note that we are implementing the Tukey (1958) jackknife variance estimator using the
‘ad hoc’ finite population correction 1−n/N (see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE
then the term 1− n/N is ommited from the above formula.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.
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See Also

VE.Jk.CBS.HT.Corr.Hajek
VE.Jk.CBS.SYG.Corr.Hajek
VE.Jk.B.Corr.Hajek
VE.Jk.EB.SW2.Corr.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the var. est. of the corr. coeff. point estimator using y1
VE.Jk.Tukey.Corr.Hajek(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the var. est. of the corr. coeff. point estimator using y2
VE.Jk.Tukey.Corr.Hajek(y2[s==1], x[s==1], pik.U[s==1], N, FPC= FALSE)

VE.Jk.Tukey.Corr.NHT The Tukey (1958) jackknife variance estimator for the estimator of a
correlation coefficient using the Narain-Horvitz-Thompson point esti-
mator

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of a
correlation coefficient of two variables using the Narain (1951); Horvitz-Thompson (1952) point
estimator.

Usage

VE.Jk.Tukey.Corr.NHT(VecY.s, VecX.s, VecPk.s, N, FPC= TRUE)
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Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part. This information is also utilised for the finite population
correction; see FPC below.

FPC logical value. If an ad hoc finite population correction FPC = 1 − n/N is to
be used. The default is TRUE.

Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C is given by:

Ĉ =

∑
k∈s wk(yk − ˆ̄yNHT )(xk − ˆ̄xNHT )√∑

k∈s wk(yk − ˆ̄yNHT )2
√∑

k∈s wk(xk − ˆ̄xNHT )2

where ˆ̄yNHT is the Narain (1951); Horvitz-Thompson (1952) estimator for the population mean
ȳ = N−1

∑
k∈U yk,

ˆ̄yNHT =
1

N

∑
k∈s

wkyk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. The
variance of Ĉ can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance estimator
(implemented by the current function):

V̂ (Ĉ) =
(
1− n

N

) n− 1

n

∑
k∈s

(
Ĉ(k) − Ĉ

)2
where Ĉ(k) has the same functional form as Ĉ but omitting the k-th element from the sample s. We
are implementing the Tukey (1958) jackknife variance estimator using the ‘ad hoc’ finite population
correction 1− n/N (see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE, then the term 1− n/N
is omitted from the above formula.

Value

The function returns a value for the estimated variance.



110 VE.Jk.Tukey.Mean.Hajek
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See Also

Est.Corr.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the var. est. of the corr. coeff. point estimator using y1
VE.Jk.Tukey.Corr.NHT(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the var. est. of the corr. coeff. point estimator using y2
VE.Jk.Tukey.Corr.NHT(y2[s==1], x[s==1], pik.U[s==1], N, FPC= FALSE)

VE.Jk.Tukey.Mean.Hajek

The Tukey (1958) jackknife variance estimator for the Hajek estimator
of a mean

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the Hajek (1971)
estimator of a mean.

Usage

VE.Jk.Tukey.Mean.Hajek(VecY.s, VecPk.s, N, FPC= TRUE)
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Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part. This information is also utilised for the finite population
correction; see FPC below.

FPC logical value. If an ad hoc finite population correction FPC = 1 − n/N is to
be used. The default is TRUE.

Details

For the population mean of the variable y:

ȳ =
1

N

∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of ȳ is given by:

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.
The variance of ˆ̄yHajek can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance
estimator (implemented by the current function):

V̂ (ˆ̄yHajek) =
(
1− n

N

) n− 1

n

∑
k∈s

(
ˆ̄yHajek(k) − ˆ̄yHajek

)2
where

ˆ̄yHajek(k) =

∑
l∈s,l ̸=k wlyl∑
l∈s,l ̸=k wl

We are implementing the Tukey (1958) jackknife variance estimator using the ‘ad hoc’ finite pop-
ulation correction 1 − n/N (see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE, then the term
1− n/N is omitted from the above formula.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.
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See Also

VE.Jk.CBS.HT.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.B.Mean.Hajek
VE.Jk.EB.SW2.Mean.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#Computes the var. est. of the Hajek mean point estimator using y1
VE.Jk.Tukey.Mean.Hajek(y1[s==1], pik.U[s==1], N)
#Computes the var. est. of the Hajek mean point estimator using y2
VE.Jk.Tukey.Mean.Hajek(y2[s==1], pik.U[s==1], N, FPC= FALSE)

VE.Jk.Tukey.Ratio The Tukey (1958) jackknife variance estimator for the estimator of a
ratio

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of a
ratio of two totals/means.

Usage

VE.Jk.Tukey.Ratio(VecY.s, VecX.s, VecPk.s, N, FPC= TRUE)
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Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecX.s. There must
not be missing values.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecY.s. There must not
be missing values. All values of VecX.s should be greater than zero. A warning
is displayed if this does not hold, and computations continue if mathematical
expressions allow this kind of values for the denominator variable.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part. This information is also utilised for the finite population
correction; see FPC below.

FPC logical value. If an ad hoc finite population correction FPC = 1 − n/N is to
be used. The default is TRUE.

Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of R̂ can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance estimator
(implemented by the current function):

V̂ (R̂) =
(
1− n

N

) n− 1

n

∑
k∈s

(
R̂(k) − R̂

)2
where

R̂(k) =

∑
l∈s,l ̸=k wlyl∑
l∈s,l ̸=k wlxl

We are implementing the Tukey (1958) jackknife variance estimator using the ‘ad hoc’ finite pop-
ulation correction 1 − n/N (see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE, then the term
1− n/N is omitted from the above formula.

Value

The function returns a value for the estimated variance.
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See Also

VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
#Computes the var. est. of the ratio point estimator using y1
VE.Jk.Tukey.Ratio(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the var. est. of the ratio point estimator using y2
VE.Jk.Tukey.Ratio(y2[s==1], x[s==1], pik.U[s==1], N, FPC= FALSE)

VE.Jk.Tukey.RegCo.Hajek

The Tukey (1958) jackknife variance estimator for the estimator of the
regression coefficient using the Hajek point estimator

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of the
regression coefficient using the Hajek (1971) point estimator.
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Usage

VE.Jk.Tukey.RegCo.Hajek(VecY.s, VecX.s, VecPk.s, N, FPC= TRUE)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part. This information is utilised for the finite population cor-
rection only; see FPC below.

FPC logical value. If an ad hoc finite population correction FPC = 1 − n/N is to
be used. The default is TRUE.

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population regression coefficient β, assuming that the population size N is unknown (see Sarn-
dal et al., 1992, Sec. 5.10), can be estimated by:

β̂Hajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek and ˆ̄xHajek are the Hajek (1971) point estimators of the population means ȳ =
N−1

∑
k∈U yk and x̄ = N−1

∑
k∈U xk, respectively,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

ˆ̄xHajek =

∑
k∈s wkxk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. The
variance of β̂Hajek can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance
estimator (implemented by the current function):

V̂ (β̂Hajek) =
(
1− n

N

) n− 1

n

∑
k∈s

(
β̂Hajek(k) − β̂Hajek

)2
where β̂Hajek(k) has the same functional form as β̂Hajek but omitting the k-th element from the
sample s. We are implementing the Tukey (1958) jackknife variance estimator using the ‘ad hoc’
finite population correction 1 − n/N (see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE, then
the term 1− n/N is omitted from the above formula.
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Value

The function returns a value for the estimated variance.
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Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the var. est. of the regression coeff. point estimator using y1
VE.Jk.Tukey.RegCo.Hajek(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the var. est. of the regression coeff. point estimator using y2
VE.Jk.Tukey.RegCo.Hajek(y2[s==1], x[s==1], pik.U[s==1], N, FPC= FALSE)
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VE.Jk.Tukey.RegCoI.Hajek

The Tukey (1958) jackknife variance estimator for the estimator of the
intercept regression coefficient using the Hajek point estimator

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of the
intercept regression coefficient using the Hajek (1971) point estimator.

Usage

VE.Jk.Tukey.RegCoI.Hajek(VecY.s, VecX.s, VecPk.s, N, FPC= TRUE)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecX.s. There must not be
missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s and VecY.s. There must not be
missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part. This information is utilised for the finite population cor-
rection only; see FPC below.

FPC logical value. If an ad hoc finite population correction FPC = 1 − n/N is to
be used. The default is TRUE.

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population intercept regression coefficient α, assuming that the population size N is unknown
(see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

α̂Hajek = ˆ̄yHajek −
∑

k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑
k∈s wk(xk − ˆ̄xHajek)2

ˆ̄xHajek

where ˆ̄yHajek and ˆ̄xHajek are the Hajek (1971) point estimators of the population means ȳ =
N−1

∑
k∈U yk and x̄ = N−1

∑
k∈U xk, respectively,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk
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ˆ̄xHajek =

∑
k∈s wkxk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. The
variance of α̂Hajek can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance
estimator (implemented by the current function):

V̂ (α̂Hajek) =
(
1− n

N

) n− 1

n

∑
k∈s

(
α̂Hajek(k) − α̂Hajek

)2
where α̂Hajek(k) has the same functional form as α̂Hajek but omitting the k-th element from the
sample s. We are implementing the Tukey (1958) jackknife variance estimator using the ‘ad hoc’
finite population correction 1 − n/N (see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE, then
the term 1− n/N is omitted from the above formula.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Quenouille, M. H. (1956) Notes on bias in estimation. Biometrika, 43, 353–360.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-
Verlag, Inc.

Shao, J. and Tu, D. (1995) The Jackknife and Bootstrap. Springer-Verlag, Inc.

Tukey, J. W. (1958) Bias and confidence in not-quite large samples (abstract). The Annals of Math-
ematical Statistics, 29, 2, p. 614.

Wolter, K. M. (2007) Introduction to Variance Estimation. 2nd Ed. Springer, Inc.

See Also

VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.HT.RegCoI.Hajek
VE.Jk.CBS.SYG.RegCoI.Hajek
VE.Jk.B.RegCoI.Hajek
VE.Jk.EB.SW2.RegCoI.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
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N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the var. est. of the intercept reg. coeff. point estimator using y1
VE.Jk.Tukey.RegCoI.Hajek(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the var. est. of the intercept reg. coeff. point estimator using y2
VE.Jk.Tukey.RegCoI.Hajek(y2[s==1], x[s==1], pik.U[s==1], N, FPC= FALSE)

VE.Jk.Tukey.Total.Hajek

The Tukey (1958) jackknife variance estimator for the Hajek estimator
of a total

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the Hajek (1971)
estimator of a total.

Usage

VE.Jk.Tukey.Total.Hajek(VecY.s, VecPk.s, N, FPC= TRUE)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part. This information is also utilised for the finite population
correction; see FPC below.

FPC logical value. If an ad hoc finite population correction FPC = 1 − n/N is to
be used. The default is TRUE.

Details

For the population total of the variable y:

t =
∑
k∈U

yk

the approximately unbiased Hajek (1971) estimator of t is given by:

t̂Hajek = N

∑
k∈s wkyk∑
k∈s wk
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where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.
The variance of t̂Hajek can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance
estimator (implemented by the current function):

V̂ (t̂Hajek) =
(
1− n

N

) n− 1

n

∑
k∈s

(
t̂Hajek(k) − t̂Hajek

)2
where

t̂Hajek(k) = N

∑
l∈s,l ̸=k wlyl∑
l∈s,l ̸=k wl

We are implementing the Tukey (1958) jackknife variance estimator using the ‘ad hoc’ finite pop-
ulation correction 1 − n/N (see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE, then the term
1− n/N is omitted from the above formula.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Quenouille, M. H. (1956) Notes on bias in estimation. Biometrika, 43, 353–360.

Shao, J. and Tu, D. (1995) The Jackknife and Bootstrap. Springer-Verlag, Inc.

Tukey, J. W. (1958) Bias and confidence in not-quite large samples (abstract). The Annals of Math-
ematical Statistics, 29, 2, p. 614.

Wolter, K. M. (2007) Introduction to Variance Estimation. 2nd Ed. Springer, Inc.

See Also

VE.Jk.CBS.HT.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#Computes the var. est. of the Hajek total point estimator using y1
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VE.Jk.Tukey.Total.Hajek(y1[s==1], pik.U[s==1], N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.Jk.Tukey.Total.Hajek(y2[s==1], pik.U[s==1], N, FPC= FALSE)

VE.Lin.HT.Ratio The unequal probability linearisation variance estimator for the esti-
mator of a ratio (Horvitz-Thompson form)

Description

Computes the unequal probability Taylor linearisation variance estimator for the estimator of a ratio
of two totals/means. It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.Lin.HT.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecX.s. There must
not be missing values.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecY.s. There must not
be missing values. All values of VecX.s should be greater than zero. A warning
is displayed if this does not hold, and computations continue if mathematical
expressions allow this kind of values for the denominator variable.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample
s. The variance of R̂ can be estimated by the unequal probability linearisation variance estimator
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(implemented by the current function). For details see Woodruff (1971); Deville (1999); Demnati-
Rao (2004); Sarndal et al., (1992, Secs. 5.5 and 5.6):

V̂ (R̂) =
∑
k∈s

∑
l∈s

πkl − πkπl

πkl
wkukwlul

where

uk =
yk − R̂xk

t̂x,NHT

with
t̂x,NHT =

∑
k∈s

wkxk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of the population total for the
(denominator) variable VecX.s.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey
Methodology, 30, 17–26.

Deville, J.-C. (1999) Variance estimation for complex statistics and estimators: linearization and
residual techniques. Survey Methodology, 25, 193–203.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-
Verlag, Inc.

Woodruff, R. S. (1971) A Simple Method for Approximating the Variance of a Complicated Esti-
mate. Journal of the American Statistical Association, 66, 334, 411–414.

See Also

VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio
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Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.Lin.HT.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the ratio point estimator using y2
VE.Lin.HT.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.Lin.SYG.Ratio The unequal probability linearisation variance estimator for the esti-
mator of a ratio (Sen-Yates-Grundy form)

Description

Computes the unequal probability Taylor linearisation variance estimator for the estimator of a ratio
of two totals/means. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.Lin.SYG.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecX.s. There must
not be missing values.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as that of VecPk.s and VecY.s. There must not
be missing values. All values of VecX.s should be greater than zero. A warning
is displayed if this does not hold, and computations continue if mathematical
expressions allow this kind of values for the denominator variable.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.
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Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample
s. The variance of R̂ can be estimated by the unequal probability linearisation variance estimator
(implemented by the current function). For details see Woodruff (1971); Deville (1999); Demnati-
Rao (2004); Sarndal et al., (1992, Secs. 5.5 and 5.6):

V̂ (R̂) =
−1

2

∑
k∈s

∑
l∈s

πkl − πkπl

πkl
(wkuk − wlul)

2

where

uk =
yk − R̂xk

t̂x,NHT

with
t̂x,NHT =

∑
k∈s

wkxk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of the population total for the
(denominator) variable VecX.s.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey
Methodology, 30, 17–26.

Deville, J.-C. (1999) Variance estimation for complex statistics and estimators: linearization and
residual techniques. Survey Methodology, 25, 193–203.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-
Verlag, Inc.
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Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal
of the Indian Society of Agricultural Statistics, 5, 119–127.

Woodruff, R. S. (1971) A Simple Method for Approximating the Variance of a Complicated Esti-
mate. Journal of the American Statistical Association, 66, 334, 411–414.

Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability
proportional to size. Journal of the Royal Statistical Society B, 15, 253–261.

See Also

VE.Lin.HT.RatioVE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used for
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.Lin.SYG.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the ratio point estimator using y2
VE.Lin.SYG.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.SYG.Mean.NHT The Sen-Yates-Grundy variance estimator for the Narain-Horvitz-
Thompson point estimator for a mean

Description

Computes the Sen (1953); Yates-Grundy(1953) variance estimator for the Narain (1951); Horvitz-
Thompson (1952) point estimator for a population mean.

Usage

VE.SYG.Mean.NHT(VecY.s, VecPk.s, MatPkl.s, N)
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Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zero-
valued fractional part.

Details

For the population mean of the variable y:

ȳ =
1

N

∑
k∈U

yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of ȳ is given by:

ˆ̄yNHT =
1

N

∑
k∈s

yk
πk

where πk denotes the inclusion probability of the k-th element in the sample s. Let πkl denotes the
joint-inclusion probabilities of the k-th and l-th elements in the sample s. The variance of ˆ̄yNHT is
given by:

V (ˆ̄yNHT ) =
1

N2

∑
k∈U

∑
l∈U

(πkl − πkπl)
yk
πk

yl
πl

which, if the utilised sampling design is of fixed sample size, can therefore be estimated by the
Sen-Yates-Grundy variance estimator (implemented by the current function):

V̂ (ˆ̄yNHT ) =
1

N2

−1

2

∑
k∈s

∑
l∈s

πkl − πkπl

πkl

(
yk
πk

− yl
πl

)2

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.
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References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.
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See Also

VE.HT.Mean.NHT
VE.Hajek.Mean.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
#This approx. is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the NHT point estimator for y1
VE.SYG.Mean.NHT(y1[s==1], pik.U[s==1], pikl.s, N)
#Computes the var. est. of the NHT point estimator for y2
VE.SYG.Mean.NHT(y2[s==1], pik.U[s==1], pikl.s, N)

VE.SYG.Total.NHT The Sen-Yates-Grundy variance estimator for the Narain-Horvitz-
Thompson point estimator for a total

Description

Computes the Sen (1953); Yates-Grundy(1953) variance estimator for the Narain (1951); Horvitz-
Thompson (1952) point estimator for a population total.

Usage

VE.SYG.Total.NHT(VecY.s, VecPk.s, MatPkl.s)
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Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
equals n, the sample size. Values in MatPkl.s must be greater than zero and less
than or equal to one. There must not be missing values.

Details

For the population total of the variable y:

t =
∑
k∈U

yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of t is given by:

t̂NHT =
∑
k∈s

yk
πk

where πk denotes the inclusion probability of the k-th element in the sample s. Let πkl denotes the
joint-inclusion probabilities of the k-th and l-th elements in the sample s. The variance of t̂NHT is
given by:

V (t̂NHT ) =
∑
k∈U

∑
l∈U

(πkl − πkπl)
yk
πk

yl
πl

which, if the utilised sampling design is of fixed sample size, can therefore be estimated by the
Sen-Yates-Grundy variance estimator (implemented by the current function):

V̂ (t̂NHT ) =
−1

2

∑
k∈s

∑
l∈s

πkl − πkπl

πkl

(
yk
πk

− yl
πl

)2

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.
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proportional to size. Journal of the Royal Statistical Society B, 15, 253–261.

See Also

VE.HT.Total.NHT
VE.Hajek.Total.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the NHT point estimator for y1
VE.SYG.Total.NHT(y1[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the NHT point estimator for y2
VE.SYG.Total.NHT(y2[s==1], pik.U[s==1], pikl.s)
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